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of the AdS3 type supported by both Ramond–Ramond and Neveu–Schwarz–
Neveu–Schwarz fluxes. This is the basis for the discussion of classical integ-
rability, of worldsheet-scattering factorisation in the uniform lightcone gauge,
and eventually of the string spectrum through the mirror thermodynamic Bethe
ansatz, which for AdS3 backgrounds was only derived and analysed very
recently. We then illustrate some aspects of the Ramond–Neveu–Schwarz
string, and introduce the formalism of Berkovits–Vafa–Witten, which has seen
very recent applications to AdS3 physics, which we also briefly review. Finally,
we present the relation between M-theory in the discrete lightcone quantisation
and decoupling limits of string theory that exhibit non-relativistic behaviors,
highlighting the connection with integrable TT̄ deformations, as well as the
relation between spin-matrix theory and Landau–Lifshitz models.

This review is based on lectures given at the Young Researchers Integrability
School and Workshop 2022 ‘Taming the string worldsheet’ at NORDITA,
Stockholm.

Keywords: integrable sigma models, worldsheet S matrix,
mirror thermodynamic Bethe ansatz, hybrid superstring,
Green–Schwarz superstring, non-relativistic strings, AdS3/CFT2
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1. Introduction

String theory has occupied a central role in high-energy theoretical physics for decades.
Initially constructed as a potential model to describe strong interactions from the late 1960s,
it became a candidate for a quantum theory of gravity, or even for a ‘theory of everything’ in
the subsequent decades. In the process, a theory (in fact, more than one such theory) of super-
symmetric strings, or superstrings, was formulated as a way to incorporate fermions into the
formalism. More recently, string theory has been instrumental in providing a concrete realisa-
tion of the holographic principle [1, 2] in terms of the celebrated anti-de Sitter/conformal field
theory correspondence (AdS/CFT) correspondence [3–5]. Even though it is unclear whether
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string theory can describe the Universe as we see it—with (quantum) gravity, all the funda-
mental particles of the Standard Model, inflation, and so on—we can confidently state that
string theory can help us understand the general features that a consistent theory of quantum
gravity must have.

Here we will just consider a theory of closed superstrings, which is the one most directly
relevant to quantum gravity. The surface swept by the string is the worldsheet, the generalisa-
tion of the worldline of a particle. The string can split and merge, making ‘loops’. The ‘loop
order’ of this expansion is the genus of the string worldsheet, and for this reason we talk of
a genus expansion of string observables, whose expansion parameter is the string coupling
constant gs. More often than not, one considers a perturbative expansion in the genus. For our
purposes here, we can be even more modest and consider the case of free strings propagating
on a fixed geometry, i.e. gs = 0.

Even with such simplifications, understanding string theory is far from easy. First of all, the
‘target’ geometry on which superstrings can consistently propagate (i.e. without running into
anomalies in the quantum theory) cannot be arbitrary: it has to be a ten-dimensional solution
of the supergravity equations, described not only by the metric, but by additional fields such as
the dilaton, the Kalb-Ramond field, and by the so-called Ramond–Ramond (RR) fluxes (which
are important for coupling the fermions to the geometry). Secondly, even if gs = 0 there are
many parameters in this theory. One important parameter is the string tension T (which can
be treated as a dimensionless quantity by rescaling it by a typical length scale in the target
space). When the tension is very large, the strings shrink to a point; in this limit, supergravity
captures well the features of the strings. Vice versa, when the tension is small, the strings are
‘floppy’ and probe the geometry very differently from how a probe particle would. Very often,
depending on the details of the target space, there may be more parameters that influence the
string dynamics.

In this limit of free strings, solving string theory means solving the two-dimensional
quantum field theory on the string worldsheet. Thankfully, this theory has some special
features: it is invariant under two-dimensional diffeomorphism and Weyl symmetry. In the
Ramond–Neveu–Schwarz (RNS) approach, one supplements these invariances with world-
sheet supersymmetry. Then, it is possible to quantise the theory in a covariant way by using
the Becchi–Rouet–Stora–Tyutin (BRST) approach. A big drawback of this approach, however,
is that it becomes very unwieldy in the presence of RR fluxes: the worldsheet CFT is non-local,
and the matter and ghosts sectors become intertwined [6–8]. An alternative approach is to write
an action which is supersymmetric in target-space; this is the Green–Schwarz (GS) approach.
In this case, the theory is local but in general it is not known how to quantise it covariantly.
One instead can use a lightcone gauge, which, however, in general yields a non-conformal
interacting two-dimensional QFT in finite-volume—this is hardly a tractable theory!

Because of these limitations, it is difficult to study superstring theory even at gs = 0, on
most backgrounds. A few notable exceptions are

• Flat space; this is the best-studied string background and it can be considered in detail both
in the RNS formalism (in fact, one can even go beyond the gs = 0 setup which we have been
discussing here) and in the GS formalism; in that case, the light-cone gauge-fixed theory is
free (with an appropriate choice of the gauge), see e.g. [9–12].
• pp-wave geometries [13, 14], even in the presence of RR fluxes (which here are constant).

Here the preferred approach is the GS formalism because, with a suitable gauge-fixing, again
we find free theories [15].
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• Certain curved geometries without RR fluxes; an important example in this context is the
AdS3× S3×T4 background [16]. In the RNS formalism this yields a supersymmetric WZW
model, which can be solved in terms of the free action of Kač-Moody algebras of sl(2,R)
and su(2) up to suitably physical-state constraints [17].

However, there are many important examples which cannot be solved in such a way. An
important case is the maximally supersymmetric Anti-De Sitter geometry, i.e. AdS5× S5; free
strings here are dual [3] to the four-dimensional SU(Nc) N = 4 supersymmetric Yang-Mills
theory in the ‘t Hooft limit Nc→∞ [18], and the string tension T is related to the ’t Hooft
coupling. In this sense, it is quite unsurprising that we might struggle to solve such a string
theory, as this should be as hard as solving a large-Nc non-abelian Yang–Mills theory in four
dimensions—a far cry from the free (or almost-free) theories discussed in the bullet points
above!

For the specific case of AdS5× S5 strings and N = 4 SYM, a remarkable fact provides
an alternative way to solve the planar limit of the theory—the model is integrable, mean-
ing that it possess infinitely many symmetries which constrain its dynamics. This was first
famously observed on the N = 4 SYM side of the duality [19], but it is perhaps easiest to
understand from the string worldsheet [20]. After all, the model on the string worldsheet is
a 2D field theory, and integrability for such theories have been studied since the 1970s. In
this context, integrability provides a way to make sense of the lightcone gauge-fixed theory
non-perturbatively: By demanding that integrability is preserved by the scattering matrix, we
can fix it (almost) uniquely, and use Bethe ansatz techniques to derive the spectrum. The
worldsheet-integrability approach to AdS5× S5 strings is by now well-established, and well
reviewed: see [21] for a review of worldsheet integrability specifically, and [22] for a more
general review of AdS5/CFT4 integrability.

Integrability is not the only way, at least in principle, to incorporate the RR flux on the
worldsheet. The hybrid formalism [23] is one way to modify the worldsheet CFT approach in
such a way to include RR flux. Since its inception, it was clear that this would be especially
suitable for backgrounds such as AdS3× S3×T4. As we mentioned, that background can be
realised as a level-k supersymmetric WZW model (without any RR flux, but with a Kalb–
Ramond B-field). The RR flux can be turned on by a continuous modulus (in perturbative
string theory) starting from this simple CFT. The hybrid formalism saw a recent revival in
the context of AdS3/CFT2. However, at least for now, it has not yet provided a solution for
the spectrum in presence of RR and Neveu–Schwarz–Neveu–Schwarz (NSNS) fluxes related
to the Kalb-Ramond field; instead, it has been extremely valuable in better understanding the
k= 1 model [24].

The AdS3× S3×T4 background, and more generally AdS3/CFT2, can also be studied by
integrability. In fact, quite remarkably, these backgrounds are integrable for arbitrary combin-
ations of RR and NSNS fluxes [25]. While the case of pure-NSNS background can be studied
by integrability in lightcone gauge [26], its integrable structure is perhaps ‘too simple’, and
very close to that of a free theory. This is also the case for flat-space strings [27, 28], and
indeed both cases can be thought of as a sort of ‘TT̄ ’ deformation [29–31] of a free model.
Conversely, the integrable structure of AdS3× S3×T4 is particularly intriguing at the pure-RR
point, where it bears some similarities (and a few crucial differences) to the famous case of
AdS5× S5, both at the classical [32] and quantum [33] levels. In a way, we have two competing
pictures. On the one hand, the worldsheet-integrability one, which can give the spectrum of
pure-RR backgrounds (as well as the pure-NSNS backgrounds, but somewhat trivially), and
then requires introducing k= 1,2,3, . . . to incorporate the NSNS flux; the integrability con-
struction for mixed-flux backgrounds has been partially worked out at the quantum level in
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terms of a factorised S matrix [34], but it has not yet been completed (see [35] for recent pro-
gress) and the equations describing the exact mixed-flux spectrum are currently unknown. On
the other hand, we have the hybrid formalism, which works very well for pure-NSNS back-
grounds, but then requires turning on the (continuous) RR flux; currently, it is not clear how
to do this in a way that allows to solve for the spectrum of generic states, not to mention other
observables. Either way, the setup with both RR and NSNS fluxes is currently terra incognita,
and a current focus of research.

To summarise, the study of string theory in general requires to solve a two-dimensional
interacting QFT on the string worldsheet. This can be done in principle by exploiting
(super)conformal symmetry on the worldsheet, though in practice this approach is hard in
the presence of non-trivial RR fluxes. An intriguing alternative, valid for a large class of inter-
esting backgrounds (whose NLSM dynamics is classically integrable), is to use the GS string
description and quantise it in light-cone gauge. This latter approach is less rigorous, as one
has to assume that integrability holds in the gauge-fixed quantum theory, and use it to com-
pute observables such as the string spectrum, but it is often the only available avenue to extract
physical predictions. It would be very desirable to put the integrability approach on more rig-
orous grounds and to make contact with other, CFT based approaches. To this end, the setup
of AdS3/CFT2 seems especially promising.

In view of the above, a large part of this review is devoted to review these approaches to the
string worldsheet with particular reference to AdS3/CFT2. While the integrability approach
has been reviewed in [36] relatively recently, a number of new results have been found since
then, as we will see. By contrast, our presentation of the hybrid approach is as far as we know
the first recent review of the subject, and we hope that it will be helpful to those who would
like to enter the field. The last two chapters introduce a related, but more ambitious, topic—
understanding M theory, at least in some decoupling limits where it is related to corners of
string theory that exhibit non-relativistic behaviors. Intriguingly, this appears to be closely
connected to some of the ideas encountered when discussing the string theory, such as the
uniform lightcone gauge [37] and the aforementioned TT̄ deformations.

Our aim is to present and compare some exact approaches to the string worldsheet. It would
be overly ambitious to aim to comprehensively present all such techniques. here are a few
notable approaches and ideas which, as we will mention in the main text, complement the
techniques discussed here but go beyond the scope of our review. An important approach to
string theory is the pure spinor one, which combines some of the strengths of the RNS string
(it allows for covariant quantisation on the worldsheet) with those of GS (target-space super-
symmetry appears more explicitly); an excellent introduction to the subject is can be found
in [38]. Another extremely important framework of string field theory, which in a sense gives
a deeper meaning to our study of free strings on fixed backgrounds, by elucidating how these
can be incorporated in a theory of interacting strings, accounting for both perturbative and non-
perturbative effects. This too is beyond the scope of this work; a recent and excellent overview
of the subject can be found in [39].

Note to the published version. This review was elaborated based on the lecture notes of the
Young Researchers Integrability School andWorkshop ‘Taming the string worldsheet’, held at
NORDITA (Stockholm) in the period 23–29 October, 2022. As you will see, we have decided
to leave into the text some ‘exercises’—simple computations that interested readers should be
able to complete themselves. Each of the subsequent sections has been originally drafted by
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a single author, with particular expertise on the subject. However, through a number of sub-
sequent revisions, we have tried to craft an overall coherent narrative and keep our discussion
pedagogical and our notation uniform. The text has come a long way from the original lec-
ture notes used in the school, in terms of overall length as well as, importantly, refinement.
Given the breadth and sheer length of the review, however, we anticipate that there might be
further room for improvement, and we would be grateful for any comments—from typos to
conceptual points—so that we may make corrections as needed.

2. General aspects of GS superstrings

As understood from the main introduction, strings propagating in curved backgrounds are
notoriously hard to quantise and describe non-perturbatively at the level of the worldsheet.
The worldsheet theory is in fact a two-dimensional interacting field theory with infinitely
many interaction terms and coupling constants. Nevertheless, their strengths are all meas-
ured by a dimensionless quantity characterised by the tension of the string, and this allows
us to still make some interesting statements. In particular, at the lowest order of the weakly-
coupled regime (corresponding to large tension, i.e. point-like strings), consistency require-
ments demand that the background fields satisfy the supergravity equations of motion—a
generalisation of ordinary Einstein gravity. Higher orders in perturbation theory as well as
non-perturbative statements are, however, quite hard to probe.

However, when the string moves in flat space, the string action is quadratic. This fact allows
for the quantisation of the theory using two commonly employed canonical methods. The first
goes under the name of covariant quantisation, in which part of the worldsheet gauge symmet-
ries are fixed such that the theory becomes free, though constrained, and conformally invari-
ant. Quantisation is then done by common techniques for CFTs subjected to constraints. In the
second method, the constrained system is avoided by identifying the full physical phase space
prior to the act of quantisation. In doing so one fixes all worldsheet gauge symmetries but one
destroys manifest Lorentz covariance. This method goes under the name of lightcone quant-
isation. Both methods of course yield the same results but they can offer different viewpoints
on the matter under question.

The generalisation of both methods to strings in curved space each come with their own
issues. For covariant quantisation one would need to know the (interacting) worldsheet CFT
description at the exact level in the string tension. Each different supergravity solution in fact
corresponds to a different worldsheet CFT11. Good toy models to probe such theories are
based on Wess–Zumino–Witten (WZW) CFTs. On the other hand, lightcone quantisation will
highly depend on the particular coordinate system used for the curved spacetime, as well as
the particular gauge chosen. Moreover, the resulting gauge-fixed theory will become highly
non-linear, making in general only perturbative statements possible.

Introducing superstringsmakes a clear distinction in the favourablemethod to use. The RNS
superstring, where fermions are introduced on the worldsheet on the same footing as world-
sheet bosons, is typically quantised using covariant quantisation. The GS superstring, where
fermions are introduced through manifest target space supersymmetry, is typically quantised
using lightcone quantisation, since additional phase-space constraints arising in this formalism

11 Knowing the supergravity solution relates to the worldsheet CFT at lowest order. The fully-fledged exact CFT
corresponds however to the complete quantum-corrected background fields.
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are not understood in a covariant way. The main advantage of the GS superstring, however,
is that they can be described in generic curved spaces—supergravity theories where all fields
are turned on—while this is not the case for RNS superstrings12. While worldsheet CFT tech-
niques are lost, however, many interesting classes of non-trivial GS superstrings (e.g. those
present in the AdS/CFT correspondence) instead enjoy the property of worldsheet integrabil-
ity. Such theories are characterised by an infinite set of conserved charges and correspondingly
unique mathematical structures, which can provide a large number of techniques facilitating
the computation of observables (chiefly, the spectrum) of the quantum theory exactly in the
string tension.

This section gives a general introduction to the GS formulation of superstring theory. We
start in section 2.1with a review on the bosonic string, laying-out conventions and notation, and
highlighting the important facts for the sections to come. We will discuss how to fix the gauge
that sets the stage to lightcone quantisation, both in flat and in curved space. In section 2.2
we then move on to the GS superstring. We will put particular importance on the introduction
of a new worldsheet gauge symmetry in this formalism, known as κ-symmetry, that similarly
should be fixed for lightcone quantisation. Again, wewill distinguish the flat- and curved-space
GS superstring. After the general description, we will consider in section 2.3 a particular class
of GS strings propagating in geometries realised as supercosets. This includes e.g. AdSn×
Sn backgrounds relevant for the AdS/CFT correspondence. Compared to the generic curved
GS string, they can be realised using a slightly different construction which takes advantage
of the geometrical supercoset structure. In this language, classical worldsheet integrability
materialises quite elegantly, as we will show in section 2.4. We end this section with some
concluding remarks in 2.5. References to the original literature, as well as books and lecture
notes, will be given along the way.

The subsequent section 3 will then treat the GS formalism for specific supergravity back-
grounds, i.e. AdS3× S3 backgrounds, which are ideally suited to highlight important but subtle
differences between the general GS and the supercoset GS description. It will particularly illus-
trate the need to have a hybrid description between the RNS and GS formalism, which will
be discussed in section 6, in order to progress in its exact worldsheet description in general.
In sections 4 and 5, however, the quantum level will rather be explored in the GS formalism
using worldsheet integrability.

2.1. Bosonic strings

Before we introduce the GS superstring, let us first briefly review the non-linear sigma-
model describing bosonic strings propagating in flat and curved backgrounds13. This is a two-
dimensional (respectively free and interacting) field theory defined on the surfaceΣ, called the
worldsheet, swept out by the string. We will parametriseΣ by a time τ and spatial σ coordinate
as σα = (τ,σ), α= 0,1. Throughout this section, we will only consider the classical theory of
closed strings with

σ ∈ (0,R) , σ ∼ σ+R , (2.1.1)

with the exception of a few comments regarding the quantum level. We will focus in particular
on the classical global and local symmetries of the action, as well as fixing the gauge.

12 In particular, in the presence of RR background fields the RNS worldsheet model becomes nonlocal, or in any case
features an intricate and interacting system of ghost fields that seems hard to decouple.
13 For good notes and reviews see e.g. [9, 40, 41].
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2.1.1. In flat space

2.1.1.1. Action and equations of motion. When the bosonic string propagates in a D-
dimensional flat Minkowski spacetimeM, its dynamics is encoded by the Polyakov action
defined on Σ

SP [X,h] =−
T
2

ˆ
Σ

d2σ
√
−hhαβ∂αXµηµν∂βXν , d2σ = dτdσ , (2.1.2)

where T= (2πα ′)−1 is the tension of the string, α ′ the worldsheet coupling parameter, σα =
(τ,σ) the worldsheet coordinates, hαβ the worldsheet metric, ηµν , with µ,ν = 0, . . . ,D− 1,
the Minkowski metric and Xµ the coordinates onM. Intuitively, the tension T measures the
energy per unit length stored by the string. As a result, for large T (small α ′) the string behaves
effectively point-like and the theory enters the semi-classical (supergravity) approximation. On
the other hand, when T is nearly vanishing, the string becomes very large and stringy effects
dominate. The coordinates Xµ(σ)≡ Xµ(τ,σ) can be interpreted both as free scalar fields on
Σ coupled to two-dimensional gravity as well as the embedding coordinates of the string in
M. Having these two interpretations is the defining feature of a non-linear sigma-model, i.e. a
field theory where the fields are maps Xµ(σ) from a base space, here Σ, to a target space, here
M. We assume that the string is not winding around one of the target space directions.

The equations of motion for the two dynamical fields Xµ and hαβ are

δXµ : ∂α

(√
−hhαβ∂βXµ

)
= 0 , (2.1.3)

δhαβ : Tαβ = ∂αX
µηµν∂βX

ν − 1
2
hαβh

γδ∂γX
µηµν∂δX

ν = 0 , (2.1.4)

where Tαβ is the worldsheet energy-momentum tensor. The latter are known as the Virasoro
constraints for the flat space string. Integrating the solution for hαβ out of the Polyakov action
SP[X,h] gives the Nambu–Goto action

SNG [X] =−T
ˆ

d2σ
√
−det(∂αXµηµν∂βXν) , (2.1.5)

which is proportional to the area of the worldsheet (and, therefore, is the natural generalisation
of particles to strings).

2.1.1.2. Symmetries. The Polyakov action enjoys a number of symmetries. The worldsheet
theory is invariant under two gauge symmetries: worldsheet diffeomorphisms σα→ σ̃α =
σ̃α(σ)

Xµ (σ)→ X̃µ (σ̃) = Xµ (σ) , hαβ (σ)→ h̃αβ (σ̃) =
∂σγ

∂σ̃α
∂σδ

∂σ̃β
hγδ (σ) , (2.1.6)

and Weyl rescalings

Xµ (σ)→ Xµ (σ) , hαβ (σ)→ Ω(σ)hαβ (σ) , (2.1.7)

for some local scalar factor Ω. Furthermore, because we are in flat space, the theory has a
global symmetry which corresponds to Poincaré invariance in target space

Xµ→ ΛµνX
ν + cν . (2.1.8)
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2.1.1.3. Gauge fixing. With the purpose of quantisation in mind, it is useful to identify the
physical degrees of freedom and phase-space of the worldsheet theory. To completely do this,
one would need to fix the gauge symmetries and solve the Virasoro constraints. A first useful
gauge choice is the so-called conformal gauge, which fixes part of the worldsheet diffeomorph-
isms in τ and σ as well as the Weyl rescalings such that the worldsheet metric is flat:

√
−hhαβ = ηαβ = diag(−1,1)αβ . (2.1.9)

The Polyakov action then simplifies to the action of free scalars governed by a wave equation
∂α∂αXµ = 0 subjected to the Virasoro constraints (2.1.4). The former can be solved by

Xµ (τ,σ) = XµL
(
σ+
)
+XµR

(
σ−) , σ± =

1
2
(τ ±σ) , (2.1.10)

for some arbitrary periodic functions XµL and XµR describing left- and right-moving waves
respectively. They can generally be expanded in Fourier modes, αµL,n and αµR,n, as

XµL/R
(
σ±)= 1

2
xµ+ pµσ± +

∑
n̸=0

αµL/R,ne
−i nσ±

, (2.1.11)

where the constants xµ and pµ correspond to the position and momentum of the center of mass
of the string respectively.

After imposing conformal gauge, there are still some residual gauge symmetries: diffeo-
morphisms that can be compensated by a Weyl transformation, which change the worldsheet
coordinates only holomorphically (i.e. byσ±→ σ̃±(σ±)). These are precisely conformal sym-
metries on Σ, and thus the action SP[X,h= η] describes a conformal field theory (CFT) of free
bosonic fields Xµ. Quantisation of such free CFTs, which preserves the conformal gauge sym-
metries, is well understood and is known as covariant quantisation14. More details can be found
in section 6.

Instead of covariant quantisation, one can also quantise the worldsheet theory by adapting
a further gauge choice of the residual holomorphic diffeomorphisms. A very convenient gauge
to do this is the so-called lightcone gauge. Introducing the lightcone coordinates

X± =
X0±XD−1

√
2

, (2.1.12)

the lightcone gauge of the holomorphic symmetries fixes the solutions X+
L (σ

+) and X+
R (σ

−)
such that the spacetime coordinate X+ is identified with worldsheet time τ as

X+ = x+ + p+τ . (2.1.13)

The advantage of working in this gauge is that the field X−, and consequently p−, is com-
pletely determined (up to the integration constant x−) by the Virasoro constraints: they can be
written in terms of p+ =−p− and the remaining fields X1, . . . ,XD−2, which will be the only

14 At the worldsheet quantum level, this theory in general suffers from a gauge anomaly, known as the Weyl anomaly,
which can be cancelled by taking D= 26 free bosonic fields, or by considering any other matter CFT with central
charge cmatter = 26.
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physical degrees of freedom left, and are referred to as the transverse coordinates. As they can
be split in left and right movers, there are in total 2× (D− 2) of them. Note that p− =−p+ can
be thought of as the lightcone Hamiltonian generating shifts in X+ and thus τ . The Virasoro
constraints are then partially solved up to one constraint, known as the level-matching condi-
tion, which is a mass-shell constraint that can be tracked to demanding periodicity of the fields
Xµ(τ,σ) in σ. After quantisation, the mass-shell constraint rather straightforwardly allows one
to determine the target space spectrum. However, the price to pay for using lightcone gauge
is that Lorentz covariance is explicitly broken. Enforcing Lorentz covariance of the quantum
theory (which is also done by taking D= 26 as in footnote 14) gives a spectrum that besides
massive excitations (and a tachyonic excitation) includes three fundamental massless excita-
tions: a spin two graviton, the antisymmetric B-field, and the dilaton

Gµν (X) , Bµν (X) , Φ(X) , (2.1.14)

respectively. We will not go into further details, but the reader can e.g. consult [9, 40].

2.1.2. In curved backgrounds. One can now consider a collection of the massless excita-
tions (2.1.14) of the flat space closed string to produce a curved background in which another
(probe) closed string can propagate. In particular, one constructs in this way a curved target
space geometry with a curved metric Gµν(X), which is built out of quantised graviton states,
an antisymmetric B-field Bµν(X), and a dilaton Φ(X).

2.1.2.1. Action and equations of motion. The corresponding string action is

S [X,h] =−T
2

ˆ
Σ

d2σ
(√
−hhαβ∂αXµGµν (X)∂βXν + ϵαβ∂αX

µBµν (X)∂βX
ν

+ α ′√−hRΦ(X)
)
,

(2.1.15)

where εαβ is the Levi-Civita symbol with convention ϵτσ = 1 and R is the worldsheet Ricci
scalar. From now on we will ignore the dilaton contribution as it can be understood as a higher-
order worldsheet quantum effect (in α ′).

The equations of motions now are

δXµ : ∂α

(√
−hhαβ∂βXµ

)
+Γ(−αβ)µ

νρ ∂αX
ν∂βX

ρ = 0 , (2.1.16)

δhαβ : Tαβ = ∂αX
µGµν∂βX

ν − 1
2
hαβh

γδ∂γX
µGµν∂δX

ν = 0 , (2.1.17)

where Γ(−αβ)µ
νρ =

√
−hhαβΓµνρ− 1

2ϵ
αβHµνρ with Γµνρ the usual Christoffel symbol andH= dB

the so-called torsion three-form. The latter equations (2.1.17) are the Virasoro constraints for
the curved space string15.

15 If we would not ignore the dilaton term, the energy-momentum tensor Tαβ would receive a contribution from Φ
which breaks classical Weyl invariance. Weyl invariance can, however, be restored by quantum loop contributions
from worldsheet interactions.
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Exercise 2.1. Derive the equations of motion for Xµ(τ,σ) from the action (2.1.15)
with vanishing dilaton term. Note that this is a generalisation of the geodesic equation
for point particles Xµ(τ) in curved spaces.

2.1.2.2. Symmetries. The action and equations of motion are invariant under target space
diffeomorphisms Xµ→ X̃µ = X̃µ(X), transforming the metric and B-field as

G̃µν
(
X̃
)
= ∂̃µX

ρ∂̃νX
λGρλ (X) , B̃µν

(
X̃
)
= ∂̃µX

ρ∂̃νX
λBρλ (X) , (2.1.18)

as well as B-field gauge transformations, which in form notation reads

B→ B+ dΛ, (2.1.19)

for some arbitrary one-form Λ(X). The gauge-invariant field strength is the torsion three-form
H= dB. However, the target space diffeomorphisms are only worldsheet symmetries when
they correspond to isometries of target space, i.e. when G̃µν(X̃) = Gµν(X̃) and H̃µνρ(X̃) =
Hµνρ(X̃) (otherwise they are not a true transformation of the system, but rather a reformula-
tion). In that case, they are in fact global symmetries from the point of view of the worldsheet.
Consider the infinitesimal diffeomorphism

δXµ = ξAkµA (X) , (2.1.20)

where ξA are a collection of infinitesimal parameters, indexed by A, of the coordinate trans-
formation generated by the vector fields kµA(X). The isometry condition holds to O(ξ2) if the
kµA(X) are Killing vector fields, i.e. if

LkAGµν = LkAHµνρ = 0 , (2.1.21)

where Lk denotes the usual Lie derivative with respect to the vector k.

Exercise 2.2. Show that, up to total derivative terms, the transformation (2.1.20) is
a global symmetry of the action (2.1.15) (again let Φ(X) = 0) when LkAGµν = 0 and
LkABµν = (dω)µν for some arbitrary one-form ω(X).

The corresponding Noether currents J αA can be found by promoting ξA to a local parameter,
ξA = ξA(τ,σ), varying the action (2.1.14) under (2.1.20), and then reading J αA off from terms
proportional to ∂αξA as

δS=−T
ˆ
Σ

d2σ ∂αξ
AJ αA . (2.1.22)

One finds

J αA = kµA

(√
−hhαβGµν + ϵαβBµν

)
∂βX

ν − ϵαβωµ∂βXµ , (2.1.23)

which satisfies the conservation equation

∂αJ αA = 0 , (2.1.24)
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upon using the equations of motion and Killing equations. The associated Noether charges
then are

QA =−T
ˆ R

0
dσ J τA . (2.1.25)

Exercise 2.3. Show that ∂αJ αA = 0 upon using the equations of motions and the prop-
erty that kµA are Killing vectors.

Recall that Killing vectors fields close under the Lie bracket and thus form a Lie algebra g
corresponding to the isometries of the target manifold. Classically, the Noether charges close
under the Poisson brackets into the same Lie algebra. The index A thus corresponds to a Lie
algebra index A= 1, . . . ,dimg.

2.1.2.3. Gauge fixing. Besides the target space gauge transformations (2.1.18) and (2.1.19),
the worldsheet theory is still invariant under the worldsheet diffeomorphism (2.1.6) and
Weyl rescaling (2.1.7) gauge symmetries. One can therefore still fix the conformal gauge as
in (2.1.9), but the difference now is that S[X,h= η] does not reduce to a free field theory of
bosons, but rather to a non-trivial interacting theory known as the non-linear sigma-model16.
In conformal gauge and lightcone coordinates σ± = 1

2 (τ ±σ) the action then reads

S [X] =
T
2

ˆ
Σ

d2σ ∂+X
µ (Gµν (X)+Bµν (X))∂−X

ν , (2.1.26)

supplemented by the Virasoro constraints (2.1.17)

∂±X
µGµν (X)∂±X

ν = 0 . (2.1.27)

As opposed to the flat space case, the equations of motion of Xµ (2.1.16) in conformal gauge
are in general not easily solvable without restricting to a certain class of solutions17 or making
further assumptions about the target space geometry. The quantum level is further complicated
by non-trivial interaction terms which can be obtained by expanding the action around a con-
stant classical solution X̄µ with small fluctuations X̂µ(τ,σ) as Xµ(τ,σ) = X̄µ+

√
α ′X̂µ(τ,σ).

Each derivative of the metric and B-field can then be thought of as coupling constants for
interactions in the fluctuations, and they all come acompanied with a factor

√
α ′. The world-

sheet perturbation series is thus anα ′-expansion withα ′ the loop counting parameter. Because
of the (local) residual conformal symmetry, this theory should be an exact interacting boson
CFT, without any gauge anomaly. For curved backgrounds, the Weyl anomaly cancellation
conditions not only requires cmatter = 26, but cancelling additional loop contributions will fur-
thermore severely constrain the target space geometry. In particular, to first order in α ′ (in
which the dilaton term is relevant, see also footnote 14) the background fields G, B, and Φ
must satisfy

16 Strictly speaking, the term non-linear sigma-model refers to the theory S[X,η]with only non-trivial metric coupling
G. However, it is also used in the string community to describe propagation of strings in all backgrounds fields. The
meaning should be clear from the context.
17 A trivial ‘class’ of solutions is the vacuum Xµ = 0.
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Rµν −
1
4
H2
µν + 2∇µ∇νΦ = 0 , (2.1.28)

∇ρHρµν − 2∇ρΦHρµν = 0 , (2.1.29)

withRµν the target space Ricci tensor. These equations are known as the type II bosonic super-
gravity equations in the absence of RR fields, justifying the name ‘supergravity approxima-
tion’ for the region of small α ′ (large T). Interestingly, the one-loopWeyl anomaly coefficients
can be related to the one-loop renormalisation group β-functions obtained from a worldsheet
perturbative expansion, which of course should also vanish to preserve worldsheet conformal
invariance at the quantum level. For more details see [41]. For generic curved backgrounds,
quantisation at higher orders is much less understood. In particular, covariant quantisation is
generally not available when the exact worldsheet CFT is unknown. An important exception
are string models where the worldsheet CFT is a WZW theory, in which the target space cor-
responds to a group manifold. As we mentioned earlier, more information can be found in
section 6.

Under some mild assumptions, one can instead perform a type of lightcone quantisation by
fixing all of the gauge symmetries, in a similar but different way as in the flat space case. In
particular, this can be done conveniently when the curved background has at least two com-
muting isometries, one time-like and one space-like, that are realised as shifts of the target
space coordinates X0 and XD−1 respectively18. In that case, one can consider a simple but non-
trivial class of classical pointlike string solutions that are at most linear in the worldsheet time
and are of the form

X̄0 = a0τ, X̄D−1 = aD−1τ, X̄i = 0, i = {1, . . . ,D− 2} , (2.1.30)

with a0 and aD−1 real non-zero constants. We assume an adapted coordinate system in which
the region defined by (2.1.30) is not pathological. Assuming furthermore a gauge of Weyl
rescalings in which

√
−hhττ is constant, the equations of motion (2.1.16) are then indeed

trivially solved for all Xµ, since the Christoffel symbol on this pointlike solution vanishes.
Introducing aµ = (a0,0, . . . ,0,aD−1), we can write the Virasoro constraints as

aµGµν (X̄)a
ν = 0 , (2.1.31)

withGµν(X̄) the metric evaluated on (2.1.30). For simplicity, let us from now on consider a0 =
aD−1 = 1, G00(X̄) =−GD−1,D−1(X̄) =−1, and G0,D−1(X̄) = G0i(X̄) = GD−1,i(X̄) = 0 for all
i = 1, . . . ,D− 1. Note that this solves the Virasoro constraints (2.1.31). As a non-trivial exer-
cise, the reader can drop these assumptions if they wish. On this solution, the conjugate
momenta

Pµ (X) =
δS

δ∂τXµ
=−T

√
−hhτβ∂βXνGµν (X)−T∂σX

νBµν (X) , (2.1.32)

will now read

P̄+ = 0, P̄− =
√
2T
√
−hhττ , P̄i = 0 , (2.1.33)

18 For example, backgrounds of the type AdSn × Sn have this property, where the time-like X0 can parametrise the
global AdS time and the space-like XD−1 can parametrise an angle of the sphere.
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in which we recall the definition of the lightcone coordinates (2.1.12). The lightcone quantisa-
tion procedure now starts by gauge-fixing the worldsheet diffeomorphisms through adopting
the so-called uniform lightcone gauge, which eliminates the fluctuations

X̂+ = 0, P̂− = 0 , (2.1.34)

and thus the momentum P− will be distributed uniformly along the string. See also [21] for a
review or the recent [42]. Because of the vanishing vacuum values of the remaining coordin-
ates X̄−, X̄i and momenta P̄+, P̄i, the only physical remaining degrees of freedom are the fluc-
tuations X̂−, X̂i and P̂+, P̂i. In the literature, the hatted notation is therefore usually dropped. As
in the flat space case, the lightcone gauge thus reduces the number of physical bosonic degrees
of freedom to 2(D− 2), at the price of losing Lorentz covariance. After solving the Virasoro
constraints for the gauge-fixed theory, one can show that again P+ can be identified with the
worldsheet lightcone Hamiltonian and that it can be completely expressed in terms of the trans-
verse fields Xi and Pi only. For consistency, there will again be a type of level-matching con-
dition that can be tracked to demanding periodicity of the fields. For more details, we refer the
reader to section 4.1, which starts with a more general set-up of uniform lightcone quantisation
and discusses in detail how to extract the gauge-fixed worldsheet Hamiltonian. Nevertheless,
let us just mention already here that lightcone quantisation for strings in curved backgrounds
remains non-trivial, essentially because the lightcone Hamiltonian will be non-linear, which
makes only perturbative quantisation possible. Rather than the Hamiltonian, however, the vital
object to focus on in order to possibly obtain all-loop results for the spectrum is the worldsheet
S-matrix. This is indeed the topic of section 4.

Remark (lightcone gauge in flat space vs. curved space). Note that the lightcone gauge
for the flat space string is a combination of the conformal gauge (2.1.9) and the gauge (2.1.13),
while for the curved space string the conformal gauge is not adopted, and worldsheet diffeo-
morphism and Weyl rescalings are fixed rather differently. In fact, for a generic curved back-
ground, in lightcone gauge the worldsheet metric hαβ must be determined by the Virasoro
constraints, and in general hαβ 6= ηαβ . Another crucial difference is that in curved space there
is no general solution to the equations of motion, and therefore the gauge choice will depend
on the class of classical solutions one is interested in. The subsequent procedure of quantisa-
tion will therefore be vacua-dependent. In the flat space case, on the other hand, one can study
quantisation universally on top of the completely general classical solution of the free wave
equation.

We are now ready to introduce the GS superstring in the next section. Already in the flat
space case, quantisation of this theory is only understood by adopting a type of lightcone
gauge—here covariant quantisation is not available because quantising the GS superstring
without fixing a gauge is non-trivial due to additional phase-space constraints for which it is
not entirely understood how to treat themwithout losing manifest Lorentz invariance (for more
remarks, see e.g. section 5.4 of [9]).

2.2. GS superstrings

2.2.1. In flat space. In this section we will introduce fermions in the flat space Polyakov
string by means of the GS formalism. An important difference with the RNS formalism treated
in section 6 is that, instead of introducing worldsheet fermions and worldsheet supersymmetry,
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for the GS string fermions and supersymmetry are manifested in target space. When adopt-
ing a lightcone gauge, however, one can show that the physical RNS and GS superstring are
equivalent [9]. As is well known, demanding Lorentz invariance of the quantum theory of
these superstrings singles out the critical dimension D= 10. Instead of starting with the intro-
duction of the classical GS superstring in general dimensions, and proving that we must have
D= 10 due to consistency with the quantum theory, we will already assume D= 10 from the
start (however, for the first-principles route see e.g. [9]). Furthermore, we will introduce a
maximal number of supersymmetries in 10-dimensional Minkowski space, as then the less-
supersymmetric cases can be readily obtained.

Let us first recall that spinors in D= 10 can, in general, take 2D/2 = 32 complex values,
but the most fundamental (irreducible) representation are the Majorana-Weyl spinors, which
can have 16 real independent values19. Given that we consider theories of particles with spin
greater than 2 as unphysical, the maximal amount of supercharges (fermionic generators of
the super-Poincaré algebra) is 32 in D= 10 and thus the maximal number of supersymmetries
we can introduce is N = 2.

2.2.1.1. Action and symmetries. The starting point to obtain the GS superstring action in flat
spacetime is to supersymmetrise the bosonic Polyakov action (2.1.2) as follows20

S1 [X,θ,h] =−
T
2

ˆ
d2σ
√
−hhαβΠµαηµνΠνβ , (2.2.1)

where µ,ν = 0, . . . ,9 and

Πµα = ∂αX
µ− i θ̄IΓµ∂αθ

JδIJ . (2.2.2)

Here we introduced two D= 10 Majorana-Weyl (MW) spinors θI , where I= 1,2 indicates the
number of target space supersymmetries21, and θ̄ = θ†Γ0 = θTΓ0. Note that we will always
suppress spinor indices. At the level of the worldsheet, however, the components of these
spinors are anti-commuting scalar fields. The objects Γµ are the D= 10 32× 32 gamma-
matrices satisfying the Clifford algebra

{Γµ,Γν}= 2ηµν132, ηµν = diag(−1,+1, . . . ,+1)µν . (2.2.3)

Its hermiticity properties are (Γµ)† = Γ0ΓµΓ0 and thus Γµ is unitary. An identity for MW
spinors ψi in D= 10 that will be useful in the following is

ψ̄1Γ
µψ2 =−ψ̄2Γ

µψ1 . (2.2.4)

The action (2.2.1) is still invariant under worldsheet diffeomorphisms (2.1.6) and Weyl
rescalings (2.1.7) (incl. transforming θI as θI(σ)→ θ̃I(σ̃) = θI(σ) and θI(σ)→ θI(σ) respect-
ively). In addition, the action also has global symmetries capturing bosonic target space
Poincaré invariance (as in the bosonic case) and invariance under global supersymmetry trans-
formations acting as

δϵθ
I = ϵI, δϵX

µ = i ϵ̄IΓµθJδIJ, δϵh
αβ = 0, (2.2.5)

19 For more details, see e.g. chapter 3 of [43].
20 This supersymmetrisation procedure follows from doing the analogue as for the supersymmetric pointlike particle,
where one shifts ∂τXµ with −i θ̄IΓµ∂τ θI in the worldline action, see section 5.1.1 of [9].
21 The N = 1 or N = 0 string can be obtained by setting one or both of the θ’s to zero, respectively.
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where εI are constant MW spinors of the same chirality as θI . Under (2.2.5) one simply finds
that δϵΠµα = 0 and so the action is indeed invariant under N = 2 supersymmetry in D= 10.
However, as we have noted above, the theory (2.2.1) has 2× 16 real target space spinors (16
for each I), while after lightcone gauge only 2× 8 physical bosonic degrees of freedom (left-
and right-moving) would remain. Therefore, the physical target space theory cannot be super-
symmetric, unless there is a fermionic gauge symmetry which reduces the number of spinors
to 2× 8. In fact, such a symmetry is also present in the superparticle case [44] and goes under
the name of κ-symmetry. One can thus expect it to be generalised to superstrings too [9], and
it can in particular be obtained by adding a second term S2 to the action S1 (2.2.1) to find a
supersymmetric superstring action S= S1 + S2 with22

S2 [X,θ] =−
T
2

ˆ
d2σ ϵαβ

(
2i∂αX

µ
(
θ̄1Γµ∂βθ

1− θ̄2Γµ∂βθ2
)
− 2θ̄1Γµ∂αθ

1θ̄2Γµ∂βθ
2
)
.

(2.2.6)

Before describing the κ-gauge symmetry let us first note some important facts. Firstly, also S2
on its own is invariant under worldsheet diffeomorphisms, Weyl rescalings, global Poincaré
symmetries, and the N = 2 global supersymmetries (2.2.5).

Exercise 2.4. Verify that S2 (2.2.6) is invariant under (2.2.5) up to total derivative
terms. One can use the following identity for 10-dimensional MW spinors ψi

ϵ̄Γµψ[1ψ̄2Γ
µψ3] = 0 . (2.2.7)

A proof of this identity can be found in section 4.A of [9]. It is interesting to note that
the classical superstring theory only exists in D= 3,4,6,10 where the identity (2.2.7)
holds for Majorana, Majorana or Weyl, Weyl and MW respectively. This is in contrast
to the bosonic string theory which classically can exist in any spacetime dimension. Of
course, as we have mentioned above, the quantum theory singles out D= 10 (D= 26
in the bosonic case).

Secondly, note that the action S2 does not depend on the worldsheet metric hαβ . Therefore, it
does not contribute to the Virasoro constraints, which read

Tαβ =ΠµαηµνΠ
ν
β −

1
2
hαβh

γδΠµγηµνΠ
ν
δ = 0 . (2.2.8)

Remark. The action S= S1 + S2 for the GS superstring in flat space can more systematically
be obtained by generalising the 10-dimensional Minkoswki target space of the 2-dimensional
sigma-model to a 10-dimensional flatN = 2 superspace parametrised by bosonic coordinates
Xµ and two anticommuting spinor coordinates θI . The term S2 is also known as the Wess–
Zumino term (see [45]) and is constructed from an exact three-form. It only survives for strings,
not for particles, due to their extended nature.

2.2.1.2. κ-symmetry. We will now show that the total action S= S1 + S2 is invariant under
a local fermionic symmetry (while its individual terms are not), which will reduce the num-
ber of spinorial degrees of freedom to 2× 8. The infinitesimal transformation parameter is

22 Interestingly, S2 cannot be constructed for N > 2.
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a local D= 10 MW spinor κIα(σ) which carries a worldsheet vector index α, and is of the
same chirality as θI . In addition, the parameters κIα(σ) are restricted to be ‘anti-self-dual’ for
I= 1 and ‘self-dual’ for I= 2, which corresponds to the two irreducible representations of the
two-dimensional Lorentz group achieved by the worldsheet projectors

Pαβ± =
1
2

(
hαβ ± ϵαβ√

−h

)
, (2.2.9)

which satisfy

Pαβ+ +Pαβ− = hαβ , Pαγ± hγδP
δβ
± = Pαβ± , Pαγ± hγδP

δβ
∓ = 0 . (2.2.10)

In particular,

κ1α =
(
Pαβ+ +Pαβ−

)
κ1
β = Pαβ− κ1

β ,

κ2α =
(
Pαβ+ +Pαβ−

)
κ2
β = Pαβ+ κ2

β ,
(2.2.11)

In other words, using the notation Aα± = Pαβ± Aβ for worldsheet vectors Aα, the parameters are
restricted by κ1α

+ = κ2α
− = 0.23 The κ-symmetry transformation now reads [9]

δκθ
I = 2iΓµΠ

µ
ακ

Iα, δκX
µ = i θ̄IΓµδκθ

JδIJ . (2.2.12)

Remark. κ-symmetry is rather peculiar: it involves a fermionic symmetry with a transforma-
tion parameter which is local in the worldsheet coordinates and which caries both a worldsheet
vector index and a spinorial target space index, whilst the theory itself does not involve any
worldsheet spinors. From the point of view of the worldsheet, the κ-transformation rather
transforms all objects as (worldsheet) vectors.

Exercise 2.5. Show the relations (2.2.10) and the properties

Pαγ± Pβδ± = Pαδ± Pβγ± , Pαβ+ = Pβα− . (2.2.13)

Hint: use ϵαβϵγδ =−h(hαδhβγ − hαγhβδ) and hαβϵγδ − ϵαβhγδ = hαγϵβδ − ϵαγhβδ .
In the notation Aα± = Pαβ± Aβ observe that A±τ and A±σ are not independent. In con-
formal gauge in fact A±τ =∓A±σ .

Remark. Using the worldsheet projectors, the Virasoro constraints (2.2.8) can be rewritten as

Πµ±αηµνΠ
ν
±β = 0 . (2.2.14)

To show this, observe that the energy-momentum tensor Tαβ has four independent components
under the 2d-Lorentz group, namely Tαβ±± = Pαγ± Pβδ± Tγδ and Tαβ±∓ = Pαγ± Pβδ∓ Tγδ . Then, after

some algebra, one finds Tαβ±± =Πµ±αηµνΠ
ν
±β while Tαβ±∓ = 0 identically. It will be convenient

to use that ϵαβϵγδ =−h(hαδhβγ − hαγhβδ) and hαβϵγδ − ϵαβhγδ = hαγϵβδ − ϵαγhβδ .

23 At the quantum level, the I= 1 spinors will therefore describe right-moving modes while I= 2 will describe left-
moving modes. Note of course that Aα± = Pαβ± A±β while Pαβ± A∓β = 0.
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Exercise 2.6. Show that Πµα transforms under (2.2.12) as

δκΠ
µ
α = 2i∂αθ̄

IΓµδκθ
JδIJ. (2.2.15)

To show that the full action S= S1 + S2 is invariant under (2.2.12) we must derive the vari-
ation of δ(

√
−hhαβ) accordingly. This can be done by varying the terms S1 (2.2.1) and S2

(2.2.6) up to quadratic order in fermions. We can write

δS1 : δκ

(√
−hhαβ

)
ΠµαηµνΠ

ν
β + 4i

√
−hhαβΠµα∂β θ̄IΓµ∂κθJδIJ , (2.2.16)

and

δS2 : 2iϵαβΠµαδκ
(
θ̄1Γµ∂βθ

1
)
− (1↔ 2)+O (θ,δκθ)

4
,

= 2iϵαβΠµα
(
δκθ̄

1Γµ∂βθ
1 + θ̄1Γµ∂βδκθ

1
)
− (1↔ 2)+O (θ,δκθ)

4
,

= 2iϵαβΠµα
(
∂β
(
θ̄1Γµδκθ

1
)
− 2∂β θ̄

1Γµδκθ
1
)
− (1↔ 2)+O (θ,δκθ)

4
.

(2.2.17)

We can now combine both variations conveniently as

δS : δκ
(√
−hhαβ

)
ΠµαηµνΠ

ν
β + 2iϵαβΠµα∂β

(
θ̄1Γµδκθ

1− (1↔ 2)
)

+ 8i
√
−hΠµαP

αβ
− ∂β θ̄

1Γµδκθ
1 + 8i

√
−hΠµαP

αβ
+ ∂β θ̄

2Γµδκθ
2 +O (θ,δκθ)

4
,

= δκ

(√
−hhαβ

)
ΠµαηµνΠ

ν
β + 2iϵαβ∂αX

µ∂β
(
θ̄1Γµδκθ

1− (1↔ 2)
)

+ 8i
√
−hΠµαP

αβ
− ∂β θ̄

1Γµδκθ
1 + 8i

√
−hΠµαP

αβ
+ ∂β θ̄

2Γµδκθ
2 +O (θ,δκθ)

4
.

(2.2.18)

Doing partial integration and using ϵαβ∂α∂β = 0 on the second term of the first line we see
that it is simply a total derivative term that can be dropped. As for the second line, let us now
use the expression for δθI as well as the (anti)-self-duality conditions on κIα. We get

8i
√
−hΠµαP

αβ
− ∂β θ̄

1Γµδκθ
1 =−16

√
−hΠµαP

αβ
− ∂β θ̄

1ΓµΓνΠ
ν
γP

γδ
− κ1

δ ,

=−8
√
−hΠµαP

αβ
− ∂β θ̄

1 {ΓµΓν}ΠνγP
γδ
− κ1

δ ,

=−16
√
−hΠµαP

αβ
− ∂β θ̄

1ηµνΠ
ν
γP

γδ
− κ1

δ ,

=−16
√
−hΠµαP

αβ
− ∂β θ̄

1ηµνΠ
ν
γκ

1γ ,

(2.2.19)

where we have used (2.2.13), and similarly

8i
√
−hΠµαP

αβ
+ ∂β θ̄

2Γµδκθ
2 =−16

√
−hΠµαP

αβ
+ ∂β θ̄

2ηµνΠ
ν
γκ

2γ . (2.2.20)

Concluding, the variation of the full action S vanishes under (2.2.12) to quadratic order in
fermions when24

δκ

(√
−hhαβ

)
= 16
√
−h
(
Pαγ− ∂γ θ̄

1κ1β +Pαγ+ ∂γ θ̄
2κ2β

)
. (2.2.21)

In fact, the full action S can be shown to be invariant under (2.2.12) and (2.2.21) to all orders
in fermions by using again the identity (2.2.7). One may do this as an exercise.

24 Note that the right-hand-side of (2.2.21) is symmetric and unimodular (traceless), as it should.
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2.2.1.3. On-shell rank of κ-symmetry. The final important step is to show that the κ-gauge
symmetry indeed reduces the number of physical spinorial degrees of freedom of θI to
2× 8. For this we must derive its on-shell rank, i.e. the number of degrees of freedom κ-
transformations can fix once the Virasoro constraints (which reduce the bosonic degrees of
freedom) are satisfied. First, we can note that in general κIα would have 2× 2× 16= 64 com-
ponents in total. However, because of the (anti-)self-duality conditions κ1α

+ = κ2α
− = 0 this

number is already reduced to 32 components. We will now show that only half of these can
fix components of θ1 and θ2. Let us rewrite

δκθ
1 = 2iΓµΠ

µ
+ακ

1α
− , δκθ

2 = 2iΓµΠ
µ
−ακ

1α
+ , (2.2.22)

where we have used the properties (2.2.10) and (2.2.13), and the (anti-)self-duality conditions.
Then, define the operators

O±α = ΓµΠ
µ
±α , (2.2.23)

so that δκθ1 = 2iO+ακ
1α
− and δκθ2 = 2iO−ακ

2α
+ . Squaring these operators in their spinor

indices and using again (2.2.13) we find

O±αO±β = ΓµΓνΠ
µ
±αΠ

ν
±β =

1
2
{Γµ,Γν}Πµ±αΠν±β = ηµνΠ

µ
±αΠ

ν
±β1 , (2.2.24)

and thus they square to zero on-shell, upon the Virasoro constraints (2.2.14), which means that
they are both at most half-rank (i.e. rank 16). Generically, however, their sum O±α+O∓α =
ΓµΠ

µ
α is not constrained and thus of full-rank. Altogether, this means that on-shell O+α and

O−α are each of rank 16. Therefore, the independent components of δκθ1 and δκθ2 are only
half of those of κ1α

− and κ2α
+ respectively. Concluding, the rank of κ-symmetry is 16 and thus

it is precisely the called-for fermionic gauge symmetry which reduces the physical degrees of
freedom of θI from 2× 16 to 2× 8. The flat target space of the GS physical worldsheet action
thus is indeed N = 2 supersymmetric.

2.2.1.4. Equations of motion. The equations of motion of the action S= S1 + S2 are highly
non-linear and read25

δXµ : ∂α

(√
−h
(
hαβ∂βX

µ− 2iPαβ− θ̄1Γµ∂βθ
1− 2iPαβ+ θ̄2Γµ∂βθ

2
))

= 0 , (2.2.25)

δθ1 : Pαβ− ΠµαηµνΓ
ν∂βθ

1 = 0 , (2.2.26)

δθ2 : Pαβ+ ΠµαηµνΓ
ν∂βθ

2 = 0 , (2.2.27)

which should be supplemented by the Virasoro constraints (2.2.14) obtained from δhαβ .

2.2.1.5. Gauge fixing. As we mentioned at the end of the previous section, with quantisa-
tion in mind, it is paramount to fix the lightcone gauge symmetries of the GS superstring,
as covariant quantisation of this theory is extremely non-trivial and in fact not well under-
stood26. Luckily, lightcone quantisation works nicely and straightforwardly both in flat and

25 The latter two equations are obtained by using the equations of motion (2.2.25) from Xµ as well as the Fierz
identities for MW-spinors in ten dimensions (see e.g. equation (7.4.51) of [9] combined with table 3.1 of [43]).
26 This is due to the existence of non-trivial phase-space constraints arising from the fact that the momenta PI

θ , con-
jugate to the coordinates θI , are not independent, see section 5.4 of [9].
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curved spaces. As this procedure depends on the precise form of the equations of motion, it
is instructive to see in detail how this is done in the flat setting. In this case it is again appro-
priate to partially fix the worldsheet diffeomorphisms and Weyl rescalings by the conformal
gauge (2.1.9). Opposed to the bosonic case, however, the equations of motions will not yet
reduce to free wave equations. To achieve this one needs to fix the residual bosonic gauge
symmetry as well as the fermionic κ-gauge symmetry. To do so, let us first introduce light-
cone gamma-matrices

Γ± =
1√
2

(
Γ0 +ΓD−1

)
. (2.2.28)

Because of the Clifford algebra relations, they satisfy

(
Γ+
)2

=
(
Γ−)2 = 0,

{
Γ+,Γ−}= 2 . (2.2.29)

Hence, as their sum and difference are non-singular, Γ± are half-rank. As in general
rank(AB)⩽min(rankA, rankB), when also Γ+O±α is half-rank then κ-symmetry transforma-
tions can be used to fix the gauge

Γ+θ1 = Γ+θ2 = 0 , (2.2.30)

which enforces half of the components of θI to be zero. In this case, we see from the equations
of motion (2.2.25) that the equations for X+ and Xi become free wave equations. As in the
bosonic case, cf (2.1.13), the residual holomorphic symmetries can then be used to impose

X+ = x+ + p+τ . (2.2.31)

This is entirely consistent since in this gauge

Γ+O±α = Γ+ΓµΠ
µ
±α ∝ Γ+Γ+p

+ +O
(
Xi ,θI

)
, i = 1, . . . ,D− 2 , (2.2.32)

and Γ+Γ− is indeed half-rank. We refer to (2.2.30) and (2.2.31) as the lightcone gauge for the
flat GS superstring. The Virasoro constraints then again determine the field X− completely in
terms of p+,Xi and the physical components of θI . In addition, the equations for θI linearise
as well and can be solved explicitly. After lightcone gauge, the remaining manifest global
symmetry of the ten-dimensional SO(1,9) Lorentz invariance is an SO(8) rotation symmetry
of the Xi fields. Interestingly, it is the triality property of SO(8) that can be used to show that
the gauge-fixed GS superstring is equivalent to the RNS superstring after the Gliozzi–Scherk–
Olive (GSO) projection. For more details on the latter we refer again to section 6.

Exercise 2.7. Show that the expression (without summation over I)

θ̄IΓµθI , (2.2.33)

vanishes for µ=+, i but not for µ=−.
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An alternative way to see the SO(8) symmetry is to fix the gauges in the GS sigma-model
action directly. For details on how to do this we refer to section 4 and [46], where it is done for a
curved background: you can follow the same procedure, but simply setGµν = ηµν andBµν = 0
to simplify calculations and obtain expressions valid for the flat GS superstring. Recall, how-
ever, that in the curved setting one typically adopts the uniform lightcone gauge. The resulting
gauge-fixed action in lightcone coordinates is of the form

SGS-fixed ∼
ˆ

d2σ∂+X
i ∂−Xi − 2i θ̄1Γ−∂+θ

1 + 2i θ̄2Γ−∂−θ
2 . (2.2.34)

The theory thus indeed describes 2× 8 left-moving and 2× 8 right-moving bosons and fer-
mions. The global supersymmetry transformations that preserve the κ-gauge (possibly using
compensating κ-transformations) transpire into an N = (8,8) worldsheet supersymmetry.

2.2.1.6. Relation to type II supergravity. The GS superstring in ten-dimensional Minkowski
space describes a D= 10 type II supergravity solution with following bosonic field content

Gµν = ηµν , Φ = Φ0 , B= F(n) = 0 , (2.2.35)

where Φ0 is constant and F(n) denotes the n-form RR field strengths of type IIA/B (n= 0,2,4
for IIA, n= 1,3,5 for IIB). When the spinors θ1 and θ2 are of the same chirality the supergrav-
ity is of type IIB, while opposite chirality gives type IIA. Defining Γ11 = Γ0Γ1 . . .Γ9, which
satisfies Γ2

11 = 1 and Tr(Γ11) = 0, spinors of different chirality can be distinguished as

Γ11ψ =±ψ . (2.2.36)

The global supersymmetry transformations (2.2.5) correspond to the superisometries of the
background, i.e. the constant transformation parameter εI satisfies the Killing spinor equation
for the gravitino, while the Killing spinor equation for the dilatino is automatically satisfied.

In general, D= 10 type IIA/B supergravity can admit a bosonic field content with a curved
metricG and with the forms B and F(n) non-constant and non-vanishing. They are constrained
to satisfy the type IIA/B supergravity equations of motion, which follow from the type IIA/B
bosonic actions

SIIA =

ˆ
d10X
√
−G

(
e−2Φ

(
R+ 4(∇Φ)2− 1

2
H2

)
− 1

2

(
F2
(2) +F2

(4)

))
− 1

2

ˆ
B∧ dC3 ∧ dC3 , (2.2.37)

SIIB =

ˆ
d10X
√
−G

(
e−2Φ

(
R+ 4(∇Φ)2− 1

2
H2

)
− 1

2

(
F2
(1) +F2

(3) +
1
2
F2
(5)

))
− 1

2

ˆ
C(4) ∧H∧F(3) , (2.2.38)

where R is the target space Ricci scalar, and C(n) are the gauge potentials of the RR field
strengths F(n) as

F(2) = dC(1) , F(4) = dC(3)−H∧C(1) ,

F(1) = dC(0) , F(3) = dC(2)−H∧C(0) , F(5) = d

(
C(4) +

1
2
B∧C(2)

)
−H∧C(2) .

(2.2.39)
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Bosonic isometries of such backgrounds are characterised by Killing vectors k that satisfy
LkG= LkH= LkF(n) = 0 whilst superisometries are characterised by Killing spinors ε that
satisfy the Killing spinor equations obtained from varying the fermionic (dilatino and grav-
itino) fields. The main scope of this review is to study strings that can give rise to these more
generic curved backgrounds.

2.2.2. In curved backgrounds. One of the main advantages of the GS formalism is that it
can perfectly describe semi-classical strings in any background with a curved metric, B-field,
dilaton, and RR fields27. As for the GS superstring in flat space, in curved backgrounds the GS
action can be derived by constructing a two-dimensional non-linear sigma-model for which
the target space is a ten-dimensionalN = 2 superspace with non-trivial curvature and torsion
(cf the remark after equation (2.2.8)). By construction, this theory is invariant under N = 2
global supersymmetry.Wewill not delve intomany details of the (derivation of) the superspace
GS action, as we will quickly move to its supercoset formulation in the next section, but we
will simply give a bit of its taste here. In the Nambu–Goto formulation, the superspace action
is of the form

SSNG =−T
ˆ

d2σ
√
−detGαβ (Z)−

ˆ
Σ

B̂(Z) , (2.2.40)

with ZM = (Xµ,θI) the superspace coordinates indexed by M= (µ, I), B̂(Z) the pull-back of
a superspace two-form and Gαβ(Z) the induced metric

Gαβ (Z) = Eα
A (Z)ηABEβB (Z) , (2.2.41)

with A the flat index for the coordinates Xµ, ηAB the flat metric, and EαA(Z) are components
of the generic superspace vielbeins

Eα
A (Z) = ∂αZMEM

A (Z) . (2.2.42)

with A= (A,aI) the flat indices corresponding to the superspace indices M= (µ, I). By gen-
eralising the flat space case [45], this action must be invariant under the following κ-symmetry
transformations [47]

δκZMEM
A = 0, δκZMEM

aI =
1
2
(1+Γ)

aI
bJκ

bJ, (2.2.43)

where the operator Γ is defined for type IIB as28

Γ =
1

2
√
−G

ϵαβEα
AEβ

BΓABσ
3 . (2.2.44)

Since this Γ also satisfies Tr(Γ) = 0 and Γ 2 = 1, the operator (1+Γ) is of half-rank and thus
κ-transformations remove half the fermionic degrees of freedom. This and the question of the
completeness of the κ gauge-fix will be discussed in more detail in section 3.5.2, illustrated

27 In the RNS formalism, where supersymmetry is introduced on the worldsheet, the RR fields originate from fermi-
onic creation operators and are realised by vertex operators that are non-local in the worldsheet fields. Therefore RR
fields cannot be easily coupled to the worldsheet metric in the standard way.
28 We will explain how to obtain the type IIA expressions around equation (2.2.51).
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for the particular case of holographic AdS3-backgrounds. Recall that the coupling of a two-
form B̂ is necessary for κ-symmetry, i.e. the non-linear sigma-model must be extended by a
type of Wess-Zumino (WZ) term constructed from an exact three-form of the ten-dimensional
superspace and which generalises the flat space WZ term [47]. The curvature, torsion and the
WZ form should satisfy Bianchi identities and κ-symmetry constraints.

Remark. An interesting fact is that for a long time it was conjectured that, for D= 10N = 2
curved superspaces, the requirement of the curved κ-symmetry version imposes the back-
ground to satisfy the constraints ofD= 10 supergravity [47, 48]. However, only recently it was
understood that theD= 10 supergravity constraints are sufficient but not necessary: in general,
the background is required to solve the so-called ‘modified’ supergravity equations [49].

In explicit component form, i.e. in terms of the individual fields Xµ(σ) and θI(σ), the curved
GS action is however very convoluted and obtaining its expression requires expanding the
super-objects in fermions and solving the Bianchi identities and κ-symmetry constraints order
by order in fermions. In fact, as opposed to flat space, in general it does not terminate at
quartic order in the fermions anymore. To give an idea, we present here its explicit form to
quadratic order in fermions, which captures all the bosonic type II supergravity background
fields generically. The action to zeroeth order in fermions is that of the low-energy bosonic
string

S(0)GS [X,h] =−
T
2

ˆ
Σ

d2σ
(√
−hhαβ∂αXµGµν (X)∂βXν + ϵαβ∂αX

µBµν (X)∂βX
ν
)
, (2.2.45)

where the metric is obtained from Gµν = eµAηABeνB with eµA = EµA(X,θ = 0) the bosonic
vielbein and the B-field comes from the zeroeth order component of the superspace two-form
B̂. At quadratic order the action reads [50, 51] (see also [52]) for type IIB

S(2)GS [X,h,θ] = T
ˆ
Σ

d2σ i θ̄I
(√
−hhαβδJI − ϵαβ (σ3)

J
I

)
eα

AΓADβJKθK , (2.2.46)

where (σi)JI are simply Pauli matrices in the I,J= 1,2 indices, eαA = ∂αXµeµA, ΓA = ΓµeµA,
and DαIJ is the operator

DIJ
α = δIJ

(
∂α+

1
4
ωα

ABΓAB

)
+

1
8
σIJ
3 eα

AHABCΓ
BC− 1

8
eΦeα

AS IJΓA , (2.2.47)

where the higher-rank gamma-matrices are defined as29 ΓAB...C = Γ[AΓB . . .ΓC], HABC is the
field strength H= dB in flat indices, and ωαAB = ∂αXµωµAB with ωµAB the spin-connection

ωµ
AB = eν[A|

(
∂µeν

|B]− ∂νeµ|B] + eρ|B]eµ
C∂ρeνC

)
. (2.2.48)

Finally, the operator S IJ encodes the RR field strengths. For type IIB it reads

S IJ = ϵIJΓBF(1)
B +

1
3!
σIJ
1 Γ

BCDF(3)
BCD +

1
2.5!

ϵIJΓBCDEFF(5)
BCDEF . (2.2.49)

29 We use the convention Γ[AB] = 1
2

(
ΓAΓB −ΓBΓA

)
.
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To quadratic order in fermions κ-symmetry acts as

δκθ
I = 2iΓµ∂αX

µκIα+O
(
θ2
)
, δκX

µ = i θ̄IΓµδκθ
JδIJ +O

(
θ3
)
,

δκ

(√
−hhαβ

)
= 16
√
−hPJαγ

I PKβδ
J κ̄IγDδKLθL ,

(2.2.50)

where PJαγ
I ≡ 1

2

(
hαβδJI − ϵαβ

√
−h

(σ3)
J
I

)
. How to appropriately fix all of the gauge symmetries in

order to proceed with perturbative quantisation of the theory will be discussed for an arbitrary
type IIB background with two commuting isometries in section 4.1.

The expressions for the type IIA case are obtained by merging the two MW spinors into
one 32-component Major spinor Θ, by replacing

(σ3)IJ→ Γ11 = Γ0Γ1 . . .Γ9 , (2.2.51)

and finally by replacing

S IJ→ 1
2
σIJ
3 Γ

BCF(2)
BC +

1
4!
δIJΓBCDEF(4)

BCDE . (2.2.52)

For more details see e.g. [52].

Exercise 2.8. At quadratic order in θ, show that the type IIA and type IIB action
SGS = S(0)GS + S(2)GS reduces to the GS action S= S1 + S2 in flat space for the field
content (2.2.35).

As we have mentioned, higher orders in fermions can in principle be obtained by starting
from the formal superspace GS action of [47], expanding in fields, and solving κ-constraints
and Bianchi identities order by order. This procedure was in particular used in [52] to obtain
the quartic order in the case of a type IIA/B supergravity background with vanishing gravitino
and dilatino. For generic backgrounds, however, this quickly becomes highly complex to do
and discussing it in more detail falls out of the scope of this review. However, for a large
class of interesting backgrounds one can actually fix a κ-gauge such that the full GS action
to quartic order is exact [52]. This includes e.g. AdS5× S5, AdS4×CP3, AdS3× S3×T4 and
AdS3× S3× S3× S1.

In the remaining of this section, we will focus on a special class of backgrounds, including
the ones just mentioned, whose geometry and superisometries can be combined into a super-
coset. As in the superspace formulation, superstrings propagating in supercoset backgrounds
are described by sigma-models that are all-order in fermions. They are particularly interesting
because they in addition enjoy a classical integrable structure on the worldsheet. In general
however, the supercoset sigma-models correspond to the curved GS action only after a cer-
tain κ-gauge is fixed in the latter. Importantly, some configurations of the string may not be
compatible with this particular κ-gauge. Such subtleties arise e.g. in AdS3× S3×M4, among
others, and will be discussed in detail in section 3.5. The canonical exception is the type IIB
AdS5× S5 background.
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2.3. Supercoset construction of GS superstrings

Although the GS worldsheet action with a generic target space is formally known to all orders
in fermions in terms of its superspace expression, obtaining its explicit form is highly non-
trivial. The superspace expression can thus be hard to work with for explicit purposes. As
we have alluded to in the previous section, for some special backgrounds with an underlying
algebraic structure, there is a simple and convenient approach to constructing the action, known
as the supercoset construction. As wewill explain, when the target space is furthermore a semi-
symmetric space, its form will be highly constrained, and it will be very simple to show that
the theory is classically integrable.

Historically, the supercoset construction of the GS action for semi-symmetric spaces started
with the work of Henneaux and Mezincescu [45] who understood that the flat space GS action
can be viewed as a WZ type sigma-model action into the space

ISO(1,9 | N = 2)
SO(1,9)

, (2.3.1)

where ISO(1,9 | N = 2) is the N = 2 super-Poincaré group in ten dimensions and SO(1,9)
its Lorentz subgroup. The WZ term obtained from a closed three-form of this space captures
the term S2[X,θ] (2.2.6) quartic in fermions. The bosonic part of this supercoset is of course
ISO(1,9)/SO(1,9) which represents Minkowski space30. It was later realised by Metsaev and
Tseytlin in [54] that the work [45] can be generalised to other semi-symmetric spaces with
curved target space metrics such as, in particular, AdS5× S5 which can be realised as

AdS5× S5 + fermions∼=
PSU(2,2|4)

SO(1,4)× SO(5)
. (2.3.2)

The bosonic subgroup of the Lie supergroup PSU(2,2|4) is SO(2,4)× SO(6) and indeed AdS5
and S5 corresponds to the cosets SO(2,4)/SO(1,4) and SO(6)/SO(5) respectively. Crucial in
the supercoset construction is the existence of a Z4 symmetry in the algebra of target space
superisometries. In this section, in particular section 2.3.2, we will show how one can then
easily construct a minimal sigma-model action on any supercoset with this property. We will
call this the canonical semi-symmetric space sigma-model (SSSSM). The construction will not
be the most general, however, and in fact we will see in section 3.4 that it can be generalised
to accommodate for more generic background fields.

2.3.1. Lie superalgebras and semi-symmetric spaces. Let us first introduce some important
concepts of Lie superalgebras g and semi-symmetric spaces relevant for superstring theory. A
more detailed introduction of Lie superalgebras can be found in [55].

30 There is a general theorem that any manifold M with a transitive symmetry group action G, here G= ISO(1,9)
the Poincaré group, is isomorphic to the coset of G by it stability group Hp of any point p ∈M. It is very easy to
verify that here the stability group is indeed the Lorentz group. We will come back to this later but for more details,
a proof, and examples, on how to understand certain manifolds as coset spaces G/G(0) = {g∼ gh|g ∈ G,h ∈ G(0)}
we refer the reader to section 2 of [53].
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2.3.1.1. Lie superalgebras and their Z2 grading. A Lie superalgebra g is a generalisa-
tion of an ordinary Lie algebra as it is generated by both bosonic and fermionic generators
(supercharges). We will denote them respectively by TA[0]

and TA[1]
such that g= span(TA) =

span(TA[0]
,TA[1]

).
Let us first consider the general linear superalgebra g= gl(n|m). An element M of

gl(n|m) can be represented as an (n+m)× (n+m) supermatrix acting on Cn|m, i.e. the vec-
tor space ordered first by n Grassmann-even components followed by m Grassmann-odd
components, by

Mn+m,n+m =

(
an,n θn,m
ψm,n bm,m

)
. (2.3.3)

To preserve the Grassmann structure a,b and θ,ψ are complex matrices whose elements are
Grassmann-even (bosonic) and Grassmann-odd (fermionic) respectively. Hence we are actu-
ally working with the Grassmann enveloping superalgebra of g, i.e.

M=MA[0]TA[0]
+MA[1]TA[1]

, (2.3.4)

with MA[0] Grassmann-even, MA[1] Grassmann-odd, and TA ordinary numerical matrices.
The Lie superalgebra is equipped with

• a Z2 grading |A| ≡ |TA| called the degree of TA. It distinguishes even (TA = TA[0]
) and odd

(TA = TA[1]
) elements by assigning |A|= 0 and |A|= 1 respectively. On the Grassmann

enveloping superalgebra the Z2 grading can be realised through an involutive automorphism
υ by the following element of gl(n|m)

Υ =

(
1n 0
0 −1m

)
. (2.3.5)

It acts as

υ (M) = ΥMΥ−1 =

(
a −θ
−ψ b

)
, υ2 (M) =M , (2.3.6)

and thus indeed defines a Z2 characterising the parity of the supermatrices: writing υ(M) =
(−)FM, we call the supermatrix even when F= 0 and odd when F= 1.
• a graded Lie superbracket [·, ·} satisfying bilinearity, super skew-symmetry

[TA,TB}= TATB− (−)|A||B|TBTA =−(−)|A||B| [TB,TA}, (2.3.7)

and the super Jacobi identity

(−1)|A||C| [TA, [TB,TC}}+(−1)|B||A| [TB, [TC,TA}}+(−1)|C||B| [TC, [TA,TB}}= 0.
(2.3.8)

On the Grassmann enveloping superalgebra we then have (for i, j = 0,1)

[M,N] =MA[i]NA[j] [TA[i]
,TA[j]

}=−[N,M] , (2.3.9)

i.e. its Lie bracket is antisymmetric as usual.
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• a bilinear form κ(TA,TB) realised through the supertrace

κ(TA,TB) = STr(TATB) , (2.3.10)

which satisfies

STr(TATB) = (−1)|A||B|STr(TBTA) , STr([TA,TB}) = 0 . (2.3.11)

It is defined as

STrM= STr

(
a θ
ψ b

)
= Tra−Trb, (2.3.12)

and on the Grassmann enveloping superalgebra it satisfies the properties

STr(MN) = STr(NM) , STr(M [P,N])+ STr([P,M]N) = 0 . (2.3.13)

The supertrace thus defines an ad-invariant bilinear form on the Grassmann enveloping
superalgebra31.

Exercise 2.9. Show that STr([TA,TB}) = 0 and STr([M,N]) = 0. Verify that
Tr([M,N]) 6= 0.

The gl(n|m) is not a simple Lie algebra: as STr([M,N]) = 0 the subspace of supertraceless
supermatrices, called the special linear superalgebra sl(n|m), is a sub-superalgebra that forms
an ideal of gl(n|m). The sl(n|m) itself is simple only if n 6=m. When m= n the identity matrix
is a central element of sl(n|n). In that case, to obtain a simple algebra one must consider
psl(n|n) = sl(n|n)/12n, i.e. elements of sl(n|n) that differ by a supermatrix proportional to
12n must be identified32.

Let us now consider real forms of (p)sl(n|m) defined as the unitary superalgebras
(p)su(p,q|r,s) which is a real sub-superalgebra whose elements satisfy the reality condition

M⋆ =−M , (2.3.14)

defined by

M⋆ = HM†H−1, H= diag(1p,−1q|1r,−1s) , (2.3.15)

where M† = (M∗)t denotes the usual hermitian conjugation of matrices. Note that

(M⋆)
⋆
=M, (MN)⋆ = N⋆M⋆, (cM)

⋆
= c∗M⋆, (2.3.16)

31 Note that the usual trace would define an ad-invariant form for an ordinary Lie algebra but not for a (Grassmann
enveloping) superalgebra.
32 Interestingly, the defining representation of sl(n|n) in terms of supermatrices is not a representation for psl(n|n).
This is due to possible non-trivial Grassmann-odd terms which cause the fact that for M1,M2 ∈ psl(n|n) it is not
generally true that also [M1,M2] ∈ psl(n|n). Therefore, one usually works with sl(n|n) and implements the quotient
using a gauge symmetry.
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for c a Grassmann number, for which we take the convention

(c1c2)
∗
= c∗2c

∗
1 = (−)|c1||c2| c∗1c∗2 , (2.3.17)

which guarantees (MN)† = N†M†.
Another important class of superalgebras are the orthosymplectic superalgebras denoted

by osp(n|m), which are the super-counterparts of ordinary orthogonal Lie algebras. Instead of
transposition, however, they are defined through supertransposition which acts as(

a θ
ψ b

)st

=

(
at −ψt

θt bt

)
, (2.3.18)

and satisfies33

(MN)st = N stM st,
(
M st
)st

= υ (M) . (2.3.19)

Elements of the orthosymplectic superalgebra osp(n|2m) satisfy

M st =−ΣMΣ−1, Σ=

(
1n 0
0 J2m

)
, J2m =

(
0 −1m

1m 0

)
. (2.3.20)

2.3.1.2. Semi-symmetric spaces and Z4 grading. Other interesting and important superal-
gebras are those whose Z2 grading defined above actually sits in a larger Z4 grading. This
means that g admits an automorphism Ω : g→ g that squares to the Z2 automorphism (2.3.6)
defining parity

Ω2 (M) = υ (M) , (2.3.21)

and which has order four

Ω4 (M) =M . (2.3.22)

It therefore has four eigenvalues,±1,±i, and decomposes g into a direct sum of graded eigen-
spaces as

g= g(0)⊕ g(1)⊕ g(2)⊕ g(3), (2.3.23)

defined by

Ω
(
g(k)
)
= ikg(k) . (2.3.24)

Since Ω is an automorphism Ω[g,g] = [Ω(g),Ω(g)], the graded eigenspaces satisfy[
g(k),g(l)

]
⊂ g(k+l mod 4) (2.3.25)

33 Note that for general supermatrices (MN)t ̸= N tM t and therefore conditions such as M t =−M (the defining rela-
tion of ordinary orthogonal Lie algebras) would not preserve commutation relations.
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for k, l= 0,1,2,3. Hence, g(0) forms a subalgebra of g and g(k̸=0) are representations of g(0).
This decomposition is also called a semi-symmetric space decomposition, and either the exist-
ence of the Z4 automorphism Ω or the property (2.3.25) of the commutation relations can be
seen as its defining feature. We can introduce projectors P(k) : g→ g(k) for every k= 0,1,2,3
realised as

P(k) =
1
4

(
1+ i2kΩ2 + i3kΩ+ ikΩ3

)
, (2.3.26)

and which satisfy

1= P(0) +P(1) +P(2) +P(3), P(k)P(l̸=k) = 0, P(k)P(k) = P(k) . (2.3.27)

We will denote M(k) ≡ P(k)M.

Exercise 2.10. Show that g(0) and g(2) span even (bosonic) supermatrices, while g(1)

and g(3) span odd (fermionic) supermatrices.

Remark. Equivalently, the Z2 automorphism υ defined in (2.3.6) decomposes the
superalgebra as

g= g[0]⊕ g[1], (2.3.28)

with g[k], k= 0,1 defined as34

υ
(
g[k]
)
= (−)k g[k], (2.3.29)

and satisfying [
g[k],g[l]

]
⊂ g[k+l mod 2]. (2.3.30)

Hence g[0] is a subalgebra. Such a decomposition is called a symmetric space decomposi-
tion, whose defining feature is the existence of a Z2 or, equivalently, the commutation rela-
tions (2.3.30). Note that if Ω defined above exists, then

g[0] = g(0)⊕ g(2) , g[1] = g(1)⊕ g(3) , (2.3.31)

and thus both g(0) and g(0)⊕ g(2) are subalgebras of g. Let us finally mention that also ordinary
Lie algebras can have the algebraic structure of a symmetric space—and they are in fact quite
interesting—but, in contrast to Lie superalgebras, this property is special and not guaranteed
(similary as the Z4 for Lie superalgebras is not guaranteed).

Exercise 2.11. When restricting to bosonic supermatrices g[0], observe that Ω also
defines a symmetric space.

34 The generators TA[0] and TA[1] of g that we defined in the beginning of this section thus span g[0] and g[1] respectively.
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Let us now denote the generators of g respecting the Z4 decomposition as TA(k)
, in the

sense that TA(k)
∈ g(k) for k= 0,1,2,3. Then, the supermatrix decomposes as M=MA(i)TA(i)

withMA(0) ,MA(2) Grassmann even, TA(0)
,TA(2)

bosonic generators,MA(1) ,MA(3) Grassmann odd,
and TA(1)

,TA(3)
fermionic supercharges. The ad-invariant bilinear form can then be denoted as

κA(k)B(l)
≡ κ

(
TA(k)

,TB(l)

)
= STr

(
TA(k)

TB(l)

)
. (2.3.32)

Exercise 2.12. Show that the supertrace is Ω-invariant, meaning that it respects the
Z4 grading

STr(Ω(M)Ω(N)) = STr(MN) . (2.3.33)

You can use that Ω defines a representation for g, and thus the vector space Cn|m on
which g acts must also decompose in the Z4 grading. If we then spanCn|m by basis ele-
ments in the order e(0)1 , . . . ,e(0)dimg(0) ,e

(2)
1 , . . . ,e(2)dimg(2) ,e

(1)
1 , . . . ,e(1)dimg(1) ,e

(3)
1 , . . . ,e(3)dimg(3)

then in order to preserve the grading the supermatrix M must decompose as

M=


a(0)(0) a(0)(2) θ(0)(3) θ(0)(1)
a(2)(0) a(2)(2) θ(1)(0) θ(3)(0)
ψ(0)(1) ψ(0)(3) b(0)(0) b(0)(2)
ψ(3)(0) ψ(1)(0) b(2)(0) b(2)(2)

 , (2.3.34)

with a(k)(l),θ(k)(l), . . . ∈ g(k+l mod 4).
Show that (2.3.33) now implies that

κA(k)B(l)
= 0 when k+ l 6= 0 mod 4 . (2.3.35)

Hence the only non-vanishing components are κA(0)B(0)
, κA(2)B(2)

, and κA(1)B(3)
=

−κB(3)A(1)
.

Remark. The above exercise shows that the decomposition of g into itsZ4 graded eigenspaces
is not an orthogonal decomposition with respect to the supertrace.

Assuming that the Lie supergroup G corresponding to the Lie superalgebra g is connected,
the Z4 algebra automorphism Ω extends to a Z4 group automorphism ω : G→ G as ω(g) =
ω(eX) = eΩ(X) for g= eX ∈ G and X ∈ g. The subalgebra g(0) invariant under Ω now defines
a bosonic subgroup G(0) which is the set of fixed points of ω. This algebraic structure in turn
defines a semi-symmetric spaceG/G(0) which is amanifold with a transitive supergroup action
G of which the stability group of the manifold is defined by the Z4, i.e. G(0). Side note: when
the group automorphism defining G(0) is a Z2, then this structure defines a symmetric space.

Remark. Note that semi-symmetric and symmetric spaces are special cases of homogeneous
spaces. Homogeneous spaces are simply manifolds with a transitive G action and a stability
group G(0). They are isomorphic to the (super)coset G/G(0) (for more detail see [53]). Only
when the stability groupG(0) arises as the invariant of aZ2 (Z4) automorphism, then the homo-
geneous space is a (semi-)symmetric space. In the string literature, (semi-)symmetric spaces
are sometimes also referred to as (super)coset spaces although—as is hopefully clear from this
paragraph—that is an abuse of language.

33



J. Phys. A: Math. Theor. 57 (2024) 423001 Topical Review

Before introducing the sigma-model action to the semi-symmetric space G/G(0), let us
illustrate some of the abstract concepts introduced in this section with some examples.

Example (Sn). Let us first warm-up using an example without fermionic generators. Take the
unit n-dimensional sphere Sn embedded in Rn+1 by

XIX
I = 1, (2.3.36)

with I= 1, . . . ,n+ 1. G= SO(n+ 1) is a rotational symmetry group that leaves Sn invariant
and which acts transitively. To determine the stability group G(0), consider a particular point
on Sn such as, e.g. the north pole. It is not hard to convince oneself that G(0) = SO(n). Thus

Sn ∼=
SO(n+ 1)
SO(n)

, (2.3.37)

is a homogeneous space. In fact, it is also a symmetric space. Consider for simplicity S2 =
SO(3)/SO(2). The commutation relations of Lie(SO(3)) and the bilinear form are

[T1,T2] = T3 , κ(TA,TB) =−2δAB . (2.3.38)

We can define a Z2 automorphism

σ (T3) = T3 , σ (T1,2) =−T1,2 , (2.3.39)

which in turn defines the stability group SO(2) generated by T3. Indeed the commutation rela-
tions (2.3.30) for g[0] = span(T3) and g[1] = span(T1,T2) are satisfied. Let us remark that also
AdSn ∼= SO(2,n− 1)/SO(1,n− 1) geometries arise as symmetric spaces.

Example (psu(2,2|4)). For GS superstrings relevant for AdS/CFT, the canonical example of
a superalgebra with a Z4 grading is psu(2,2|4), which is related to the maximally supersym-
metric AdS5× S5 background. The reality condition (2.3.15) here implies that

a=−ha†h, b=−b†, θ =−hψ†, h= diag(12,−12) , (2.3.40)

and thus the matrices a and b span u(2,2) and u(4) respectively. Hence the bosonic subalgebra
g[0] of psu(2,2|4) is

su(2,2)⊕ su(4) . (2.3.41)

Note that the central element 18 of su(2,2|4), which we quotient away in psu(2,2|4), is
bosonic and the only element with non-vanishing trace.

A nice realisation of the Z4 grading of psu(2,2|4) is35

Ω(M) =−KM stK−1, K = diag(J2,J2|J2,J2) , (2.3.42)

with J2 defined in (2.3.20). Note, however, that theZ4 grading is not unique: any automorphism
Ω̂ related toΩwith a similarity transformation also has order four and would define a different
grading of psu(2,2|4). An example here is Ω̂(M) =−M st.

35 More generally this is a Z4 automorphism of gl(4|4).
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Exercise 2.13. Show that Ω(M) ∈ psl(2,2|4) when M ∈ psl(2,2|4). In particular,

STr(Ω(M)) = 0, and Tr(Ω(M)) = 0 . (2.3.43)

Observe that

Ω(M1M2) =−Ω(M2)Ω(M1) , (2.3.44)

and thus Ω is indeed an automorphism Ω[M1,M2] = [Ω(M1),Ω(M2)].

Let us point out that (Mst)† 6= (M†)st and in particular

Ω(M)
†
=Ω

(
M†) M ∈ g[0],

Ω(M)
†
=−Ω

(
M†) M ∈ g[1],

(2.3.45)

or equivalently Ω(M)† = υ(Ω(M†)). This highlights a subtlety about possible Z4 gradings:
strictly speaking on the full algebra Ω does not respect the real form (2.3.15). Nevertheless,
this issue is easily circumvented as each projection M(k) does take values in psu(2,2|4). We
can show this by using (2.3.26) and (2.3.15) which implies

M(k)† =−1
4
H−1

(
M+ i2kΩ2 (M)+ ikυΩ(M)+ i3kυΩ3 (M)

)
H . (2.3.46)

Note that this follows in particular because [H,Υ] = [H,K] = [K,Υ] = 0. Now using υ =Ω2

and Ω4 = 1 we have

M(k)† =−H−1M(k)H , (2.3.47)

and thus indeed the components M(k) belong to psu(2,2|4) for any k= 0,1,2,3. For explicit-
ness, let us write down each of the projections separately. We have

M(0) =
1
2

(
a−KatK−1

b−KbtK−1

)
, M(2) =

1
2

(
a+KatK−1

b+KbtK−1

)
,

M(1) =
1
2

(
θ− iKψtK−1

ψ+ iKθtK−1

)
, M(3) =

1
2

(
θ+ iKψtK−1

ψ− iKθtK−1

)
,

(2.3.48)

whereK= diag(J2,J2). Using an explicit matrix realisation of psu(2,2|4) (see e.g. section 1.1.
of [21]), one can show that the Lie algebra g(0) invariant under the Z4 is the subalgebra

so(1,4)⊕ so(5)⊂ g[0] , (2.3.49)

and that with g(2) ⊂ g[0] this defines another symmetric space decomposition, that is
[g(2),g(2)]⊂ g(0), which is of course different from the parity Z2. The bosonic subalgebra
of psu(2,2|4) thus describes the isometries of a symmetric space which is precisely AdS5× S5

AdS5× S5 ∼=
SU(2,2)
SO(1,4)

× SU(4)
SO(5)

∼=
SO(2,4)
SO(1,4)

× SO(6)
SO(5)

. (2.3.50)
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Including the fermionic generators one will cover the superisometries of the maximally super-
symmetric AdS5× S5 superspace

AdS5× S5 + fermions∼=
PSU(2,2|4)

SO(1,4)× SO(5)
. (2.3.51)

Example (direct sums of Lie supergroups and AdS3 × S3). A special case of semi-symmetric
spaces are the so-called permutation supercosets [25, 32] for which the symmetry group is the
direct product of two simple supergroups G̃= G×G. In fact, at the algebra level, any direct
sum of two superalgebras admits a Z4 defined as a permutation of the factors by

Ω=

(
0 1

(−)F 0

)
. (2.3.52)

The invariant subalgebra is g̃(0) = (g[0]⊕ g[0])diag, i.e. X ∈ g̃(0) is of the form X= (ξ,ξ) with
ξ ∈ g[0]. The semi-symmetric space is then G×G/(GB×GB)diag and thus its bosonic section
is just the group manifold GB = expg[0]. This is in particular the case for the AdS3× S3 semi-
symmetric spaces, for which G= PSU(1,1|2). Their bosonic subgroup is SU(1,1)× SU(2)
corresponding to theAdS3× S3 manifold. The fermionic elements on the other hand come from
the odd generators of psu(1,1|2)⊕ psu(1,1|2), of which there are 16 in total. This example
will be discussed in much more detail in section 3.2.

2.3.2. Action of the canonical SSSSM. The supercoset construction of the GS superstring
starts from the main requirement that the target space of the sigma-model action is a semi-
symmetric spaceG/G(0) with the key existence of aZ4 [56]. This builds in from the very begin-
ning the property of invariance under global transformations of a supergroup G (i.e. super-
symmetries) on the field configurations. We assume from now on that the associated Lie
superalgebra is g= su(p,q|r,s).

The supercoset construction is most elegantly achieved by using the formalism of Maurer–
Cartan forms of Lie superalgebras. Consider a supergroup-valued element g ∈ G to which we
associate the field configuration of the sigma-model action as a map from the worldsheet Σ to
the space G

g : Σ→ G : σ 7→ g(σ) . (2.3.53)

The group element thus plays the analogous role of the spacetime coordinates Xµ : Σ→M :
σ 7→ Xµ(σ). From g we can construct the superalgebra-valued (left-invariant) Maurer–Cartan
form J

J= g−1dg ∈ g⊗Ω1 (G) , (2.3.54)

which we can expand as J= JATA in the Lie superalgebra, with JA ∈ Ω1(G) one-forms. This
one-form satisfies identically the famous Maurer–Cartan equation

dJ+ J∧ J= 0 . (2.3.55)

36



J. Phys. A: Math. Theor. 57 (2024) 423001 Topical Review

Importantly, J is clearly invariant under global G transformations from the left

g(σ)→ gLg(σ) , (2.3.56)

with gL ∈ G constant on the worldsheet. To require however that the target space is G/G(0),
the degrees of freedom of the field configurations must actually be supercoset representatives
[g]. In particular, since G(0) is the stability group of the manifold, points in G that are related
by transformations with elements in G(0) must be identified, i.e.

g∼ gh, [g] = [gh] , (2.3.57)

with h ∈ G(0).36 This physical equivalence can be achieved by realising the right action ofG(0)

as a worldsheet gauge symmetry

g(σ)→ g(σ)h(σ) , h(σ) ∈ G(0). (2.3.58)

Under this transformation, the left-invariant Maurer–Cartan form J transforms as

J→ h−1Jh+ h−1dh. (2.3.59)

Decomposing J under the Z4 grading as in (2.3.23)

J= J(0) + J(1) + J(2) + J(3), (2.3.60)

each projection J(k) = P(k)J transforms under the gauge transformation as

J(0)→ h−1J(0)h+ h−1dh, J(1,2,3)→ h−1J(1,2,3)h , (2.3.61)

because, since h ∈ G(0), h−1dh ∈ g(0). Hence, J(0) transforms as a gauge field, while J(1,2,3)

transform with a similarity transformation.
The simplest way to built the SSSSM in terms of the fields [g] ∈ G/G(0), and which

• is invariant under the global superisometry group G acting from the left as in (2.3.56),
• is gauge-invariant the local bosonic subgroup G(0) ⊂ G acting from the right as in (2.3.58),

with G(0) the invariant of a Z4,
• has a bosonic truncation as in (2.2.45) with a target space GB/G(0), where GB is the bosonic

subgroup of G generated by g[0] = g(0)⊕ g(2),
• and would reduce to the GS superstring in Minkoswki space in an appropriate flat space

limit,

is to pull-back the objects J(1,2,3) to the worldsheet and pair them accordingly using the ad-
invariant bilinear form of the Lie superalgebra, i.e. the supertrace (2.3.10)37. Firstly, the pull-
back is obtained by introducing local coordinates ZM = (Xµ,θI) parametrising the target super-
space G/G(0) which picks one representative per orbit as [g(ZM)]. We can then expand the
Maurer–Cartan form as J= JMdZM = Jαdσα using the pull-back map ZM(σα) between world-
sheet and target space, i.e. simply dZM = ∂αZMdσα. Secondly, recalling that the supertrace

36 More generally, the left-acting G transformation (2.3.56) can thus act as g→ g0gh with h ∈ G(0) a compensating
local G(0) transformation.
37 For a more first-principle construction of the action (2.3.62) we refer to [54, 56].
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respects the Z4 grading and thus satisfies the property (2.3.35), a natural pairing of the objects
J(1,2,3) in the sigma-model action is as follows

SSSSSM =−T
2

ˆ
d2σ STr

(√
−hhαβJ(2)α J(2)β −κϵαβJ(1)α J(3)β

)
, (2.3.62)

where κ is a yet undetermined but real constant, which will be fixed by demanding κ-
symmetry. This action is clearly invariant under the global left-acting G transformations and
the local right-acting G(0) transformations as well as worldsheet diffeomorphisms and Weyl
rescalings38. Note however that this is not necessarily the most generic ansatz for a pairing of
J(1,2,3), and we will come back to this point later. For now, we will call (2.3.62) the canonical
SSSSM. Generalisation of this action will be discussed in section 3.2. However, let us remark
here that in the case of psu(2,2|4) giving rise to the supersymmetric AdS5× S5 background,
it was shown in [54] that (2.3.62) for κ = 1 is the unique action which satisfies the above
requirements together with local κ-invariance.

Exercise 2.14. Show that κ must be real in order for the Lagrangian to be real when
g= su(p,q|r,s).

Remark. Using the pull-back, the Maurer–Cartan identity (2.3.55) reads

∂αJβ − ∂βJα+ [Jα,Jβ ] = 0 . (2.3.63)

Exercise 2.15. Project the Maurer–Cartan identity (2.3.63) on each of the Z4 graded
components.

2.3.2.1. The exact WZ-term. The second term of the action (2.3.62) should be thought of as
the analogue of the term (2.2.6) quartic in fermions and is commonly also referred to as the
exact WZ term. On the supercoset it ascends from a closed three-form which respects the Z4

grading. In form language it reads

Θ3 = STr
(
J(2) ∧ J(3) ∧ J(3)− J(2) ∧ J(1) ∧ J(1)

)
, (2.3.64)

and in the sigma-model action it is integrated over a three-cycle B whose boundary is the
two-dimensional worldsheet ∂B =Σ.

Exercise 2.16. Show that Θ3 is closed, dΘ3 = 0 upon the Jacobi identity. Recall that
for a q-form ξ and an r-form ω one has d(ξ ∧ω) = dξ ∧ω+(−)qξ ∧ dω.

38 Note that the action would not have been gauge-invariant under right-acting G(0) transformations if instead of the
supertrace we would have used the standard trace.
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In general, closed three-forms of manifolds are not necessarily exact, this depends on whether
or not the third cohomology group is trivial. Due to the Z4 grading, however, this is in fact the
case for Θ3

Θ3 =
1
2
d STr

(
J(1) ∧ J(3)

)
, (2.3.65)

and consequently, using Stokes’ theorem, the WZ term can be reduced to a local integral
over the two-dimensional worldsheet Σ giving rise precisely to the latter term of (2.3.62).
Generically, for GS superstrings, finding such exact three-forms is essential for κ-symmetry
and here relies completely on the Z4 (semi-symmetric space) structure [56].

Exercise 2.17. Show (2.3.65).

2.3.2.2. Reducing to a GS-type action. To compare (2.3.62) with the generic GS action for
curved spaces given in section 2.2.2 (and in particular to find the bosonic truncation, i.e. setting
fermions to zero), let us parametrise the group element g as

g= gBe
θ, gB ∈ GB = exp

(
g(0)⊕ g(2)

)
, θ ∈ g(1)⊕ g(3), (2.3.66)

and expand the Maurer–Cartan form (2.3.54) to quadratic order in fermions

J= JB +DBθ−
1
2
[θ,DBθ] +O

(
θ3
)
, (2.3.67)

where JB = g−1
B dgB and DB = d+ adJB . Projecting onto each of the Z4 graded components

then gives up to quadratic order

J(0) = J(0)B −
1
2
[θ,DBθ]

(0)
, J(1) =DBθ

(1),

J(2) = J(2)B −
1
2
[θ,DBθ]

(2)
, J(3) =DBθ

(3).

(2.3.68)

In the bosonic truncation, we see that J(1,3) = 0 and thus only the first term of (2.3.62) survives.
It reproduces the metric coupling of (2.2.45), after expanding JBα = JABµ∂αX

µTA, as

S(0)SSSSM =−T
2

ˆ
d2σ
√
−hhαβ∂αXµGµν (X)∂βXν , (2.3.69)

with

Gµν (X) = J
A(2)

Bµ κA(2)B(2)
J
B(2)

Bν . (2.3.70)
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Exercise 2.18. Let us turn off all the fermions and consider the S2 example dis-
cussed in the previous section (starting from (2.3.36)). Derive its metric by taking
the (bosonic) parametrisation

gB = eϕT1eθT2eξT3 . (2.3.71)

Solution: The right-acting gauge symmetry can be used to remove ξ. You should find
J(2)B = cosθdϕT1 + dθT2 and

ds2 ∝ cos2 θdϕ2 + dθ2 . (2.3.72)

This kinetic term is precisely the symmetric-space sigma-model (SSSM) action on GB/G(0).
There is not a similar way, however, to reproduce the B-field coupling after bosonic truncation,
as rather trivially terms such as

ϵαβSTr
(
J(2)α J(2)β

)
, (2.3.73)

vanish. This means that actions of the type (2.3.62) which pairs only two of the one-forms
J(1,2,3) will not give rise to supergravity backgrounds with non-trivial NSNS fluxes. However,
as we will discuss in section 3, B-field couplings can arise from considering non-trivial WZ
terms. This is rather important to cover the most general AdS3 supergravity backgrounds, in
particular those with mixed NSNS and RR fluxes.

Let us also point out that terms such as

√
−hhαβSTr

(
J(1)α J(3)β

)
(2.3.74)

are in principle allowed under the requirements of global G- and local G(0)-invariance.
However, they are ruled out by the observation that, after substituting (2.3.68), they give rise to
purely quadratic fermionic terms which are not present in the standard GS superstring action,
cf equations (2.2.6) or (2.2.46).

For completeness, let us substitute (2.3.68) in the action (2.3.62) up to quartic order in
fermions, giving

SSSSSM =−T
2

ˆ
d2σ STr

(√
−hhαβ

(
J(2)BαJ

(2)
Bβ − J(2)Bα [θ,DBθ]

(2)
β

)
−κϵαβ (DBθ)

(1)
α (DBθ)

(3)
β

)
.

(2.3.75)

Note that we have a term purely quadratic in fermions, but here it is a total derivative
ˆ

d2σ STr
(
ϵαβ∂αθ

(1)∂βθ
(3)
)
=

ˆ
d2σ STr∂α

(
ϵαβθ(1)∂βθ

(3)
)
. (2.3.76)

The remaining terms have the structure of the type II GS action in curved spaces. More pre-
cisely, however, depending on the particular supercoset this may be the case only after (par-
tially) fixing the κ-symmetry gauge in the GS action. E.g. the κ-gauge is not needed to obtain
the supercoset for AdS5× S5 [54], it should be partially fixed to obtain the supercoset for
AdS4×CP3 [57, 58], and it should be completely fixed to obtain the supercosets for AdS3× S3

[32]. The flat space limit is obtained by expanding around g= 1 and can be shown to give the
GS superstring in Minkowski space [54].
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2.3.2.3. Equations of motion. Our next goal is to write down the equations of motion of
the SSSSM (2.3.62). Using the Z4 invariance and the cyclicity of the supertrace, i.e. (2.3.33)
and (2.3.13), we can write the variation of the action for δg as

δSSSSSM =−T
ˆ

d2σ STr
(
δJα

(√
−hhαβJ(2)β +

κ
2
ϵαβ
(
J(1)β − J(3)β

)))
, (2.3.77)

where, in terms of the actual field configurations,

δJα = δ
(
g−1∂αg

)
=−g−1δgJα+ g−1∂α (δg) , (2.3.78)

and thus with

Λα ≡
√
−hhαβJ(2)β +

κ
2
ϵαβ
(
J(1)β − J(3)β

)
, (2.3.79)

we obtain after partial integration

δSSSSSM = T
ˆ

d2σ STr
(
g−1δg([Jα,Λ

α] + ∂αΛ
α)
)
, (2.3.80)

up to total derivative terms that vanish for periodic strings. Then, if we assume that the
superalgebra g is such that the bilinear form is non-degenerate, the superstring equations of
motion read

∂αΛ
α+ [Jα,Λ

α] = 0 . (2.3.81)

Exercise 2.19. Project the equations of motion (2.3.81) on each of theZ4 graded com-
ponents to show that the only non-trivial equations are

∂α

(√
−hhαβJ(2)β

)
+
√
−hhαβ

[
J(0)α ,J(2)β

]
+

κ
2
ϵαβ
([

J(1)α ,J(1)β

]
−
[
J(3)α ,J(3)β

])
= 0,

√
−hhαβ

[
J(3)α ,J(2)β

]
−κϵαβ

[
J(2)α ,J(3)β

]
= 0,

√
−hhαβ

[
J(1)α ,J(2)β

]
+κϵαβ

[
J(2)α ,J(1)β

]
= 0.

(2.3.82)

The equations of motion for the worldsheet metric hαβ corresponds, as usual, to the vanishing
of the worldsheet energy-momentum tensor

Tαβ = STr
(
J(2)α J(2)β

)
− 1

2
hαβh

γδSTr
(
J(2)γ J(2)δ

)
= 0 , (2.3.83)

i.e. the Virasoro constraints, cast in the superalgebraic language.
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2.3.2.4. Conservation law of the superisometry group. By Noether’s theorem, the equations
of motion (2.3.81) are related to the conservation laws of global symmetries. Indeed, (2.3.81)
can be recast as

g−1∂α
(
gΛαg−1

)
g= 0 (2.3.84)

and thus as a conservation equation for the current

J α ≡ gΛαg−1 . (2.3.85)

This is precisely the Noether current for the left-acting global G symmetry (2.3.56).

Exercise 2.20. Apply Noether’s theorem to show the above statement. Use that for a
left-acting G symmetry, the infinitesimal transformation of (2.3.56) can be written as
δg= XATAg when we paramterise gL = eX

ATA ∈ g.

The associated Noether charges generating this symmetry are

Q=−T
ˆ 2π

0
dσJ τ =−T

ˆ 2π

0
dσ g

(√
−hhταJ(2)α +

κ
2

(
J(1)σ − J(3)σ

))
g−1 . (2.3.86)

Its projections onto an element of g with non-degenerate bilinear form is QA = STr(QTA).

2.3.3. Kappa-symmetry. As we know from section 2.2.1, having a global superisometry
group is not enough to have target space supersymmetry of the on-shell spectrum and thus a
GS theory. The sigma-model action must have a fermionic gauge symmetry in order to ensure
the correct counting of bosonic and fermionic degrees of freedom. In this section, we dis-
cuss this local fermionic κ-symmetry in the supercoset language for the canonical SSSSM
action (2.3.62).

Appropriate κ-symmetry transformations can be obtained as particular local right-actions
on g that depend only on fermionic parameters ξ ∈ g(1)⊕ g(3) as [59]39

g→ geξ, g−1δg= ξ = ξ(1) + ξ(3). (2.3.87)

In this case one has δZMJ(2)M = 0 as for the generic superspace expression (2.2.43).
Furthermore, this transformation clearly commutes with the actions from the left and thus
fixing a κ-gauge will be consistent with global supersymmetry. For arbitrary ξ, however, the
action (2.3.62) will not be invariant under (2.3.87). First, as we know from the flat space
case, also the worldsheet metric will need to transform. Second, further conditions on ξ are
required to guarantee that δSSSSSM = 0. Lastly, the normalisation κ ∈ R between the kinetic
and WZ term must be fixed appropriately. An appropriate ansatz for the local κ-symmetry
parameters ξ is

ξ(1) =
{
J(2)α+,κ

(1)α
−

}
, ξ(3) =

{
J(2)α−,κ

(3)α
+

}
, (2.3.88)

39 This action can be understood as an enlargement of the local right transformations by the bosonic stabilizer G(0)

to a subgroup including fermionic generators.
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where κ(1)α+ = κ
(3)α
− = 0 and we recall the notation Aα± = Pαβ± Aβ with Pαβ± defined in (2.2.9).

The parameters have the correct grading ξ(i) ∈ g(i) when the Z4 acts on products of matrices as
Ω(MN) =±Ω(N)Ω(M). This is the case in all relevant gradings in the literature. In particular,
note that Ω is then readily an automorphism. To compensate the transformation of g−1δg,
the variation of the worldsheet metric can be found when the parameter κ is fixed to ±1.
Interestingly, as we will see in section 2.4.3, the same values for κ are required for classical
integrability. After some algebra, making use of the identities for the worldsheet projectors,
the variation of the metric can then be written as40

δ
(√
−hhαβ

)
κA(2)B(2)

=−8
√
−hSTr

(
TA(2)

([
J(1)α− ,κ

(1)β
−

]
+
[
J(3)α+ ,κ

(3)β
+

])
TB(2)

)
.

(2.3.89)

More useful expressions in terms of the Maurer–Cartan currents can be obtained once a partic-
ular superalgebra is chosen, see e.g. [57, 60], which consider psl(n|n) and osp(2,2|6) respect-
ively. Instead, in the remaining of this section we will derive a generic formula to count the
rank of κ-symmetry of the canonical SSSSM for generic semi-symmetric G/G(0).

2.3.3.1. On-shell rank of κ-symmetry. Wewill analyse the presence of κ-symmetry, as well as
its on-shell rank, by doing a semi-classical analysis of fermionic fluctuations around a bosonic
background solution following [61] (see also [62]).

In particular, consider again the parametrisation (2.3.66) of the group element g. We will
now take gB = ḡB(σ) as a bosonic background solution around which we will analyse fermi-
onic fluctuations θ = ϵθ̂ with ε a small parameter. Then (2.3.67) becomes

J= J̄+ ϵD̄θ̂− ϵ2

2

[
θ̂,D̄θ̂

]
+O

(
ϵ3
)
, (2.3.90)

where J̄= ḡ−1
B dḡB and D̄ = d+ adJ̄ satisfies the classical equations of motion (2.3.82), which

can be written in this case as

∇̄αJ̄α(2) = 0, (2.3.91)

where

∇̄αAβ = D̄αA
β +ΓβαγA

γ , D̄= d+ adJ̄(0) , (2.3.92)

and Γβαγ is the usual Christoffel symbol. In addition, we have the Maurer–Cartan identities for
J̄ projected on g(0) and g(2). They can be written respectively as

F̄αβ +
[
J̄(2)α , J̄(2)β

]
= 0, D̄αJ̄

(2)
β − D̄β J̄

(2)
α = 0. (2.3.93)

40 For more clues on how to proof this we refer to [21], however one should be careful with changes in conventions
(in particular J→−J, ϵαβ →−ϵαβ and Pαβ± → (−h)−1/2Pαβ∓ ).
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Exercise 2.21. Show that the background equations of motion (2.3.91) and the iden-
tities (2.3.93) imply that[

D̄α,
√
−hhαβad

J̄(2)β

]
= 0,

ϵαβD̄αD̄β =−ϵαβad
J̄(2)α

ad
J̄(2)β

,

ϵαβ
[
D̄α,adJ̄(2)β

]
= 0,

(2.3.94)

Using the above identities, as well as the properties (2.3.25), (2.3.13), and those related to the
worldsheet projectors (2.2.9)41, the expansion of the action (2.3.75) around ḡB can be written
for κ = 1 as

SSSSSM = S̄− ϵ2T
ˆ

d2σ
√
−hhαβSTr

(
θ̂(1)∇̄α−

[
J̄(2)α+, θ̂

(1)
]
+ θ̂(3)∇̄α+

[
J̄(2)α−, θ̂

(3)
]

− 2
[
J̄(2)α+, θ̂

(1)
][

J̄(2)β−,
ˆθ(3)
])

+O
(
ϵ3
)
,

(2.3.95)

with S̄=− T
2

´
d2σ

√
−hhαβSTr(J̄(2)α J̄(2)β ), subjected to the background Virasoro con-

straints (2.3.83). Using the worldsheet projectors, the latter can be written similarly as
in (2.2.14) but read now

STr
(
J̄(2)α±J̄

(2)
β±

)
= 0 . (2.3.96)

This shows that the currents J̄(2)α± are null.
We thus see that the semi-classical action (2.3.95) for the fermionic fluctuations would

degenerate when the currents J̄(2)α+ (J̄(2)α−) have a vanishing commutator in some of the g(0)

(g(3)) directions: the corresponding fermionic fluctuations in θ̂(1) (θ̂(3)) decouple and do not
contribute to the semi-classical dynamics. This is precisely the physical consequence of κ-
symmetry, a gauge symmetry which renders some fermionic degrees of freedom unphysical.
The simplest way to fix the κ-gauge is to set those components of θ̂(1) (θ̂(3)) to zero that do
not contribute to the semi-classical action. The on-shell rank of the κ-symmetry is thus

N+ = dim ker ad
J̄(2)α+

|g(1) , N− = dim ker ad
J̄(2)α−
|g(3) , (2.3.97)

and highly depends on the superalgebra g under consideration. For a systematic analysis of
their values see [61]. Note that the numbers N± must be independent of the background solu-
tion ḡB: they must be determined only through the structure constants of g and should not
depend on the particular evaluation of the background currents J̄(2)α±. In other words, we con-

sider J̄(2)α± to be sufficiently generic null elements of g(2). However, for some special (singular)
solutions the κ-rank can become larger.

41 Particularly important are the orthogonality properties of the worldsheet projectors.
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2.3.4. Conformal GS sigma-models on semi-symmetric spaces. Certain superalgebras
have the interesting property that their quadratic Casimir c2(G), defined as STradj(MN) =
c2(G)STr(MN), vanishes. For the SSSSM, the dependence of its one-loop worldsheet β-
function on the supergroup G is in fact only through the number c2(G), which simply determ-
ines the rate of the flow (see e.g. [53, 61]). In other words, a coupling constant λ (obtained
from the Taylor expansion of one of the components of e.g. the curved metric Gµν) would
run as

β (λ) =
d

dlogµ
λ(µ) = α ′c2 (G) f(λ)+O

(
α ′2
)
, (2.3.98)

with µ the momentum cut-off scale and f(λ) some function of λ. If c2(G) = 0, the coup-
ling does not run and thus the worldsheet sigma-model is conformal to O(α ′). This is the
case for psl(n|n), osp(2n+ 2|2n), and d(2,1;α) [55, 63, 64] (see also [23, 65] for an exact
result for g= psu(n|n)). For more details, we refer to [61] which also analyses the correct
counting of the central charge due to fixing conformal and κ-gauge. An important conclu-
sion of that work is that the list of SSSSMs of the type (2.3.62) giving rise to consistent
string backgrounds up to one-loop in α ′ is not very long (see section 5 of [61]). Important
examples are PSU(2,2|4)/SO(1,4)× SO(5) for AdS5× S5, OSp(6|4)/U(3)× SO(3,1) for
AdS4×CP3, PSU(1,1|2)×PSU(1,1|2)/SU(1,1)× SU(2) for AdS3× S3 and D(2,1;α)×
D(2,1;α)/SO(4)× SL(2,R) for AdS3× S3× S3, of which the latter two will be discussed in
section 3.

2.4. Classical integrability

In this section, we will show that the canonical SSSSM (2.3.62) is classically integrable. In
general, for field theories, the precise definition of classical integrability is subtle but com-
monly given in terms of the existence of an infinite tower of conserved charges. This property
severely constrains the dynamics and essentially provides a large toolkit of mathematical tech-
niques to solve the theory exactly. We will first introduce the general principles of classical
integrablity for two-dimensional field theories in terms of the so-called Lax integrability and
then show how the action (2.3.62) falls under this umbrella. For simplicity, we will do this
first for a simpler cousin of the SSSSM, the principal Chiral model (PCM), which has a trivial
G(0), and generalise the proof later to the canonical SSSSM.

2.4.1. Preamble: classical Lax integrability in two-dimensional field theories. A finite-
dimensional classical system is classically integrable when (i) the number of independent con-
served charges Qi equals the number of degrees of freedom n, and (ii) these charges are all in
involution (Poisson commute), i.e. {Qi,Qj}P.B. = 0 for all i, j = 1, . . . ,n. A convenient way to
formulate this is in terms of Lax pairs and r-matrices who have to represent the equations
of motion and the Poisson brackets of the theory in a particular way. For more details, we
refer e.g. to the lecture notes [66] of one of the authors or the book [67]. Similarly, for two-
dimensional field theories, which have an infinite number of degrees of freedom, Lax integ-
rability is understood as the possibility of recasting the equations of motion in a certain way:
In this case, as a zero-curvature or flatness condition of a one-form L(z) (called the Lax con-
nection) which besides the field configurations must depend on a free parameter z ∈ C (called
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the spectral parameter)42. This is also known as the ‘zero-curvature formulation’ or ‘zero-
curvature Lax representation’. In form language, this condition reads

dL(z)+L(z)∧L(z) = 0 , (2.4.1)

and it should hold ∀z ∈ C. In terms of coordinates σα = (τ,σ) on the two-dimensional space-
timeΣ (for us the worldsheet, as before) we have L(z) = Lτ (z)dτ +Lσ(z)dσ and then (2.4.1)
simply becomes

∂τLσ (z)− ∂σLτ (z)+ [Lτ (z) ,Lσ (z)] = 0, ∀z ∈ C . (2.4.2)

The Lα(z) typically take values in a finite-dimensional matrix representation of a non-abelian
Lie algebra g (or more precisely, due to the freedom in z, in the loop algebra g⊗C).

An important remark is that the Lax connection is not unique. Besides depending on the
representation, L(z) is defined up to local ‘gauge’ transformations acting as

L(z)→Lg (z) = gL(z)g−1− dgg−1 , (2.4.3)

which leave the zero-curvature condition (2.4.1) invariant. The objects g are matrix elements of
the same dimension asL(z) but can be completely arbitrary; they can depend on the dynamical
variables as well as the spectral parameter z.

2.4.1.1. Conserved charges. The freedom in the parameter z in the zero-curvature condition
is crucial and in fact allows us to construct an infinite tower of conserved charges. To show this,
let us first note that (2.4.2) corresponds to a compatibility condition of the following auxiliary
linear system43

(∂σ +Lσ (z))Ψ (z) = 0, (∂τ +Lτ (z))Ψ = 0, (2.4.4)

where Ψ is sometimes called the ‘wave-function’. Fixing now the initial condition

Ψ (0,0;z) = 1 , (2.4.5)

the solution to the linear problem is obtained by parallel transportation from the origin to a
point (τ,σ) along an arbitrary path γ with the connection L(z). In other words,

Ψ(z) = Ψ(τ,σ;z) =
←−−−
Pexp

(
−
ˆ
γ

L(z)
)
, (2.4.6)

which is well-defined (it does not depend on the chosen path γ) due to the zero-curvature
property (2.4.1) of the Lax connection. Here

←−−−
Pexp is the path ordered exponential defined on

a fixed time slice as

←−−−
Pexp

(ˆ σ

0
dσ ′A(σ ′)

)
=

∞∑
k=0

1
k!

ˆ σ

0
· · ·
ˆ σ

0

←−
P {A(σ ′

1) · · ·A(σ ′
k)} dσ ′

1 · · ·dσ ′
k

=
∞∑
k=0

ˆ σ

0
dσ ′

k

ˆ σ ′
k

0
dσ ′

k−1 · · ·
ˆ σ ′

2

0
dσ ′

1 A(σ
′
k) · · ·A(σ ′

1) .

(2.4.7)

42 In what follows, we will suppress the dependence on the field configurations.
43 This can be seen by taking the derivative to τ of the first equation, and subtracting it from the derivative to σ of the
second equation, which implies a consistency condition given precisely by (2.4.2).
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An infinite set of conserved charges can now be obtained by considering a path at a fixed time
slice to define the transport matrix Ω(b,a;z)≡Ψ(τ,b;z)Ψ(τ,a;z)−1, i.e.

Ω(b,a;z) =
←−−−
Pexp

(
−
ˆ b

a
dσ Lσ (z)

)
. (2.4.8)

Exercise 2.22. Write out the first three terms of the expansion of Ω(b,a;z). Note that
in general this is a highly non-local expression.

The transport matrix satisfies the following properties

δΩ(b,a;z) =−
ˆ b

a
dσΩ(b,σ;z)δLσ (τ,σ;z)Ω(σ,a;z) , (2.4.9)

∂σΩ(σ,a;z) =−Lσ (τ,σ;z)Ω(σ,a;z) , (2.4.10)

∂σΩ(b,σ;z) = Ω(b,σ;z)Lσ (τ,σ;z) , (2.4.11)

Ω(a,a;z) = 1 , (2.4.12)

Using (2.4.2) together with the above properties, one can show that

∂τΩ(b,a;z) = Ω(b,a;z)Lτ (τ,a;z)−Lτ (τ,b;z)Ω(b,a;z) . (2.4.13)

Exercise 2.23. Show (2.4.13).

If we still assume that Σ has the topology of a cylinder and could thus describe the closed
string worldsheet, then L(τ,σ;z) = L(τ,σ+R;z) and

∂τΩ(R,0;z) = [Ω(R,0;z) ,Lτ (τ,0;z)] . (2.4.14)

Therefore, defining the monodromy matrix Ω(z)≡ Ω(R,0;z), its trace as well as the trace of
its powers is conserved, i.e.

∂τTrΩ(z)n = 0, ∀n ∈ N, ∀z ∈ C . (2.4.15)

Taylor expanding TrΩ(z) around any suitable value z⋆ in the complex plane in which themono-
dromy is analytic thus produces an infinite set of conserved charges. These charges can be both
local and non-local44. Another way of looking at this is that (2.4.15) implies that the eigenval-
ues λ(z) of Ω(z), defined by the characteristic equation

Γ = det(Ω(z)−λ(z)1) = 0, (2.4.16)

are conserved. This is also apparent from the fact that under the gauge transformation (2.4.3)
the transport matrix transforms as

Ω(b,a;z)→ Ωg (b,a;z) = g(τ,b)Ω(b,a;z)g−1 (τ,a) , (2.4.17)

44 In fact, changing the value of z⋆, one can obtain several of those infinite sets of charges, possibly with different
properties.
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which can be used to diagonalise Ω(z). Hence, equivalently, Taylor expanding λ(z) produces
an infinite tower of conserved charges. The spectral properties of the theory are thus encoded
in the spectral properties ofΩ(z). Therefore, the characteristic equation (2.4.16), which defines
an algebraic curve in z ∈ C, is also called the classical spectral curve (CSC). In anN×N matrix
representation for L(z), the CSC is a polynomial equation in λ(z) of degree N, and thus gives
rise to an N-sheeted Riemann surface. The sheets may degenerate at certain branch points in
z, whose number and location depends on the degree and form of the polynomial Ω(z) in z,
which in turn depends on the particular form of Lσ(z) on thus the particular solution of the
equations of motion. From a different point of view, this data can be used to classify families
of such solutions (see e.g. [68, 69]).

Remark (local charges). An interesting set of conserved charges is obtained by expanding
the monodromy matrix around poles of the Lax connection. One can show that in the vicinity
of each pole zk of L(z) one can perform a gauge transformation that diagonalises the Lax
connection. Consequently, the path-ordered exponential of the gauge-transformedmonodromy
matrix becomes a normal exponential and thus the Taylor expansion of its eigenvalues will
exhibit an infinite set of local conserved charges. This generic procedure is also known as
abelianisation (see e.g. [67]). In the CSC, on the other hand, local charges only appear in the
leading order of the expansion of λ(z) around a value z⋆ in which Lσ(z⋆) or Lg

σ(z⋆) vanishes
(see also comments in the explicit examples discussed later).

2.4.1.2. Comments on involution of charges. While the zero-curvature formulation only
ensures us that we have infinite towers of conserved charges, and does not ensure anything
about their involution, possessing the structures

{L(z) , Ψ (z) , T(z)} , (2.4.18)

already opens-up interesting and well-known classical integrable techniques (such as e.g. the
CSC, also known as the finite-gap integration technique). However, at the quantum level the
knowledge of the Poisson bracket algebra and involutivity of the charges plays a crucial role:
it connects to factorisation of scattering into 2→ 2 elastic scattering processes and under-
lies Bethe Ansätze techniques. Unfortunately, we do not have the space-time to discuss the
necessary Poisson-bracket structure here. Instead, let us e.g. refer to section 3.3 of [66] in
general and, as for the discussion on the Poisson brackets for the canonical SSSSM represent-
ing AdS5× S5, to chapter II.3 section 2.3 of [22]. For scattering matrices and Bethe Ansätze
techniques, we refer to the coming sections 4 and 5 respectively.

2.4.2. Lax formulation of the PCM. Before deriving the Lax formulation of the SSSSM, we
warm up with a simpler model: the PCM. This is a non-linear sigma-model to a bosonic Lie
group manifold G, whose action can be written as

SPCM =−T
2

ˆ
Σ

d2σ
√
−hhαβTr(JαJβ) , (2.4.19)

with J= g−1dg still defined as before through a Lie group element g that is a map from the
worldsheet Σ to G. Note that the PCM can be seen as a simpler version of the SSSSM (2.3.62)
for which fermionic fields have been set to zero, and for which the subgroup G(0) is trivial.

48



J. Phys. A: Math. Theor. 57 (2024) 423001 Topical Review

The PCM action enjoys a number of interesting properties. It has a global GL×GR invari-
ance, which acts independently as

g→ gLg, g→ ggR, (2.4.20)

for gL,gR ∈ G constant elements on the worldsheet. The conservation laws of the correspond-
ing Noether currents (J αL =

√
−hhαβgJβg−1 and J αR =

√
−hhαβJβ respectively) coincide

with the equations of motion for g, which read

∂α

(√
−hhαβJβ

)
= 0. (2.4.21)

In form language, this can be rewritten simply as

d ⋆ J= 0, (2.4.22)

where we define the action of the Hodge star on one-forms living on a two-dimensional space
Σ as

⋆J= Jα ⋆ dσ
α = Jαϵ

αβγβγdσ
γ , (2.4.23)

and we introduced γαβ ≡
√
−hhαβ and its inverse γαβ ≡ (−h)−1/2hαβ . The equations of

motion for hαβ (the Virasoro constraints) can be written as usual

Tr(Jα±Jβ±) = 0, (2.4.24)

using the worldsheet projectors (2.2.9).

Exercise 2.24. Show the equivalence between (2.4.21) and (2.4.22). Show that the
Hodge-star action on one-forms satisfies ⋆2J= J and ⋆J1 ∧ J2 =−J1 ∧ ⋆J2.

Hint: recall the identity ϵαβϵγδ =−h(hαδhβγ − hαγhβδ).

An important observation to obtain the Lax formulation of the PCM is that, using the
Maurer–Cartan identity (2.3.55), we can relax the identification of the current J with the
Maurer–Cartan one-form formulated in terms of the field g. That is to say, rather than viewing
g as the fundamental field satisfying a single second-order differential equation (2.4.22), we
can view J as the fundamental field whose dynamics is captured by two first-order equations,
namely the conservation law (2.4.22) and the Maurer–Cartan identity (2.3.55). To travel
between the two pictures one can use the pure-gauge condition for the flat current, i.e. the
identification J= g−1dg. Proving Lax integrability is now very convenient in the J-picture.
Indeed, the existence of a conserved current that is also flat immediately guarantees a Lax
formulation. Let us show explicitly why this is. Recall that we need a Lax connection L(z)
that on-shell has zero curvature for every value of an arbitrary parameter z ∈ C, i.e. it must
satisfy (2.4.1). To obtain this, let us combine the two equations (2.4.22) and (2.3.55) for J by
considering the object

L(α,β) = αJ+β ⋆ J, (2.4.25)
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where α,β ∈ C are constants that we will fix such that (2.4.1) is satisfied on-shell. This sys-
tem cannot be fully determined: there should be at least one redundancy in the parameters
indicating the existence of a free parameter z. Using (2.4.22) and (2.3.55) we find

dL(α,β)+L(α,β)∧L(α,β) =
(
α2−β2−α

)
J∧ J. (2.4.26)

Hence, we can indeed solve (2.4.1) with a single redundancy (we have one equation, α2−
β2−α !

= 0, for two variables). Taking α= 1
1−z2 and β = z

1−z2 the Lax connection reads

L(z) = J+ z ⋆ J
1− z2

. (2.4.27)

Its zero-curvature condition (2.4.1) now implies the equations (2.4.22) and (2.3.55) for any
value z ∈ C.

Before generalising this to the SSSSM, let us show the interesting relation between the Lax
connection and the generators of global Noether symmetries. In conformal gauge (2.1.9), the
spatial component of the Lax reads

Lσ (z) =
Jσ + zJτ
1− z2

. (2.4.28)

Around z∼∞,Lσ(z) thus behaves asLσ(z) =−Jτ/z+O(z−2). Taylor expanding the mono-
dromy matrix around z∼∞ thus gives

Ω(z) = 1+ z−1QR +O
(
z−2
)
, QR =

ˆ R

0
dσJτ , (2.4.29)

where QR is precisely the (local) Noether charge corresponding to the global GR symmetry.
Similarly, the first non-trivial term obtained by expanding the monodromy matrix gauge
transformed by the field g around the value z∼ 0 gives the (local) Noether charge QL =´ R
0 dσgJτg−1 corresponding to the global GL symmetry. In both cases, note that the spatial

component of the Lax (resp. its gauge transformation by g) vanishes at z∼∞ (resp. z∼ 0)
and thus its expansion starts only at the next order. Leading order terms of the monodromy
(resp. its gauge transformation) then do not receive contributions from nested integrals and
thus are local. Higher order terms will of course still give rise to non-local conserved charges,
which interestingly are hidden from a first naive analysis of the PCM action principle. Further
details and references can again be found in [66].

2.4.3. Lax formulation of the SSSSM. To find the Lax formulation of the canonical
SSSSM (2.3.62), we employ a similar strategy as for the PCM, i.e. relaxing the identific-
ation of J with g and combining the equations of motion (2.3.82) with the Maurer–Cartan
identity. First, let us rewrite (2.3.82) in form language. One can show that the equations are
equivalent to

d ⋆ J(2) + J(0) ∧ ⋆J(2) + ⋆J(2) ∧ J(0)−κJ(1) ∧ J(1) +κJ(3) ∧ J(3) = 0 ,

J(3) ∧ ⋆J(2) + ⋆J(2) ∧ J(3) +κJ(2) ∧ J(3) +κJ(3) ∧ J(2) = 0 ,

J(1) ∧ ⋆J(2) + ⋆J(2) ∧ ⋆J(1)−κJ(2) ∧ J(1)−κJ(1) ∧ J(2) = 0 ,

(2.4.30)
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while the projections of the Maurer–Cartan identities on the graded eigenspaces read45

dJ(0) + J(0) ∧ J(0) + J(2) ∧ J(2) + J(1) ∧ J(3) + J(3) ∧ J(1) = 0 ,

dJ(1) + J(0) ∧ J(1) + J(1) ∧ J(0) + J(2) ∧ J(3) + J(3) ∧ J(2) = 0 ,

dJ(2) + J(0) ∧ J(2) + J(2) ∧ J(0) + J(1) ∧ J(1) + J(3) ∧ J(3) = 0 ,

dJ(3) + J(0) ∧ J(3) + J(3) ∧ J(0) + J(1) ∧ J(2) + J(2) ∧ J(1) = 0 .

(2.4.31)

Now, noticing that the first equation of (2.4.30) is an equation for d ⋆ J(2), while the others
are algebraic, and the projections of the Maurer–Cartan identity are all equations for dJ(i),
i = 0, . . . ,3, we propose the following ansatz for the Lax connection

L(α0,α1,α2,α3,α4) = α0J
(0) +α1J

(2) +α2 ⋆ J
(2) +α3J

(1) +α4J
(3) , (2.4.32)

with αi, i = 0,1,2,3,4 free parameters yet to be determined by demanding on-shell flatness of
L. Imposing (2.4.1) and projecting onto each of the Z4-eigenspaces g(i), we find using (2.4.30)
and (2.4.31), as well as the properties of the Hodge-star of exercise 2.24, that

• on g(0), (
α2

0−α0
)
J(0) ∧ J(0) +

(
α2

1−α2
2−α0

)
J(2) ∧ J(2)

+(α3α4−α0)
(
J(1) ∧ J(3) + J(3) ∧ J(1)

)
= 0 ,

(2.4.33)

which implies (excluding the trivial possibility α0 = 0),

α0 = 1, α2
1−α2

2 = 1, α3α4 = 1 . (2.4.34)

• on g(1),

(α0α3−α3)
(
J(0) ∧ J(1) + J(1) ∧ J(0)

)
+(α1α4−κα2α4−α3)

(
J(2) ∧ J(3) + J(3) ∧ J(2)

)
= 0

(2.4.35)

which, with the above, implies

α1α4−α3

α2α4
= κ . (2.4.36)

• similarly, on g(2), one will find the conditions

α2
3−α1

α2
=−κ, α2

4−α1

α2
= κ . (2.4.37)

• and finally on g(3), the conditions

α1α3−α4

α2α3
=−κ . (2.4.38)

45 This is the solution to exercise 2.15.
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This means we have 7 conditions for 6 variables (including κ in the counting). However,
luckily, by close inspection one will find that there is a degree 2 redundancy. First, one will
see that adding (2.4.37) gives the same condition as adding (2.4.36) and (2.4.38), i.e.

α2
3 +

1
α2

3

= 2α1 . (2.4.39)

Secondly, one can rewrite the second equation of (2.4.34) for α3 6= 0 (equivalently
α4 6= 0) as (

1
α4

3

− 1

)2( 1
κ2− 1

)
= 0 . (2.4.40)

Thus, for κ =±1, α3 will remain free. Note that the other conditions fix α1,2,4 in terms of
α3. Thus, if on the other hand κ2 6= 1, then α3, and by extension all other variables, would
be fixed so that instead of having a one-parameter family of flat Lax connections L(z), we
would have a trivially flat current. Concluding, the theory is classically integrable only for
κ =±1. Interestingly, this is precisely the same condition as the one ensuring κ-symmetry. It
would be very interesting to understand if there is a deeper connection between integrability
and κ-symmetry.

In summary, taking κ = 1 and writing α3 ≡ z, the Lax connection thus becomes [20]

L(z) = J(0) + zJ(1) +
1
2

(
z2 + z−2

)
J(2) +

1
2

(
z2− z−2

)
⋆ J(2) + z−1J(3), (2.4.41)

whose zero-curvature condition (2.4.1) implies the equations (2.4.30) and (2.4.31) for any
value of z ∈ C. This demonstrates the classical integrability of the canonical SSSSM (2.3.62).
Note, however, that the equations of motion for hαβ (and thus the Virasoro constraints) (2.3.83)
do not immediately follow from (2.4.1).

Remark. As mentioned before, the Lax connection takes values in g⊗C, and thus for g=
su(p,q|r,s), L(z) ∈ sl(p+ q|r+ s). In the case of AdS5× S5 this is psl(4|4). For this example,
the Lax connection behaves under the Z4 automorphism Ω (2.3.42) as Ω(L(z)) = L(i z).
Another useful parametrisation often used is z=

√
1+x
1−x in which case theZ4 acts asΩ(L(x)) =

L(1/x). The eigenvalues λ(z) of the monodromy matrix must respect this symmetry.

2.4.3.1. Transformation of the Lax under local symmetries. The superstring sigma-model
(2.3.62) exhibits a number of local symmetries, namely Weyl rescalings, worldsheet diffeo-
morphism invariance, right-actingG(0) transformations, and κ-symmetry. Here, wewill briefly
discuss the behaviour of the Lax connection (2.4.41) under them.

First, under Weyl rescalings, the Lax connection of course transforms trivially, as γαβ =√
−hhαβ stays invariant under (2.1.7). Secondly, under an infinitesimal worldsheet diffeo-

morphisms σα→ σ̃α = σα+ fα(σ)we would haveL(σ) = Lα(σ)dσα = Lα(σ̃)dσ̃α and thus
δLα = ∂βLαfβ +Lβ∂αfβ . Using the zero-curvature condition, this becomes simply an infin-
itesimal gauge transformation (2.4.3) with the parameter δg=−fβLβ . The eigenvalues λ(z)
of the monodromy matrix will thus be invariant under worldsheet diffeomorphisms.

Thirdly, under the right-acting G(0) transformations (2.3.58), or equivalently (2.3.61),
the Lax connection simply transforms as a gauge transformation (2.4.3) with the parameter
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g= h(σ)−1. The eigenvalues λ(z) of the monodromy matrix will thus be invariant under the
right-acting gauge transformations by G(0).

Finally, in [21, 57, 60] it was shown that for psl(n|n) and osp(6|2,2) the eigenvalues of the
monodromy will also be invariant under κ-symmetries if and only if the Virasoro constraints
are satisfied. Hence, although the Virasoro constraints do not directly follow from the zero-
curvature of the Lax, they are required such that the conserved eigenvalues λ(z) are invariant
under all the local gauge symmetries.

2.4.3.2. Relation to global supersymmetries. Recall that in the PCM case, the expansion
of the monodromy around values z⋆ where Lσ(z⋆) or Lg

σ(z⋆) vanishes holds at the first non-
trivial order a local Noether charge associated to global symmetries. The same happens for
the SSSSM. As there is no value z⋆ where the Lax (2.4.41) vanishes, let us do a gauge trans-
formation by the superfield g of Lσ(z). Assuming for simplicity conformal gauge, it reads

Lg
σ (z) = (z− 1)a(1)σ +

1
2

(
z−2− z2

)
a(2)τ +

1
2

(
z−2 + z2− 2

)
a(2)σ +

(
z−1− 1

)
a(3)σ , (2.4.42)

where a(i) = gJ(i)g−1.46 Clearly Lg
σ(z= 1) = 0. The expansion of Lg

σ(z) around z= 1+ ϵ is
then

Lg
σ (z) = ϵ

(
a(1)σ − a(3)σ − 2a(2)τ

)
+O

(
ϵ2
)
, (2.4.43)

and expanding the gauge transformed monodromy thus gives

Ωg (z) = 1+ ϵ

ˆ R

0
dσ
(
2a(2)τ − a(1)σ + a(3)σ

)
+O

(
ϵ2
)
. (2.4.44)

Here we see, in conformal gauge, precisely the local Noether charge of (2.3.86) associated
to the global G symmetry appearing (for κ = 1). Again, higher-order terms in ε will contain
non-local, hidden, charges.

2.4.4. Comments on the integrability of the GS superspace σ-model. Although the super-
coset structure is quite nice to work with—in particular the Lax connection can be easily
derived, something that is in general not obvious at all—one of its main problems is that it
is not entirely the right language to study backgrounds that are not maximally supersymmet-
ric in D= 10 (i.e. not flat space, nor AdS5× S5, nor its limits). In particular, they correspond
to a GS action only after a certain κ-gauge is fixed, and this gauge may not be compatible
with all string solutions. The existence of a flat Lax should of course not depend on which
solution is taken and therefore, in such cases, it is desirable to have a Lax connection of the
curved GS action before fixing the κ-gauge. This problem was addressed for backgrounds of
the form AdS× S× S×T in [70] (for earlier work on AdS4×CP3, AdS3× S3× S3× S1, and
AdS2× S2×T6, see the references in [70]). Along the same lines as above, the construction
uses the components of the Noether current of the superisometries to build the Lax and its
flatness was then shown up to quadratic order in fermions.

46 Notice that despite the notation, a(i) does not necessarily belong to g(i).
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2.5. Summary and concluding remarks

In this section, we reviewed the GS superstring formalism in flat and curved space, as well as its
supercoset formulation and the presence of classical integrability.While staying at the classical
level, we discussed in these various scenarios the presence of worldsheet gauge symmetries
and how they should be fixed in order to proceed with lightcone quantisation. Let us here just
briefly summarise and conclude with a few main messages.

Although the GS formalism in principle is ideally suited to describe superstrings in generic
curved supergravity backgrounds, the practical story can be quite complicated. The generic
superspace GS action is only explicitly known to quadratic order in fermions (to quartic order
under some assumptions), since obtaining higher orders involves solving certain equations
whose complexity grows quickly at each order. Furthermore, even at the bosonic level, the
lightcone gauge of the curved string results in a highly non-linear theory which generically
can only be quantised perturbatively.

However, a large class of interesting backgrounds realised as supercoset geometries cir-
cumvent some of these issues. They can be realised using an alternative GS description, known
as the supercoset construction, which in principle can be expanded to any order in fermions
without the need to solve additional constraints and equations. One of the main advantages of
the supercoset language is that the classical integrability of these theories manifests itself rather
naturally, which should aid the quantum level significantly. It is also the natural language to
study large classes of integrable deformations of supergravity backgrounds (see e.g. [71] and
references therein).

Nevertheless, in some cases the supercoset GS string is encapsulated by the generic GS
formalism only in certain gauges. Some relevant classical string configurations may not be
compatible with that particular gauge choice, and this can introduce important subtleties for
lightcone quantisation, which is both gauge- and solution-dependent. These subtleties will be
illustrated in quite some detail in the upcoming section 3 by means of the GS superstring
propagating in AdS3× S3 backgrounds.

3. GS superstring in holographic AdS3 backgrounds

In this section and in the following ones, we will apply integrability and CFT techniques
to explore holographic AdS3-backgrounds. In the present section, by exploiting the large
(super)symmetry structure of the AdS3× S3×M4 superstring, we will review its supercoset
realisation together with the corresponding Lax connection, which warrants the integrabil-
ity of the supercoset action. As it will become clear, even if the supercoset action can help
unravel many properties and observables of superstrings propagating in holographic AdS3-
backgrounds, it is incomplete; the issue is that it does not correctly reproduce the T4 part of
the geometry, as well as some of the fermions.

In section 3.1 we will first review the main features of AdS3/CFT2 by highlighting some
of its unique properties as compared to other holographic backgrounds. Having set the stage,
we will discuss how the corresponding holographic backgrounds are generated from the back-
reaction of the corresponding D-brane configurations. This will provide the necessary insights
to unravel the symmetry properties of the AdS3× S3 backgrounds. Section 3.2 will treat the
supercoset realisation of these backgrounds and their relation to the GS superstring action.
The massless modes which are particular to the spectrum of AdS3× S3×M4 backgrounds
will be discussed in section 3.3. Supergravity solutions for these backgrounds are generically
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supported by a mixture of NSNS- and RR-fluxes. To address this, section 3.4 will review
how a WZ-term can be introduced in the supercoset action, while preserving, amongst other
properties, integrability of the supercoset action. In section 3.5 we will temper the successes
of the supercoset action, reviewing how the required gauge-fixing puts severe restrictions on
the string configurations the supercoset action can describe. Finally, we will close this section
with a summary and discussion in section 3.6.

Finally let us add a caveat and an apology. Classical integrability of the AdS3× S3-
backgrounds forms a very rich and wide subject of past and present research. As a result,
having both in mind pedagogy and conciseness, several more advanced aspects of the integ-
rable AdS3× S3-string could not be covered in this section. When possible, references to these
subjects are however provided.

3.1. AdS3/CFT2 holography: facts and peculiarities

Although less well-known and less well-understood than the celebrated AdS5/CFT4 holo-
graphic correspondence, the AdS3/CFT2 correspondence shows some remarkable and chal-
lenging features. The goal of this section is to provide a bird’s eye view of the fundamental
peculiarities and challenges presented by AdS3/CFT2 holography.

3.1.1. AdS3/CFT2: ‘less is more’. AdS3/CFT2 holography is in many regards ‘less’ than
AdS5/CFT4: it is lower dimensional, the maximal supersymmetric solutions have only half the
number of supersymmetries, the underlying symmetry groups are smaller47, etc. Oftentimes
however, when looking at systems in lower dimensions or with less symmetries, peculiar things
can happen:

• Gravity in AdS3 has no propagating graviton, but is nonetheless non-trivial. AdS3 grav-
ity admits black-hole solutions [72, 73] which behave in many ways like their higher-
dimensional counterparts as they e.g. satisfy the Bekenstein–Hawking area law.
• In addition, AdS3 gravity enjoys an infinite dimensional algebra of asymptotic symmet-

ries. This is simply a reflection of the fact that, on the dual side (and in contrast to higher
dimensional CFTs) two dimensional CFTs have an infinite dimensional conformal symmetry
group48.
• Another peculiar property is that, in the lightcone gauge, the string spectrum for AdS3-

backgrounds contains modes with different masses, including massless ones. This does
not happen for higher dimensional AdS-backgrounds, whose spectrum exclusively contains
massive excitations only. The presence of massless modes is a consequence of the existence

47 By ‘smaller’ we mean here that all AdS3-holographic with 16 supercharges have, besides a curved part, also some
flat directions. The latter are described by abelian group factors appended to the non-abelian groups, completing the
background to a 10 dimensional string background. This is not the case of AdS5 × S5 or AdS4 ×CP4, which are
already 10 dimensional backgrounds.
48 This might at first look somewhat problematic since the gravity side only has a finite dimensional group of sym-
metry, i.e. SO(2,2). Brown and Henneaux [74] realised however that the finite group on the gravity side only accounts
for globally defined generators of all symmetry in AdS3 gravity. What was missing to match the infinite number of
generators on the CFT side are asymptotic symmetry generators of AdS3 spacetime. These asymptotic symmetries
are gauge transformations leaving the field configurations at the boundary invariant and as such do not have globally
defined generators. Note that this result by Brown and Henneaux predates Maldacena’s celebrated conjecture [3].
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of flat directions completing the curved part of the geometry of (maximal supersymmet-
ric) AdS3 holographic backgrounds. Massless modes present a significant challenge towards
unravelling the integrable structure of superstrings propagating in AdS3-backgrounds. Some
of these issues and their resolutions in the context of the AdS3× S3×T4 S-matrix will be
explored in section 4.
• Aswewill discuss at length in themain text,AdS3-backgrounds, in contrast toAdS5- orAdS4-

backgrounds, need not only be supported by pure RR-flux but also by a mixture of NSNS-
and RR-fluxes. The relative contribution of RR- and NSNS-fluxes to the AdS3-background
is controlled by a parameter q. This can be schematically summarised by the diagram

Let us discuss each portion of this diagram:

3.1.1.1. The q=1 point. For this value of the parameter q, the AdS3-background is supported
by pure NSNS three-form flux. When a pure NSNS supergravity solution is available, the
worldsheet sigma model can be described within the RNS formalism and admits extended
chiral symmetry [17]. In this particular case, the worldsheet CFT is a supersymmetric WZW
model, and we may exploit the full power of chiral algebras and their representation theory to
solve the system [16, 17, 75, 76].

3.1.1.2. The q=0 point. This is the pure RR-flux background. In contrast to the pure NSNS
solution, in the pure RR case the worldsheet CFT is nonlocal. This is problematic when one
tries to quantise it, and indeed RR-backgrounds are infamously hard to quantise. Despite the
apparent intractability of pure RR backgrounds, these backgrounds are, as we will see in
section 3.2, nonetheless integrable by virtue of the existence of a supercoset realisation [32]
(see also the earlier section 2.4.3).

3.1.1.3. Arbitrary value of 0< q< 1. For generic value of the parameter q, the background is
supported by a mixture of NSNS and RR fluxes. In section 3.4, we will discuss how the super-
coset realisation can be modified to accommodate for both NSNS and RR fluxes to support
the geometry. Although the new term spoils the Z4-symmetry, the system as a whole remains
integrable. Understanding mixed flux backgrounds is especially intriguing as it can offer a
potential bridge between the knowledge made available at the conformal point q= 1 via CFT
techniques and results obtained using integrability tools at generic values of q.

3.1.2. AdS3 ×S3 ×M4 string backgrounds. Holographic backgrounds can be obtained as
the near-horizon geometries curved by stacks of branes in a weak-coupling limit. In the fol-
lowing we will discuss how the holographic correspondence between gravity in AdS3× S3×
M4 and certain superconformal field theories in two dimensions can be inferred by a par-
ticular configuration of (intersecting) branes. For more details we refer the reader to the
textbooks [77, 78].
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Figure 1. The D1-D5-D5’ brane configuration. A dash−means that the brane is exten-
ded in that direction, while a dot · means that the brane is perpendicular to the direc-
tion, correspondingly to Neumann and Dirichlet boundary conditions respectively. For
completeness, the tilde ~ indicates that the brane can be smeared or delocalised in that
direction. From the diagram it is apparent that the original SO(1,9) symmetry is broken
down to a SO(4)2345 × SO(4)6789 symmetry, where the subscript indicates the relevant
directions. Note however that the last factor, SO(4)6789 remains only unbroken at low
energy, e.g. at the supergravity regime, when the compactified manifold in these direc-
tions is small. At larger energies the four dimensional manifold T4 further breaks down
the symmetry group to SO(4)6789 → U(1)4. Including the last row (adding an additional
set of D5 branes) realises the AdS3 × S3 × S3 × S1-background.

The branes will be placed in type IIB string theory in a R1,4× S1×M4 background, where
M4 is a compact manifold which describes the internal degrees of freedom. What the manifold
M4 can be taken to be is fixed by requiring that the total background admits a maximal number
of supersymmetries. It turns out that AdS3 backgrounds can preserve at most 16 of the 32
supersymmetries of type IIA/B supergravity solutions. There are three possible backgrounds
preserving 16 real supercharges that fit in the AdS3/CFT2 correspondence: M4 = S3× S1,T4

or K3. The latter is CY2 = K3 and is the unique non-trivial compact Calabi–Yau manifold in
two complex dimensions. Since K3 can be seen as an orbifold limit of T4, many of the results
for the K3 background can be derived from that of T4 since most integrability tools can be
likewise applied to orbifolds, orientifolds or deformations of dual pairs, see e.g. [79] for an
introduction in the context of the AdS5/CFT4 correspondence.

In this review we will restrict the discussion to M4 = S3× S1 or T4. Each of these back-
grounds is realised as the near-horizon of a different D-brane set-up, which we will now briefly
summarise.We will first consider a brane configuration leading to type IIB solutions supported
by pure RR-flux. Later we will comment on how backgrounds supported by NSNS-flux and
also how type IIA solutions can be obtained by applying string dualities.

3.1.3. D-brane construction. Considering first the AdS3× S3×T4 background and its type
IIB solution, the associated D-brane configuration [73, 80] is realised by a stack of N5 D5-
branes intersecting N1 D1-branes as indicated in the two first rows of figure 1. Note that in
the table we added the possibility to have the D1-branes smeared or delocalised in the 2345-
direction. The idea is to first construct a periodic array ofD-branes in question along a direction
transverse to its location. Subsequently taking the continuum limit, the background admits an
isometry in that direction by virtue of losing an explicit dependence in the harmonic func-
tions. Compactifying in that direction one can then apply a T-duality. For more details and
applications see [81–83].
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Turning to the D-branes, they bend the original flat space R1,5 and the resulting curved
geometry is described by a metric of the form

ds2 = (H1H5)
−1/2 ds2R1,1 +(H1H5)

1/2 ds2R4 +

(
H1

H5

)1/2

ds2M4
, (3.1.1)

where we have broken down the R1,5-plane into two pieces (R1,1,R4). The functions H1/5

represents the gravitational back-reaction of the large number of D1 and D5-branes. If we set
r2 =

∑9
i=6 x

i xi, then H1(r) and H5(r) are harmonic functions given by the expressions49

H1 = 1+
Q1

r2
, H5 = 1+

Q5

r2
, where Q1 = (2π)4 gsN1 (α

′)
3
/V4 , Q5 = gsN5α

′ ,

(3.1.2)

where gs is the string coupling constant, V4 is the volume of the internal manifold and N1/5

denotes the number of D1/D5 branes, respectively. Note that, as expected, at a large distance
away from the stack of branes, the metric (3.1.1) is simply flat ten dimensional space. The
metric in (3.1.1) has to be supported by an RR three-form flux F(3) to solve the type IIB
supergravity solution together with a dilaton field Φ given by

H(3) = 2Q1e
−2Φ ⋆6 Vol

(
S3
)
+ 2Q5Vol

(
S3
)
, and e−2Φ =

H5

H1
, (3.1.3)

where H(3) is the three-form flux, Vol(S3) denotes the unit volume form on the three-sphere
S3 and the Hodge star ⋆6 is with respect to coordinates in the R1,5-plane.

To realise the AdS3× S3× S3× S1 background we need an additional D5 brane, that is a
D1/D5/D5 ′ system. The brane configuration is summarised in figure 1, now including the
last row. The derivation of the background metric and fields is very similar and we refer the
reader to [80, 86] for more details.

3.1.3.1. Near-horizon geometry and supergravity. To enter the supergravity regime, we need
to demand that the string length is much smaller than the string scale (corresponding to the
‘point-like limit’) and by turning off all quantum fluctuations, this corresponds to taking

gsN1 ,gsN5� 1 , and N1,N5� 1 . (3.1.4)

The near-horizon limit [87] means taking α ′→ 0 but with the following quantities fixed

r
α ′ = fixed , v4 ≡

Vol(M4)

(2π)4α ′2
= fixed ,

(2π)2α ′gS√
Vol(M4)

= fixed . (3.1.5)

49 There is a subtlety here, one would expect naively that theH1 function would depend on the distance perpendicular
to their location. In particular, besides the already 6− 9-directions also 2− 5. The reason is that the D1-brane is in
fact not localised but ‘smeared’ or ‘delocalised’ along these directions. The dependence then results from intersecting
the two D-brane stacks and applying the harmonic function rule, which prescribes how when intersecting branes, the
composite solution will be described by products of powers of the harmonic functions Hi. See [82, 84, 85].
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In this limit the harmonic functions H1/5 just become 1 and the metric (3.1.1) becomes

ds2 =
r2

α ′Q5

(
−dx20 + dx21

)
+
α ′Q5

r2
dr2 +α ′Q5dΩ

2
3 + dsT 4 . (3.1.6)

Rewriting the above metric by changing the coordinates r= R2/u where R2 = Q5α
′, leads to

the metric for AdS3× S3×T4 given by

ds2 = R
(
ds2AdS3 + ds2S3

)
+ ds2T 4 , (3.1.7)

here we have identified the metric for the three-dimensional sphere and the three-dimensional
AdS-space in Poincaré coordinates

ds2AdS3 = u−2
(
−dx20 + dx21 + du2

)
. (3.1.8)

For the remaining fields supporting the type IIB supergravity solution in (3.1.3), we see that
in the near-horizon limit, the D1/D5-systems curved the space into AdS3× S3×T4 threaded
by RR-three form flux and with dilaton field

F(3) = 2Q5
(
Vol(AdS3)+Vol

(
S3
))
, e−2Φ = Q5/Q1 . (3.1.9)

In turn, the D1/D5/D5’ brane set-up leads to a near-horizon geometry with metric

ds2 = R2
AdSds

2
AdS3 +R2

+dsS3+ +R2
−dsS3− + ds2S1 , (3.1.10)

supported by the RR three-form flux

F(3) = 2Q5
(
Vol(AdS3)+ Vol

(
S3+
)
+ Vol

(
S3−
))

(3.1.11)

and the dilaton is again related to the relative number of D1 and D5 branes e−2Φ = Q5/Q1.
Demanding the supergravity equations to be satisfied imposes additional relations between

the moduli of the geometry. The AdS3× S3× S3× S1 background preserves 16 supersymmet-
ries provided the radii of the two three-spheres, denoted by R±, and the AdS radius l are related
by a triangle relation [88]

1
R2
+

+
1
R2
−

=
1

R2
AdS

, (3.1.12)

with RAdS the radius of the AdS-space. Often this identity is parametrised by an angle φ or the
parameter α as follows

R2
AdS

R2
+

= cos2φ = α,
R2
AdS

R2
−

= sin2φ. (3.1.13)

Anticipating what is to come, the value cos2φ = αwill precisely match the parameter α in the
superisometry algebra of the AdS3× S3× S3× S1 background appearing in the exceptional Lie
superalgebra d(2,1;α) underlying its superisometries. There are two limiting cases for values
of the parameter α. When α→ 1, the radius of one of the three-spheres blows up and the other
is traded for flat space by being compactified on T3. This limit thus leads to AdS3× S3×T4.
In this case the symmetry algebra degenerates to d(2,1;0)2 = psu(1,1|2)2. Another special
limit is when α= 1/2 at which point the two three-spheres are described by equal radii and
the symmetry algebra becomes osp(4,2).
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3.1.3.2. T- and S-dual set-ups. Applying a U-duality transformation to the D1/D5 set-up,
and the corresponding type IIB solutions, leads to new set-up of D-branes. These solutions will
in general solve supergravity equations of a different supergravity type and, correspondingly
with different fluxes, as we now summarise:

• By performing an S-duality50, the RR-three form flux is traded for an NSNS-three form
flux. Or in terms of branes, the D1/D5 system becomes an NS5/F1 brane system, sourcing
the corresponding fluxes. The duality transformation trades the geometry and fields in (3.1.1)
and (3.1.3), where the three-form flux F(3) is exchanged for the Kalb-Ramond three-form
flux H(3). Note that S-duality maps a strong to weak coupled regime, and vice-versa, since
it inverts the string coupling gs. The resulting geometry takes the form

ds2 = (H1H5)
−1/2 (−dx20 + dx21

)
+(H1H5)

1/2 dxidxj +(H1H5)
1/2 ds2T4

,

H(3) = 2Q5dVol
(
S3
)
+ 2Q1e

−2Φ ⋆6 dVol
(
S3
)
,

e−2Φ = H5/H1 ,

(3.1.14)

where the (t,x5)-direction spans the worldvolume of the F1-branes and the same (t,x5)-
direction along with the T4-directions span the NS5-brane worldvolume. H(3) is the type
IIB supergravity three form flux, dVol(M) stands for the volume element on the manifold
M and ⋆6 is the Hodge star in six dimensions. H1 and H5 are harmonic functions depending

on the radial coordinate r=
√∑

i x
2
i given by the expressions

Hn (r) = 1+Qn/r
2 , for n= 1,5 , (3.1.15)

Q1 = (2π)4 gsα
′3N1/Vol(M4) , Q5 = gsα

′N5 . (3.1.16)

In general, we can conclude that an AdS3× S3×M4 type II superstring can be real-
ised by a F1/NS5/(NS5’)-brane system, or equivalently after duality transformation by a
D1/D5(/D5’)-brane system. Such a system of F1/NS5/D1/D5 branes then give combined
rise to a geometry supported by a mixture of the NSNS- and RR-fluxes, which in the case
of the AdS3× S3× S3× S1 reads

F(3) = 2q̂
(
Vol(AdS3)+ cosϕ Vol

(
S3+
)
+ sinϕ Vol

(
S3−
))
,

H= 2q
(
Vol(AdS3)+ cosϕ Vol

(
S3+
)
+ sinϕ Vol

(
S3−
))
,

(3.1.17)

sourced respectively by the D1/D5 and F1/NS5 brane systems. Since S-duality maps NSNS
into RR fluxes, the whole D-brane system is invariant under S-duality. In section 3.4, we
will see that the parameters q and q̂ are constraint to be related via

q2 + q̂2 = 1 . (3.1.18)

In particular, we obtain the single parameter interpolation that was anticipated in the
introduction, yielding a one-parameter family of (integrable) supersymmetric backgrounds.
When q= 0, the geometry is purely supported by RR three-form flux, while at q= 1 we are
in presence of a pure NSNS solution.

50 Here we restrict to type IIB backgrounds, since S-duality acts only on type IIB supergravity. S-duality has as
distinctive properties that it swaps the sign of the dilaton, in effect inverting the string couple constant gS to 1/gs.
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• Performing a T-duality along one of the (compactified) M4 directions maps the type IIB
to a type IIA background. Remember that for a T-duality acting on an single direction, a
Neumann boundary condition is turned into a Dirichlet boundary condition, and vice-versa.
Under a T-duality transformation with respect to, e.g. a direction transversal to the Dp-brane,
we thus obtain a D(p− 1)-brane, where the transverse direction has been swapped for a
direction along the world-volume of the D-brane.

Exercise 3.1. Find the succession of T-duality transformation that, when applied to the
D1/D5 set-up in figure 1 (that is forget the last row of D5’-branes), turns the D5-brane
into the D1, and vice-versa.

The radii of the three-sphere S3 and AdS3 are essentially related to the string tension that is
in turn determined by the level of the NSNS-flux k and the RR coupling h by

T=
R2

2πα ′ =

√
h2 +

k2

4π2
, (3.1.19)

where h is a continuous and k is quantised. We will return to this equation and its relation to
the parameters q and q̂ introduced above in section 3.4.1. As mentioned in the introduction and
explained in section 2.1 for large values of the string tension T� 1 one enters the supergravity
approximation.

3.1.3.3. Global symmetries and symmetry algebras. The bosonic isometry group for the
curved part of the AdS3× S3×T4 supergravity background is described by two copies of the
algebra su(1,1)⊕ su(2). This is not a coincidence. AdS3 backgrounds are dual to two dimen-
sional CFTs. This factorised structure of the global symmetry group underlying AdS3/CFT2

simply reflects the two sectors of the dual CFT2: each copy of two the non-compact subalgeb-
ras su(1,1) accounts for the left- and right-movers. Combining the two copies and the four
u(1)s coming from the torus directions we have the isomorphism

[su(1,1)⊕ su(2)]
L
⊕ [su(1,1)⊕ su(2)]

R
⊕ u(1)4 ∼= so(2,2)⊕ so(4)⊕ u(1)4 . (3.1.20)

The first factor on the right-hand side is isomorphic to the (global) conformal symmetry group
in two dimensions, while the second factor accounts holographically for its R-symmetry group.
We will now discuss both factors in algebraic detail.

Exercise 3.2. Convince yourself of the above isomorphisms.

Writing L0,L± for the generators of su(1|1) = sl(2) and J3,J± for the generators of su(2),
the corresponding commutation relations are

[L0,L±] =∓L± , [L+,L−] = 2L0 ,

[J3,J±] =±J± , [J+,J−] = 2J3 .
(3.1.21)

The four-torus T4 of the geometry admits in addition a local rotation symmetry, which we
denote by so(4)T 4 . The presence of this symmetry group can be directly inferred from the D1–
D5 system in figure 1. The brane configuration is localised at a point in the four spatial dimen-
sions and the system is invariant under the associated SO(4) rotational group. Holographically,
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this symmetry group can be identified with SO(4)∼= SU(2)L× SU(2)R, where the SU(2)’s are
the left- and right moving R-symmetry groups. Although this is not part of the isometry group,
when decomposed as so(4)T 4 = su(2)⊕ su(2), this local symmetry will be crucial for unrav-
eling the structure of the S-matrix, as will be the topic of section 4.

Similarly, the bosonic isometric group for theAdS3× S3× S3× S1 supergravity background
has the bosonic isometry algebra

so(2,2)⊕ so(4)⊕ so(4)⊕ u(1)∼= [su(1,1)⊕ su(2)⊕ su(2)]2
L/R⊕ u(1) . (3.1.22)

Provided that the radius moduli satisfy the respective equalities in equations (3.1.12), we also
have that the backgrounds AdS3× S3×M4 with M4 = S3× S1 or T4 have 16 (real) supersym-
metries. Combining the algebra of the corresponding supercharges together with the bosonic
isometry groups leads to the Lie superalgebras

AdS3× S3×T4 : psu(1,1|2)⊕ psu(1,1|2) , (3.1.23)

AdS3× S3× S3× S1 : d(2,1;α)⊕ d(2,1;α) . (3.1.24)

For later use, let us spell out the generators and super-commutation relations of the
psu(1,1|2)⊕ psu(1,1|2) superisometry algebra governing superstrings propagating in an
AdS3× S3×T4-background. The superalgebra psu(1,1|2) possesses, besides the six bosonic
generators (L0,L+,L−,J3,J+,J−) (with commutation relation given by equation (3.1.21)),
also eight fermionic generators QaαA, where a,α,A ∈ {±} with non-vanishing fermionic and
mixed commutation relations{

Q±+A,Q±+B

}
=±ϵABL± ,

{
Q+±A,Q−±B

}
=∓ϵABJ± ,{

Q+±A,Q−∓B

}
= ϵAB (−L0± J3) ,[

J3,Qa±A

]
=±1

2
Qa±A ,

[
J±,Qa∓A

]
=Qa±A ,[

L0,Q±αA
]
=±1

2
Q±αA ,

[
L±,Q∓αA

]
=Q±αA ,

(3.1.25)

where εAB denotes the anti-symmetric ε-symbols with ϵ+− = 1.
The superalgebra d(2,1;α) is in turn51 spanned by nine bosonic generators TA′ for A ′ =

0, . . . ,8 and eight fermionic generators Qα ′ for α ′ = 1, . . . ,8. Since we have two copies, this
tallies to 16 fermionic and 16 bosonic generators. The bosonic subalgebra of d(2,1;α) coin-
cides with three commuting copies of sl(2)

[TA′ ,TB′ ] = εA′B ′C ′TC′
, for A ′,B ′,C ′ = 0, . . . ,8 , (3.1.26)

with εABC an antisymmetric tensor with non-zero entries ε012 = ε345 = ε678 = 1. The fermionic
and mixed commutation relations are given by

[TA′ ,Qα ′ ] =−(−i)A
′
i
2Qβ ′ (γ̃A′)

β ′

α ′ ,{
Qα ′ ,Qβ ′

}
=
(
C̃γa

)
α ′β ′ Ta + icos2ϕ

(
C̃γ̃ â

)
α ′β ′ Tâ + isin2ϕ

(
C̃γ̃a

′
)
α ′β ′

Ta′ ,
(3.1.27)

51 Note that in the following equations, the parameter α in the algebra d(2,1;α) should not be confused with the
fermionic index α.
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where (−i)a =−i, (−i)â = 1= (−i)a′ and the eight-by-eight matrices γ̃ and C̃ can, using the
index notation in equation (3.1.32) , be realised by

γ̃a = ρa⊗1⊗1 , ρa =
(
iσ2,σ1,σ3

)
(3.1.28)

γ̃ â = 1⊗ ρâ⊗1 , ρâ =
(
σ1,σ2,σ3

)
(3.1.29)

γ̃a
′
= 1⊗1⊗ ρa

′
, ρa

′
=
(
σ1,σ2,σ3

)
(3.1.30)

C̃= σ2⊗σ2⊗σ2 . (3.1.31)

We see that in the commutation relations in equation (3.1.27), the free parameter α character-
ising the algebra makes it appearance in the mixed commutation relation.

In what follows, we will thus use the following choices of labels for the coordinates of the
coset space

AdS3︸︷︷︸
a=0,1,2

× S3︸︷︷︸
â=3,4,5

× S3︸︷︷︸
a′=6,7,8

×S1 . (3.1.32)

The backgrounds AdS3× S3× S3× S1 and AdS3× S3×T4 are related by the limits detailed
in section 3.1.2, now via their superisommetry groups as well. To see this remember that the
commutation relations for a single copy d(2,1;α) of the superisometry group for the AdS3×
S3× S3× S1 background as given in equations (3.1.26) and (3.1.27). When one takes the limit
ϕ→ 0 or α→ 1, the radius of the one of the spheres and the AdS radius coincide, while the
second sphere ‘blows up’. Indeed, consider the generators of the left sphere Tâ and introduce
the sphere radius R− by rescaling the generators Tâ 7→ R−Tâ. According to equation (3.1.13),
we need to take R− to infinity in the commutation relations of d(2,1;α) above, leading to the
new (anti-)commutation relations[

Tâ,Tb̂

]
= 0 , (3.1.33)

{Qα ′ ,Qβ ′}=
(
C̃γa

)
α ′β ′ Ta + i

(
C̃γ̃ â

)
α ′β ′ Tâ . (3.1.34)

These can been recognised as the commutation relations for the superalgebra psu(1,1|2)
(together with three commuting generators Sâ). In fact, this is a basic property of the superal-
gebra d(2,1;α) when taking α→ 1, see e.g. [64].

3.1.3.4. Dual CFTs. According to the AdS/CFT conjecture, superstring theory on AdS3×
S3×M4 is expected to be holographically dual to a two-dimensional superconformal field the-
ory. The holographic dual to the superstring on AdS3× S3×M4-backgrounds remains however
largelymysterious. If we investigate the duality starting from the string side, it is relatively easy
to work out the description of pure-NSNS backgrounds as WZW models, and this can give us
some insight on their holographic duals. In presence of both NSNS and RR flux this is much
harder, and we know very little about the dual models. Some intuition about their properties
may be obtained by general AdS/CFT arguments and by the fact that they should be, in a suit-
able sense, marginal deformations of those appearing at the WZW points. Furthermore, very
recently, integrability provided some quantitative insight on some of these models.

Let us start by briefly reviewing the AdS/CFT intuition. When the length scale describing
the manifold M4 is small compared to the S1 part of the R1,4× S1×T4 geometry where we
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placed the D-branes, the low-energy dynamics is described by a 1+ 1 dimensional supersym-
metric gauge theory withU(N1)×U(N5) gauge group. In the IR this gauge theory flows to the
candidate dual CFT. This CFT should haveN = (4,4) superconformal symmetry and the cent-
ral charge equal to c= 6N1N5, see e.g. [80, 86]. The psu(1,1|2)2 algebra which we discussed
above is the global part of the infinite-dimensional N = (4,4) algebra, just like su(1,1)2 is
the global part of the Virasoro algebra of a an ordinary bosonic CFT. Similar considerations
also hold for the D1-D5-D5’ construction, but they yield instead the so-called largeN = (4,4)
algebra, whose global part is d(2,1;α)2.

The case involving the compact space T4 has always been the most studied and the best
understood. Since the beginning of the study of AdS/CFT, it was conjectured that the dual CFT
of this set-up should be a symmetric product orbifold CFT based on T4 [80, 86, 89–94]. This
means considering a free supersymmetricN = (4,4) theory of on T4, taking its N-fold tensor
product, and imposing that the theory is invariant under the action of the symmetric group SN.52

The central charge of the model is then c= 6N, and in order to compare this with perturbative
string theory we are interested in the N� 1 limit. Indeed, the permutation orbifold structure
is important in order to reproduce not only the central charge, but also other generic features
of a good holographic CFT, such as its density of states [97]. Moreover, some robust features
of this holographic duality, such as the protected spectrum, can be matched against that of
the symmetric-product CFT. Similar arguments suggest that the symmetric-product orbifold
of K3 and S3× S1 should appear as duals of the more general holographic setups involving
such compact spaces. All this leaves an important open question: where, in the vast parameter
space of e.g. AdS3× S3×T4 strings should the symmetric-product orbifold of T4 sit?

We can loosely compare this situation with the well-known duality between AdS5× S5

strings and SU(Nc) N = 4 SYM. The analogue of the symmetric-product orbifold point is
where the dual CFT is free and planar. This would beNc� 1, with the ’t Hooft coupling λ= 0.
In terms of string theory, this should be the limit where strings have vanishingly small tension.
Things are more complicated for the case of AdS3× S3×T4, because we have more paramet-
ers than Nc and λ — in particular, the string tension is sourced by both RR and NSNS field
strengths.

The answer to this question came from studying quantitatively the spectrum of non-
protected states in string theory, starting from the worldsheet. The first indications by study-
ing the supersymmetric WZW models at the lowest value of the level k= 1, without any RR
flux [98, 99]. Because of some subtleties with the WZW formalism at this particular value of
the level (in order to decouple the fermions, one formally ends up with a su(2)−1 Kač-Moody
algebra, where the level is negative), a better description is provided by the hybrid formal-
ism, which we present in section 6; this allowed a detailed check of the duality [24]. Already
when considering the case of no RR flux and larger level k= 2,3,4, . . . , the construction of
the holographic dual is more involved, see [100].

But how to turn on the RR flux? In principle, this can be done in conformal perturbation
theory by singling out the correct marginal deformation in the spectrum of the underformed
symmetric-product orbifold CFT. There have been multiple efforts in this direction. In [101],
this idea was pursued to the end of constructing an integrable spin-chain of the type of the
Minahan-Zarembo one [19], which however here turns out to be substantially more involved.
In [102], the algebraic structure behind integrability was studied for the purpose of building an
S matrix in a spirit of the one of Beisert [103]; however, the precise identification of the repres-
entations of the integrable symmetries was not entirely correct (this was corrected in [33, 104]).

52 Such orbifold CFTs are well studied in string theory, see e.g. [95, 96].
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More recently, the study of the integrable symmetries from the symmetric-product orbifold
was revisited and a first-order perturbation theory computation was done in [105]; as explained
in [106] this reproduces the weak-RR-flux expansion of the integrable symmetries and S mat-
rix which were previously bootstrapped in [34] and which we will discuss in section 4. This
perturbative approach is sure to produce important data to check any worldsheet-based pre-
diction. It should however be noted that the conformal perturbation theory has its limitations;
at higher orders, the explicit computations are fairly involved, see for instance [107, 108] and
references therein, as well as [109] for a different (diagrammatic) approach. With the current
‘technology’, it seems unlikely that we will be able to obtain fifth-order corrections to the
energies as it was (remarkably) the case for AdS5× S5, see [110].

One may approach this question from the worldsheet. Unfortunately, the hybrid formalism
also seems to become unwieldy in this case, as we shall review below. The case of RR flux
(or mixed RR/NSNS flux) is precisely where integrability is expected to be helpful. In fact,
thanks to the construction of the mirror TBAwhich we will review in section 5, it was possible
to quantitatively study the tensionless limit of the k= 0 case, where all the tension is sourced
by the RR fluxes [111] (which play a role very similar to the ’t Hooft coupling λ). At precisely
zero tension, infinitely many states are degenerate with each other, but they lift starting at
linear order in the tension. Interestingly, at this order the linear contribution comes from the
T4 modes and their superpartners. The energy spectrum is not, however, that of a symmetric-
product orbifold CFT; in fact, the dynamics even at leading order in the tension is that of an
interacting theory of magnons, whose precise dynamics is not yet understood (at least, not in
terms of a dual Hamiltonian) [112]. This goes to show that, in perturbative string theory, the
‘tensionless’ limit can be drastically different depending on the fluxes used to realise it.

3.2. Supercoset action for AdS3 ×S3 ×M4

In this section we will show how AdS3× S3×M4-backgrounds supported by pure RR-flux,
for M4 = T4 and M4 = S3× S1, can be realised as semisymmetric supercoset sigma-models
(SSSM). The coset will admit a Z4-grading warranting, as reviewed in section 2.4.3, the exist-
ence of a Lax connection and the classical integrability of the action. A generic D-brane config-
uration sourcing AdS3 holographic backgrounds leads however to supergravity solutions sup-
ported not only by RR fluxes but also by NSNS fluxes. In particular, the semisymmetric super-
coset action presented in section 2.3.2 cannot be the final answer. In order to describe the mix-
ture of RR and NSNS fluxes sustaining the AdS3-backgrounds, one has to be able to add aWZ-
term modelling the NSNS fluxes. Remarkably, supercosets underlying AdS3× S3× S3× S1

and AdS3× S3×T4 are part of a special family of supercosets for which it is possible to add a
WZ-term. We will see that, within the supercoset formulation, the equations of motion for the
superstring propagating in AdS3× S3×M4 admit a Lax representation, establishing the clas-
sical integrability of these backgrounds even after the inclusion of NSNS fluxes. Along the
way we will however gradually come to realise that the supercoset formulation suffers from a
serious drawback: it is not a complete description of the GS superstring.

3.2.1. Supercoset and integrability. Section 2.4.3 showed that, provided the string back-
ground can be written as a (super)coset manifold and admits Z4-invariant supercoset action,
the corresponding superstring equations of motion are automatically classically integrable. In
this section we will apply the supercoset construction to the particular case of AdS3× S3×M4

backgrounds.
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3.2.1.1. Permutation cosets. Looking back at the discussion of the global symmetry struc-
ture of AdS3 backgrounds, the observant reader might have noticed that in both cases the sym-
metry group is of the form G= H×H. As was already discussed earlier, holographic AdS3-
backgrounds that are homogeneous space, will automatically have a supercoset realisation of
the form H×H/H0, where the stabeliser subgroup H0 is bosonic and has to be a fixed by the
Z4 automorphism.

The crucial point now is that this type of cosets, called ‘permutation cosets’ (for reas-
ons which become clear soon) can naturally be endowed with a Z4 structure. This can be
made explicit by constructing the Z4 automorphism as a (super-)matrix Ω acting on elements
(XL,XR) of the direct sum algebra h⊕ h

Ω=

(
0 id

(−1)F 0

)
, (3.2.1)

where (−1)F is the fermionic parity operator. The operator Ω effectively permutes the two
factors in the Lie algebra G (hitting one of the factors with fermion parity operator (−1)F
on the way), hence the name ‘permutation supercosets’. One can easily check that the fourth
power is the identity, Ω4 = 1 and preserves the (anti-)commutative relations of h⊕ h.

Exercise 3.3. Check by direct computation that the Z4-decomposition of the sym-
metry algebra g= g(0)⊕ g(1)⊕ g(2)⊕ g(3) according to the grading defined by Ω,
i.e. Ω(h(k)) = ikh(k).

In the previous exercise, you should have identified the subalgebras

h(0) = {(X,X) | X ∈ hbos} , (3.2.2)

h(1) = {(X, iX) | X ∈ hferm} , (3.2.3)

h(2) = {(X,−X) | X ∈ hbos} , (3.2.4)

h(3) = {(X,−iX) | X ∈ hferm} . (3.2.5)

In particular, the bosonic subalgebra h0 corresponds to the diagonal subalgebra of h⊕ h with
element in the Grassmann-even or bosonic part of the algebra:

h0 = {(X,X) | X ∈ hbos} . (3.2.6)

Note that the bosonic part of this coset space, that is Hbos×Hbos/H0 is the bosonic subgroup
Hbos itself, as it should be.

3.2.1.2. AdS3 ×S3(×S3)-supercosets. With these elements in hand, together with the
global symmetry groups discussed in the previous section, the supercoset space is easily identi-
fied. The supercoset sigmamodel for the six-dimensional partAdS3× S3 is constructed starting
from the superisometry group G with background bosonic part Gbos and subgroup H0 ⊂ Gbos

such that Gbos/H0 is AdS3× S3
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G
H0

=
PSU(1,1|2)×PSU(1,1|2)

SU(1,1)× SU(2)
= AdS3× S3 + fermions (3.2.7)

with the bosonic part of the coset being

G=
[SU(1,1)× SU(2)]2

SU(1,1)× SU(2)
=

SO(2,2)
SO(1,2)

× SO(4)
SO(3)

. (3.2.8)

Adding an additional S3-factor to the AdS3× S3-geometry enhances the supercoset to a one-
parameter family of supercosets, where the parameter α captures the relative sizes between
the two S3 (see equation (3.1.13)). That is, the sigma-model for AdS3× S3× S3 is realised by
the coset based on an exceptional Lie superalgebra

G
H0

=
D(2,1;α)×D(2,1;α)
SL(2)× SU(2)× SU(2)

= AdS3× S3× S3 + fermions . (3.2.9)

Falling short of being ten dimensional backgrounds, neither of these two cosets can be proper
superstring backgrounds, and we know that we have to append flat directions T4 or S1,
respectively.

For the supercoset space in equations (3.2.7) and (3.2.9) respectively, we can now construct
the corresponding SSSSM action given in equation (2.3.62). After taking their appropriate
bosonic group element gB parametrising SU(1,1)× SU(2) one can derive the metric (2.3.70),
as e.g. in exercise 2.18 by using the commutation relations (or faster: with Mathematica).

The two supercoset spaces in (3.2.7) and (3.2.9) only account for a six and nine dimen-
sional spacetime, respectively. The flat directions, i.e. the remaining T4, respectively S1, factor
expected from the near-horizon limit of the D-brane set-up that complete the supergravity
backgrounds have to be added ‘by hand’ [23, 32]

D(2,1;α)×D(2,1;α)
SL(2)× SU(2)× SU(2)

×U(1) and
PSU(1,1|2)×PSU(1,1|2)

SL(2)× SU(2)
×U(1)4 . (3.2.10)

3.2.1.3. Supersymmetry. It remains to be checked that the supercosets display the expected
number of fermionic degrees of freedom to account for the sixteen supersymmetries present
in the corresponding supergravity solutions. To do so, we have to distinguish between the two
AdS3× S3-backgrounds.

WhenM4 = S3× S1, the coset space AdS3× S3× S3 is described by the exceptional algebra
d(2,1;α) and its supercoset space has 16 fermionic generators. Computing the corresponding
kappa-symmetry, see e.g. [61], one finds that its rank is zero and the space is already fully gauge
fixed with respect to the fermionic gauge invariance and the number of fermionic degrees of
freedom remains 16.

When M4 = T4, the story is a little more subtle. The six-dimensional supercoset space

AdS3× S3 ∼= PSU(1,1|2)×PSU(1,1|2)/SU(1,1)× SU(2) (3.2.11)

describes 16 fermionic degrees of freedom, but this time has kappa-symmetry rank that is non-
zero. After fixing the kappa-symmetry gauge symmetry we are left with only eight physical
degrees of freedom. Although this is the correct number for a six-dimensional GS action, we
expect twice as many in a 10-dimensional GS action when the flat T4-direction is added. At
first, this seems to pose somewhat of a conundrum as, in the conformal gauge, the additional
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T4 decouples the equation of motion from the curved supercoset part of the geometry. Key
to the solution [32], is that the total metric transforms non-trivially under kappa-symmetry,
see equation (2.3.89), coupling effectively the fermionic variations on both portion of the geo-
metry. Indeed, the additional extra bosons coming from the T4 invalidate the original kappa-
symmetry gauge fixing that gauged away eight fermionic degrees of freedom. As a result, the
sixteen original fermionic degrees of freedom are effectively reinstated in the coset plus T4

background.

3.2.1.4. Lax connection and integrability. From the above we can thus conclude that both
the AdS3× S3× S3× S1 and AdS3× S3×T4 backgrounds admit a supercoset realisation with
a Z4 automorphism Ω given in equation (3.2.1). One can thus follow the steps spelled out in
section 2.3.2: using the Z4 automorphism to decompose the zero-curvature current one-form
J as given in equation (2.4.41), ensuring the integrability of the supercoset action. Note, that
for the matter of classical integrability or the existence of a Lax connection, the flat directions
do not play any role.

3.2.2. Matching to quadratic gauge-fixed GS action. The attentive reader might worry
whether the AdS3× S3-supercoset action we constructed above actually coincides with the
GS superstring action for the same backgrounds. This is indeed not obviously the case. In
the supercoset action, the flat-directions T4 or S1 are by construction, but up to Virasoro con-
straints, decoupled from the curved or coset-part, i.e. AdS3× S3 or AdS3× S3× S3. From this
observation we have to conclude that, to have a chance to coincide with the supercoset action,
the GS action should be in a particular gauge. This gauge has to be chosen such as to decouple
the flat directions from the rest of the geometry. The apparent issue is that for the GS action
this is not the case. The GS action equation (2.2.46) contains a kinetic term which couples the
M4 directions with the worldsheet fermions via terms of the form

θ̄Ieα
AΓA∂Jθ

K . (3.2.12)

Generically, it is simply not consistent to have any bosonic directions decoupling from the rest
since all Dirac matrices in the kinetic term are non-zero53. Remember however that the GS
action has to first be kappa-gauge fixed, halving the initial number of fermionic degrees of
freedom. This opens the possibility, by picking a wisely chosen gauge-fixing, to decouple the
fermions which couple to the bosons, leading to the decoupled flat directions. It was shown in
[32] that there indeed exists a kappa-gauge fixing for the (quadratic) GS action for which the
flat direction decouple. For the demonstration of how the two actions coincide in this gauge we
refer the reader to the original paper [32]. The gauged fixed GS action up to quadratic order
in fermions can then be shown to coincide with the supercoset action on AdS3× S3(×S3).
We will postpone spelling out this particular kappa-gauge fixing to section 3.5.3. Although
clearing out on obstacle, we will also argue in that same section that this gauge fixing choice
will pose severe problems when it comes to capturing all the fundamental string excitations in
AdS3 holographic backgrounds.

53 This is in stark contrast to the hybrid formalism which will be the topic of section 6. There the four-torus T4 can
be added independently since it is completely orthogonal to the remaining non-linear part of the action.
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3.3. Mass spectrum in the plane-wave/BMN limit

One of the distinguishing features of AdS3-backgrounds is the presence of massless modes in
the lightcone gauge. As mentioned already in the introduction, these formed initially a signific-
ant challenge for the implementation of several integrability techniques, which in recent years
have been the subject of much attention. In this section, we will see how these massless modes
can be detected in the Penrose or BMN limit within the supercoset formalism. The massless
modes will be revisited within the S-matrix formalism in section 4.

3.3.1. Plane-wave/BMN limit and plane-wave backgrounds. The hurried reader can safely
skip to the next subsection, as the content of this section is not vital to what is to follow.
Since the plane-wave/BMN limit is a useful tool when it comes to studying the integrability
of holographic backgrounds, we briefly review it here. For a more comprehensive treatment
and a more complete list of references, we point the reader towards [113, 114] or [115] in the
context of integrability.

The GS action on generic background is interacting, and thus hard to quantise. Fortunately,
in a certain limit, the so-called Penrose or plane-wave limit, the gauge-fixedGS action becomes
free. On the gauge side of the holographic duality, this limit is called the BMN limit. The name
BMN stems from a paper by Berenstein et al [116], see also [117]. There, ‘BMN’ established
a precise connection between the spectrum of superstring theory on a pp-wave background
and a particular class of operators in the gauge theory, the so-called BMN operators. Note that
the terms BMN limit and plane-wave limit are often used interchangeably.

A pp-wave geometry is defined as a Lorentzian manifold that admits a covariantly con-
stant null vector field k, the direction in which the wave moves: i.e. ∇k= 0. In Brinkmann
coordinates the generic form of such metric, when taking k= ∂v is

ds2 =−2dudv− f(u,x,y)du2 + dx2 + dy2 , (3.3.1)

where f is a smooth function. The existence of a covariantly constant null Killing vector field
k guarantees that this family of backgrounds are in fact α ′-exact supergravity solutions. When
f is just a function of u, the metric is that of a plane-wave. This is equivalent to demanding for
the existence of a globally defined covariantly constant null Killing vector field.

It was Penrose’s insight [118] that, close to a null geodesic, any Lorentzian metric looks
like the plane-wave metric (3.3.1). Later this observation was extended to supergravity back-
grounds in ten or eleven dimensional Lorentzian space-time by [119]. More precisely, given
a null geodesic one can always pick a set of adapted coordinates such that the metric takes on
the form

ds2 = R2
(
−2dudṽ+ dṽ

(
dṽ+AI

(
u, ṽ, x̃ I

)
d x̃ I
)
+ gJK

(
u, ṽ, x̃ I

)
d x̃Jd x̃K

)
, (3.3.2)

where R is a constant, which will enable us to zoom in into the geodesic’s path. As one can
see, the coordinate u parametrises the null geodesic, whilst ṽ measures the distance between
these geodesics. The remaining coordinates are denoted by x̃ I. Taking R to infinity, together
with the rescalings

ṽ= v/R2 , x̃ I = xI/R , (3.3.3)
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keeping u,v and xI fixed, effectively zooming in into a region infinitesimally close to the light-
like geodesic. The metric in this limit becomes

ds2 =−2dudv+ gIJ (u)dx
IdxJ . (3.3.4)

Note that the metric gIJ is now only a function of the coordinates.
Finally, another crucial property of plane-wave solutions is that one can show that they

preserve at least half of the maximal number of supersymmetries [120]. For the AdS5× S5-
background, which is maximally supersymmetric, the Penrose limit yields a maximally super-
symmetric plane-wave solution [13]. Actually more is true, the Penrose limit in general does
not break any supersymmetry, and in some cases even creates new ones [121].

One can include leading quantum corrections to the string energies to the BMN limit.
Starting from the lightcone gauge fixed superstring action, one can perform an expansion in
higher powers of the fields. This expansion, which is referred to as the near-BMN expansion,
can be seen as a perturbation away from the pp-wave background. A detailed and pedagogical
account of this limit can be found in [115]. This limit will also play a major role in section 4.

3.3.2. On masses, no masses and other problems. The fundamental bosonic excitations54

of the AdS3× S3× S3× S1 superstring in the lightcone gauge are critical to understand why
the AdS3-backgrounds are simultaneously a challenge and opportunity to explore integrable
systems. Unlike the AdS5× S4 and AdS4×CP4 backgrounds, the string spectrum of AdS3×
S3×M4 admits modes with different masses and even massless modes.

The modes of different masses appearing on the AdS3× S3×M4-spectra were studied using
the near-BMN limit in [32, 122–124]. The masses of the string spectrum can be derived by
studying the plane-wave limit of the theory in the lightcone gauge where the metric then
becomes [118]

ds2 =−4dx+dx− +
8∑

i=0

(mi)
2 x2i
(
dx+

)2
+

8∑
i=1

dx2i , (3.3.5)

which is the pp-wave metric. Its derivation for the specific case of AdS3× S3× S3× S1 can be
found in some detail in [125]. This backgrounds has both light and heavy modes: the AdS3×
S3× S3× S1 features four type of excitations55

(m1,2)
2
= 1, (m3,4)

2
= α, (m5,6)

2
= 1−α, m7,8 = 0. (3.3.6)

For each mass(less) state above there are two corresponding excitations (in the CFT picture
this reflects the fact that we should have one for each chirality state). We see that for the
AdS3× S3× S3× S1, there are six massive states and twomassless states. In themassivemodes
there are ‘light’ (m2 = α,1−α) and ‘heavy’ (m2 = 1) states. One can identify the heavy states,
by deriving the finite gap equations [126], to be composite states of the two light states m2 =
α and m2 = 1−α. The first massless state comes from the S1 factor whilst the second one
is a linear combination of the two equatorial directions in the two S3-spheres: ψ and ϑ⊥ =
tanφϑ+ + cotφϑ−. The massless mode along the two three-spheres is often called the coset

54 . . . and by supersymmetry for each bosonic state, we have a corresponding fermionic states.
55 The plane-wave limit of the AdS3 × S3 × S3 × S1 is in fact a one-parameter family of metrics (on top of the para-
meter α). For the sake of simplicity we will neglect this parameter. For more details see [126].
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(massless) boson whilst the one along the S1 is called the non-coset (massless) boson. Taking
theφ→ 0, the S3× S1 part of the geometry becomes flat, like T4, and two newmassless modes
appear. All massless modes are non-coset modes.

The presence of both fundamental states of different masses and massless modes form a
serious challenge to the integrability program. This can already be seen at the level of the
supercoset action: the coset formulation has the distinct advantage of making integrability
manifest, it fails to capture these massless modes. To see this, let us first for concreteness
consider the AdS3× S3× S3× S1. It is clear from how the flat direction S1 had to be added
by hand in the supercoset action, that the massless mode associated to that direction will be
missing56. The absence of the second type of massless mode can be traced back to how the
Virasoro constraints are imposed on the S3× S3 part of the geometry. We follow here mostly
the original paper [127, 128] which constructed the supercoset of theAdS3-backgrounds. Later,
in [32], it was realised that this formulation overimposed the Virasoro constraints, and that at
the level of the algebraic curves a weaker condition can be imposed, that effectively enables
one to see the massless modes.

Remember now that the superstring GS action correctly describes the physical fermi-
onic degrees of freedom only upon fixing a kappa-symmetry. The supercoset sigma-model
is equivalent to a (subsector) of the kappa-gauge fixed GS action and thus subsumes enforced
Virasoro constraints. Unfortunately, this condition is too strong and sets the massless mode to
zero. To see this, we go to conformal gauge where the Virasoro constraint is equivalent to the
vanishing of the total energy-momentum tensor. Restricted to the S3× S3 part of the geometry
it splits into a contribution for each sphere

T
S3+
±± +T

S3−
±± = 0 , (3.3.7)

using the notation in equation (3.1.12). However, since the equations of motion factorise for

each three-sphere, the two terms vanish independently: T
S3±
±± = 0. Equivalently (after fixing the

residual symmetries of the action in the conformal gauge) the two stress tensors can be fixed

to the same but opposite constant, i.e. T
S3±
±± =±cst. This choice effectively kills any degree of

freedom that would have a momentum component along the two spheres, and in particular the
second type of the massless modes.

3.4. The CZ-WZ-term and integrability with mixed fluxes

In the previous sections, we have seen that the GS action on sufficiently symmetric spaces
which are supported by RR-fluxes can be written in terms of a supercoset action. When that
action admits a Z4 symmetry, the supercoset action becomes a semisymmetric space sigma-
model and is automatically integrable. Supergravity solutions forAdS3× S3×M4 backgrounds
on the other hand admit in the most general case a mixture of RR- and NSNS-fluxes. This
in turn raises the question to whether the NSNS flux H can be embedded in the supercoset
formulation as well and, if so, whether the resulting action remains (classically) integrable.
Tackling the former question first: remember that NSNS fluxes are described by a WZ type
term, that is a contribution to the action of the form

SWZ ∝
ˆ
B
κ(J ∧, [J ∧, J])∝

ˆ
ḡ(B)

H , (3.4.1)

56 Remember that the coset action is only equivalent to the GS superstring action when the S1 part of the geometry is
completely decoupled from the coset part. The S1 only interacts with the coset through the Virasoro constraint.
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where B is a three-dimensional surface with boundary the two-dimensional string worldsheet
∂B=Σ, where κ is a non-degenerate bilinear form and J= g−1dg is a Maurer–Cartan form
characterised by the extension ḡ to B of the coordinate element g : Σ→M of the manifold.
The proportionality symbol ∝ indicates that (at least for the moment) we take no heed of
proportionality factors. To distinguish this WZ-term to the one featuring in the GS action of
section 2.2.1, we will refer to the WZ-term capturing the NSNS content of AdS3-backgrounds
as the Cagnazzo-Zarembo-WZ-term (shortened to CZ-WZ-term).

When introducing a WZ-term to any action one has to tread carefully. Indeed, the WZ-term
is not an integral over the worldsheetΣ but over a three-dimensional surface with boundaryΣ.
One has thus to make sure that the total action still makes sense: its variation should ‘localise’
to an integral over Σ for the equations of motion to be local. That is, the variation of the WZ
term has to be a total derivative. What will save the day here, is that the coset space realising
the AdS3-backgrounds is of a very special type: they are permutation supercosets.

Adding a new term to the action, a second impeding hurdle when considering WZ-terms
is that the Z4 symmetry might (and as we will see in this case, will) be broken. Without the
Z4-symmetry at hand, the integrability of the system as a whole is no longer guaranteed by a
canonical Lax connection. Fortunately, although the Z4 symmetry is broken, a Lax connection
can be constructed guaranteeing that the system remains classically integrable.

3.4.1. The WZ-term. After these many words of caution, we are now in a position to intro-
duce the form of the WZ term capturing the NSNS-flux. To this effect, remember that the
Z4-automorphism acts on the supercurrent by Ω(J(n)a ) = inJ(n)a . We can thus write the super-
current in terms of four terms, distinguished by their Z4 grading

Ja = g−1∂ag= J(0)a + J(1)a + J(2)a + J(3)a . (3.4.2)

In terms of the Z4-components of the supercurrent the action takes on the form

S=
1
2

ˆ
d2x Str

(√
hhabJ(2)a J(2)b + q̂εabJ(1)a J(3)b

)
(3.4.3)

=
1
2

ˆ
Str
(
J(2) ∧ ⋆J(2) + q̂J(1) ∧ J(3)

)
. (3.4.4)

Guided by the fact that J2 is the only current that remains after reducing the supercoset action
to its bosonic part, one may be tempted to posit the following combination as a first attempt
for a WZ-term

SnaiveWZ =
2
3

ˆ
B
StrJ2 ∧ J2 ∧ J2 . (3.4.5)

Albeit simple, this guess in wrong. Indeed, as you will show in exercise 3.4, it turns out that
the variation of SnaiveWZ does not ‘localise’.

Exercise 3.4. Compute the variation of SnaiveWZ and argue that it is not a total derivative
term.
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The authors in [25] showed that when completing the naive Ansatz for the WZ-term in
equation (3.4.5) with two additional contributions, the variations becomes a total derivat-
ive. The WZ-term yielding a meaningful contribution to the equations of motion takes on
the form

SWZ-CZ = q̂
ˆ
B
d3yεabcStr

(
2
3
J(2)a J(2)b J(2)c + J(1)a J(3)b J(2)c + J(3)a J(1)b J(2)c

)
. (3.4.6)

Here q̂ is at the moment an arbitrary constant, which, as we will see shortly, will be constrained
by either kappa-symmetry or integrability of the total action.

Exercise 3.5. Show that the variation of the WZ-term in equation (3.4.6) is

δSWZ =

ˆ
Σ

Str
(
ξ2

(
2J(2) ∧ J(2) + J(1) ∧ J(3) + J(3) ∧ J(2)

)
+ ξ1

(
J(2) ∧ J(3) + J(3) ∧ J(2)

)
+ ξ3

(
J(2) ∧ J(1) + J(1) ∧ J(2)

))
,

(3.4.7)

which is indeed a total derivative.

As pointed out in [129], this computation is nearly completely similar to that in [56],
from which the reader is invited to take inspiration from.

In conclusion, the action S+ SCZ−WZ describes an AdS3-background featuring both RR- and
NSNS-fluxes and the total action becomes

Stot =
1
2

ˆ
Σ

Str
(
J(2) ∧ ⋆J(2) + q̂J(1) ∧ J(3)

)
+ q
ˆ
B
Str

(
2
3
J(2) ∧ J(2) ∧ J(2) + J(1) ∧ J(3) ∧ J(2) + J(3) ∧ J(1) ∧ J(2)

)
,

(3.4.8)

where we remark for later use that the parameter q can be identified with the WZ-level k via
the relation k= 2πTq with T the string tension.

Having written down the action, let us reinstate the string tension explicitly to understand
how to access the supergravity regime. Working out the relation between the level k and the
parameters q and q̂ leads us to the string tension already mentioned in equation (3.1.19) and
the different terms of the action read

Sbos =
T
2
S+

k
4π

SWZ . (3.4.9)

where the first action is the sigma-model action and the second is the WZ action we just
constructed.

Having introduced a new term to the system we have been studying so far, all ‘nice’ proper-
ties that were discussed in the first part of this course may be potentially lost. Fortunately, we
will see in the rest of this section that this is not the case and we will, even after adding the CZ-
WZ-term, see that the properties of integrability, kappa-symmetry and conformal invariance
are preserved.
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3.4.2. Z4-symmetry and integrability. The first crucial observation is that in this new
action (3.4.8), the Z4 symmetry is now explicitly broken since the WZ-term has grading two.
With no Z4-invariance at hand, the construction discussed in section 2.4.3 for the conventional
Lax connection of the SSSSM-action can no longer be applied.

Exercise 3.6. That the WZ term has grading zero (and not two) is in fact crucial.
Imagine we would have a coset based on simple supergroup instead of a permutation
coset, theWZ termwould be identically zero.Why is that and why is not that a problem
for permutation cosets?

In spite of the absence of an Z4-invariance, it was shown in [25] that the action with WZ-term
remains integrable. To see this consider the following general Ansatz for a Lax connection

L= J(0) +α1J
(2) +α2 ⋆ J

(2) +β1J
(1) +β2J

(3) . (3.4.10)

For the system to be integrable with a Lax connection of this form, the matrix L should have
a zero-curvature condition, i.e.

dL+L∧L= 0 , (3.4.11)

that is equivalent to the equations of motion, given the currents satisfy the (graded) Maurer–
Cartan equations.

Exercise 3.7. The flatness condition for the Ansatz L in equation (3.4.10) has to be
equivalent to the equations of motion (and taking into account the Maurer–Cartan
equations). It turns out [129] (although you are most welcome to check to as well)
that this is true provided that the coefficients in the Ansatz satisfy

−α1 + q̂α2 +β2
1 = 0 , 2qα2− 1+α2

1−α2
2 = 0 , (3.4.12)

−α1− q̂α2 +β2
2 = 0 , −β1 +α1β2 + qα2β1− q̂α2β2 = 0 (3.4.13)

qα2− 1+β1β2 = 0 , −β1 +α1β2 + qα2β1− q̂α2β2 = 0 . (3.4.14)

This algebraic system admits a solution under the condition that the parameters q̂ and q
are not independent. Derive that relation and note that the system then becomes under-
constrained. Solve for α2, β1 and β2. This yields then the form for the Lax connection
for the (permutation) coset action with WZ term where α1 plays the role of spectral
parameter.

The relation between the parameters featured in the action you should obtained in the last
exercise is the, by now familiar, relation

q2 + q̂2 = 1 , (3.4.15)

and, from the same exercise follows the one-parameter set of solutions

α2 = q±
√
−1+α2

1 + q2 , βi =±
√
α1 +(−1)i q̂α2 (i = 1,2) . (3.4.16)
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The only remaining non-determined parameter, α1, becomes the spectral parameter of the Lax
connection. For completeness, let us write down the Lax connection,

L= J(0) + q̂
x2 + 1
x2− 1

J(2) +

(
q− 2q̂x

x2− 1

)
⋆ J(2) (3.4.17)

+

(
x+

q̂
1− q

)√
q̂(1− q)
x2− 1

J(1) +

(
x− q̂

1+ q

)√
q̂(1+ q)
x2− 1

J(3) , (3.4.18)

which is obtained from the Ansatz for the Lax connection (3.4.10) after parametrising the only
remaining free coefficient as

α1 = q̂
x2 + 1
x2− 1

, (3.4.19)

and where ⋆ is the 10-dimensional Hodge star.
Although the property of integrability survives, the lack of Z4 invariance in the new action

poses a severe problem for the application of many integrability techniques. Fortunately, it
was quickly realised in [130] that the Z4 symmetry can be reinstated. The trick consists of
introducing the grading-two matrix57

W=

(
1 0
0 −1

)
, (3.4.20)

as an overall factor in the WZ-term

S=
1
2

ˆ
Σ

Str
(
J(2) ∧ ⋆J(2) + q̂J(1) ∧ J(3)

)
+ q
ˆ
B
StrW

(
2
3
J(2) ∧ J(2) ∧ J(2) + J(1) ∧ J(3) ∧ J(2) + J(3) ∧ J(1) ∧ J(2)

) (3.4.21)

the last term has now grading 4 and the action is again Z4 invariant. The matrix W is a
non-dynamical field and the action of the Z4 automorphism on W generates a non-physical
symmetry which effectively flips the sign of the coupling parameter q→−q. This new
action (3.4.21), again admits a Lax representation provided the very same identity, q2 = 1− q̂2,
is satisfied.

Let us conclude by mentioning that the additional CZ-WZ term does not spoil conformality
of the original coset model. As was shown in [25], the one-loop beta-function for the coset
model+ CZ-WZ-term differs by an overall power of the parameter q̂ compared to the original
beta-function give in equation (2.3.98):

β (g)CZ = q̂2β (g)+O
(
α ′2) . (3.4.22)

Note here that when q̂= 0, i.e. when we have a pure NSNS-background, we obtain, as expec-
ted, a fixed point of the group renormalisation flow. For all other values q̂ 6= 0, the beta-function
is proportional, as in (2.3.98), to the Killing form of the superalgebra.

57 Yet another way around the absence of Z4-invariance in the action (3.4.8), can be circumvented by redefining the
‘supertrace’ for the WZ term [131].
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3.5. Gauge fixings and yet another problem

In this section we will finally return to the problem mentioned at the end of section 3.2.2.
Remember that the coset action can only be equivalent to the GS action (up to quadratic
order in the fermions) after imposing a kappa-gauge fixing and for which the flat directions
decouple. Picking this gauge comes however at a hefty price: this particular gauge fixing turns
out not to be compatible with some motions of the string. In fact, as we will shortly see, this
choice is incompatible with superstrings whose motion is restricted to the AdS3 subspace of
the AdS3× S3× S3× S1 geometry (or, even worse, the AdS3× S3 subspace when considering
the AdS3× S3×T4 background). Often these problematic solutions in the supercoset form-
alism are referred to in the literature as singular. Finally let us comment that, in this gauge
the action contains a kinetic term for the massless fermions that has no quadratic contribution
[32]. In absence of a conventional kinetic term, there is no straightforward way to derive the
Poisson brackets and thus quantise the action. In addition the coset description, due to the
kappa-symmetry gauge fixing, is incomplete and cannot describe all string configurations.
This issue will be the topic of section 3.5.4. As a result an analysis of the quantised spectrum
necessitates working directly with the GS action in the BMN lightcone kappa gauge [34, 104].

3.5.1. Intermezzo: the superspace GS superstring action. In order to fulfil this program, we
first need to review the necessary superspace notation and technology. As already reviewed
in section 2.3, the complete GS action can be compactly written in superspace variables.
Assuming for simplicity that the background is a supergravity solution with vanishing back-
ground fermionic fields (i.e. the gravitino and dilatino), the GS superstring action for a general
type II supergravity background takes on the form [47, 52]

S=−T
ˆ
Σ

(
1
2
⋆EAEBηAB−B

)
, (3.5.1)

where we have the same notation as in section 2, see equation (2.2.42), i.e. EA are the vector
supervielbeins pullbacked to the worldsheet, B is the (pullbacked) NSNS two-form potential
and T is the string tension. The worldsheet Hodge star ⋆ is taken with respect to the worldsheet
metric. Note that the supervielbeins EA(Z) and B(Z) are superfields and thus depend both on
the ten bosonic coordinates Xµ and as well as, in the case of a type IIA solution, on the 32
fermionic coordinates θ of the type IIA superspace. The type IIA spinor can be written as
θIIA = θ1IIA + θ2IIA where

θ1IIA =

(
θ̂1IIA
0

)
, θ2IIA =

(
0
θ̂2IIA

)
, (3.5.2)

and the components θ̂iIIA are 16-componentsMajorana spinors of opposite chirality. Performing
a T-duality with respect to any of the flat compact directions v of the geometry, maps the type
IIA to a type IIB solutions with two 16-component MW worldsheet spinors θ1IIB = θ1IIA and
θ2IIB = Γvθ

2
IIA [51].

Taken altogether we have the coordinates ZM = (Xµ,θI). The conventions for the indices
are as follows µ= 0, . . . ,9 are the 10-dimensional spacetime indices, the 32 Grassmann-odd
coordinates θI for I= 0, . . . ,32, and the worldsheet coordinates are denoted by ξα = (τ,σ).
With this notation the pullback of the supervielbein on the worldsheet is

EA (X,θ) =
(
∂αX

µEµ
A (X,θ)+ ∂αθ

IEI
A (X,θ)

)
dξα . (3.5.3)
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Since type IIA superspace features 32 fermionic coordinates, the GS action has an expan-
sion (by expanding the superfields) in even powers of the fermions θ up to the 32nd order
in principle, though for practical applications and sufficiently supersymmetric backgrounds
only the second or fourth order is needed. As of date though the GS action is only known up
to quartic order [52] in the fermions. Note that already at this order in fermions the action is
rather unwieldy.

We have seen in section 2.3.3 that the GS superstring action remains invariant under local
fermionic transformations forming the so-called kappa-symmetry. In the superspace formu-
lation this symmetry is parameterised by a 32-component spinor κ(ξ) and the target space
coordinates ZM = (Xµ,θI) transform as

δκZMEM
aI =

1
2
(1+Γ)

aI
bJκ

bJ , δκZMEM
A = 0 , (3.5.4)

introduced earlier in (2.2.43). Remember that here (EM
A,EM

aI) are the background superviel-
beins and 1

2 (1+Γ)aIbJ is a spinor projection matrix where the matrix Γ is explicitly given by

Γ =
1

2
√
−G

εαβEα
AEβ

BΓABΓ11 , Γ2 = 1 , (3.5.5)

which involves the determinant of the induced metric on the worldsheet Gαβ = EαAEβBηAB
and note that the projector only involves the bosonic supervielbeins. We encountered this pro-
jector already in equation (2.2.43) but for type IIB superspace, where Γ11 is replaced for the
Pauli matrix σ3 (but see also (2.2.51)). For later use, one can check that the variations of the
components under kappa-symmetry to linear order in θ from equation (3.5.4):

δκX
µEµ = θ̄ (1+Γ)κ, δκθ =

1
2
(1+Γ)κ. (3.5.6)

As we will soon see, the critical observation to make when fixing a kappa-gauge is that the
matrix Γ appearing in the kappa-symmetry variations depends on the pullback of the vielbeins
EA. This implies that which gauge-fixing one should pick depends on where the string moves
through the background.

3.5.2. Completeness of kappa-gauge fixings. Before introducing the kappa-gauge fixing
that enables one to identify the (quadratic) GS superstring action with the supercoset sigma-
model introduced in sections 2.2 and 2.3, we need to make some general considerations about
the completeness of a given choice of kappa-gauge fixing. Without loss of generality we will
discuss the gauge fixing in type IIA supergravity. Remember from section 2.2, that in the
case of type IIA supergravity solutions, the two MW spinors featured in the GS action can
be described as one single 32-component Majorana spinor θ. Assume that the gauge fixing
making this selection is captured by a certain 32× 32-dimensional matrix M:

Mθ = 0 , (3.5.7)

which thus kills at most 16 of the fermionic fields in θ. We use the notation θ = (ϑ,v), where
ϑ denote the fermions corresponding to the unbroken supersymmetries and v to those broken
by M.

When fixing a kappa-gauge, counting howmany fermionic degrees of freedom remain after
enforcing the gauge fixing determined by M is not sufficient. One should also ensure that the
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requirement for the gauge fixing condition to be invariant under infinitesimal kappa-symmetry
variations is equivalent to putting all kappa-symmetry parameters to zero. If this is true, the
gauge fixing is called complete. To see how this constraints the, so-far, unspecified gauge fixing
matrix M: vary the gauge condition (3.5.7) according to the linearised kappa-transformation
rule in equation (3.5.6)

0=
1
2
M(1+Γ)κ=

1
4
[M,Γ](1+Γ)κ. (3.5.8)

Exercise 3.8. Show that the second equality in equation (3.5.8) by first showing that

1
2
M(1+Γ)κ=

1
2
(1+Γ)M(1+Γ)κ+

1
2
[M,Γ](1+Γ)κ, (3.5.9)

and by arguing that the first term vanishes.

We conclude from equation (3.5.8), that for the gauge fixing to be complete, the commutator
[M,Γ], when restricted to the subspace generated by the physical fermionic degrees of freedom,
has to be invertible58. When this requirement is not satisfied, the matrixM has a non-trivial ker-
nel. The corresponding gauge fixing choice then can potentially set physical fermionic degrees
of freedom to zero or keep unphysical fermionic degrees of freedom unfixed.

3.5.3. The coset kappa-gauge for AdS3 ×S3-backgrounds. Looking back at the construc-
tion of the supercoset action in section 3.2, we also see that the specific choice of kappa-gauge
fixing should be chosen such as to describe the superstring as a supercoset sigma-model. In
particular, the gauge-fixing has to project out the 16 non-coset fermions

v=Mθ = 0 . (3.5.10)

To get some insight on what formM could take, a clever trick is to consider the supersymmetry
variation of the dilatino59

δγ = ΓA
��FΓAϵ= 8Γ012 (1−P)ϵ , (3.5.11)

where P is a projector whose form and properties you will unravel in exercise 3.9 below and

��F= eϕ
(
−1

2
ΓABΓ11FAB +

1
4!
ΓABCDFABCD

)
. (3.5.12)

Together with the fact that the four-form RR-flux supporting the type II solutions on AdS3×
S3× S3× S1, the expression for the dilaton variation can be rewritten as

��F= 4Γ012Γ9 (1−P) . (3.5.13)

58 If M defines the projection into an n-dimensional space, where for AdS3-space we have that n ⩽ 16, this condition
means that rank[M,Γ] ⩾ n/2.
59 As per usual, here 012 are the AdS3 direction, 345 and 678 accounts for the two three-spheres and 9 is the S1-factor.
See also the D-brane set-up of figure 1.
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Remember that the four-form flux supporting a IIA supergravity is of the form (2.2.52) and
takes on the explicit form

F(4) =
e−ϕ

3

(
EaEbEcεABC + cosφEâEb̂Eĉεâb̂ĉ + sinφEa′Eb′Eĉεa′b ′c ′

)
E9 (3.5.14)

where as before ϕ is the dilaton and theAdS3 radius has been fixed to one andφ is the parameter
parametrising the ratio of the S3 radii in equation (3.1.12). The ten indices in A have been
partitioned over the different components of the geometry as in equation (3.1.32).

From the supersymmetry variation of the dilatino in (3.5.11), we see that a total of 16
supersymmetry parameters are preserved by the background. That this, they verify ϵ= Pϵ
such that δλ= 0. Taken altogether, we are led to the following choice of kappa gauge
fixing [132]

ϑ= Pθ , v= (1−P)θ , (3.5.15)

where the sixteen ϑ are the coset fermions (corresponding to the preserved supersymmetries)
and v are the non-coset fermions (i.e. the broken supersymmetries). This is precisely the gauge
fixing used in [133] to reduce the GS superstring action (to quadratic order in fermions) and
to show its equivalence to the supercoset action presented in section 3.2.

Exercise 3.9. From the GS action in (3.5.1), we saw that the RR fields couple to the
other fields via the matrix��F which in type II takes on the form

��F=−1
2
EϕΓABΓ11FAB +

1
4!
ΓABCDFABCD . (3.5.16)

where A= 0, . . . ,9 is the index running over the 10-dimensional background and ϕ
is the dilaton field. Show that the four-form flux field F4 in equation (3.5.14) can be
rewritten into the form

��F= 4γ∗Γ
9 (1−P) , (3.5.17)

where γ∗ = Γ012 (note that γ2
∗ = 1) and P is a projection matrix given by

P =
1
2

(
1+ cosφ Γ012Γ345 + sinφΓ012Γ678

)
. (3.5.18)

Check that this is a projector.

3.5.4. The supercoset action is not enough. We still need to check whether the gauge fixing
is compatible with any motion of the strings through the AdS3× S3× S3× S1. Assume that
the superstring only propagates in the AdS3 subspace of the background, using the notation
in (3.1.32) that means that most of the components of the supervielbein EA vanish: EI

â =
EI

a′ = EI
9 = 0. Since the matrix Γ (3.5.5) controlling the kappa-symmetry variation as given

in equation (3.5.4) directly depends on the supervielbein and consequenly simplifies to the
expression

Γ∝ ϵαβEαaEβbΓabΓ11 , (3.5.19)
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where a= 0,1,2 runs over the AdS3 directions only. Since the projector P from exercise
3.9 has terms either proportional to Γ012 or to the identity 1 and taking into account that
{Γa,Γ•}= 0 where •= â,a ′ or 9, we have to conclude that the projector P commutes with
Γ. The commutator [M,Γ] is non-invertible and the consistency condition in equation (3.5.8)
is violated. When the string moves entirely in AdS-part of the geometry, the total number of
kappa-symmetries in the sigma-model is effectively increased. Indeed, in this singular situ-
ation, the projector P commutes with the kappa-symmetry projector, and effectively singles
out a number of non-coset or broken supersymmetries which cannot be eliminated. We can
but conclude that the supercoset model in this case only captures a subsector of the kappa-
symmetry gauge-fixedGS superstring [132]. As a result, in order to study strings whosemotion
is restricted to the AdS3 ⊂ AdS3× S3×T4-region which lies outside of the description of the
supercoset action, one has to resort directly to the superstring GS action. The situation worsens
for theAdS3× S3×T4-background. In that case the projector is given byP in equation (3.5.18)
but taking φ→ 0. There the motion of the superstring in the whole AdS3× S3-subspace is
incompatible with the gauge fixing.

The fact that the supercoset action cannot describe all string motion is clear drawback,
and raised the question to the integrability of the AdS3-superstring for any subsectors of its
geometry. This issue prompted efforts toward finding a Lax connection directly for the GS
superstring (to quadratic order in the fermions) rather than for the (incomplete) supercoset
construction. This hope was realised in [133, 134], where the Lax connection was construc-
ted explicitly without any kappa-gauge fixing, warranting the integrability of superstrings in
AdS3× S3×M4 backgrounds. Although a Lax connection has up until now not been construc-
ted for higher order in fermions of the GS action, mostly due to the quickly rising level of com-
plexity at each new order, essentially the same approach is expected to be applicable without
any obstruction.

This phenomenon of the coset description not describing all possible string configurations is
not restricted to AdS3× S3 superstrings sigma-model. One can show in a very similar way that
no gauge-fixing of the AdS4×CP3 superstrings sigma-model can describe all possible string
motions while at the same time gauge fixing all unphysical fermionic degrees of freedom and
missing physical degrees of freedom [129, 135, 136].

3.6. Summary and concluding remarks

In this section we reviewed the integrability of the GS superstring action propagating in
AdS3× S3-backgrounds using the supercoset action, both with and without NSNS three-form
flux. The supercoset description, although appealing in its simplicity when compared to the
full-fledged GS action, is unfortunately incomplete. In establishing this fact, we identified
the kappa-gauge as the main culprit, which is however necessary to warrant the matching of
the supercoset action with the GS action. In this gauge, strings propagating only in a sub-
sector of geometry involving the AdS-part can simply not be described using the coset action.
Fortunately, this issue can be remedied by working directly with the GS action. In fact, the
statement of classical integrability can be proven in the GS formalism without having to rely
on the supercoset formulation. This lays the basis for the study of AdS3 superstring back-
grounds by integrability which we will undertake in the next two sections. Having established
classical integrability of the system, we are naturally led to wonder whether integrability is pre-
served at the quantum level. A related question is that of the puzzling spectrum of both massive
and massless particles the AdS3× S3 confronted us with. These points will be addressed in
section 4 by studying the worldsheet S-matrix of AdS3× S3×T4 superstring. We will return
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to the spectrum of the AdS3× S3-superstring and its massless modes, in section 5, where it
will be treated with the Betze Ansatz. It is also worth noting that one may employ a different
approach altogether, which does not rely on the GS string. The hybrid approach, which is dis-
cussed at length in section 6, does allow to treat in principle AdS3 superstrings supported by
RR and NSNS fluxes in a unified way. However, it is practically very difficult to do so away
from the WZW points (i.e. when the RR flux is not zero).

Although much has been recently understood concerning the propagation of strings in
AdS3× S3×T4-backgrounds, their full solution (either through integrability or by other
means) and the complete characterisation of their holographic duals is still full of myster-
ies and challenges, whose solution is bound to advance our understanding of string theory,
holography, CFT, and integrable models.

4. The worldsheet S matrix

In section 2 we discussed the GS formulation of superstring theory in curved spacetime.
Starting from this action one would like to compute physical observables such as the string
spectrum: what are the allowed energies for closed string states? For integrable theories, an
important stepping stone to arrive at this result is to obtain the worldsheet S-matrix, describ-
ing the scattering of excitations on the two-dimensional worldsheet of the string. Due to the
presence of a large amount of conserved charges, the structure of this S-matrix is heavily
constrained, see [137] for a review on integrable S-matrices. In particular, the set of incoming
momenta and outgoingmomentamust be the same for any scattering process, and a n→ n scat-
tering event decomposes into a sequence of 2→ 2 scattering events. Because such a decom-
position can be performed in different ways, consistency then requires the two-body S-matrix
to satisfy the quantum Yang-Baxter equation. Computing the S-matrix is therefore also useful
to check that the classical integrability discussed in the previous sections survives quantisa-
tion. In the next section 5 we will then see how to compute physical quantities starting from
this two-body S-matrix.

The GS formulation of superstring theory, in contrast to the RNS formalism or the hybrid
model, is particularly well-suited to obtain the worldsheet S-matrix for strings in curved space-
times. The first step consists in fixing the gauge redundancy (reparametrisation invariance,
Weyl rescalings, kappa-symmetry) of the action. A convenient way to fix these is through
the uniform lightcone gauge, which we already briefly encountered in section 2 and makes it
possible to analyse strings in curved spaces [37]. This then leads to a two-dimensional non-
relativistic field theory. For closed strings, the two-dimensional worldsheet is topologically a
cylinder. If the radius of that cylinder is small then there is no notion of asymptotically ‘in’
and ‘out’ states. The worldsheet S-matrix is defined in the ‘decompactification’ limit, when the
radius of the cylinder becomes so big that the cylinder can be traded for a plane and asymptotic
states are well-defined.

There are two ways to obtain the worldsheet S-matrix. One is through perturbation theory,
by considering an expansion around the classical solution used for the lightcone gauge fixing—
this is tantamount to expanding around the pp-wave limit considered in section 3. Another
possibility is through the integrable ‘bootstrap’. In that case, one uses the symmetries of the
lightcone gauge fixed theory, as well as the assumption of quantum integrability, to completely
fix the worldsheet S-matrix. For strings on AdS3× S3×T4 the perturbative S-matrix was first
obtained in the pure-RR case [132, 133, 138] and then for the mixed-flux theory [131]. In
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parallel, a proposal for the pure-RR exact S-matrix was formulated in [33]. This analysis was
then extended to include the massless modes [104, 139] and the mixed-flux case [34].

This section is organised as follows. First we provide a general discussion of strings in
lightcone gauge. We then specialise to strings propagating in AdS3× S3×T4 and sketch the
construction of the perturbative and exact S matrices.

4.1. Strings in lightcone gauge

In this section we explain how, starting from the GS action, one can compute the worldsheet S-
matrix perturbatively in the string tension. The discussion essentially follows the review [21],
though we will work directly in terms of the GS action, rather than its supercoset formulation.

Let us start by recalling the form of the GS non-linear sigma model action to quadratic
order in the fermions, first encountered in 2.2.2,

S=−T
2

ˆ
dτdσ

[(
γαβĜµν + ϵαβB̂µν

)
∂αX

µ∂βX
ν +Lkin

]
, (4.1.1)

where we have combined the bosonic part of the action with the ‘mass’ terms of the fermions,

Ĝµν = Gµν −
i
4
θ̄IΓ(µ��ων)δ

IJθJ +
i
8
θ̄IΓ(µHν)ρσΓ

ρσσIJ
3 θJ +

i
8
θ̄IΓ(µS IJΓν)δIJθJ , (4.1.2)

B̂µν = Bµν −
i
4
θ̄IΓ[µ��ων]σ

IJ
3 θJ +

i
8
θ̄IΓ[µHν]ρσΓ

ρσδIJθJ +
i
8
θ̄IΓ[µS IJΓν]σIJ

3 θJ , (4.1.3)

while the last piece Lkin contains the kinetic terms for the fermions,

Lkin = iγαβ∂αX
µθ̄IΓµδ

IJ∂βθJ + iϵαβ∂αX
µθ̄IΓµσ

IJ
3 ∂βθJ . (4.1.4)

The two-dimensional base manifold is parametrised by τ ∈ (−∞,+∞) and σ ∈ (0,R). Here
we are considering closed strings, so that the base manifold is an infinitely-long cylin-
der with circumference R. Then, γαβ =

√
−hhαβ is the Weyl-invariant metric on the two-

dimensional worldsheet, and εαβ is the antisymmetric Levi-Civita symbol with the convention
ϵτσ =−ϵστ = ϵστ =−ϵτσ =+1. T is an overall constant (the string tension). The quantit-
ies Xµ with µ= 1, . . . ,dim(M) can be seen either as fields Xµ(τ,σ) on the two-dimensional
worldsheet, or as coordinates of the target spaceM. Then, Gµν and Bµν denote respectively
the metric and antisymmetric B-field (Kalb-Ramond field), characterising the geometry of
the target spaceM. In what follows we have in mind target-space geometries of the form
AdSn× Sn×X where dimX = 10− 2n, for instance AdS5× S5 or AdS3× S3×T4. These are
particularly relevant in the context of the AdS/CFT correspondence.

As explained in the previous sections, the GS action has redundancies. It is invariant under
worldsheet reparametrisations, Weyl rescalings as well as fermionic kappa symmetry. To ana-
lyse the physical degrees of freedom it is important to remove these redundancies by choosing
a specific gauge. There are several possible gauges, and the best choice often depends on the
goal to be achieved. Here we shall use the so-called ‘uniform lightcone gauge’, introduced
in [37]. As we will see, in that gauge the worldsheet Hamiltonian is related to the target space
energy, which makes it particularly convenient to analyse the spectral problem, and the size R
of the worldsheet is related to a physical charge, making it easier to take the decompactification
limit. This bosonic gauge-fixing should then be supplemented by a compatible kappa gauge
on the fermions.
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Working in the Hamiltonian formalism, there are two steps to write down the gauge-fixed
action. The first step is to go to the first order formalism, introducing conjugate momenta. The
next step is to impose the gauge fixing to this first order action.

4.1.1. First order form. The momentum conjugate to the bosonic coordinate Xµ is defined as

Pµ =
δS

δ (∂τXµ)
=−T

(
γτβĜµν + ϵτβB̂µν

)
∂βX

ν − T
2
i θ̄I
(
γτβδIJ + ϵτβσIJ

3

)
Γµ∂βθJ .

(4.1.5)

Solving in terms of ∂τXµ and replacing in the action gives, up to quadratic order in fermions

S=
ˆ

dτdσ

(
PµẊ

µ+
i
2
Pµθ̄IΓ

µθ̇I +
T
2
i X́µ

(
σIJ3 Gµν − δIJBµν

)
θ̄IΓ

ν θ̇J +
γτσ

γττ
C1 +

1
2Tγττ

C2

)
,

(4.1.6)

with

C1 = PµX́
µ+

i
2
Pµθ̄IΓ

µθ́I +
T
2
iσIJ

3 X́
µθ̄IΓµθ́J−

T
2
iBµν X́

µθ̄IΓ
ν θ́I , (4.1.7)

C2 = ĜµνPµPν +T2Ĝµν X́
µX́ν + 2TĜµν B̂νκPµX́

κ+T2Ĝµν B̂µκB̂νλX́
κX́λ (4.1.8)

+ iT2X́µθ̄IΓµθ́I + iTσIJ
3 Pµθ̄IΓ

µθ́J + iT2Bµν X́
νσIJ

3 θ̄IΓ
µθ́J .

We introduced the shorthand notation Ẋµ = ∂τXµ and X́µ = ∂σXµ (similarly for fermions). We
also used the fact that the Weyl-invariant metric on the worldsheet satisfies detγ =−1, so that
we can eliminate γσσ through the relation

γσσ =
[
(γτσ)

2− 1
]
/γττ . (4.1.9)

The action (4.1.6) is no longer manifestly invariant under worldsheet reparametrisation.
Remember however that we have the Virasoro constraints, and the equations of motion for the
(unphysical) degrees of freedom associated to the worldsheet metric are simply C1 = C2 = 0.

The idea is to pick the global AdS time t (time-like) and an angle φ (space-like) paramet-
rising one of the big circles of Sn. The choice of the space-like coordinate is made in such a
way as to preserve as much supersymmetry as possible60. The remaining coordinates are the
transverse fields and we write X= (t,φ,X1, . . .X8). We introduce the (target-space) lightcone
coordinates and their conjugate momenta

X+ = (1− a) t+ aφ , X− =−t+φ , (4.1.10)

P+ = Pt +Pφ , P− =−aPt +(1− a)Pφ , (4.1.11)

where we include a gauge parameter 0⩽ a⩽ 1. The inverse relations are

t= X+− aX− , φ = X+ +(1− a)X− , (4.1.12)

Pt = (1− a)P+−P− , Pφ = aP+ +P− . (4.1.13)

60 Other choices are possible, see for instance [42, 140, 141], which may (albeit non-trivially) lead to an invariance
under larger superalgebras [42].
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We consider backgrounds that depend on t andφ only through their derivatives (with respect to
τ and σ), so that translations in these two coordinates are manifest symmetries of the action; t
andφ then parametrise two u(1) isometric directions, with corresponding conserved (Noether)
charges given by the space-time energy E and the angular momentum J respectively,

E=−
ˆ R

0
dσPt , J=+

ˆ R

0
dσPφ , (4.1.14)

or, in terms of the target space lightcone momenta,

P+ =

ˆ R

0
dσP+ = J−E , P− =

ˆ R

0
dσP− = (1− a)J+ aE . (4.1.15)

We can see that the cases a= 0 and a= 1/2 are special; in the former, P− = J is simply the
(quantised) angular momentum along φ, while in the latter we get a more ‘symmetrical’ setup
(which turns out to simplify some computations).

4.1.2. Uniform lightcone gauge. The uniform lightcone gauge consists in eliminating the
fluctuations of X+ and P− as in (2.1.34), which fixes here

X+ = τ + 2πma
σ

R
, P− = 1 , (4.1.16)

where we introduce the integer winding number m along the circle parametrised by φ, so that
φ(R)−φ(0) = 2πm. Because P− = 1 the lightcone momentum is spread uniformly along the
string, hence the name of ‘uniform lightcone gauge’. Moreover, we have that

P− =

ˆ R

0
dσP− = R , (4.1.17)

and therefore after lightcone gauge fixing the worldsheet size is fixed in terms of the charges
of the state, namely its energy E and angular momentum J through the relation (4.1.15).

After lightcone gauge fixing the bosonic part of the first order action (4.1.6) becomes

S=
ˆ

dτdσ

(
Ẋ− +P+ +PjẊ

j +
γτσ

γττ
Cg.f.

1 +
1

2Tγττ
Cg.f.

2

)
. (4.1.18)

The first term is a total derivative, and assuming fall-off conditions at τ =−∞ and τ =+∞ it
drops out.We are now left with imposing the lightconeVirasoro constraints. The first constraint
reads

Cg.f.
1 = 0 ⇒ X́− =−PjX́

j− 2πma
R

P+ , (4.1.19)

and plugging into the second constraint gives

Cg.f.
2 = 0 ⇒ P+ = P+

(
Xj,Pj

)
. (4.1.20)
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Finally, the action takes the form

S=
ˆ

dτdσ
(
PjẊ

j−H
)
, H=−P+

(
Xj,Pj

)
. (4.1.21)

The quantity H then naturally takes the interpretation of the lightcone Hamiltonian (density).
A consequence of this and the relation in (4.1.15) is that the worldsheet Hamiltonian is related
to the string target-space energy and angular momentum through

H=

ˆ R

0
dσH= E− J . (4.1.22)

It is important to note that this Hamiltonian usually takes a rather involved form, featuring
square roots. For instance, assuming zero winding (m= 0) and a metric and B-field of the
schematic form

Gµν =

G++ G+− 0
G−+ G−− 0
0 0 Gij

 , Bµν =

0 0 0
0 0 0
0 0 Bij

 , (4.1.23)

the (bosonic) Hamiltonian density is

H=

G+− +

√
(G+−)

2−G++
(
G−− +T2G−−PiPjX́i X́j +H

)
G++

, (4.1.24)

where

H= GijPiPj +T2GijX́
i X́j + 2TGijBikPi X́

k +T2GijBikBjlX́
kX́l . (4.1.25)

Note that because Cg.f.
2 = 0 is a quadratic equation for P+, there are two possible solutions.

One needs to choose the sign in such a way as to obtain a positive Hamiltonian. Later we
will expand this Hamiltonian in powers of the transverse fields (or equivalently in the large
tension expansion), and choosing the correct branch usually ensures that the expansion starts
at quadratic order in the fields.

Remark 4.1. It is possible to rewrite the lightcone gauge condition (4.1.16) as well as the light-
cone gauge fixed action (4.1.21) without having to resort to the conjugate momenta. For this
we recall that winding and momentum interchage under T-duality transformation. We can then
dualise the model in X−, and calling the dual coordinate X̃−, the condition P− = 1 becomes
X̃− = σ. These two ways of imposing the lightcone gauge should of course be equivalent, but
this way of thinking makes it possible to work with the Lagrangian formulation rather than the
Hamiltonian one. Such a formulation has been carefully worked out in [142], also including
fermions.

At this point let us mention that (4.1.19) fixed the spatial derivative X́−. Consistency then
requires to impose

X− (R)−X− (0) =
ˆ R

0
dσ X́− (σ) =

ˆ R

0
dσ

(
−PjX́

j− 2πma
R

P+

)
= 2πm . (4.1.26)
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This is the ‘level-matching’ condition. The worldsheet momentum, namely the charge p asso-
ciated to translations along the σ direction of the worldsheet, is precisely given by this com-
bination. Consequently, physical states obey

p|phys〉= 2πm|phys〉 , m ∈ Z . (4.1.27)

4.1.3. Kappa gauge. When discussing the GS action we have seen that there is another
redundancy in its description, realised as a local ‘kappa-symmetry’ on the fermionic fields. To
be left with only physical fields we also need to choose a particular kappa gauge, which will
set some of the fermions to zero. Of course, this kappa-gauge should be compatible with the
bosonic uniform lightcone gauge chosen above. We recall that the kappa-symmetry involves
a variation of the bosonic coordinates Xµ, the fermions θI as well as the worldsheet metric,
see (2.2.50), which we rewrite here for convenience:

δκθ
I = 2iΓµ∂αX

µκIα+O
(
θ2
)
, δκX

µ = i θ̄IΓµδκθ
JδIJ +O

(
θ3
)
,

δκγ
αβ = 16

√
−hPJαγ

I PKβδ
J κ̄IγDδKLθL .

(4.1.28)

A convenient gauge is then (recall that in our convention the coordinates used for lightcone
gauge fixing are X0 = t and X1 = φ)

G+θ = θ̄G+ = 0 , G± =
1
2

(
Γ0±Γ1

)
. (4.1.29)

The Gamma-matrices with flat lightcone indices satisfy the identities

(
G±)2 = 0 , G+G− +G−G+ =−1 , G+ +G− = Γ0 . (4.1.30)

Moreover, by using the second identity, it follows that

θ̄Γj1 . . .Γjnθ = 0 , (4.1.31)

where Γj denotes a Gamma-matrix in the transverse directions. Again assuming a metric and
B-field of the form (4.1.23), the action after lightcone gauge fixing takes the form (dropping
total derivative terms and assuming zero winding)

S=
ˆ

dτdσ

(
P+ +PjẊ

j +
i
2
θ̄I
(
δIJ
(
P+Γ+ +Γ−

)
+TσIJ3 X́

−Γ−
)
θ̇I +

γτσ

γττ
Cg.f.

1 +
1

2Tγττ
Cg.f.

2

)
.

(4.1.32)

In the above,

Γ+ = (1− a)Γt + aΓφ , Γ− = Γφ −Γt ,

Γ− =−aΓt +(1− a)Γφ , Γ+ = Γt +Γφ .
(4.1.33)

As in the bosonic case the Hamiltonian density is related to the lightcone momentum, H=
−P+(Xj,Pj,θ

I) upon solving the Virasoro constraints. Its explicit expression will now also
include fermionic fields.
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4.1.4. Perturbative expansion. The lightcone gauge-fixed theory is a 2d (non-relativistic)
theory defined on a cylinder of size R= P−, and its time-evolution if governed by the
Hamiltonian H. In order to analyse this theory we want to be able to define asymptotic ‘in’
and ‘out’ states and diagonalise H in this basis. The first step towards this goal is to take the
decompactification limit, in which the cylinder decompactifies to a plane. This corresponding
to sending R→∞. In that limit the lightcone momentum P− becomes infinite. However, the
Hamiltonian should remain finite. This means that both J and E become infinite, but their dif-
ference J−E stays finite. Then, we perturbatively expand the Hamiltonian around the classical
solution (4.1.16). To do this we rescale the worldsheet coordinate σ→ Tσ, and the bosonic and
fermionic fields as

Xj→ 1√
T
Xj , Pj→

1√
T
Pj , θI→ 1√

T
θI . (4.1.34)

The worldsheet Hamiltonian can then be naturally expanded in powers of the transverse fields
(or equivalenty, in inverse power of the string tension)

H=H(2) +
1√
T
H(3) +

1
T
H(4) + . . . (4.1.35)

The orderH(n) contains n powers of the transverse fields Xj (or derivative/momentum thereof)
and its explicit expression depends on the theory that we consider. Henceforth we will focus
on the AdS3× S3×T4 superstring.

4.2. Application to AdS3 ×S3 × T4

In global coordinates, the metric of AdS3× S3×T4 is given by

ds2 =−
(
1+ ρ2

)
dt2 +

dρ2

1+ ρ2
+ ρ2dψ2 +

(
1− r2

)
dφ2 +

dr2

1− r2
+ r2dϕ2 + dxi dxi , (4.2.1)

with i = 6,7,8,9. Note that the radius of AdS3 and S3 has been reabsorbed into the coordinates,
this is why it does not appear explicitly in the metric. On top of that, there is also the B-field
and its corresponding H-flux, given by

B(2) =−q
(
ρ2dt∧ dψ + r2dφ ∧ dϕ

)
,

H(3) = dB(2) = 2q(ρdt∧ dρ∧ dψ + rdφ ∧ dr∧ dϕ) ,
(4.2.2)

with 0⩽ q⩽ 1 a free parameter of the mixed flux theory. The q= 1 case corresponds to the
pure NSNS point, and one can check that the metric and H-flux alone solve the supergravity
equations of motion with constant dilaton Φ. For generic q on the other hand, to satisfy the
supergravity equations of motion the above NSNS sector needs to be supplemented with RR
fluxes (again with constant dilaton), and the easiest way to do that is to add a 3-form RR flux

F(3) = 2
√

1− q2 (ρdt∧ dρ∧ dψ + rdφ ∧ dr∧ dϕ) . (4.2.3)

In the curved part of the background there are four u(1) isometries, realised as shifts in
t,φ,ψ and ϕ. The associated Noether charges are respectively the target space energy, target
space angular momentum, spin in AdS and spin in the sphere. We will use t and φ for the
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lightcone gauge fixing. Then, there are also four u(1) isometries coming from the T4, simply
realised as shifts in xi with i = 6,7,8,9. Performing the field redefinition

ρ=

√
(X1)

2
+(X2)

2

1− 1
4

(
(X1)

2
+(X2)

2
) , ψ = arctan

(
X2

X1

)
,

r=

√
(X3)

2
+(X4)

2

1+ 1
4

(
(X3)

2
+(X4)

2
) , ϕ = arctan

(
X4

X3

)
,

(4.2.4)

the metric becomes

ds2 =−

(
1+ 1

4

(
X2
1 +X2

2

)
1− 1

4

(
X2
1 +X2

))2

dt2 +

(
1

1− 1
4

(
X2
1 +X2

2

))2 (
dX2

1 + dX2
2

)
+

(
1− 1

4

(
X2
3 +X2

4

)
1+ 1

4

(
X2
3 +X2

4

))2

dφ2 +

(
1

1+ 1
4

(
X2
3 +X2

4

))2 (
dX2

3 + dX2
4

)
+ dxi dxi ,

(4.2.5)

while the B-field is

B(2) = q

(
X1dX2−X2dX1(
1− 1

4

(
X2
1 +X2

2

))2 ∧ dt+
X3dX4−X4dX3(
1+ 1

4

(
X2
3 +X2

4

))2 ∧ dφ

)
. (4.2.6)

This change of coordinate makes it easier to construct states with well defined eigenvalues
under the charges associated to the four u(1) isometries. This will be important to make the
link with the fundamental excitations scattered by the S-matrix.

4.2.1. Fields and conjugate momenta. We define the complex linear combinations

Z=
X1 + iX2√

2
, Z̄=

X1− iX2√
2

, Y=
X3 + iX4√

2
, Ȳ=

X3− iX4√
2

. (4.2.7)

These have conjugate momenta given by

PZ =
P1− iP2√

2
, PZ̄ =

P1 + iP2√
2

, PY =
P3− iP4√

2
, PȲ =

P3 + iP4√
2

. (4.2.8)

Similarly, for the torus directions we introduce

X11 =
x6 + i x7√

2
, X22 =

x6− i x7√
2

, X12 =
x8 + i x9√

2
, X21 =−x8− i x9√

2
, (4.2.9)

with conjugate momenta

Pȧa = ϵȧḃϵabẊ
ḃb . (4.2.10)

We then fix the lightcone gauge as in (4.1.16), withm= 0. Notice that this classical solution
used for lightcone gauge fixing does not involve any winding in the torus direction and hence
we formally consider the theory on R4 instead of T4.
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4.2.2. Quadratic Hamiltonian. Applying the procedure explained in the previous section
leads to the quadratic Hamiltonian (we include the fermions for completeness)

H(2) = PZPZ̄ + Ź´̄Z+ZZ̄− iq
(
Z´̄Z− Z̄Ź

)
+PYPȲ + Ý´̄Y+YȲ− iq

(
Y´̄Y− ȲÝ

)
+ iζ∗R ζ́R + qζ∗R ζR− iζ∗L ζ́L− qζ∗L ζL +

√
1− q2 (ζ∗R ζL + ζ∗L ζR)

+ iη∗R ήR + qη∗R ηR− iη∗L ήL− qη∗L ηL +
√

1− q2 (η∗R ηL + η∗L ηR)

+PȧaP
ȧa + X́ȧaX́

ȧa + iχ∗
+aχ́

a
+− iχ∗

−aχ́
a
− .

(4.2.11)

This is the Hamiltonian describing two AdS3 massive bosons Z and Z̄, two S3 massive bosons
Y and Ȳ, as well as four massive fermions ζL,R and ηL,R (recall that for fermions the fields and
their complex conjugate are not independent). They all have unit mass. Then we also have four
massless bosons Xȧa coming from the torus direction, as well as four massless fermions χa

±
for a= 1,2 (as required by supersymmetry). The fields are free, but the presence of NSNS flux
for q 6= 0 introduces a parity-breaking term (a term that changes sign under σ→−σ).

Notice that the presence of the factor of i in the Hamiltonian is not problematic and is in
fact required to have reality of H(2). Indeed, the fields Z,Y are complex and the linear com-
bination appearing in the bracket of the first two lines is purely imaginary. Therefore to have
a real Hamiltonian these terms need to be supplemented with a factor of i. Had we written the
Hamiltonian in terms of the real fields Xj this term would simplify have been q(X2X́1−X1X́2),
which is manifestly real. Similarly for the fermions, the factor of i is required from their reality
condition.

4.2.3. Equations of motion and oscillator representation. The massive bosonic fields satisfy
the equations of motion

(□+ 1)Z=−2iqŹ , (□+ 1)Y=−2iqÝ ,

(□+ 1) Z̄=+2iq´̄Z , (□+ 1) Ȳ=+2iq´̄Y ,
(4.2.12)

with □= ∂2
τ − ∂2

σ. There is a slight modification from the usual Klein–Gordon equation for
free bosonic fields due to the parity-breaking term related to the presence of NSNS flux. The
solutions are still of plane-wave form, for instance

Z(σ) =
1√
2π

ˆ
dp

(
e−iωτ+i pσ aZ (p)√

2ω (p)
+ ei ω̄τ−i pσ a†Z̄ (p)√

2ω̄ (p)

)
, (4.2.13)

Z̄(σ) =
1√
2π

ˆ
dp

(
e−i ω̄τ+i pσ aZ̄ (p)√

2ω̄ (p)
+ eiωτ−i pσ a†Z (p)√

2ω (p)

)
, (4.2.14)

where aZ(p), a
†
Z(p) and aZ̄(p), a

†
Z̄(p) satisfy the canonical commutation relations,

[
aZ (p) ,a

†
Z (p

′)
]
=
[
aZ̄ (p) ,a

†
Z̄ (p

′)
]
= δ (p− p ′) . (4.2.15)
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These can be used to generate the excitations

|Z(p)〉= a†Z (p) |0〉 , |Z̄(p)〉= a†Z̄ (p) |0〉 . (4.2.16)

One has similar expressions for the fields Y(σ) and Ȳ(σ).
The massless bosonic fields satisfy

□Xȧa = 0 , (4.2.17)

whose plane-wave solutions are simply

Xȧa (σ) =
1√
2π

ˆ
dp

(
e−iω◦τ+i pσ aȧa (p)√

2ω◦ (p)
+ eiω◦τ−i pσ a†ȧa (p)√

2ω◦ (p)

)
. (4.2.18)

Exercise 4.2. Show that one has the dispersion relations

ω =
√

1− 2qp+ p2 , ω̄ =
√

1+ 2qp+ p2 , ω◦ =
√
p2 . (4.2.19)

The massive fermionic fields satisfy the equations of motion

(∂− + iq)ζR + i
√

1− q2ζL = 0 , (∂+− iq)ζL + i
√

1− q2ζR = 0 ,

(∂− + iq)ηR + i
√

1− q2ηL = 0 , (∂+− iq)ηL + i
√

1− q2ηR = 0 ,
(4.2.20)

with ∂± = ∂τ ± ∂σ. These are Dirac equations, modified by the presence of the parity breaking
term. Notice that combining the two equations gives

(□+ 1)ζL,R =−2iq ζ́L,R , (□+ 1)ηL,R =−2iq ήL,R , (4.2.21)

which is the same equation as for the massive bosonic fields Z and Y. The solution of the
above equations are of plane-wave form, featuring coefficients. For instance (one has similar
expression for the fields ηL,R since they satisfy the same equations of motion),

ζL (σ) =
1√
2π

ˆ
dp
(
e−iωτ+i pσfL (p)aζ (p)+ ei ω̄τ−i pσgL (p)a

†
ζ̄
(p)
)
, (4.2.22)

ζ∗L (σ) =
1√
2π

ˆ
dp
(
e−i ω̄τ+i pσg∗L (p)aζ̄ (p)+ eiωτ−i pσf∗L (p)a

†
ζ (p)

)
, (4.2.23)

ζR (σ) =
1√
2π

ˆ
dp
(
e−iωτ+i pσfR (p)aζ (p)+ ei ω̄τ−i pσgR (p)a

†
ζ̄
(p)
)
, (4.2.24)

ζ∗R (σ) =
1√
2π

ˆ
dp
(
e−i ω̄τ+i pσg∗R (p)aζ̄ (p)+ eiωτ−i pσf∗R (p)a

†
ζ (p)

)
. (4.2.25)

The various functions are fixed by requiring that the equations of motion are satisfied, and that
the ladder operators aζ(p),a

†
ζ(p) and aζ̄(p),a

†
ζ̄
(p) satisfy canonical commutation relations. The

creation operators can be used to define the excitations

|ζ (p)〉= a†ζ (p) |0〉 , |ζ̄ (p)〉= a†
ζ̄
(p) |0〉 . (4.2.26)
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Exercise 4.3. Show that this fixes

ω =
√

1− 2qp+ p2 , fL (p) =
1√
2ω

√
1− q2√

ω− p+ q
, fR (p) =

1√
2ω

√
ω− p+ q ,

(4.2.27)

ω̄ =
√

1+ 2qp+ p2 , gL (p) =
1√
2ω̄

√
1− q2√

ω̄+ p+ q
, gR (p) =

1√
2ω̄

√
ω̄+ p+ q .

(4.2.28)

Check that these functions satisfy

fL (p)
2
+ fR (p)

2
= gL (p)

2
+ gR (p)

2
= 1 . (4.2.29)

Using the ladder operators the Hamiltonian becomes diagonal,

H(2) =

ˆ
dp
∑
X
ωX a†X (p)aX (p) , (4.2.30)

where X denotes all types of particles. The dispersion relation reads

ωX =
√
µ2 + 2µqp+ p2 , µ=


−1 for X ∈ {Z,Y, ζ,η} ,
+1 for X ∈ {Z̄, Ȳ, ζ̄, η̄} ,
0 for X ∈ {Xȧa,χa

+,χ
a
−} .

(4.2.31)

Furthermore, also the worldsheet momentum operator becomes diagonal, with

p=

ˆ
dp
∑
X

pa†X (p)aX (p) . (4.2.32)

4.2.4. Higher order terms and perturbative S matrix. The cubic Hamiltonian vanishes,
H(3) = 0, while the expression for the quartic Hamiltonian H(4), encoding the first non-trivial
interactions, is already too involved to be written down explicitly here. For an integrable theory
it takes the generic form

H(4) = · · ·+
ˆ

dp1dp2T
kl
ij (p1,p2)a

†
k (p1)a

†
l (p2)a

i (p1)a
j (p2)+ . . . (4.2.33)

and allows one to identify the tree level S matrix

S= 1+
i
T
T , T|XiXj〉= Tklij |XkXl〉 . (4.2.34)

With the notation (Z+,Y+, ζ+,η+) = (Z,Y, ζ,η) and (Z−,Y−, ζ−,η−) = (Z̄, Ȳ, ζ̄, η̄) one
finds [131] the following tree-level scattering among massive particles:
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Boson–Boson:

T|Z±Z±〉= (−l1 + c) |Z±Z±〉 , T|Z±Z∓〉= (−l2 + c) |Z±Z∓〉− l4|ζ±ζ∓〉− l4|η±η∓〉 ,
T|Y±Y±〉= (+l1 + c) |Y±Y±〉 , T|Y±Y∓〉= (+l2 + c) |Y±Y∓〉+ l4|ζ±ζ∓〉+ l4|η±η∓〉 ,
T|Z±Y±〉= (−l3 + c) |Z±Y±〉+ l5|ζ±η±〉− l5|η±ζ±〉 , T|Z±Y∓〉= (−l3 + c) |Z±Y∓〉 ,
T|Y±Z±〉= (+l3 + c) |Y±Z±〉+ l5|ζ±η±〉− l5|η±ζ±〉 , T|Y±Z∓〉= (+l3 + c) |Y±Z∓〉 ,

(4.2.35)

Fermion–Fermion:

T|ζ±ζ±〉= c|ζ±ζ±〉 , T|ζ±ζ∓〉=−l4|Z±Z∓〉+ l4|Y±Y∓〉 ,
T|η±η±〉= c|η±η±〉 , T|η±η∓〉=−l4|Z±Z∓〉+ l4|Y±Y∓〉 ,
T|ζ±η±〉=+l5|Z±Y±〉+ l5|Y±Z±〉 , T|ζ±η∓〉= c|ζ±η∓〉 ,
T|η±ζ±〉=−l5|Z±Y±〉− l5|Y±Z±〉 , T|η±ζ∓〉= c|η±ζ∓〉 ,

(4.2.36)

Boson–Fermion:

T|Y±ζ±〉= (l6 + c) |Y±ζ±〉− l5|ζ±Y±〉 , T|Y±ζ∓〉= (l7 + c) |Y±ζ∓〉+ l4|η±Z∓〉,
T|ζ±Y±〉= (l8 + c) |ζ±Y±〉− l5|Y±ζ±〉 , T|ζ±Y∓〉= (l9 + c) |ζ±Y∓〉− l4|Z±η∓〉,
T|Y±η±〉= (l6 + c) |Y±η±〉− l5|η±Y±〉 , T|Y±η∓〉= (l7 + c) |Y±η∓〉− l4|ζ±Z∓〉,
T|η±Y±〉= (l8 + c) |η±Y±〉− l5|Y±η±〉 , T|η±Y∓〉= (l9 + c) |η±Y∓〉+ l4|Z±η∓〉,
T|Z±ζ±〉= (−l6 + c) |Z±ζ±〉+ l5|ζ±Z±〉 , T|Z±ζ∓〉= (−l7 + c) |Z±ζ∓〉+ l4|η±Y∓〉,
T|ζ±Z±〉= (−l8 + c) |ζ±Z±〉+ l5|Z±ζ±〉 , T|ζ±Z∓〉= (−l9 + c) |ζ±Z∓〉− l4|Y±η∓〉,
T|Z±η±〉= (−l6 + c) |Z±η±〉+ l5|η±Z±〉 , T|Z±η∓〉= (−l7 + c) |Z±η∓〉− l4|ζ±Y∓〉,
T|η±Z±〉= (−l8 + c) |η±Z±〉+ l5|Z±η±〉 , T|η±Z∓〉= (−l9 + c) |η±Z∓〉+ l4|Y±η∓〉.

(4.2.37)

The coefficients are given by

l1 =
1
2
p1 + p2
p1− p2

(p1ω2 + p2ω1) , l2 =
1
2
p1− p2
p1 + p2

(p1ω2 + p2ω1) , l3 =−
1
2
(p1ω2 + p2ω1) ,

l4 =−
p1p2

2(p1 + p2)

(√
(ω1 + p1 +µ1)(ω2 + p2 +µ2)−

√
(ω1− p1−µ1)(ω2− p2−µ2)

)
,

l5 =−
p1p2

2(p1− p2)

(√
(ω1 + p1 +µ1)(ω2 + p2 +µ2)+

√
(ω1− p1−µ1)(ω2− p2−µ2)

)
,

l6 =
1
2
(l1 + l3) , l7 =

1
2
(l2 + l3) , l8 =

1
2
(l1− l3) , l9 =

1
2
(l2− l3) ,

(4.2.38)

and

c=−
(
a− 1

2

)
(p1ω2− p2ω1) . (4.2.39)
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Some comments are in order. First of all, in terms of notation we use

|XY〉 ≡ |X (p1)Y (p2)〉 . (4.2.40)

The excitations’ energies ω1 and ω2 should be replaced by the dispersion relation corres-
ponding to the scattered excitations, namely X (with momentum p1) and Y (with momentum
p2). A similar statement holds for µ1 and µ2 which should be replaced according to (4.2.31).
Then, when considering only bosonic fields, the tree-level S-matrix becomes diagonal. This
is specific to the bosonic truncation and to AdS3× S3×T4, a similar calculation for (bosonic)
AdS5× S5 gives non-diagonal elements. Because the starting point for the perturbative cal-
culation was the gauge-fixed theory up to quadratic order in fermions, this perturbative S-
matrix does not capture processes involving four fermions, of the type Fermion+Fermion→
Fermion+Fermion. The classical Yang-Baxter equation,

[T23,T13] + [T23,T12] + [T13,T12] = 0 , (4.2.41)

indicating that the theory is classically integrable, is obeyed up to processes involving four
fermions. Finally, the tree-level S-matrix simplifies in the a= 1

2 gauge, and choosing other
values for a results in a shift of the tree-level S-matrix that is proportional to the identity.
This is a generic statement that is also true at higher-loop order, and comes from the fact that
changing the a-gauge corresponds to performing a so-called TT̄-deformation of the lightcone
gauge-fixed theory. Such a deformation dresses the exact S-matrix (to all loop orders) by a
CDD factor [143]. In principle one could go on and compute higher-loop contributions to S,
but this turns out to be difficult. In the next section we discuss how to find the exact S matrix (to
all-loop order) using the symmetries of the lightcone gauge fixed model, together with some
results from this perturbative calculation.

4.3. Symmetry algebra and representations

We recall that the bosonic isometries of AdS3× S3 are given by so(2,2)⊕ so(4), and that
they decompose into a direct sum sl(2)L⊕ sl(2)R⊕ su(2)L⊕ su(2)R, where we used the ‘left’
and ‘right’ labels L and R to distinguish the two copies of the various algebras. We will call
the Cartan elements of these four algebras LL ≡−(L0)L, LR ≡−(L̇0)R, JL ≡+(J3)L and JR =
+(J̇3)R respectively. Furthermore, the energy and the angular momentum are

E= LL +LR, J= JL + JR. (4.3.1)

The remaining combinations LL−LR and JL− JR have the interpretation of the spin in AdS61

and in the sphere, respectively. In terms of the string NLSM, they correspond to the conserved
charges associated to shifts in ψ and ϕ.

It follows from the relation (4.1.22) that the worldsheet Hamiltonian is

H= (LL +LR)− (JL + JR) . (4.3.2)

61 The two sl(2) algebras are non-compact but when considering their embedding into so(2,2) it turns out that this
particular linear combination is compact and hence the eigenvalues will be quantitised, motivating the interpretation
as a spin.
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From now on we will work in the a= 1/2 gauge. The charge P− which measures the circum-
ference of the worldsheet, see equation (4.1.17), is then given by

P− =
1
2
(LL +LR + JL + JR)≡ R . (4.3.3)

The classical solution which was used to gauge-fix the theory, see (4.1.16), which identifies
the vacuum of the gauge-fixed theory |0〉R for a given size R, does not have any spin in AdS
or in the sphere (it is invariant under shifts of ψ and ϕ). Moreover, the charges under E and J
of the classical solution are precisely equal (in the a= 1/2 gauge). In other words

LL|0〉R = LR|0〉R = JL|0〉R = JR|0〉R =
R
2
|0〉R , (4.3.4)

where to obtain the last equality we have used that

R |0〉R = R |0〉R . (4.3.5)

One can then define two related but not identical symmetry algebras:

1. The algebra of charges which commute with the lightcone Hamiltonian H,
2. The algebra of charges which annihilate the ground state |0〉R.

The first algebra represents the symmetries of the gauge-fixed theory. The second algebra is
important to study the excitations over the vacuum. In fact, if X is any generator of the second
algebra, and |ΨO〉R =O†|0〉R is some excited state of the theory, we have that

X |ΨO〉R = XO† |0〉R =
[
X,O†

]
|0〉R +O†X |0〉R =

[
X,O†

]
|0〉R , (4.3.6)

so that O† itself must transform in a representation of the second algebra.
Notice that the two algebras are different: in particular, R commutes with H (because they

are both a linear combination of Cartan generators), but it does not annihilate the vacuum. As
it turns out, this is the only difference between the two algebras (but it is an important one). In
what follows we will be interested in the decompactification limit R→∞, in which the two
algebras become essentially equivalent.

4.3.1. On-shell symmetry of the lightcone gauge fixed theory. To find the on-shell symmetry
algebra of the lightcone gauge-fixed theory we need to find the generators of the isometry
algebra psu(1,1|2)L⊕ psu(1,1|2)R that commute with the worldsheet HamiltonianH. For this
purpose it is convenient to decompose

H=HL +HR , HL = LL− JL , HR = LR− JR . (4.3.7)

We know that the generators of psu(1,1|2)L commute with the ones of psu(1,1|2)R. So we just
need to focus on one copy, let us say psu(1,1|2)L and ask which generators commute withHL.
The commutation relations of the generators of psu(1,1|2) can be found in (3.1.25).

Obviously, the generators LL and JL commute with HL. On the other hand, it is easy to see
that this cannot be the case for L± and J±. Let us now consider the supercharges. From the
commutation relations[

LL,Q±αA
]
=∓Q±αA ,

[
JL,Q±αA

]
=±Q±αA , (4.3.8)
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it follows that all the fermionic generators that have two opposite first two indiceswill commute
with HL. We denote those with

QL
1 =+Q−+2 , QL

2 =−Q−+1 , SL1 =+Q+−1 , SL2 =+Q+−2 . (4.3.9)

The commutation relations for these generators read{
QL

A,SLB
}
= δABHL . (4.3.10)

Furthermore, we also inherit the reality conditions

H†
L =HL ,

(
QL

A
)†

= SLA , (SLA)
†
=QL

A , (4.3.11)

which imposes the following BPS bound on the algebra

HL ⩾ 0 . (4.3.12)

Exercise 4.4. Show that we have this BPS bound.

The discussion in the ‘right’ sector goes through the same way. We define the generators

QR1 =+Q̄−+̇1 , QR2 =+Q̄−+̇2 , SR
1 =−Q̄+−̇2 , SR

2 = Q̄+−̇1 , (4.3.13)

which obey the two decoupled commutation relations{
QRA,SR

B
}
= δBAHR . (4.3.14)

From the reality conditions

H†
R =HR ,

(
QR

A
)†

= SRA , (SRA)
†
=QR

A . (4.3.15)

we deduce another BPS bound

HR ⩾ 0 . (4.3.16)

Then, we also know that all the Cartan elements should commute with H. Those can be an
arbitrary linear combination of left and right generators. In particular, on top of H and R we
also define

M= LL−LR− JL + JR , B= LL−LR + JL− JR , (4.3.17)

which also commute with H. Notice that while the fermionic charges appearing in (4.3.10)
and (4.3.14) commute with H and M, this is not the case for R and B. In fact we have

[
R,QL

A
]
=+

1
2
QL

A , [R,SLA] =−
1
2
SLA ,

[R,QRA] = +
1
2
QRA ,

[
R,SR

A
]
=−1

2
SR

A ,

(4.3.18)
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as well as [
B,QL

A
]
=+QL

A , [B,SLA] =−SLA ,

[B,QRA] =−QRA ,
[
B,SR

A
]
=+SR

A ,
(4.3.19)

so that both R and B define automorphisms of the symmetry algebra.
Finally, all the generators of su(2)•⊕ su(2)◦ are preserved by the lightcone gauge fixing.

The fermionic generators SLa,QRa and SL
a,QR

a transform respectively in the fundamental and
anti-fundamental representations of su(2)•, for instance[

(J•)a
b,SLc

]
= δbcSLa−

1
2
δbaSLc ,

[
(J•)a

b,QL
c
]
=−δcaQL

b +
1
2
δbaQL

c , (4.3.20)

while all the generators commute with su(2)◦.

Exercise 4.5. Find the algebra of charges which annihilate the ground state |0〉r. You
should find the same algebra, but without R.

4.3.2. Off-shell symmetry algebra. The vacuum is a physical state (it carries zero
momentum). This is why the algebra we find is a subalgebra of the original psu(1,1|2)L⊕
psu(1,1|2)R isometry algebra. To construct the S matrix, we want to relax this level-matching
condition, so that we can also scatter particles that are off-shell. Why do we want this? Let us
consider the scattering of three particles with respective momenta p1,p2,p3. The initial state
should be physical, so that we impose the level matching condition p1 + p2 + p3 = 0 (assuming
no winding). Then, from integrability we know that this factorises into a sequence of 2→ 2
scattering events, and the thing we are computing is really this two-body S matrix. Such an
S matrix will have, for instance, incoming particles with momenta p1 and p2, while p3 is left
alone. But we do not have the level matching condition when restricting to particles 1 and 2
only, in general we have p1 + p2 6= 0. Therefore, while for the n→ n scattering event the in
and out states are physical, this is not the case for the individual 2→ 2 scattering events.

The algebra constructed in the previous section will get modified when considering excit-
ations above the vacuum that do not satisfy the level-matching condition. An algebra is quite
a rigid object and there are not many ways in which it can be deformed to accommodate for
a non-vanishing p 6= 0. Guided from a perturbative calculation, one finds that the symmetry
algebra gets extended by two central elements coupling the left and right sectors,{

QL
A,SLB

}
=

1
2
δAB (H+M) ,

{
QRA,SR

B
}
=

1
2
δBA (H−M) , (4.3.21){

QL
A,QRB

}
= δABC ,

{
SLA,SR

B
}
= δBAC̄ . (4.3.22)

Moreover, we have the reality conditions(
QL

A
)†

= SLA , (QRA)
†
= SR

A , H⩾ 0 , C† = C̄ , (4.3.23)

where the last two relations are a consequence of the reality conditions imposed on the fermi-
onic generators (the first two equations). Equations (4.3.21) and (4.3.22) are the commutation
relations of the algebra

A= (su(1|1)
L
⊕ su(1|1)

R
)
⊕2
c.e. , (4.3.24)
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where c.e. stands for ‘central extension’. The newly introduced generator C and its hermitian
conjugateC† indeed commute with all the other generators of the algebra and is hence central.
For completeness, let us note that

[B,C] = 0 ,
[
B,C†

]
= 0 , (4.3.25)

while

[R,C] = +C ,
[
R,C†

]
=−C† . (4.3.26)

From these last two equations we see that, had we also includedR in the algebra, thenCwould
no longer have been central.

The commutation relations (4.3.21) are the same both on-shell and off-shell. The commut-
ators of (4.3.22) however are not. In fact, from a perturbative calculation one can argue that
it must be (while this result comes from a perturbative calculation, it can be argued that these
expression should be valid to all loop order)

M= µ+
k
2π

p , C=
ih
2

(
eip− 1

)
, C† =− ih

2

(
e−ip− 1

)
, (4.3.27)

with p the worldsheet momentum operator, k ∈ N the WZ level and h⩾ 0 is related to the
amount of RR flux (there is a non-trivial relation between h, the tension T appearing in the
classical action and the WZ level). Finally,

µ ∈ Z , (4.3.28)

is a free parameter characterising different representations. It is then easy to see that C and C†

are only present off-shell. On a physical state we have

p|phys〉= 2πm|phys〉 , M|phys〉= (µ+ km) |phys〉 , C|phys〉= C†|phys〉= 0 .
(4.3.29)

Exercise 4.6. Show that we indeed have µ ∈ Z.

4.3.3. One-particle representations. The algebra A has two types of representations: long
representations, which are sixteen-dimensional, and short representations, which are four-
dimensional. From a perturbative calculation we observe that the transverse excitations trans-
form in short representations (they arrange themselves into four-dimensional spaces that share
the same value of µ), obeying the shortening condition

H2 =M2 + 4C†C . (4.3.30)

Since we do not expect the dimensionality of the representations to change when going to
all-loop order, we will always consider particles transforming in short representations. Using
the explicit expression for the central elementsM and C in (4.3.27), together with the fact that
H⩾ 0 to choose the branch of the square root, we deduce that it must be

H=

√(
µ+

k
2π

p

)2

+ 4h2 sin2
(p
2

)
. (4.3.31)
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This is the all-loop dispersion relation. It is non-relativistic and shares some similarities with
a lattice-like dispersion relation.

How canwemake the link with the dispersion relation found in the perturbative calculation?
First, we need to know that to leading order we have that T∼ h. Then, recall that in the per-
turbative calculation we rescaled the coordinate σ→ σ/T. The worldsheet momentum being
associated with shifts in σ, to make the link with the perturbative calculation we need to res-
cale p→ p/T∼ p/h. We then take the large tension limit h→∞. In doing so, the Hamiltonian
becomes

H(2) =
√
µ2 + 2µqp+ p2 , (4.3.32)

where the amount of NSNS flux q= k
2πT . This is precisely what was found at quadratic order.

From this we also deduce that |µ| has the natural interpretation of a mass. In fact this allows
us to identify the following representations:

4.3.3.1. Left representation. The states |ZL(p)〉, |YL(p)〉, |Ψ1
L(p)〉, |Ψ2

L(p)〉 are characterised
by µ=+1. They fall into a four-dimensional irreducible representation of the symmetry
algebra that we shall call ‘left’ and denote with ϱL. The name ‘left’ comes from the fact that for
p= 0 we haveM= 1 andH= 1 and henceHR ≡H−M= 0. Using the commutation relation
it follows that the supercharges act as (we only report the non-vanishing elements)

(QL)
A |YL (p)〉 =aL (p) |ΨA

L (p)〉 , (QL)
A |ΨB

L (p)〉 =εABaL (p) |ZL (p)〉 ,
(SL)A |Ψ

B
L (p)〉 =δA

B a∗L (p) |YL (p)〉 , (SL)A |ZL (p)〉 =− εAB a∗L (p) |ΨB
L (p)〉 ,

(SR)
A |YL (p)〉 =b∗L (p) |ΨA

L (p)〉 , (SR)
A |ΨB

L (p)〉 =εABb∗L (p) |ZL (p)〉 ,
(QR)A|ΨB

L (p)〉 =δA
B bL(p) |YL(p)〉 , (QR)A|ZL(p)〉 =− εAB bL(p) |ΨB

L (p)〉 .
(4.3.33)

In our convention ε12 =−ε12 =+1. Moreover, |Ψ1
L〉 and |Ψ2

L〉 transform as a doublet under
su(2)•, while all states are neutral under su(2)◦. This can be schematically summarised as
(we only mention the lowering operators for readability)

Exercise 4.7. Convince yourself that the representation is indeed of the form (4.3.33).

The free functions aL(p) and bL(p) are the representation parameters. From the commutation
relations (4.3.21) and (4.3.22) it follows that

H= |aL (p) |2 + |bL (p) |2 , M= |aL (p) |2− |bL (p) |2 , C= aL (p)bL (p) , (4.3.35)
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and hence the shortening condition is automatically satisfied. On the other hand, using (4.3.27)
it must be that

H=

√(
1+

k
2π

)2

+ 4h2 sin2
(p
2

)
, M= 1+

k
2π

p , C=
ih
2

(
eip− 1

)
. (4.3.36)

This gives two equations on aL(p) and bL(p) (one equation is automatically satisfied due to the
shortening condition), and hence the representation parameters are completely fixed.

Note that comparision with the perturbative calculation motivates the identification

|ZL (p)〉= |Z̄(p)〉 , |YL (p)〉= |Ȳ(p)〉 , |Ψ1
L (p)〉= |ζ̄ (p)〉 , |Ψ2

L (p)〉= |η̄ (p)〉 . (4.3.37)

4.3.3.2. Right representation. Then, the states |ZR(p)〉, |YR(p)〉, |Ψ1
R(p)〉, |Ψ2

R(p)〉 have µ=
−1 and fall into another four-dimensional irreducible representation of the symmetry algebra
that we will call ‘right’ and denote by ϱR. The name ‘right’ comes from the fact that for p= 0
we have M=−1 and H=+1 and hence HL ≡H+M= 0. The supercharges act as

(QL)
A |ZR (p)〉 =bR (p) |ΨA

R (p)〉 , (QL)
A |ΨB

R (p)〉 =− εABbR (p) |YR (p)〉 ,
(SL)A |Ψ

B
R (p)〉 =δA

B b∗R (p) |ZR (p)〉 , (SL)A |YR (p)〉 =εAB b
∗
R (p) |ΨB

R (p)〉 ,

(SR)
A |YR (p)〉 =a∗R (p) |ΨA

R (p)〉 , (SR)
A |ΨB

R (p)〉 =− εABa∗R (p) |ZR (p)〉 ,
(QR)A|ΨB

R (p)〉 =δA
B aR(p) |YR(p)〉 , (QR)A|ZR(p)〉 =εAB aR(p) |ΨB

R (p)〉 .
(4.3.38)

Again, |Ψ1
R〉 and |Ψ2

R〉 transform as a doublet under su(2)•, while all states are neutral under
su(2)◦. The representation takes the schematic form

The representation parameters obey

H= |aR (p) |2 + |bR (p) |2 , M=−|aR (p) |2 + |bR (p) |2 , C= aR (p)bR (p) . (4.3.40)

The are fixed by requiring that

H=

√(
−1+ k

2π

)2

+ 4h2 sin2
(p
2

)
, M=−1+ k

2π
p , C=

ih
2

(
eip− 1

)
.

(4.3.41)
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To make the link with the perturbative calculation one needs to make the identification

|ZR (p)〉= |Z(p)〉 , |YR (p)〉= |Y(p)〉 , |Ψ1
R (p)〉= |ζ (p)〉 , |Ψ2

R (p)〉= |η (p)〉 . (4.3.42)

4.3.3.3. Left-right symmetry. Looking at the two above diagrams it immediately follows that
there is a discrete left-right symmetry when swapping the particles

|YL〉 ↔ |YR〉 , |ΨA
L 〉 ↔ |ΨA

R 〉 , |ZL〉 ↔ |ZR〉 . (4.3.43)

4.3.3.4. Massless representations. Finally, the bosons Tȧa and fermions χȧ, χ̄ȧ have µ= 0.
These arrange themselves into two four-dimensional irreducible representations, transforming
as a doublet under su(2)◦. The generators act as

(QL)
A |χȦ (p)〉 =ao (p) |TȦA (p)〉 , (QL)

A |TȦB (p)〉 =εABao (p) |χ̃Ȧ (p)〉 ,

(SL)A |T
ȦB (p)〉 =δA

B a∗o (p) |χȦ (p)〉 , (SL)A |χ̃
Ȧ (p)〉 =− εAB a∗o (p) |TȦB (p)〉 ,

(SR)
A |χȦ (p)〉 =b∗o (p) |TȦA (p)〉 , (SR)

A |TȦB (p)〉 =εABb∗o (p) |χ̃Ȧ (p)〉 ,

(QR)A|TȦB(p)〉 =δA
B bo(p) |χȦ(p)〉 , (QR)A|χ̃(p)〉 =− εAB bo(p) |TȦB(p)〉 .

(4.3.44)

This is depicted as

The representation parameters are such that

H= |a◦ (p) |2 + |b◦ (p) |2 , M= |a◦ (p) |2− |b◦ (p) |2 , C= a◦ (p)b◦ (p) . (4.3.46)

Notice that for k= 0 (pure RR case), the dispersion relation becomes periodic in p, with
period 2π, so that we can restrict to the domain −π ⩽ p⩽+π. The massless dispersion rela-
tion then reads

H=
∣∣∣2hsin(p

2

)∣∣∣=


+ 2hsin
(p
2

)
, 0⩽p⩽ π ,

− 2hsin
(p
2

)
, −π ⩽p⩽ 0 .

(4.3.47)

Depending on the momentum we will have two types of massless particles: chiral (positive
momentum, first line above) or anti-chiral (negative momentum, second line above). These
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two different branches are also present in the more general mixed flux case, since for small p
we have that

H∼ |p|

√(
k
2π

)2

+ h2 , p� 1 . (4.3.48)

4.3.3.5. Representation coefficients. The constraints (4.3.35), (4.3.40) and (4.3.46) are best
solved using the Zhukovski variables x+∗ (p) and x−∗ (p) (we introduce a set of Zhukovski vari-
ables for each sector),

x±L,p =
e±i p/2

2h sin
( p
2

) ((1+ k
2πp
)
+

√(
1+ k

2πp
)2

+ 4h2 sin2
( p
2

))
,

x±R,p =
e±i p/2

2h sin
( p
2

) ((1− k
2πp
)
+

√(
1− k

2πp
)2

+ 4h2 sin2
( p
2

))
,

x±o,p =
e±i p/2

2h sin
( p
2

) ((0+ k
2πp
)
+

√(
0+ k

2πp
)2

+ 4h2 sin2
( p
2

))
.

(4.3.49)

These satisfy

x+L,p +
1

x+L,p
− x−L,p−

1

x−L,p
=

2i
(
1+ k

2πp
)

h
,

x+R,p +
1

x+R,p
− x−R,p−

1

x−R,p
=

2i
(
1− k

2πp
)

h
,

x+o,p +
1

x+o,p
− x−o,p−

1

x−o,p
=

2i
(
0+ k

2πp
)

h
,

(4.3.50)

as well as

x+∗,p
x−∗,p

= ei p , x+∗,p−
1

x+∗,p
− x−∗,p +

1

x−∗,p
=

2iH
h

. (4.3.51)

Defining

aL = ηL,p , bL =−
e−i p/2

x−L,p
ηL,p , a∗L = e−ip/2ηL,p , b∗L =− 1

x+L,p
ηL,p ,

bR = ηR,p , aR =−
e−i p/2

x−R,p
ηR,p , b∗R = e−ip/2ηR,p , a∗R =− 1

x+R,p
ηR,p ,

ao = ηo,p , bo =−
e−i p/2

x−o,p
ηo,p , a∗o = e−ip/2ηo,p , b∗o =− 1

x+o,p
ηo,p ,

(4.3.52)

with

η∗,p = eip/4
√

ih
2

(
x−∗,p− x+∗,p

)
, (4.3.53)

all the relations (4.3.35), (4.3.40) and (4.3.46) become satisfied.
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4.3.4. Two particle representations. The Smatrix is an operator S : V(p1,m1)⊗V(p2,m2)→
V(p1,m1)⊗V(p2,m2), which should ‘commute’ (this will be made more precise in the next
section)with the symmetry generators. Hence, we need to understand how the generators act on
a two-particle representation, given by the tensor product of two one-particle representations.
Assume that we have a bosonic generator J acting on a one-particle state as J|Φ〉= |Φ ′〉. Then
a two-particle representation can be constructed using the trivial coproduct,

(trivial) J12 =∆(J) = J⊗ 1+ 1⊗ J , (4.3.54)

so that J12|Φ1Φ2〉= |Φ ′
1Φ2〉+ |Φ1Φ

′
2〉. For fermionic generators Q we need to take into

account the minus sign arising when passing one fermion through the other and the trivial
coproduct reads

(trivial) Q12 =∆(Q) =Q⊗ 1+Σ⊗Q , (4.3.55)

with Σ the diagonal matrix that acts with +1 on bosons and −1 on fermions62. For a generic
fermionic operatorQ we have that ΣQΣ=−Q. However, it turns out that due to the presence
of the central extension, the coproduct needs to be modified. This can be seen looking at the
action of C on a two-particle state. On one hand, we expect that

(trivial) C12|Φ1Φ2〉=
ih
2

(
eiP12 − 1

)
|Φ1Φ2〉=

ih
2

(
ei(p1+p2)− 1

)
|Φ1Φ2〉 , (4.3.56)

because P12 measures the total momentum of the two-particle state. On the other hand, assum-
ing a trivial coproduct of the form (4.3.54) leads to

(trivial) C12|Φ1Φ2〉=
ih
2

((
ei p1 − 1

)
+
(
ei p2 − 1

))
|Φ1Φ2〉 , (4.3.57)

which is not what we want. In order to reproduce the expected result, one needs to add a
braiding factor into the coproduct. One can show that either of the following choices gives the
correct result:

∆(C) = C⊗ 1+U2⊗C , ∆(C) = C⊗U2 + 1⊗C , U= e
i
2 p . (4.3.58)

To have compatibility with the commutation relations, also the coproduct of fermionic
charges need to include the braiding factor U. Using the first choice in the above, we get

∆(H) =H⊗ 1+ 1⊗H ,

∆(Q) =Q⊗ 1+ΣU⊗Q ,

∆(S) = S⊗ 1+ΣU−1⊗S ,

∆(C) = C⊗ 1+U2⊗C ,

∆(U) = U⊗U .

(4.3.59)

The second choice will eventually lead to the same S matrix.

62 The tensor product on the other hand is the standard one. Alternatively, it is possible to redefine the tensor product
so that it picks up a sign when acting on fermions, and not introducing the additional Σ operator.
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Exercise 4.8. A singlet state |1〉 is a two-particle state annihilated by all the generators,
∆(J)|1〉= 0 for all J in A. Find such a singlet state in the massive sector.

4.3.5. Factorisation

4.3.5.1. Of the algebra. WithinA we observe the presence of two copies of the subalgebra

B = [su(1|1)
L
⊕ su(1|1)

R
]c.e. , (4.3.60)

sharing the same central elements63. This algebra has four fermionic generators as well as four
central elements,

{qL,sL}= hL , {qR,sR}= hR , {qL,qR}= c , {sL,sR}= c̄ . (4.3.61)

We construct the generators

HL
1 = hL⊗ 1 , HL

2 = 1⊗hL , C1 = c⊗ 1 , C2 = 1⊗ c ,

HR
1 = hR⊗ 1 , HR

2 = 1⊗hR , C̄
1
= c̄⊗ 1 , C̄

2
= 1⊗ c̄ ,

(4.3.62)

as well as

QL
1 = qL⊗ 1 , SL1 = sL⊗ 1 , QL

2 =Σ⊗qL , SL2 =Σ⊗ sL ,

QR1 = qR⊗ 1 , SR
1 = sR⊗ 1 , QR2 =Σ⊗qR , SR

2 =Σ⊗ sR .
(4.3.63)

The central elements should be the same in the 1 and 2 copies, which imposes

HL
1 =HL

2 =HL , HR
1 =HR

2 =HR , C1 = C2 = C , C̄
1
= C̄

2
= C̄ . (4.3.64)

The generators defined in this way precisely obey the commutation relations (4.3.21)
and (4.3.22).

4.3.5.2. Of the representations. The factorised structure carries over at the level of the rep-
resentation. Short representations of B are two-dimensional and we define the following four
representations

ρL = (ϕB
L|φF

L) , ρR = (ϕF
R|φB

R) , ρo = (ϕB
o |φF

o) , ρ ′
o = (ϕF

o|φB
o ) . (4.3.65)

In our notation the first component is always the highest weight state (denoted by ϕ∗∗) while
the second component is always the lowest weight state (denoted by φ∗

∗). Depending on the
representation, these are bosonic (denoted by the upper index B) or fermionic (denoted by the
upper index F). The representations are all of the same form

63 A similar factorisation happens in the case of AdS5 × S5. There, the symmetry breaking pattern is given by
psu(2,2|4) → A= su(2|2)⊕2

c.e., and hence we can identify B = su(2|2)c.e..
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ρL : qL |ϕB
L〉= aL |φF

L〉, sL |φF
L〉= a∗L |ϕB

L〉, sR |ϕB
L〉= b∗L |φF

L〉, qR |φF
L〉= bL |ϕB

L〉 ,

ρR : qL |ϕF
R〉= aR |φB

R〉, sL |φB
R〉= a∗R |ϕF

R〉, sR |ϕF
R〉= b∗R |φB

R〉, qR |φB
R〉= bR |ϕF

R〉 ,

ρ◦ : qL |ϕB
o 〉= ao |φF

o〉, sL |φF
o〉= a∗o |ϕB

o 〉, sR |ϕB
o 〉= b∗o |φF

o〉, qR |φF
o〉= bo |ϕB

o 〉 ,

ρ ′
◦ : qL |ϕF

o〉= ao |φB
o 〉, sL |φB

o 〉= a∗o |ϕF
o〉, sR |ϕF

o〉= b∗o |φB
o 〉, qR |φB

o 〉= bo |ϕF
o〉 ,
(4.3.66)

with only the value of the representation coefficients differing for each representation. The
representations of A are then constructed from tensor products of representations of B,

ϱL = ρL⊗ ρL , ϱR = ρR⊗ ρR , ϱȧ◦ = (ρ◦⊗ ρ ′
◦)⊕ (ρ ′

◦⊗ ρ◦) . (4.3.67)

In particular we have that

ϱL =
{
YL = ϕB

L ⊗ϕB
L,Ψ

1
L = φF

L⊗ϕB
L,Ψ

2
L = ϕB

L ⊗φF
L, ZL = φF

L⊗φF
L

}
,

ϱR =
{
ZR = ϕF

R⊗ϕF
R,Ψ

1
R = φB

R⊗ϕF
R,Ψ

2
R = ϕF

R⊗φB
R, YR = φB

R⊗φB
R

}
.

(4.3.68)

4.4. The worldsheet S matrix

Now that we have a good understanding of the symmetry algebra of the lightcone gauge fixed
theory as well as the representations in which the excitations transform, we can bootstrap the
worldsheet S matrix. As usual for an integrable theory, a n-body scattering event factorises into
a sequence of two-body scattering events and the crucial building block is therefore the two-
body worldsheet S matrix. The latter should commute with the symmetries of the lightcone
gauge fixed theory,

Pg∆(J)S= S∆(J) , ∀J ∈ A , (4.4.1)

where Pg denotes the graded permutation operator acting e.g. as

Pg|ϕB
pϕ

B
q〉= |ϕB

qϕ
B
p〉 , Pg|ϕB

pϕ
F
q〉= |ϕF

qϕ
B
p〉 , Pg|ϕF

pϕ
B
q〉= |ϕB

qϕ
F
p〉 , Pg|ϕF

pϕ
F
q〉=−|ϕF

qϕ
F
p〉 .

(4.4.2)

Solving these equations will in fact completely fix the S-matrix, up to scalar factors.

4.4.1. Factorised S matrix. First we consider the ‘factorised’ S matrix, which governs the
scattering of two representations of B. Because we have four different short representations
(left, right and two massless), the S matrix naturally arranges into 16 different blocks. Four
blocks belong to the ‘massive’ sector (when both representations scattered are massive, these
are left-left, left-right, right-left and right-right), four blocks belong to the ‘massless’ sec-
tor (when both representations scattered are massless), and the remaining eight blocks are of
mixed mass type. It is important to note that the equation (4.4.1) only fixes the S-matrix up to
a prefactor in each block (so that we are left with 16 different scalar prefactors). Below, when
writing the S-matrix elements, we will choose a particular normalisation in each block.
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4.4.1.1. Left-left scattering. First of all let us consider the case in which both representations
are of the ‘Left’ type. The scattering matrix takes the form

S|ϕB
L,pϕ

B
L,q〉= ALL

pq |ϕB
L,pϕ

B
L,q〉, S|ϕB

L,pφ
F
L,q〉= BLL

pq|ϕB
L,pφ

F
L,q〉+CLL

pq|φF
L,pϕ

B
L,q〉,

S|φF
L,pφ

F
L,q〉= FLL

pq |φF
L,pφ

F
L,q〉, S|φF

L,pϕ
B
L,q〉= DLL

pq|φF
L,pϕ

B
L,q〉+ELL

pq|ϕB
L,pφ

F
L,q〉,

(4.4.3)

with matrix elements

ALL
pq = 1 , BLL

pq = e−
i
2 p
x+L,p− x+L,q
x−L,p− x+L,q

,

CLL
pq = e−

i
2 pe+

i
2 q
x−L,q− x+L,q
x−L,p− x+L,q

ηL,p

ηL,q
, DLL

pq = e+
i
2 q
x−L,p− x−L,q
x−L,p− x+L,q

,

ELL
pq = CLL

pq , FLL
pq = e−

i
2 pe+

i
2 q
x+L,p− x−L,q
x−L,p− x+L,q

.

(4.4.4)

The coefficients are written in terms of the Zhukhovski variables x±L,p and are valid for any
value of the mass µ> 0. In particular, we can scatter particles of the same mass, but also of
different masses, as long as both of them have positive mass. Because the equation (4.4.1) fixes
the S-matrix elements up to an overall factor, it is possible to multiply all the matrix elements
in (4.4.4) by an overall prefactor ΣLL

pq.

4.4.1.2. Right-right scattering. Then, we consider the scattering of two ‘Right’ which takes
the same schematic form,

S|φB
R,pφ

B
R,q〉= ARR

pq |φB
R,pφ

B
R,q〉, S|φB

R,pϕ
F
R,q〉= BRR

pq|φB
R,pϕ

F
R,q〉+CRR

pq|ϕF
R,pφ

B
R,q〉,

S|ϕF
R,pϕ

F
R,q〉= FRR

pq |ϕF
R,pϕ

F
R,q〉, S|ϕF

R,pφ
B
R,q〉= DRR

pq|ϕF
R,pφ

B
R,q〉+ERR

pq|φB
R,pϕ

F
R,q〉.

(4.4.5)

The S-matrix elements simply obtained from the previous ones through replacing ‘Left’ with
‘Right’ Zhukovski variables,

ARR
pq = 1 , BRR

pq = e−
i
2 p
x+R,p− x+R,q
x−R,p− x+R,q

,

CRR
pq = e−

i
2 pe+

i
2 q
x−R,q− x+R,q
x−R,p− x+R,q

ηR,p

ηR,q
, DRR

pq = e+
i
2 q
x−R,p− x−R,q
x−R,p− x+R,q

,

ERR
pq = CRR

pq , FRR
pq = e−

i
2 pe+

i
2 q
x+R,p− x−R,q
x−R,p− x+R,q

.

(4.4.6)

These are fixed up to an overall prefactor ΣRR
pq. Again, the above formuli hold for the scattering

of two representations with arbitrary values of µ< 0.

4.4.1.3. Left-right scattering. Here we have

S|ϕB
L,pφ

B
R,q〉= ALR

pq|ϕB
L,pφ

B
R,q〉+BLR

pq|φF
L,pϕ

F
R,q〉, S|ϕB

L,pϕ
F
R,q〉= CLR

pq |ϕB
L,pϕ

F
R,q〉,

S|φF
L,pϕ

F
R,q〉= ELR

pq|φF
L,pϕ

F
R,q〉+FLR

pq|ϕB
L,pφ

B
R,q〉, S|φF

L,pφ
B
R,q〉= DLR

pq |φF
L,pφ

B
R,q〉,

(4.4.7)
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with

ALR
pq = e−

i
2 p

1− x+L,px
−
R,q

1− x−L,px
−
R,q
, BLR

pq = e−
i
2 pe−

i
2 q

2i
h

ηL,pηR,q

1− x−L,px
−
R,q
,

CLR
pq = 1 , DLR

pq = e−
i
2 pe−

i
2 q

1− x+L,px
+
R,q

1− x−L,px
−
R,q
,

ELR
pq = e−

i
2 q

1− x−L,px
+
R,q

1− x−L,px
−
R,q
, FLR

pq = BLR
pq .

(4.4.8)

4.4.1.4. Right-left scattering. The right-left S matrix reads

S|φB
R,pϕ

B
L,q〉= ARL

pq|φB
R,pϕ

B
L,q〉+BRL

pq|ϕF
R,pφ

F
L,q〉, S|φB

R,pφ
F
L,q〉= CRL

pq |φB
R,pφ

F
L,q〉,

S|ϕF
R,pφ

F
L,q〉= ERL

pq|ϕF
R,pφ

F
L,q〉+FRL

pq|φB
R,pϕ

B
L,q〉, S|ϕF

R,pϕ
B
L,q〉= DRL

pq |ϕF
R,pϕ

B
L,q〉,

(4.4.9)

with

ARL
pq = e+

i
2 q

1− x+R,px
−
L,q

1− x+R,px
+
L,q
, BRL

pq =
2i
h

ηR,pηL,q

1− x+R,px
+
L,q
,

CRL
pq = e+

i
2 pe+

i
2 q

1− x−R,px
−
L,q

1− x+R,px
+
L,q
, DRL

pq = 1 ,

ERL
pq = e+

i
2 p

1− x−R,px
+
L,q

1− x+R,px
+
L,q
, FRL

pq = BRL
pq .

(4.4.10)

4.4.1.5. Massless sector. For the massless S matrix, when both particles are in the ρo rep-
resentation,

S|ϕB
o,pϕ

B
o,q〉= Aoo

pq |ϕB
o,pϕ

B
o,q〉, S|ϕB

o,pφ
F
o,q〉= Boo

pq|ϕB
o,pφ

F
o,q〉+Coo

pq|φF
o,pϕ

B
o,q〉,

S|φF
o,pφ

F
o,q〉= Foo

pq |φF
o,pφ

F
o,q〉, S|φF

o,pϕ
B
o,q〉= Doo

pq|φF
o,pϕ

B
o,q〉+Eoo

pq|ϕB
o,pφ

F
o,q〉.

(4.4.11)

The S-matrix elements are obtained from the left-left S-matrix elements through the m→ 0
limit. This can simply be achieved by replacing x±L by x±o in (4.4.4). When both particles are
in the ρ ′

o representation we have, instead

S|φB
o,pφ

B
o,q〉= Foo

pq |φB
o,pφ

B
o,q〉, S|φB

o,pϕ
F
o,q〉= Doo

pq|φB
o,pϕ

F
o,q〉−Eoo

pq|ϕF
o,pφ

B
o,q〉,

S|ϕF
o,pϕ

F
o,q〉= Aoo

pq |ϕF
o,pϕ

F
o,q〉, S|ϕF

o,pφ
B
o,q〉= Boo

pq|ϕF
o,pφ

B
o,q〉−Coo

pq|φB
o,pϕ

F
o,q〉.

(4.4.12)

Similarly, in the mixed case we have

S|ϕB
o,pφ

B
o,q〉= Boo

pq|ϕB
o,pφ

B
o,q〉+Coo

pq|φF
o,pϕ

F
o,q〉, S|ϕB

o,pϕ
F
o,q〉= Aoo

pq |ϕB
o,pϕ

F
o,q〉,

S|φF
o,pϕ

F
o,q〉= Doo

pq|φF
o,pϕ

F
o,q〉+Eoo

pq|ϕB
o,pφ

B
o,q〉, S|φF

o,pφ
B
o,q〉= Foo

pq |φF
o,pφ

B
o,q〉,

(4.4.13)

and finally

S|φB
o,pϕ

B
o,q〉= Doo

pq|φB
o,pϕ

B
o,q〉−Eoo

pq|ϕF
o,pφ

F
o,q〉, S|φB

o,pφ
F
o,q〉= Foo

pq |φB
o,pφ

F
o,q〉,

S|ϕF
o,pφ

F
o,q〉= Boo

pq|ϕF
o,pφ

F
o,q〉−Coo

pq|φB
o,pϕ

B
o,q〉, S|ϕF

o,pϕ
B
o,q〉= Aoo

pq |ϕF
o,pϕ

B
o,q〉.

(4.4.14)

106



J. Phys. A: Math. Theor. 57 (2024) 423001 Topical Review

4.4.1.6. Mixed-mass sector. Finally, in the mixed mass sector we have

S|ϕB
L,pφ

B
o,q〉= BLo

pq|ϕB
o,pφ

B
o,q〉+CLo

pq|φF
o,pϕ

F
o,q〉, S|ϕB

L,pϕ
F
o,q〉= ALo

pq |ϕB
L,pϕ

F
o,q〉,

S|φF
L,pϕ

F
o,q〉= DLo

pq|φF
L,pϕ

F
o,q〉+ELo

pq|ϕB
L,pφ

B
o,q〉, S|φF

L,pφ
B
o,q〉= FLo

pq |φF
L,pφ

B
o,q〉,

(4.4.15)

and

S|φB
o,pϕ

B
L,q〉= DoL

pq|φB
o,pϕ

B
L,q〉−EoL

pq|ϕF
o,pφ

F
L,q〉, S|φB

o,pφ
F
L,q〉= FoL

pq |φB
o,pφ

F
L,q〉,

S|ϕF
o,pφ

F
L,q〉= BoL

pq|ϕF
o,pφ

F
L,q〉−CoL

pq|φB
o,pϕ

B
L,q〉, S|ϕF

o,pϕ
B
L,q〉= AoL

pq |ϕF
o,pϕ

B
L,q〉.

(4.4.16)

as well as

S|φB
R,pφ

B
o,q〉= CRo

pq |φB
R,pφ

B
o,q〉, S|φB

R,pϕ
F
o,q〉= ARo

pq|φB
R,pϕ

F
o,q〉+BRo

pq|ϕF
R,pφ

B
o,q〉,

S|ϕF
R,pϕ

F
o,q〉= DRo

pq|ϕF
R,pϕ

F
o,q〉, S|ϕF

R,pφ
B
o,q〉= ERo

pq|ϕF
R,pφ

B
o,q〉+FRo

pq|φB
R,pϕ

F
o,q〉,

(4.4.17)

and

S|φB
o,pφ

B
R,q〉= DoR

pq |φB
o,pφ

B
R,q〉, S|φB

o,pϕ
F
R,q〉= EoR

pq|φB
o,pϕ

F
R,q〉−FoR

pq|ϕF
o,pφ

B
R,q〉,

S|ϕF
o,pϕ

F
R,q〉= CoR

pq |ϕF
o,pϕ

F
R,q〉, S|ϕF

o,pφ
B
R,q〉= AoR

pq|ϕF
o,pφ

B
R,q〉−BoR

pq|φB
o,pϕ

F
R,q〉.

(4.4.18)

As the notation suggests, the S-matrix elements of the type A⋆opq and Ao⋆
pq with ⋆= L, R are

obtained from A⋆Lpq and AL⋆
pq through the replacement x±L,q→ x±o,q and x±L,p→ x±o,p respectively.

4.4.2. The full S matrix. Having worked out the ‘factorised’ S matrix we can now turn to
the full S matrix. It can be obtained by taking the graded tensor product of two copies of the
B-invariant S matrix constructed above

S∼ S⊗̂Ś , (4.4.19)

which can be defined in terms of the matrix elements by(
M⊗̂Ḿ

)ÍI,JJ́
KḰ,LĹ

= (−1)FḰFL+FJF́IMIJ
KLḾÍ́J

ḰĹ
. (4.4.20)

Notice that we did not use an equality sign in (4.4.19). This is because the symmetries
only fix the S matrix up to 16 functions (one for each 2-particle representation scattered), the
so-called dressing phases. For instance, in the massive sector, there are in principle 4 dressing
phases: σLL when the 2-particle representation scattered is ϱL⊗ ϱL, then σLR when the 2-particle
representation scattered is ϱL⊗ ϱR, and also σRL and σRR.

We do expect some additional discrete symmetries to reduce the number of these dressing
factors. Due to left-right symmetry, we expect that σLL and σRR should be related, and might
be expressed in terms of a single function σ••. Similarly, σRL and σLR should be expressible in
terms of a single function σ̃••. Moreover, also using the fact that the massless modes transform
as a doublet under su(2)◦ we are left with six functions. We shall call these functions σ•• for
the LL and RR dressing phases, σ̃•• for the LR and RL dressing phases, σ◦• for the massless-
L and massless-R phases, σ•◦ for the L-massless and R-massless phases, σ◦◦ if the massless
modes are of the same chirality and finally σ̃◦◦ if the massless modes are of opposite chirality.

It is customary and convenient to normalise the S-matrix blocks so that the dressing factors
themselves have no poles for physical value of the momenta. Such poles may (and in this case,
do) exist, and we highlight them explicitly e.g. in terms of rational expressions in x±, in such a
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way as to make more transparent the bound-state structure of the model. However, how to do
so in detail is only understood in the case of the pure-RR background (or pure-NSNS, which is
however much simpler [26]). The case of mixed-flux backgrounds is apparently more subtle,
see [35, 144]. Hence, for the remainder of this section, let us specialise to the case

RR flux only : x± (p)≡ x±L (p) = x±R (p) . (4.4.21)

This choice has a further advantage: the relation between LL and RR dressing factors is
straightforward—not only they are related, but they are the same function of x±; the same
holds for other phases related by L-R symmetry. We have

S
∣∣YL,pYL,q

〉
= e+i pe−i q x

−
p − x+q
x+p − x−q

1− 1
x−p x+q

1− 1
x+p x−q

(
σ••
pq

)−2 ∣∣YL,pYL,q
〉
,

S
∣∣YL,pZR,q

〉
= e−i p

1− 1
x−p x−q

1− 1
x+p x+q

1− 1
x−p x+q

1− 1
x+p x−q

(
σ̃••
pq

)−2 ∣∣YL,pZR,q
〉
,

S
∣∣ZR,pYL,q

〉
= e+ip

1− 1
x+p x+q

1− 1
x−p x−q

1− 1
x−p x+q

1− 1
x+p x−q

(
σ̃••
pq

)−2 ∣∣ZR,pYL,q
〉
,

S
∣∣ZR,pZR,q

〉
=

x+p − x−q
x−p − x+q

1− 1
x−p x+q

1− 1
x+p x−q

(
σ••
pq

)−2 ∣∣ZR,pZR,q
〉
,

(4.4.22)

S
∣∣YL,pχ

α̇
q

〉
= e+

i
2 pe−i q x−p − xq

1− x+p xq

(
σ•−
pq

)−2 ∣∣YL,pχ
α̇
q

〉
,

S
∣∣ZR,pχ

α̇
q

〉
= e−

i
2 pe−i q 1− x+p xq

x−p − xq

(
σ•−
pq

)−2 ∣∣ZR,pχ
α̇
q

〉
,

S
∣∣χα̇p YL,q

〉
= e+i pe−

i
2 q

1− xpx+q
xp− x−q

(
σ+•
pq

)−2 ∣∣χα̇p YL,q
〉
,

S
∣∣χα̇p ZR,q

〉
= e+i pe+

i
2 q

xp− x−q
1− xpx

+
q

(
σ+•
pq

)−2 ∣∣χα̇p ZR,q
〉
,

(4.4.23)

S
∣∣χα̇p χβ̇q 〉= (σ+−

pq

)−2 ∣∣χα̇p χβ̇q 〉 . (4.4.24)

We use the shorthand notation σpq ≡ σ(p,q), which can be decorated by bullets and circles
depending on the precise dressing phase we are considering. For the mixed mass and massless
scattering events we have chosen a chirality of the massless particles by imposing that 0⩽ p⩽
π and −π ⩽ q⩽ 0. In the dressing phases this is denoted with a + for chiral and − for anti-
chiral massless particles. Looking at the last line, the reader might be baffled by the lack of an

su(2)-invariant tensor structure which rotates the dotted indices, of the form Rα̇β̇
γ̇δ̇

(p,q). In fact,
such a factor would be allowed by symmetries and integrability. It is however apparently ruled
out by the comparison with perturbative computations which, along with crossing symmetry,
would make it non-perturbative [104].
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4.4.2.1. Properties. The S matrix satisfies the quantum Yang-Baxter equation

S12 (p1,p2)S13 (p1,p3)S23 (p2,p3) = S23 (p2,p3)S13 (p1,p3)S12 (p1,p2) . (4.4.25)

The two arguments in the brackets are the two momenta of the particles scattered. The two
indices of the S matrix on the other hand denote the spaces in the tensor product on which
the S matrix acts. This equation is the hallmark of an integrable model. It is necessary to have
consistent factorisation: the two expressions on the left and right hand sides of the equality
sign are the two ways in which the 3→ 3 scattering event can be decomposed into a product
of 2→ 2 scattering events, and consistency requires both decompositions to give the same
result. This equation is satisfied no matter what the dressing phases are, since they appear as
the same scalar factor on both sides of the above equation. Other desirable properties of the
S matrix will however constrain the dressing phases. In particular, the S matrix also needs to
satisfy braiding unitarity

S12 (p,q)S21 (q,p) = 1 , (4.4.26)

as well as physical unitarity,

S12 (p,q)(S12 (p,q))
†
= 1 , p,q ∈ R . (4.4.27)

This imposes some constraints on the scalar factors, namely

σ••
qp =

(
σ••
pq

)∗
=

1
σ••
pq
, σ̃••

qp =
(
σ̃••
pq

)∗
=

1
σ̃••
pq
, σ◦◦

qp =
(
σ◦◦
pq

)∗
=

1
σ◦◦
pq
,

σ•◦
qp =

(
σ◦•
pq

)∗
=

1
σ◦•
pq
, σ◦•

qp =
(
σ•◦
qp

)∗
=

1
σ•◦
pq
.

(4.4.28)

What do we deduce from these relations? First of all, from the first line it follows that the
dressing factors in the massive and massless sectors can be written as exponentials of anti-
symmetric functions in the momenta, and for real momenta the dressing phases take values in
the unit circle. The second line tells us that the two dressing phases in the mixed mass sector
(massive-massless and massless-massive) are coupled to each other. Therefore we only have
four independent dressing phases σ••, σ̃••, σ◦◦ and, for instance, σ•◦. More constraints can
be imposed on the dressing phases assuming crossing symmetry. Let us see this in the next
section.

4.4.3. Crossing equations for the dressing factors. The shortening condition (4.3.30)
involves the square of the Hamiltonian and hence there exist two branches for the dispersion
relation. The H> 0 branch is related to unitary representations. Indeed, recall that the BPS
bound H⩾ 0 was inferred using the reality condition on the fermionic generators Q and S.
On the other hand, the H< 0 branch is related to anti-unitary representations, to which we can
associate anti-particles. One can go from one representation to the other by using the antipode
map. This is a map S :A→A that acts on the algebra by changing the sign of the Hamiltonian
and angular momentum

S(H) =−H , S(M) =−M . (4.4.29)
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For the raising and lowering operators, because of the central extension, on top of changing
the sign we also need to add the braiding factor U= eip,

S
(
QL

A
)
=−U−1QL

A , S(QRA) =−U−1QRA ,

S(SLA) =−U+1SLA , S
(
SR

A
)
=−U+1SR

A.
(4.4.30)

Consistency with the commutation relation implies that

S(C) =−U2C=−eipC . (4.4.31)

On the momentum we have S(p) =−p. For the su(2) generators we have simply

S
(
J•Ȧ

Ḃ
)
=−J•Ḃ

Ȧ , S
(
J◦AB

)
=−J◦BA . (4.4.32)

The antipode map can be used to define the charge conjugation matrix at the level of the
representations,

S(J)∼= C−1J̄stC , (4.4.33)

where the supertransposition is defined on a matrix realisation as Mst
jk = (−1)(Fj+1)FkMkj.

Solving the above equation for all the generators of the algebra then gives both the explicit
expression of the charge conjugation matrix and the antipode representation parameters (that
we denote with a bar). In the massive sectors, the charge conjugation matrix exchanges left
and right particles. Moreover, it exchanges highest and lowest weight under su(2)•. It takes
the form

C|Y〉= |Ȳ〉 , C|Ψ1〉=−i |Ψ̄2〉 , C|Ψ2〉=+i |Ψ̄1〉 , C|Z〉= |Z̄〉 ,
C|Ȳ〉= |Y〉 , C|Ψ̄1〉=+i |Ψ2〉 , C|Ψ̄2〉=−i |Ψ1〉 , C|Z̄〉= |Z〉 .

(4.4.34)

On the massless bosons it acts as

C|T11〉= |T22〉 , C|T12〉=−|T21〉 , C|T21〉=−|T12〉 , C|T22〉= |T11〉 . (4.4.35)

For the massless fermions we have that

C|χ̄1〉=−i c(p) |χ2〉 , C|χ1〉=+i c(p) |χ̄2〉 ,
C|χ̄2〉=+i c(p) |χ1〉 , C|χ2〉=−i c(p) |χ̄1〉 ,

(4.4.36)

where c(p) = aL(p)
bR(p)

. For the antipode representation parameters, there is a simple transforma-
tion of the Zhukovski variables, which is actually easy to write in the general mixed-flux case

x±L → x̄±L =
1

x±R
, x±R → x̄±R =

1

x±R
, x±◦ → x̄±◦ =

1

x±◦
. (4.4.37)

Notice that ¯̄x±L = x±L and ¯̄x±R = x±R , so that crossing twice gives back the same expression.
The quantities ηL and ηR involve a square root and are hence not meromorphic functions on
the complex plane. As a consequence, we need to resolve some ambiguity when doing the
crossing. One choice is such that

η̄L =
i

x+R
ηR , η̄R =

i

x+L
ηL . (4.4.38)
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In the context of relativistic quantum field theories (QFTs), the crossing equation is a con-
straint arising from requiring that a given scattering process involving particles of momenta pj
can equivalently be seen as a scattering process with corresponding anti-particles of momenta
−pj. Here we assume that a similar constraint should hold for non-relativistic theories. The
crossing equations read(

C−1⊗ 1
)
Sst1 (x̄1,x2)(C ⊗ 1)S(x1,x2) = 1⊗ 1 ,(

1⊗C−1
)
Sst2 (x1, x̄2)(1⊗C)S(x1,x2) = 1⊗ 1 ,

(4.4.39)

where stn denotes the supertranspose in the nth factor of the tensor product. From the S matrix
structure it follows that the left hand side is automatically proportional to the identity, and one
is left with equations for the dressing factors.

Let us now specialise the form of these equations to the pure-RR dressing factors discussed
above. We have

(
σ•• (x±1 ,x±2 ))2 (σ̃•• (x̄±1 ,x±2 ))2 = (x−2

x+2

)2 (
x−1 − x+2

)2(
x−1 − x−2

)(
x+1 − x+2

) 1− 1
x−1 x+2

1− 1
x+1 x−2

,

(
σ•• (x̄±1 ,x±2 ))2 (σ̃•• (x±1 ,x±2 ))2 = (x−2

x+2

)2
(
1− 1

x+1 x+2

)(
1− 1

x−1 x−2

)
(
1− 1

x+1 x−2

)2

x−1 − x+2
x+1 − x−2

,

(4.4.40)

for the massive sector,

(
σ•◦ (x±1 ,x2))2 (σ•◦ (x̄±1 ,x2))2 = 1

(x2)
4

f
(
x+1 ,x2

)
f
(
x−1 ,x2

) ,
(
σ◦• (x1,x±2 ))2 (σ◦• (x̄1,x±2 ))2 = f

(
x1,x

+
2

)
f
(
x1,x

−
2

) , (4.4.41)

for the mixed-mass sector and

(σ◦◦ (x1,x2))
2
(σ◦◦ (x̄1,x2))

2
=− f(x1,x2)

2
,

(σ̃◦◦ (x1,x2))
2
(σ̃◦◦ (x̄1,x2))

2
=− f(x1,x2)

2
,

(4.4.42)

for the massless sector. The function f(x,y) = i 1−xy
x−y .

Exercise 4.9. Rederive the crossing equations by requiring that the S matrix acts trivi-
ally on the singlet state.

Solving these equations is far from straightforward. Even if we have determined that ¯̄x=x±,
it is easy to check that it must be

σ•• (¯̄x±1 ,x±2 ) 6= σ•• (x±1 ,x±2 ) , (4.4.43)

and similarly for the other dressing factors. In other words, the dressing factors must have
cuts on the x± planes64. It is crucial to identify a physical region on the x± plane, and make

64 This statement is reminiscent of the fact that, for relativistic models withH= mcoshθ and p= m sinhθ, the matrix
part of the S-matrix is 2π i-periodic, but the dressing factor is not.
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suitable assumptions on the on the analytic continuation to the ‘crossed’ region as well as to
other regions of the momentum space. This is currently the main challenge for the mixed-flux
case. However, in the pure-RR case, a proposal for the dressing factors has been recently put
forward [145], correcting a previous guess [146]. This proposal is what allowed to construct
and study the mirror model which is crucial to extract the finite-volume spectrum of the model,
as we will see in section 5.

4.5. Summary and concluding remarks

In this section we showed how to compute the perturbative and exact S-matrix describing
the scattering of excitations on the two-dimensional worldsheet of the string. To achieve this
we fixed uniform lightcone gauge so that the worldsheet becomes a cylinder, and took the
decompactification limit to have well-defined scattering states. Applying this procedure to
strings propagating in an AdS3× S3×T4 background we found that the original psu(1,1|2)L⊕
psu(1,1|2)R isometry algebra of the sigma model describing the curved part of the geometry
gets broken to a centrally-extendedA= [su(1|1)L⊕ su(1|1)R]⊕2

c.e algebra upon lightcone gauge
fixing. The excitations then transform in four different representations ofA: two massive rep-
resentations (left and right) and two massless ones (chiral and anti-chiral). Requiring that the
scattering respects the symmetry algebra A then fixes the S-matrix up to the dressing phases.

Finding the exact S-matrix is an important step to solve the spectrum of an integrable model.
In section 5 we will see how to compute physical quantities through a technique called the
thermodynamic Bethe ansatz (TBA). Before that, let us take stock of the state of the art and
outline some open problems.

4.5.1. Pure RR backgrounds. The case of RR backgrounds is the best understood. In that
case, the integrability construction of the S-matrix was initiated in [33, 147] and completed
in [104, 148] up to the dressing factors. The latter have been recently proposed in [145]. The
complete control over the S-matrix allowed to derive the equations which describe the spec-
trum, and to quantitatively investigate the dimensions of string states in the k= 0,h� 1 regime
(where supergravity or semiclassical techniques cannot be used). It is worth noting that cur-
rently there is no other worldsheet approach to tackle this corner of the parameter space. Little
is known about the dual theory; a proposal was given in [149], but it is not clear if it matches
with the worldsheet integrability description.

4.5.2. Pure NSNS and relation to TT̄ deformations. From the mixed-flux S-matrix it is form-
ally easy to obtain the pure RR S-matrix by sending k→ 0, at least in the matrix part65. The
pure NSNS limit, when the amount of RR flux h→ 0 is however not as straightforward. This
is because in that limit the dispersion relation becomes chiral — i.e. particles move at the
‘speed of light’±k/(2π). Taking the limit in the S-matrix then correctly describes the head-on
scattering processes (when the two particles move in opposite direction), but it also gives a
non-trivial result for the collinear scattering events (when the two particles move in the same
direction). The latter should not be present in a correct analysis. The S-matrix for strings in
pure NSNS background is in fact given by a simple CDD factor [28]. This simple structure
takes its origin from the fact that in the pure NSNS case the worldsheet Hamiltonian in uniform
lightcone gauge is given by an integrable TT̄ deformation [31] of a theory of free bosons.

65 The dressing factor might change in a more subtle way, reflecting that in principle only integer values of k are
allowed.
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4.5.3. Mixed-flux backgrounds. In this case, the integrability construction is still incom-
plete. The S matrix was fixed in [34] (building on [131, 150]), up to the dressing factors. The
latter have not yet been fixed, due to the rather intricate kinematics; the crossing equations have
however been solved in a relativistic limit [144]. It is worth noting that, despite these issues,
the integrability approach appears to be the most promising route to understand mixed-flux
backgrounds; at least currently, it is unclear how to use the hybrid approach to compute the
spectrum, even at h� 1. A different approach would be to start from the holographic duals,
and in particular from the perturbed symmetric-product orbifold theory corresponding to k= 1
and h� 1. There have been many efforts in this direction, in particular in [101] (in a spin-
chain language) and in [102] (for the purposes of bootstrapping an S-matrix along the lines
discussed above). The latter idea was recently revisited in [105], where the symmetry algebra
of the deformed symmetric-product orbifold was worked out at first order in conformal per-
turbation theory. As explained in [106], the result for the algebra and representations (as well
as the matrix part of the S matrix which they determine) precisely match with the k= 1,h� 1
expansion of the one from [34].

4.5.4. Other AdS3 spaces. This analysis can also be applied to AdS3× S3× S3× S1. In fact,
historically the investigation of integrability initially focused on this background, both on the
classical [32] and quantum side [33, 151]. The main difference is that the geodesics used for
gauge fixing is at most 1

4 -BPS (see [125] for a discussion of the various gauge-fixings), so
that the residual algebra is only psu(1|1)⊕2

c.e., that is half of that of AdS3× S3×T4 case (in the
language used in this section, it is B and not A). As a result, the short representations are
two-dimensional, and there are eight of them, with dispersion [152]

H(p) =

√(
m+

k
2π

p

)2

+ 4h2 sin2
(p
2

)
, m=±0,±α,±(1−α) ,±1 , (4.5.1)

where the ±0 denotes that there are two representations with m= 0. The parameter α char-
acterises the background—the radii of AdS and of the spheres satisfy 1/(RAdS)

2 = 1/(RS)
2 +

1/(R ′
S)

2, so that α= (RAdS/RS)
2 and 1−α= (R ′

AdS/RS)
2; it is also the parameter that appears

in the superisometry algebra, which is given by two copies of the exceptional Lie superal-
gebra d(2,1;α)L⊕ d(2,1;α)R. To obtain the T4 one formally takes α→ 1 or α→ 0, whereby
the algebra contracts. The matrix part of the S matrix was fixed in [152] from the symmetries,
but currently the dressing factor is not known—due to more complicated mass spectrum, it is
more involved than the T4 case.

4.5.5. Integrable deformations. Strings on AdS3× S3×T4 admit a very rich space of integ-
rable deformations. We have already seen that it is possible to add a WZ term to the action
while preserving integrability, giving rise to a model with mixed RR and NSNS flux. One can
also deform the symmetry algebra into a quantum group UqL(psu(1,1|2))⊕UqR(psu(1,1|2)),
where qL and qR are two real deformation parameters, which results in a theory where strings
are propagating in a deformed AdS3× S3×T4 background. In the pure RR case an exact S-
matrix describing the scattering in the massive sector was conjectured in [153] and matched
with perturbative calculations in [154]. Also in that case it is possible to add a WZ term while
preserving integrability [155]. The tree-level S-matrix for strings propagating in such a three-
parameter deformed background was computed in [156] but the exact S-matrix is yet to be
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found. More recently, an integrable elliptic deformation of the AdS3× S3×T4 string with
three deformation parameters was constructed, and its perturbative S-matrix was obtained to
tree-level (in the bosonic truncation) [157]. The theory was also embedded into supergravity,
but whether the theory remains integrable upon including the RR-fluxes remains an open ques-
tion. The symmetries of the deformed theory have also not been analysed yet, and the exact
S-matrix remains unknown.

5. String spectrum from the Bethe ansatz

The presence of integrability in a given model is a remarkable advantage. It provides mech-
anisms to address problems whose solution would otherwise be very difficult or even unat-
tainable. In sections 2–4 important consequences and simplifications due to this property were
presented in the context of AdS/CFT,more specifically strings in AdS5 andAdS3 backgrounds.

This section continues on this path by focusing on one more aspect of integrability: the
computation of the string spectrum by using the so-called Thermodynamic Bethe ansatz
(TBA) method.

The TBA is a technique to unravel the thermodynamics of integrable quantum theories.
It was first developed [158] to understand the equilibrium thermodynamics of a bosonic sys-
tem with repulsive delta interaction in a one-dimensional periodic box. The generalisation
to 2D integrable relativistic field theories was presented in [159], where the idea of what
is now known as mirror theory was introduced. Although the standard procedure leads to
the computation of only the ground state energy, excited states can be obtained by analytic
continuation [160].

The TBA is an effective procedure to construct the free-energy f of an integrable theory.
For this computation, the information about the density of particles of each type that contribute
to the entropy of the system comes from the Bethe ansatz equations. The relation between the
energy e and the density of particles of each type is then obtained by computing the free energy
stationary ‘points’ (requiring δf = 0). This technique generates a set of coupled nonlinear
integral equations, one equation for each type of particle. In most of the cases this system of
equations is solved numerically. For earlier reviews on the TBA see [161] and the book [162].

In the context of AdS/CFT, the TBA was remarkably successful in the computation of the
spectrum of AdS5×S5 superstring [103, 163–181] (see also the review [22], especially chapter
[182]). Furthermore, the TBA was also computed in the quantum deformed case [183, 184].
In [185], the so-called quantum spectral curve (QSC), consisting of a simplified and com-
pact set of equations, was introduced (for a review see [186]). Recently, a QSC solver was
also constructed [187]. Progress was also done in AdS4×CP3 with the TBA in [188, 189] for
example (for a review see [190]) and the QSC in [191].

Inspired by the success of the TBA in higher dimensional AdS backgrounds, this pro-
gramme has been extended to AdS3/CFT2 [26, 28, 112, 144–146, 192–197]. In particular,
this method was responsible for the computation of the finite-volume (and zero-temperature)
ground state energy in both pure NS-NS [26, 28, 194] and more recently, on pure-RR [145,
195, 197] backgrounds. Regarding the mixed-flux case, the S-matrix of the string model is
understood up to dressing factors [34, 131]. More recently, the complete S-matrix, including
the dressing factors, has been fixed in a special relativistic limit [144]. The mirror S-matrix
is expected to be quite unusual for the mixed-flux model, as it can be seen already at tree-
level [112]. As we will see, the computation of the TBA for the full mixed-flux theory, remains
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an open question. For the pure-RR theory, in addition to the TBA a QSC was proposed by two
different research groups [198–200]. But contrary to AdS5×S5, these were not constructed
from the TBA. They were conjectured using a bootstrap approach. The compatibility of these
QSC proposals with the recently derived TBA remains to be checked.

Before explaining the construction of the TBA for AdS3, we will introduce several basic
concepts and definitions on a simpler model: the XXX Heisenberg spin chain. This will allow
us, when finally presenting the AdS3 case, to focus only on the important differences and new
features, hopefully making the presentation clearer.

The first step on the TBA construction is to have an exact (or asymptotic) Bethe ansatz
(BA). The BA is a technique created with the objective of diagonalise the conserved charges
of an integrable model. In fact, integrable models are characterized by the presence of an
infinite number of hidden symmetries which generate infinitely many commuting conserved
charges Qj

[Qj,Qk] = 0, j,k= 1,2, . . .

The direct diagonalisation of these conserved charges is in principle a complicated task, except
on three situations: when the system has very small volume,when it contains very few particles,
or both. This is true even for systems whose local Hilbert space is very small (like the su(2)
XXX spin-1/2 chain). But the higher the Hilbert space, more difficult the direct diagonalisation
becomes. The BA provides an alternative to perform such a diagonalisation.

The Coordinate Bethe ansatz (CBA) [201], (see also [202] for a review), allows one to
write an exact expression for the energy in integrable models. More ‘advanced’ versions, like
the Algebraic Bethe ansatz (see [203–206], and [196], for reviews applied to standard spin
chains, to the Sine-Gordon and Thirring models, and to AdS3, respectively) provide ways to
diagonalise all the conserved charges and are easier (than the Coordinate one) to apply for
more complicated models.

Independently of the type of BA used, its main advantage is the construction of algebraic
expressions for the eigenvalues in terms of quantities called Bethe roots. The importance of
such explicit formulas lies on the possibility of taking limits, especially to the case where the
number of particles and the size of the system are very large. As we will see, the TBA is
obtained through one of these limits.

The BA is exact in the case of spin chains. For 2D field theories some complications arise,
especially related to the so-called wrapping effects. In the context of AdS/CFT the BA is
usually a good description of the theory only asymptotically. In such case, the BA is called
Asymptotic Bethe ansatz and the Bethe equations are called Bethe–Yang equations [158]. We
expect the details will be clear by the end of this section.

Plan: The remaining of this section will be divided in three main parts. First, in section 5.1 we
explain the main concepts in the TBA, introducing them with the XXX Heisenberg spin chain
as example. Next, in section 5.2 we focus onAdS3/CFT2. In particular, in this part we introduce
the concept of mirror theory and use it to construct the ground-state energy for finite-volume
(and zero temperature) for the case of pure-RR background. Finally, section 5.3 contains a
brief summary of the TBA-related open problems in the context of AdS3/CFT2.

Given that this method involves several technical details, in section 5.1 in addition to explain
the main ideas, we will also try to be as explicit as possible with the calculations including
examples. We also present a summary of the main ideas in section 5.1.8, which the reader can
use to more easily keep track of the steps and the logic involved.
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5.1. TBA for the XXX model

The thermodynamic limit corresponds to consider large volume and large number of particles
while keeping their ratio finite

L→∞, N→∞, L
N
→ fixed. (5.1.1)

In this regime, fluctuations are not large enough to be relevant and therefore thermodynamics
allows the computation of several quantities including the Gibbs free energy and the chemical
potential.

The TBA consists in taking the thermodynamic limit in the Bethe ansatz and will result in
integral equations. This technique plays an important role in computing the string spectrum in
AdS3/CFT2. We now proceed to explain each step of this technique using the XXXHeisenberg
spin chain as example.

5.1.1. The Bethe ansatz. The XXX spin- 12 chain Hamiltonian is given by

H=− J
2

L∑
j=1

(σ⃗j.σ⃗j+1−1j,j+1) , σ⃗L+1 ≡ σ⃗1, σ⃗ = {σx,σy,σz} , (5.1.2)

where σa, a= 1,2,3 are the Pauli matrices66 and 1 is the identity matrix. This Hamiltonian
acts on L copies of C2. In other words, in each site of the chain we can put a spin up or a
spin down. For J> 0 the model is ferromagnetic, so the vacuum has all spins aligned, while
for J< 0 the model is antiferromagnetic, and the vacuum has spins maximally anti-aligned.
Importantly, H has a total su(2) symmetry

[H,Ja] = 0, Ja =
L∑

j=1

σa
j . (5.1.4)

In particular, the Hamiltonian commutes with the Cartan generator J3 of this algebra. As a
consequence, the number of overturned spins is conserved and the model has closed sectors.

• N = 0 : let us assume that the vacuum is the case with all spin-up

|0〉= | ↑↑↑ . . . ↑〉. (5.1.5)

We think of this as a state representing no excitations and write this case as N= 0. The state
|0〉 is itself an eigenstate of the Hamiltonian (with energy H= 0). This sector has size one,
since there is only one such a state.

66 The representation we used is given by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
and σ3 =

(
1 0
0 −1

)
. (5.1.3)
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• N = 1 : the next sector is the one made of 1-particle states. We represent the state with a
spin down in the n1th position as

|n1〉= | ↑↑ .. ↑ ↓︸︷︷︸
n1-th site

↑ . . . ↑〉. (5.1.6)

If we now act on this state with the Hamiltonian, we obtain a combination of 1-particles
states. This sector has size L, since there are L different sites that the flipped spin could
occupy. Using the periodicity of the chain one can show that the eigenstates of H are given
by

|ψp〉=
L∑

n1=1

eipn1 |n1〉 if p satisfies eipL = 1, (5.1.7)

with energy H= J(1− cosp). This is interpreted as a pseudo-particle moving in the chain
with quantised momentum p. Such excitation is usually called a magnon.
• N = 2 : two-particles states, with spins flipped in sites n1 and n2 (with n2 > n1) are repres-

ented by |n1,n2〉. There are L!/[2!(L− 2)!] of these states. When we had only one excitation,
the only thing that a magnon could do was to move in the chain. However, if we have two
magnons, in addition to move, they can also scatter each other. So, in this case the two-
particles eigenstates are written as

|ψp1,p2〉=
∑
n2>n1

(
eip1n1+ip2n2 + S(p1,p2)e

ip1n2+ip2n1
)
|n1,n2〉. (5.1.8)

The corresponding energy and momentum are given by

H= 2J
2∑

k=1

1
u2k + 1

, P=
2∑

k=1

pk, pk =−i log
(
uk + i
uk− i

)
. (5.1.9)

But (5.1.8) and (5.1.9) are only the eigenstates and eigenvalues, respectively, if the so-called
Bethe roots uk satisfy the following equations

eip1LS(u1,u2) = 1, eip2LS(u2,u1) = 1. (5.1.10)

These are called Bethe-equations, with the S-matrix S(u1,u2) given by

S(u1,u2) =
u1− u2− 2i
u1− u2 + 2i

. (5.1.11)

These expressions are found by using the periodicity of the chain and of the wave-functions.
• generic N : by continuing this procedure one finds that for a case with N-excitations, the

energy and momentum are given by

H= 2J
N∑

k=1

1
u2k + 1

, P=
N∑

k=1

pk, pk =−i log
(
uk + i
uk− i

)
, (5.1.12)
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as long as {uk} and {pj} satisfy the Bethe equations

(
uk− i
uk + i

)L

=
N∏
j ̸=k

uk− uj− 2i
uk− uj + 2i

, for k= 1, . . .,N. (5.1.13)

This sector contains L!/[N!(L−N)!] eigenstates.

The procedure above is called Coordinate Bethe ansatz (CBA) [201] and is very effective in
diagonalizing several different integrable Hamiltonians. For more details on the procedure see
[202].

We see in the Bethe equations (5.1.13) a very characteristic feature of integrability: the fact
that the N→ N particles scattering decomposes in a sequence of 2→ 2 particles scatterings.
This property already appeared in this review in section 4.4.2 and as discussed there is directly
related to the Yang-Baxter equation.

5.1.1.1. Values of N. This model has su(2) symmetry and for this reason there is a symmetry
N↔ L−N. As a consequence we do not need to solve the Bethe equations for all N= 1, . . .,L
we can instead solve them only for

N=

{
1, . . ., L2 for even L

1, . . ., L−1
2 for odd L

, (5.1.14)

and we will find all the eigenvalues.

5.1.1.2. On alternatives. The CBA is an effective and intuitive way to think about this prob-
lem. However, there exist alternative methods that, despite having a less intuitive physical
interpretation, are more powerful. In particular, for more complicated spin chains and if we
are interested in not only the Hamiltonian, but also higher conserved charges, the so-called
Algebraic Bethe ansatz is a more suitable (and easier to apply) technique (for reviews see
[203–205]). This involves constructing an object called transfer matrix t(u), which is the gen-
erating function of infinitely many conserved charges

Qi ∝
d(i−1) (log t(u))

dui−1

∣∣∣
u=i
, i = 1,2, . . . (5.1.15)

In this tower of conserved charges, Q1 is the momentum and Q2 corresponds to the
Hamiltonian. The method involves the application of the so-called quantum inverse scattering
method [203, 207, 208]. In particular, one defines certain creation and annihilation operators,
which are used to generate all the states from a (pseudo-) vacuum. The Yang–Baxter equation
is again a fundamental piece in this procedure.

By applying the algebraic Bethe ansatz method we find that the eigenvalues of the transfer
matrix are described by

Λ(u)≡ Λ(u,{u1, . . .,uN}) = (u+ i)L
N∏

j=1

u− uj− 2i
u− uj

+(u− i)L
N∏

j=1

u− uj + 2i
u− uj

, (5.1.16)
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as long as {uk}, known as Bethe roots, satisfy the Bethe equations (5.1.13). In this way, the
eigenvalues of any of the conserved charges (5.1.15) can be obtained by the logarithmic deriv-
ative of Λ(u). The total momentum for a spin chain with N magnons and L sites is given for
example by

P=−i log
(
(2i)−L

Λ(i)
)
=−i

N∑
k=1

log

(
uk + i
uk− i

)
, (5.1.17)

while its energy is

H({uk}) =−iJ
d
du

log(Λ(u))
∣∣∣
u=i

+
JL
2

= 2J
N∑

k=1

1
u2k + 1

. (5.1.18)

Both quantities match with the ones obtained via CBA.

5.1.1.3. On solving the Bethe equations. In order to compute the momentum and the energy
in the XXX model we need to solve the Bethe equations (5.1.13) and then plug the Bethe
roots in equations (5.1.17) and (5.1.18). The Bethe equations are easy to solve numerically for
small number of sites and small number of magnons. For small number of sites most of the
solutions are real, and therefore relatively easy to find. As the number of sites and magnons
increase, however, not only the Bethe equations become more numerous and of higher poly-
nomial degree, but more and more of the Bethe roots are actually complex.

Just to give an idea of how quickly the complex roots become important, it is useful to
define

χN =
# of different eigenvalues with at least two complex Bethe roots for a given N

# of different eigenvalues for a given N
.

(5.1.19)

Using χN we can see in table 1 that the percentage of states described by complex Bethe roots
increases as L and N increase.

Table 1 indicates that, as mentioned before, if the volume of the system grows, but the
number of excitations is kept small, it is still relatively easy to solve (in other words, almost all
roots are still real). But when the number of particles grows, the complexity rapidly increases67.

Therefore, we can expect that for L→∞ and N→∞ a large number of the Bethe roots
will be complex. But for L

N = fixed, this corresponds exactly to the thermodynamic limit and
we need a different strategy to work with such equations.

In the next section, we will see that these complex Bethe roots will arrange themselves in
patterns that make possible the computation of several quantities at this regime. The strategy
involving these patterns is called String Hypothesis and will provide a way to write effective
Bethe equations which will depend on a real ‘rapidity’ u. These patterns will form bound states
and can then be each treated as a particle. To start, we assume L→∞ but no constraints about
N, and only later we approach the fact that N is also infinitely large and L

N is fixed. Please

67 If one just naively tries to solve the Bethe equations directly, one cannot go much further than what is shown in
table 1 for the XXX model. For models whose symmetry is an algebra of higher rank is even more difficult. However,
there are more effective approaches to do this. The fast solver in [209], which is applicable to rational functions and
based on the so-called Baxter Q-functions, and the technique based on algebraic varieties [210] applied to quantum
deformed models, are two examples.
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Table 1. The last column shows for a given L the percentage of states that depend on
complex Bethe roots. Notice that due to the symmetries, it is enough to consider (5.1.14).
These results were obtained by solving the BA and comparing its eigenvalues with the
ones from direct diagonalisation. The column ‘degeneracies’ just shows that this model
indeed has su(2) symmetry. When thinking in the eigenvalues of the transfer matrix,
something like nA(A)⊕ nB(B) just means that we found nA eigenvalues with degeneracy
A and nB eigenvalues with degeneracy B.

L degeneracies N’s χN %

1 2(1) 0 — —

2 1⊕3
0 —

0%
1 0/1

3 2(2)⊕4
0 —

0%
1 0/2

4 2(1)⊕3(3)⊕5
0 —

17%1 0/3
2 1/2

5 5(2)⊕4(4)⊕6
0 —

20%1 0/4
2 2/5

6 5(1)⊕9(3)⊕5(5)⊕7

0 —

35%
1 0/5
2 3/9
3 4/5

7 14(2)⊕14(4)⊕6(6)⊕8

0 —

37%
1 0/6
2 3/14
3 10/14

also notice that the word ‘string’ here does not carry the same meaning as in previous sections
of this review. The name comes from the fact that the roots arrange themselves in towers of
discrete points in the complex plane.

5.1.1.4. On integrable 2D QFTs (IQFTs). Although for spin chains the Bethe ansatz is an
exact procedure, the same is not the case for IQFTs. In the latter we define asymptotic states,
and it is convenient to consider very large systems. We can create in (for t→−∞) and out
(for t→+∞) asymptotic states with arbitrary number of magnons,

|ψp1,p2,...,pN〉in,out, (5.1.20)

by starting with a vaccum |0〉 and acting on it with N creation operators. One can then define
the S-matrix as the operator that maps in states into out states.

As seen in section 4.4.2, the presence of integrability in the theory has dramatic con-
sequences (see also [211] and for reviews in QFT see [137, 212, 213], and in the context
of AdS3 see [36]). Using the points discussed in 4.4.2, together with the periodicity of the
wave-functions in space leads to the so-called Bethe–Yang equations.
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Despite the important differences, the procedure itself is very similar to the exact one and
it is called Asymptotic Bethe ansatz. However, it raises some questions, with one in particular
being the difficulty in describing the spectrum of such a QFT at finite-volume. In fact, this dif-
ficulty motivated the introduction of an important technique in [159], which will be discussed
in section 5.2.

Let us leave this problem for now and return to the discussion of spin chains in order to
introduce the basic concepts of the TBA method. For the Heisenberg spin chain, the TBA was
first performed in [214]. Although in this section we focus on this example, it is important
to notice that several of the ideas explained below are much more generally applicable. In
particular, the discussion on string-configurations can be applied with only small modifications
to models substantially more complicated than the XXX spin chain.

5.1.2. Large L limit and string configurations. We would like to consider the Bethe
equations (5.1.13) in the limit L→∞. Before starting, it is useful to rewrite equation (5.1.13)
using the definition of momentum (5.1.12) such that

ei pkL
N∏
j̸=k

uk− uj− 2i
uk− uj + 2i

= 1 for k= 1, . . .,N. (5.1.21)

We would like to carefully take the infinite-volume limit to avoid divergences. The process
of doing this will lead us to the so-called string-configurations. In order to achieve this, it
is important to notice that although the total momentum and total energy are expected to be
real, the same is not necessarily true for these quantities for an individual fundamental particle.
So, in order to take the limit we will need to systematically study the analytic structure of the
Bethe equations. Additionally, it is important to remember that for many models, the complex
Bethe roots appear in complex conjugate pairs.

We start by checking whether p1 is real or complex. These two choices generate different
outcomes. When p1 is real, the exponential eip1L oscillates, while if p1 is complex the expo-
nential either diverges or goes to zero (depending on the imaginary part of p1). When the
momentum is complex, we will adopt as convention that its imaginary part is always positive.
With this choice, the exponential always vanishes when L→∞.

5.1.2.1. A: p1 ∈ R. For p1 ∈ R, ei p1L in equation (5.1.21) oscillates, and therefore there are no
problems when we take the limit L→∞. What happens is only that as larger the L more and
more solutions will appear (because the degree of the polynomial on u grows as L increases).
Notice that from (5.1.12), real momenta implies real rapidity and vice-versa. For reasons that
become clear soon, let us call this case a 1-string and write u1 = u, with u ∈ R.

5.1.2.2. B: p1 ∈ C with Im(p1) > 0. It is convenient to explicitly write equations (5.1.21) for
k= 1,2 as

ei p1L
u1− u2− 2i
u1− u2 + 2i

N∏
j̸=1,2

u1− uj− 2i
u1− uj + 2i

= 1, (5.1.22)

ei p2L
u2− u1− 2i
u2− u1 + 2i

N∏
j̸=1,2

u2− uj− 2i
u2− uj + 2i

= 1. (5.1.23)
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For L→∞, we have ei p1L→ 0. So, in order for (5.1.22) to be satisfied we need to have
u1− u2 + 2i = 0 as well. This gives

u2 = u1 + 2i. (5.1.24)

By choosing (5.1.24) we avoided all problems in equation (5.1.22). But now we need to
check if we created any problems in equation (5.1.23). In order to do that, let us multiply
equations (5.1.22) and (5.1.23) by each other

ei(p1+p2)L
N∏

j ̸=1,2

(
u1− uj− 2i
u1− uj + 2i

u2− uj− 2i
u2− uj + 2i

)
= 1, (5.1.25)

and then we repeat the steps done for p1, but now for p1 + p2.

5.1.2.3. B.1: (p1 + p2) ∈ R. For this case ei(p1+p2)L oscillates and therefore there are no prob-
lems. The solution can be written as

u1 = u− i and u2 = u+ i, with u ∈ R. (5.1.26)

This solution can be called 2-complexes, a 2-string, or string of length two.

5.1.2.4. B.2: (p1 + p2) ∈ Cwith Im(p1 + p2) > 0. In this situation, we have that ei(p1+p2)L→
0 and therefore we need a pole at u2− u3 + 2i = 0 in order to equation (5.1.25) be satisfied.
Consequently we have another particle now with rapidity

u3 = u2 + 2i. (5.1.27)

We now need to write the equation (5.1.21) for k= 1,2,3,

ei p1L
u1− u2− 2i
u1− u2 + 2i

u1− u3− 2i
u1− u3 + 2i

N∏
j̸=1,2,3

u1− uj− 2i
u1− uj + 2i

= 1, (5.1.28)

ei p2L
u2− u1− 2i
u2− u1 + 2i

u2− u3− 2i
u2− u3 + 2i

N∏
j̸=1,2,3

u2− uj− 2i
u2− uj + 2i

= 1, (5.1.29)

ei p3L
u3− u1− 2i
u3− u1 + 2i

u3− u2− 2i
u3− u2 + 2i

N∏
j̸=1,2,3

u3− uj− 2i
u3− uj + 2i

= 1, (5.1.30)

respectively; and multiply all of them together

ei(p1+p2+p3)L
N∏

j̸=1,2,3

(
u1− uj− 2i
u1− uj + 2i

u2− uj− 2i
u2− uj + 2i

u3− uj− 2i
u3− uj + 2i

)
= 1. (5.1.31)

Next, we check whether the total momentum p1 + p2 + p3 is real or not. If it is real we stop
and have a system with

{u2 = u1 + 2i, u3 = u2 + 2i} . (5.1.32)
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Figure 2. A summary of the string configurations construction when L→∞. In the
figure Y means ‘Yes’ and N means ‘No’ .

Given that we had Im(p1)> 0 (which implies Im(u1)< 0) a natural choice is to write Imu1 =
−2, such that

u1 = u− 2i, u2 = u and u3 = u+ 2i, with u ∈ R. (5.1.33)

This solution can be called 3-complexes.
However, if the total momentum is complex we continue applying the procedure. In this

way we can construct strings of any length. In particular, we obtain

uj+1− uj = 2i, for j = 1, . . .,Q− 1 (5.1.34)

whose solution is a string of length Q given by

uj = u− (Q+ 1− 2j) i, with u ∈ R and j = 1, . . .,Q. (5.1.35)

The u is usually called the center of the string complex.
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Figure 3. Q-strings for Q= 1,2,3,4,5, centred at different values of u ∈ R.

A summary of the construction of the first Q-complexes can be seen in figure 2. We also
plot the first five possible string configurations on figure 3.

Once we find the first Q-string, we can continue the analysis. If the momenta pQ+1 is real,
the exponential ei pQ+1L oscillates as L→∞ and again there are no problems. If it is complex
we continue the analysis like before to find a string of length Q′, now centred in a real value
u′ and given by

uQ+j = u ′− (Q ′ + 1− 2j) i, u ′ ∈ R, j = 1, . . .,Q ′. (5.1.36)

In order to obtain all possible strings, one just keeps applying this procedure, always remem-
bering that each Qk-complexes should in principle be centred in a different real value (named
as u and u′ in our example of Q-string and Q′-string, respectively). In general, when we study
a system with already a− 1 strings (including 1-strings), the Qa-string is obtained by

uqa = ua− (Qa + 1− 2j) i, ua ∈ R, j = 1, . . .,Qa, (5.1.37)

where qa = Q1 +Q2 + . . .+Qa−1.
Notice that this equation and the ones for the energy and momentum are invariant under

swapping any pair {uj1 ,uj2}. Therefore, although we started the analysis by p1, any other start-
ing point would generate the same total energy and momentum.

The discussion on the construction of the string configurations presented above was based
on the one presented in the lecture notes by van Tongeren [161] in 2016.

124



J. Phys. A: Math. Theor. 57 (2024) 423001 Topical Review

Exercise 5.1. Consider the system with

• Im(p1)> 0, (p1 + p2) ∈ R,
• p3 ∈ R,
• and Im(p4)> 0, Im(p4 + p5)> 0, (p4 + p5 + p6) ∈ R.

All the remaining pk are real.

(a) This system has two different stringsQ andQ′. Compute them and tell their length.
(b) If we had instead a system with

• Im(p1)> 0, (p1 + p2) ∈ R,
• and Im(p3)> 0, Im(p3 + p4)> 0, (p3 + p4 + p5) ∈ R.

Would that be fundamentally different from the case with p3 ∈ R above?

Exercise 5.2. Consider a system that has a string of length three and a string of length
four. Assume that pk ∈ R for k> 9. With that in mind, provide two sets of conditions
on pj, for 1⩽ j⩽ 9 that would make that such strings possible. Are these the only
possibilities?

Exercise 5.3. For the Hubbard model [162], the analogous of the Bethe equations for
a state with a spin-up and one spin-down are given by

eip1L =
λ− sinp1− iu
λ− sinp1 + iu

(5.1.38)

eip2L =
λ− sinp2− iu
λ− sinp2 + iu

(5.1.39)

1=
2∏

j=1

λ− sinpj− iu
λ− sinpj + iu

. (5.1.40)

Assuming that

p1 = q− iξ (5.1.41)

with p, ξ ∈ R and ξ > 0, compute the string configuration for L→∞.

It is important to highlight that the complex solutions that arrange themselves in string
configurations are solutions of the system only when L→∞. They are not the same complex
solutions that one finds when solving the Bethe equations for finite L (like when constructing
table 1).

Some of the finite complex solutions behave like

uj = u+ δ0− (Q+ 1− 2j) i+ δ1i, with u ∈ R and j = 1, . . .,Q, (5.1.42)
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i.e. like a string but with extra contributions to both the real and imaginary parts of the Bethe
roots. These contributions decrease as the length of the chain grows, such that

δ0→ 0, δ1→ 0 when L→∞. (5.1.43)

The concepts and discussion presented in this subsection are focused on the XXX spin-1/2
chain. In this model only one type of fundamental particle is present—the magnon. A similar
story happens when we have more excitations’ species. Each different type of particle will
have their own string configuration, and one needs to construct each of them. This will be
exactly the case in AdS3 as we will see in section 5.2.

5.1.3. Bound states. At this point the reader could be wondering what is the interpretation
of the center of string or of the string itself. It happens that each string behaves like a bound
state with rapidity u, i.e. the energy of the string is smaller than the energy of the individual
real magnons.

5.1.3.1. Energy and momentum. In particular, the momentum of a Q-string is given by

pQ (u) =−i log
(
u+ iQ
u− iQ

)
, (5.1.44)

and its energy is

HQ (u) =
2JQ

Q2 + u2
. (5.1.45)

Notice that real momentum p implies real rapidity u, and vice-versa, for any Q ∈ Z.

Exercise 5.4. Given that

pQ (u) =
Q∑

k=1

p(uk) , (5.1.46)

and

HQ (u) =
Q∑

k=1

H(uk) , (5.1.47)

with uk being the rapidity of the Q-string described in equation (5.1.35), check
equations (5.1.44) and (5.1.45) for Q= 2,3,4.

5.1.3.2. Bethe equations for the center of the bound state. We promised above that one can
use the string configurations to write effective Bethe equations. On these equations the center
u behaves as the rapidity of the bound-state formed by the string-complexes. The first step is
to write equations that describe the scattering between a fundamental excitation (magnon) and
a Q-string.
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Let us start by rewriting equation (5.1.21) as

eipkL
N∏
j̸=k

S11 (uk− uj) = 1 where S11 (uk− uj) =
uk− uj− 2i
uk− uj + 2i

, (5.1.48)

and then focus first on a string withQ= 2, i.e. the case with equations (5.1.25) and (5.1.26). In
equation (5.1.48), S11(uk− uj) describes the scattering matrix between particles with rapidities
uk and uj, with j 6= k.

Now, let us substitute the 2-string (5.1.26) in equation (5.1.25). We obtain

ei(p1+p2)L
N∏

j ̸=1,2

u− uj− 3i
u− uj + 3i

u− uj− i
u− uj + i

= 1, (5.1.49)

which can be rewritten as

ei(p1+p2)L
N∏

j ̸=1,2

S12 (uj− u) = 1. (5.1.50)

The S-matrix S12(uj− u) = S21(u− uj) with

S12 (uj− u)S21 (u− uj) = S11 (u1− uj)S
11 (u2− uj) =

u− uj− 3i
u− uj + 3i

u− uj− i
u− uj + i

, (5.1.51)

can be interpreted as the scattering between a particle with rapidity uj and a 2-string with
rapidity u.

Similarly we could do the procedure for the 3-string (5.1.33), by substituting the 3-string
in equation (5.1.31) and we would obtain

ei(p1+p2+p3)L
N∏

j̸=1,2,3

S13 (uj− u) = 1, (5.1.52)

with S13(uj− u) = S31(u− uj) and

S31 (u− uj) = S11 (u1− uj)S
11 (u2− uj)S

11 (u3− uj) =
u− uj− 4i
u− uj + 4i

u− uj− 2i
u− uj + 2i

. (5.1.53)

The S13(u− uj) can be interpreted as describing the scattering between a particle with rapidity
uj and a 3-string with rapidity u.

We could continue this process and we would find

eiL
∑Q

j=1 pj
N∏

j ̸=1,..,Q

S1Q (uj− u) = 1, (5.1.54)

with

SQ1 (u− uj) =
Q∏

a=1

S11 (ua− uj) =
u− uj− (Q+ 1) i
u− uj +(Q+ 1) i

u− uj− (Q− 1) i
u− uj +(Q− 1) i

,

= S1Q (uj− u) .

(5.1.55)
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This idea is very convenient when writing the Bethe equations on the thermodynamic limit,
as will be clear in section (5.1.5).

Exercise 5.5. (a) Check equations (5.1.52) and (5.1.53).
(b) Compute the case with Q= 4 and check that the cancellations indeed happen such

that equation (5.1.55) is satisfied.

For a system with a finite number of magnons, described uniquely by string configurations
(including 1-string’s), and whose number of strings of length Q is given by NQ, it is clear that

∑
Q∈lengths

QNQ = N, (5.1.56)

where ‘lengths’ is a set including the different lengths of the strings. Consider for instance,
a system with N= 16 magnons, distributed in one 1-string, three 2-strings, one 3-string and
one 6-string. This means that we would have lengths= {1,2,3,6} (corresponding to the four
different lengths) and that

Q= 1, N(1) = 1, (5.1.57)

Q= 2, N(2) = 3, (5.1.58)

Q= 3, N(3) = 1, (5.1.59)

Q= 6, N(6) = 1, (5.1.60)

which using (5.1.56) gives N= 16, as expected. We are showing this simple thought now
because when introducing fusion we will have to make a similar assumption. This example is
not realistic because we do not expect for finite N to have a system described only by string
configurations68. Nonetheless, we expect that this example will give the reader the intuition
behind the less-intuitive assumption (5.1.61) soon to be made for N→∞.

5.1.4. String hypothesis. We have seen that for L→∞, the complex solutions arrange them-
selves in patterns called strings. The string hypothesis is the assumption that,for L→∞,
N→∞ and L

N → fixed, all relevant solutions for the computation of the free energy can be
written as string configurations. This is arguably a very good hypothesis when the quantity of
interest is the free energy.

The string hypothesis is focused on the thermodynamics and it is a good approximation
only in that limit. As mentioned above, it works remarkably well to compute the free energy,
but for several other physical quantities the contribution of the Bethe roots that are not arranged
in string configurations becomes important. In our case, the free-energy is exactly the quantity
we are interested in, and therefore we expect that the string hypothesis will provide an accurate
description.

68 Actually, this assumption is not true even for N→∞. But in that case, as we will discuss, it corresponds to an
excellent approximation when the quantity of interest is the free energy.
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5.1.5. Fusion: Bethe equations in the thermodynamic limit. Now we have all the elements to
write the Bethe equations in the thermodynamic limit. First of all let us assume that we are in
the regime where the number of magnons N also goes to infinity and the string hypothesis is
valid. In that case, extending the argument on (5.1.56), one can make the following assumption

∞∑
Q=1

QNQ = N. (5.1.61)

This assumption allows one to write the following expression for the Bethe equations of the
string configurations

eipjL
∞∏
Q=1

NQ∏
b=1

S1Q (uj− ub) = 1, (5.1.62)

where S1Q(uj− ub) is defined as in (5.1.55) and uj satisfies (5.1.35)
In the previous section we used products of S11(uk− uj) to construct S1Q(uj− u) which can

be interpreted as the scattering between a magnon and a string of lengthQ. In the same way we
can construct now an object SQaQb(ua− ub) by products of S1Qb(uk− ub). This object can be
interpreted as describing the scattering between a Qa-string centred on real ua and a Qb-string
with real center ub. With this in mind we can write the following Bethe equations

eip
Qa
a L

∞∏
Qb=1

NQb∏
b̸=a

SQaQb (ua− ub) = 1, (5.1.63)

where ua, ub belong to (5.1.37). Also

SQaQb (ua− ub) =
Qa∏
j=1

S1Qb (uj− ub) (5.1.64)

=

Qa∏
j=1

(
ub− uj− (Qb + 1) i
ub− uj +(Qb + 1) i

ub− uj− (Qb− 1) i
ub− uj +(Qb− 1) i

)

=
ub− ua− (Qb +Qa) i
ub− ua +(Qb +Qa) i

ub− ua− (Qb−Qa) i
ub− ua +(Qb−Qa) i

Qa−1∏
k=1

(
ub− ua +(Qb−Qa + 2k) i
ub− ua− (Qb−Qa + 2k) i

)2

.

(5.1.65)

Exercise 5.6. Assuming (5.1.55) and (5.1.37), compute SQaQb(ua− ub) using
equation (5.1.64) for Qa = 2,3,4 and check that they can be written as in expres-
sion (5.1.65).

5.1.6. Densities and the counting function. We are now almost ready to compute the free
energy. In order to do that, it is important to notice that in the thermodynamic limit we are
working with a large volume and a large number of particles. For this reason, it makes sense
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to think in terms of densities, instead of individual ‘particles’. Additionally, the introduction
of a new quantum number called counting function is very enlightning. Let us now see how
this happens.

By taking the logarithm of equation (5.1.63) we obtain

2π i cQaL+ ipQa (ua)L+ log

 ∞∏
Qb=1

NQb∏
b̸=a

SQaQb (ua− ub)

= 0, (5.1.66)

such that

cQ (u) =−pQ (u)
2π

− 1
2π iL

∞∑
Qb=1

NQb∑
b=1

logSQQb (u− ub) . (5.1.67)

The function cQa is called counting function. In particular LcQa(u)≡ IQa assumes integer values
for specific values of the rapidity and it is thought as a Qa-particle quantum number. One can
imagine, as proposed by Yang-Yang [158], that we can have not only particles, but also gaps
when the particle is not occupying an available slot. These gaps are called holes.

For L→∞ we can have a large number of these particles and holes. So, it makes sense to
work with densities of particles and densities of holes, which can be defined respectively as

ρ(u) =
∆n
L∆u

and ρ̄(u) =
∆n̄
L∆u

, (5.1.68)

where∆n is the number of particles whose rapidity is in an interval∆u and∆n̄ is the number
of holes in that interval. The total density and total number of particles in that rapidity interval
is given by

ρt = ρ+ ρ̄ and ∆nt =∆n+∆n̄. (5.1.69)

Having the definitions of density, we can rewrite the counting function as

cQ (u) =−pQ (u)
2π

− 1
2π i

∞∑
Qb=1

NQb∑
b=1

logSQQb (u− ub)
(ub− ub+1)

L(ub− ub+1)
, (5.1.70)

→−pQ (u)
2π

− 1
2π i

∞∑
Q ′=1

ˆ ∞

−∞
du ′ logSQQ

′
(u− u ′)ρQ

′
(u ′) . (5.1.71)

The function cQ(u) has to be monotonic increasing, but proving that this in fact happens is a
model dependent task and not necessarily straightforward (for a clear discussion on this point
see [161]).

From the discussion above, it is clear that the counting function keeps track of the number
of particles and holes in a given rapidity range such that

L(ρ(u)+ ρ̄(u))du= Ldc(u) ,

⇒ ρ(u)+ ρ̄(u) =
dc(u)
du

. (5.1.72)

This relationwhen used together with (5.1.71) provides a clear relation between themomentum
of the bound-states and their densities. It will play an important role in the next sections.
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5.1.7. The TBA equations and the free-energy

5.1.7.1. Free-energy—the basics. The free energy per site f is given by

f = e−T s, (5.1.73)

where T is the temperature.
In order to compute f we need to determine the energy per site e and the entropy per site

s. These quantities are directly connected with the number of available states and therefore
the density of particles and holes in the model. The entropy is defined as the logarithm of the
available states, i.e. the number of possibilities to distribute∆n particles among∆nt vacancies,
and it is given by

∆S = log

(
∆nt!

∆n!∆n̄!

)
,

= log

(
(L∆uρt (u))!

(L∆uρ(u))! (L∆uρ̄)!

)
,

= log(L∆uρt (u))!− log(L∆uρ(u))!− log(L∆uρ̄(u))!

∼ L∆u(ρt logρt− ρ logρ− ρ̄ log ρ̄) ,

(5.1.74)

where in the last step we used the Stirling formula (logm!∼ m logm−m).
The entropy per site is therefore given by

s=
ˆ ∞

−∞
du(ρt logρt− ρ logρ− ρ̄ log ρ̄) . (5.1.75)

So, in order to compute the free energywe need to learnmore about the densities for our model.
As we have seen in the previous subsection, this is exactly the information coming from the
Bethe equations.

The expression above assumes only one type of excitation, but notice that we are now deal-
ing with bound states generated by string configurations. As a consequence, the entropy will
depend on the density ρQ(u) of such strings-complexes and we have to sum over all possible
values of Q

s=
∞∑
Q=1

ˆ ∞

−∞
du
(
ρQt logρQt − ρQ logρQ− ρ̄Q log ρ̄Q

)
. (5.1.76)

If we have more types of particles (like massive and massless ones, or different spins, for
instance), the resulting entropy will be the sum of several expressions analog to this one.

5.1.7.2. TBA equations. Let us focus on a Q-string, starting by explicitly writing ρQ(u)+

ρ̄Q(u) = dcQ(u)
du for this model as

ρQ (u)+ ρ̄Q (u) =
dcQ (u)

du
, (5.1.77)

=− 1
2π

dpQ

du
− 1

2π i

∑
Q ′

ˆ ∞

−∞
du ′ d

du

(
logSQQ

′
(u− u ′)

)
ρQ

′
(u ′) , (5.1.78)
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=− 1
2π

dpQ

du
−
∑
Q ′

ˆ ∞

−∞
du ′KQQ ′

(u− u ′)ρQ
′
(u ′) , (5.1.79)

=− 1
2π

dpQ (u)
du

−
∑
Q ′

KQQ ′
⋆ ρQ

′
(u) , (5.1.80)

where from (5.1.78) to (5.1.79) we defined

KQQ ′
(u− u ′) =

1
2π i

d
du

(
logSQQ ′ (u− u ′)

)
. (5.1.81)

The K is called Kernel and it is a positive quantity. To pass from equation (5.1.79) to
equation (5.1.80) we defined convolution as

f ⋆ g(u) =
ˆ ∞

−∞
du ′f(u− u ′)g(u ′) . (5.1.82)

The free energy per site for a Q-string is given by

f=
∑
Q

ˆ ∞

−∞
du
(
HQρQ−T

(
ρQt logρQt − ρQ logρQ− ρ̄Q log ρ̄Q

))
, (5.1.83)

=
∑
Q

ˆ ∞

−∞
du

(
HQρQ−T

(
ρQ log

(
ρQt
ρQ

)
+ ρ̄Q log

(
ρQt
ρ̄Q

)))
. (5.1.84)

The thermodynamic equilibrium happens at its stationary point, i.e. at δf = 0 where we variate
f with respect to both ρ and ρ̄

δf =
∑
Q

ˆ ∞

−∞
du

(
HQδρQ−T

(
δρQ log

(
ρQt
ρQ

)
+ δρ̄Q log

(
ρQt
ρ̄Q

)))
.(5.1.85)

Exercise 5.7. Variate f in equation (5.1.84) with respect to ρQ and ρ̄Q and show that
the variation of the logarithms cancel and only equation (5.1.85) remain.

We can now variate equation (5.1.80), isolate δρ̄Q and put it back in δf obtaining

δf=
∑
Q

ˆ ∞

−∞
du

(
HQδρQ−T δρQ log

(
ρ̄Q

ρQ

)
+ T KPQ ⋆ δρQ

′
log

(
1+

ρQ

ρ̄Q

))
, (5.1.86)

=
∑
Q

ˆ ∞

−∞
du

(
HQδρQ−T δρQ log

(
ρ̄Q

ρQ

))

+ T
∑
Q,Q ′

ˆ ∞

−∞
du
ˆ ∞

−∞
du ′KQQ ′

(u− u ′)δρQ
′
(u ′) log

(
1+

ρQ (u)
ρ̄Q (u)

)
, (5.1.87)
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=
∑
Q

ˆ ∞

−∞
du

(
HQδρQ−T δρQ log

(
ρ̄Q

ρQ

))

+ T
∑
Q,Q ′

ˆ ∞

−∞
du ′
ˆ ∞

−∞
duKQ ′Q (u ′− u)δρQ (u) log

(
1+

ρQ
′
(u ′)

ρ̄Q ′ (u ′)

)
, (5.1.88)

=
∑
Q

ˆ ∞

−∞
du

HQ (u)−T log

(
ρ̄Q

ρQ

)
+ T

∑
Q′

log

(
1+

ρQ
′
(u)

ρ̄Q ′ (u)

)
⋆̃KQ ′Q (u)

δρQ (u) ,
(5.1.89)

where

f ⋆̃g(u) =
ˆ ∞

−∞
du ′f(u ′)g(u ′− u) , (5.1.90)

is the convolution from the right. So, by requiring δf = 0 we obtain the Thermodynamic
Bethe ansatz equations

log

(
ρ̄Q

ρQ

)
=

HQ (u)
T

+
∞∑

Q ′=1

log

(
1+

ρQ
′
(u)

ρ̄Q ′ (u)

)
⋆̃KQ ′Q (u) . (5.1.91)

Exercise 5.8. Use the results above to prove that

f =
T
2π

∑
Q

ˆ ∞

−∞
du

dpQ

du
log

(
1+

ρQ

ρ̄Q

)
. (5.1.92)

5.1.7.3. Y-functions. We can define the Y-functions as

YQ
′
(u) =

ρ̄Q
′

ρQ ′ (5.1.93)

and as a consequence rewrite the TBA equations as

logYQ =
HQ

T
+

∞∑
Q ′=1

log

(
1+

1
YQ ′

)
⋆̃KQ ′Q. (5.1.94)

5.1.7.4. Free energy—final form. In terms of the Y-function the free energy (5.1.92) becomes

f =
T
2π

∞∑
Q=1

ˆ ∞

−∞
du

dpQ

du
log

(
1+

1
YQ

)
. (5.1.95)

In principle, we now have the free-energy of the model. It is enough to solve the TBA
equations (5.1.94) and substitute the result in (5.1.95). However, this is not such an easy
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task. Notice that the sum in Q goes up to infinity. As a consequence, we have infinitely many
equations, and infinitely many Kernels, ρQ(u)’s, etc. In addition, the limits of integration are
also infinite. As a consequence, solving these equations numerically requires some approxim-
ations. For example, one has to consider a finite number of them instead, by using the assump-
tion that as larger the bound state, more it contributes to YQ functions, and less to the free
energy (since the integrand is of the form log

(
1+ 1

YQ
)
).

In addition, excited states can also be obtained. They are usually constructed using an
analytical continuation strategy, first introduced in [160] (for a pedagogical introduction see
section 3.2 in [161]).

In the context of standard integrable spin chains the TBA has been applied to several differ-
ent models (to cite a few [215–218], see also the reviews [161, 219] and the book [162]). The
string configurations are not always as simple as the ones for the su(2) invariant XXX spin
chain. But in general the procedure works well and the computation of the TBA equations and
corresponding ground-state energy (and excited states) can be successfully achieved.

5.1.8. Summary. Let us now summarize the TBA approach for integrable spin chains:

• The first step consists in constructing the Bethe ansatz itself (either via coordinate or algeb-
raic approach) for the finite periodic spin chain.
• Then for L→∞ study the poles of the Bethe equations and construct string complexes.

Verify that these string configurations form bound states.
• Obtain the Bethe equations in terms of the center of these complexes. This will teach you

how fundamental particles scatter these bound states.
• Assume that all configurations relevant for the free-energy are of string-type when the num-

ber of sites and magnons go to infinity. This comes by the name of String Hypothesis. Use
this to take the thermodynamic limit.
• Use fusion to write the Bethe equations relating Qa-strings with Qb-strings. This will tell

you, in particular, how these Q-excitations scatter each other.
• Proceed with the computation of the counting function by using the new Bethe equations. If

possible make sure this function increases monotonically with momentum (this can be hard
to check and is not at all obvious for some models).
• Compute δf = 0 by using that the sum of the density of ‘particles’ and the density of holes

correspond to the derivative of the counting function with respect to the rapidity.
• Simplify and write the TBA equations.
• Substitute the TBA equations in the f and obtain the final form of the free energy.
• Write the final results in terms of Y-functions.

Additionally, after having the Y-system it is important to

• Solve the equations numerically, in order to obtain a quantitative analysis of the spectrum
of the model.
• If possible, investigate how good the string hypothesis is for your model of interest. This is

made using some numerical analysis for large but finite L.

5.2. Mirror TBA for AdS3/CFT2

5.2.1. Introduction. We are now ready to discuss the TBA for AdS3/CFT2. On the one
hand, we will see that the procedure here will be very similar to what we just applied for
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the Heisenberg model. In particular, we will look for string configurations, formulate a string
hypothesis, compute densities using the counting functions and look for the stationary points
in the free energy in order to compute the TBA equations.

On the other hand, there are fundamental differences. AdS3× S3×T4 has some interest-
ing properties that were absent in the XXX spin chain. First of all, instead of only one type
of fundamental excitation (magnon), we now have three (two massive and one massless).
Furthermore, due to the analytic properties of the S-matrix, not all integrals will run along
the same interval.

Additionally, we are now interested in the spectrum of the string (and therefore in the
asymptotic Bethe ansatz) instead of a spin chain. In principle the two problems look very
similar. However, when looking closer this is not exactly the case. We can start by taking
the decompactification limit R→∞, where the worldsheet cylinder can be thought of as a
plane. As already discussed in section 4, this allows us to have well defined asymptotic states,
compute the scattering matrix and the Bethe–Yang equations. The problem is that the asymp-
totic Bethe equations are valid only up to the so-called wrapping corrections. In AdS3 we have
that particles can wrap around the worldsheet cylinder and disregarding such effects leads to
an incorrect energy spectrum. The problem is aggravated by the presence of massless modes
which make the wrapping corrections become important already at order 1/R [220], instead
of the exponential suppression usually present for massive modes.

So, the question is: is there a way to compute the string spectrum for the theory at finite
volume instead? The answer to this question is yes and its solution relies on a trick first intro-
duced by Zamolodchikov in [159]. The idea consists of a doubleWick rotation that ‘exchanges’
the ground state energy of a theory with finite volume at zero temperature, by the free-energy
of a theory whose volume is infinitely large at finite temperature. The latter theory is usually
called mirror theory and its Bethe ansatz can be computed in this regime.

In relativistic theories, the original and mirror theories are basically the same. In particular,
their dispersion relations coincide. However, in AdS backgrounds the original theory and its
mirror counterpart are generally very different. Nonetheless, the strategy can remarkably still
be applied69 and the finite volume spectrum of the original theory can be successfully obtained
[166, 195].

Another subtlety of this model when compared with the XXX chain is its richer analytic
structure. In particular, it requires the analysis not only of the poles, but also of the zeros of
the S-matrices when taking the infinite volume limit on the mirror Bethe–Yang equations.

5.2.2. DoubleWick-rotation andmirror model. Themirrormodelmentioned abovewill allow
us to indirectly construct the ground state energy for the finite-size theory, at zero temperature.
Let us now understand why. Along this section, unless stated otherwise, we write the variables
of the mirror theory with the same name as in the original theory, but with an extra tilde. Please
also notice that in this review we consider that the volume of the original theory is R and the
volume of the mirror theory is L, which is the opposite of the convention used in [195].

5.2.2.1. Partition function: original theory versus mirror theory. The double Wick rotation
corresponds to

τ → σ̃ = iτ and σ→ τ̃ =−iσ. (5.2.1)

69 But it contains additional steps, including the computation of the mirror S-matrix and dressing phases.
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Figure 4. We can interpret this as the time evolution of the system happening in two
different cycles on the torus. In particular, the Euclidean partition function can be com-
puted from two different theories (with Lorentzian signature): the original and themirror
theories.

The theory after the first Wick rotation is the Euclidean version of the original theory, and it is
described by the following partition function

Z
(
T ≡ 1

L
,R

)
=
∑
n

e−
En(R)
T =

∑
n

e−LEn(R). (5.2.2)

This can be thought as putting the theory on a torus. For L→∞ (i.e. zero temperature) the
torus becomes again the original cylinder. For a schematic representation of this and other
details related to the mirror theory, see figure 4.

After the second Wick rotation, we can define the partition function for the mirror theory
as

Z̃
(
T̃ ≡ 1

R
,L

)
=
∑
n

e−
Ẽn(L)

T̃ =
∑
n

e−RẼn(L). (5.2.3)

These two partition functions have to be equal70.

Z (L,R) = Z̃ (R,L) . (5.2.4)

As we are interested in the original theory, with finite volume R and zero temperature T =
1
L → 0, we would like to take the limit L→∞ in (5.2.2). This limit generates Z ∼ e−LE0(R).
But given (5.2.4), we need to take the same L→∞ limit on (5.2.3). Therefore, at L→∞

E0 (R) =
R
L
Ẽ0 (L)≡ R̃f. (5.2.5)

70 An explicit argument about why this is the case can be found in [166].
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Hence, by computing the free-energy for the mirror theory f̃ at finite temperature, which is a
well-defined problem using the TBA, we will obtain as a consequence the ground-state energy
of the original theory at finite volume.

Let us now see how some other quantities are affected by the mirror transformation.

5.2.2.2. Dispersion relation: original theory versusmirror theory. Given that the roles of space
and time are swapped due to the mirror transformations, naturally we can expect the same
for momentum and energy. Indeed the momentum p and the energy H of the original theory
transform as71

p= i H̃, H= ip̃, (5.2.6)

where p̃ and H̃ are their counterparts in the mirror theory.
For a relativistic model, the dispersion relation remains invariant

H2 = p2 +m2→ H̃2 = p̃2 +m2, (5.2.7)

under the double Wick rotation. Therefore, the original theory and the mirror theory are actu-
ally the same. What about AdS3?

As discussed in section (4.3.3), the dispersion relation for AdS3 is given by

H=

√(
µ+

kp
2π

)2

+ 4h2 sin2
(p
2

)
, (5.2.8)

where k is related to the amount of NSNS flux, while h is related to the amount of RR flux. In
particular, we have

H=


√
µ2 + 4h2 sin2

( p
2

)
for pure-RR,∣∣∣µ+ kp

2π

∣∣∣ for pure-NSNS,
(5.2.9)

which under the transformation (5.2.6) becomes

H̃=

2arcsinh

(√
µ2+p̃2

2h

)
for pure-RR,

2π
k (|p̃|+ iµ) for pure-NSNS.

(5.2.10)

We immediately see that, contrary to the relativistic case, the original theory and the mirror
theory in AdS3 are very different. Moreover, in the pure-NSNS case, the mirror energy is not
real. In fact, while the mirror dispersion relation cannot be written in terms of elementary
functions for h 6= 0 6= k, it is easy to see that in that case too, the mirror energy is not real. We
might well worry that this signals a breakdown of our construction. However, for h= 0 and
k> 0, the mirror TBA can be worked out despite the presence of complex energy levels [26].
It has been argued that this can be done even for generic h,k [112]. In both cases, the crux of
the argument is that all states’ energies in the mirror partition function must come in pairs with

71 Notice that sometimes people use the parity-reverse of the mirror model. So the reader, will find in the literature
expressions that differ from (5.2.6).
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complex-conjugate momenta. This is because the values of µ come in pairs of opposite signs,
which is itself a consequence of crossing symmetry of the original (string) model.

In what follows, we focus on the pure-RR case. Notice that the sign in the mirror dispersion
relation was chosen such that a real mirror particle with p̃ ∈ R has mirror energy H̃⩾ 0. It is
interesting to note that the mirror dispersion relation can be seen as the analytic continuation of
the string one, by introducing a suitable (elliptic) parametrisation. In fact, this can be done for
thewhole representation of the symmetry algebra. This fact was first observed in [166] and then
extended to the case of massless particles in [148]. As a consequence, because the matrix part
of the S matrix is fixed by representation theory, the mirror S matrix can be obtained from the
string one by analytic continuation. It is worth noting that this is not automatically true for the
dressing factors; rather, we can impose as one of the requirements of the bootstrap procedure
that the dressing factors should enjoy a meaningful (unitary, analytic, etc) continuation to the
mirror kinematics. In this way we can think of having a ‘über-model’ which encompasses
the mirror and string kinematics72. It is a remarkable fact that such dressing factors could be
constructed first for AdS5× S5 and then, building on their properties [169], for AdS3× S3×
T4 [145]. This was the key ingredient that was needed to derive the mirror TBA equations
of [195].

5.2.2.3. Zhukovsky variables. Let us use this opportunity to remind the reader about a very
useful set of variables, since they make several expressions, including the S-matrix itself, look
much simpler. They are x±, x± = x

(
u± i

h

)
with

x(u) =
1
2

(
u− i

√
4− u2

)
(5.2.11)

and are called Zhukovsky variables.
Using them, let us see how the energy and the momentum of massive particles are affected

by the double Wick rotation.
As we have seen in (4.3.51), the energy and momentum of the massive particles can be

written as

2iH
h

= x+− 1
x+
− x− +

1
x−
, and eip =

x+

x−
, (5.2.12)

respectively. Under the mirror transformation (5.2.6) they become

H̃= log

(
x−

x+

)
, and p̃=−h

2

(
x+− 1

x+
− x− +

1
x−

)
, (5.2.13)

and can be rewritten as

H̃= log
x
(
u− i

h

)
x
(
u+ i

h

) , and p̃= hx

(
u− i

h

)
− hx

(
u+

i
h

)
+ i. (5.2.14)

So, again very distinct from the original theory.

72 Indeed, even if we will not see this, to fully describe the spectrum using the mirror TBA it is sometimes necessary
to consider an S matrix with one ‘leg’ in the string kinematics and another in the mirror one.
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5.2.3. Excitations contributing to the Mirror Bethe–Yang equations. In the XXX model we
had only one type of fundamental particle. Similarly, in AdS5× S5 there was only one type of
momentum carrying particle. However, in the case of AdS3 strings in the pure-RR case, we
have three distinct types of excitations, corresponding to µ= 0,±1. This creates an additional
difficulty, since we cannot write both the Bethe–Yang equations associated to µ=+1 and
to µ=−1 in a simple way. We are required to choose one of them to be simple and as a
consequence will have little control about that happens to the other type.

5.2.3.1. µ = +1. When associated to µ=+1 the particles are called ‘left’-excitations.
There are N1 of them. Following [195], we choose the Bethe–Yang equations for left-
momentum carryingmodes to have a simple form.As a result, the study of string configurations
for these equations will be very simple. In particular, only the poles of the S-matrix will play
a role in the construction of these patterns. For a better understanding of the reasons behind
this, the reader can see [196], focusing especially on the discussion about grading choices.

5.2.3.2. µ = −1. There areN1̄ ‘right’-momentum carryingmodes, related toµ=−1. Given
the choice of making the left-particles’ Bethe–Yang equations simpler, the computation of the
string complexes for the right ones will be a lot more involved. In particular, it will be necessary
to analyse both the poles and zeros of the Bethe–Yang equations in this case.

5.2.3.3. µ = 0. Finally, there are the massless excitations due to µ= 0. There are N0 =

N(1)
0 +N(2)

0 modes. These are in a doubet of su(2) algebra (called su(2)◦), so the upper indices
correspond to a label α̇= 1,2.

5.2.3.4. Auxiliary roots. In addition to the fundamental excitations, there is one more type of
particles appearing in the Bethe–Yang equations. There are Ny = N(1)

y +N(2)
y auxiliary modes,

with rapidity yk. These roots transform in the fundamental representation of a second su(2)
algebra (called su(2)•), for which we introduce the index α= 1,2. This type of root does not
carry momenta and therefore will not contribute for the mirror energy.

From these excitations, the ones carrying momentum can be described by a mirror
momentum p̃k or by a rapidity, uk. In several cases it is convenient to use both at the same
time. The rapidity for the auxiliary roots is denoted by yk.

5.2.4. The Bethe–Yang equations and their string configurations. Let us now see which type
of string we find when we take the L→∞ limit. Although the dressing factors σij are very
important (see for example section 4.4.2), we will not enter in detail about them. They are
constructed in [145] and summarised in appendix C of [195]. The relevant information for our
computation is the fact that they have a nice analytic structure, in particular, containing no
poles that will contribute to any of the bound states [145].

In principle, given the number of different fundamental excitations one could perhaps
expect to have several types of corresponding string-configurations. This is actually not the
case, since both massless particles and auxiliary particles do not form bound states.

Let us start by investigating the ‘left’-excitations.
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5.2.4.1. Massive ‘left’-modes. The Bethe–Yang equations for the ‘left’ excitations are given
by

eip̃kL
N1∏
j≠k

S11sl (uk,uj)
N1̄∏
j=1

S̃11sl (uk,uj)
2∏

α̇=1

N(α̇)
0∏
j=1

S10
(
uk,u

(α̇)
j

) 2∏
α=1

N(α)
y∏
j=1

S1y
(
uk,y

(α)
j

)
= 1, (5.2.15)

where k= 1, . . .,N1 and the S-matrices are given by

S11sl (uk,uj) =
x+k − x−j
x−k − x+j

1− 1
x−k x+j

1− 1
x+k x−j

(
σ••
kj

)−2
, S̃11sl (uk,uj) = eipk

1− 1
x+k x+j

1− 1
x−k x−j

1− 1
x−k x+j

1− 1
x+k x−j

(
σ̃••
kj

)−2
,

S10 (uk,uj) = e−
i
2 pke−ipj 1− x+k xj

x−k − xj

(
σ̃•◦
kj

)−2
, S1y (uk,yj) = e

i
2 pk

x−k − yj
x+k − yj

. (5.2.16)

Let us now think about the string configurations for L→∞ assuming that Im(p̃1)> 0. The
equation for k= 1 is given by

eip̃1L
N1∏
j̸=k

S11sl (u1,uj)
N1̄∏
j=1

S̃11sl (u1,uj)
2∏

α̇=1

Nα̇
0∏

j=1

S10
(
u1,u

(α̇)
j

) 2∏
α=1

Nα
y∏

j=1

S1y
(
u1,y

(α)
j

)
= 1. (5.2.17)

In this limit we have that eip̃1L→ 0, therefore we need to have a pole in one of the S-matrices.
By looking at (5.2.16) we notice that using the term in blue we can generate such a pole.
Consequently, from S11sl (u1,u2) we see that there should be a pole at

x−1 = x+2 . (5.2.18)

If we now multiply the equation for k= 1 by the one for k= 2 and continue the procedure for
a few times in a similar way as done for XXX chain, we see that

x−1 = x+2 , x−2 = x+3 , x−3 = x+4 , . . . (5.2.19)

such that

x−j = x+j+1, j = 1, . . .,Q. (5.2.20)

Notice that we can write

x±j = x

(
uj±

i
h

)
=

1
2

uj±
i
h
− i

√
4−

(
uj±

i
h

)2
 . (5.2.21)

If we substitute (5.2.20) in (5.2.20) it becomes

uj−
i
h
− i

√
4−

(
uj−

i
h

)2

= uj+1 +
i
h
− i

√
4−

(
uj+1 +

i
h

)2

, (5.2.22)

whose string complex solutions is given by

uj = u+
Q+ 1− 2j

h
i, j = 1, . . .Q. (5.2.23)

140



J. Phys. A: Math. Theor. 57 (2024) 423001 Topical Review

So we have bound states with Q left momentum-carrying particles73. Their bound states have
u(1) charge M given by a positive Q ∈ Z.

5.2.4.2. Massive ‘right’-modes. The Bethe–Yang equation for the ‘right’ particles are given
by

eip̃kL
N1∏
j=1

S̃11su (uk,uj)
N1̄∏
j ̸=k

S11su (uk,uj)
2∏

α̇=1

Nα̇
0∏

j=1

S̄10
(
uk,u

(α̇)
j

) 2∏
α=1

Nα
y∏

j=1

S̄1y
(
uk,y

(α)
j

)
= 1 (5.2.24)

where k= 1, . . .,N1̄ with S-matrices

S11su (uk,uj) = eipk−ipj
x−k − x+j
x+k − x−j

1− 1
x+k x−j

1− 1
x−k x+j

(
σ••
kj

)−2
, S̄1y (uk,yj) =

1

S1y
(
uk, 1

yj

) , (5.2.25)

S̃11su (uk,uj) = e−ipj
1− 1

x−k x−j

1− 1
x+k x=j

1− 1
x−k x+j

1− 1
x+k x−j

(
σ̃••
kj

)−2
, S̄10 (uk,uj) = e

i
2 pke−ipj x

−
k − xj

1− x+k xj

(
σ̃•◦
kj

)−2
.

Wewill see that here we have Q̄-right momentum carrying roots plus 2(Q̄− 1) auxiliary roots.
So, we again have

x−j = x+j+1, j = 1, . . .,Q− 1, (5.2.26)

which in u variables translates as

uj = u+
Q̄+ 1− 2j

h
i, j = 1, . . .Q̄. (5.2.27)

However, notice that this produces a zero in S11su(uk,uj) instead of a pole. This means that we
have a zero coming from eip̃kL→ 0 and another from S11su(uk,uj) in (5.2.24) in red. We need
then two poles to cancel these two zeros. They come from the term in blue. The first terms
give for instance for k= 1

2∏
α=1

S̄1y
(
u1,y

(α)
1

)
= e−

ip1
2

x+1 −
1

y(1)1

x−1 −
1

y(1)1

e−
ip1
2

x+1 −
1

y(2)1

x−1 −
1

y(2)1

. (5.2.28)

Therefore, we have a pole at y(1)1 = 1
x−1

and another at y(2)1 = 1
x−1

. If we continue with this

procedure what we obtain is

y(1)j = y(2)j =
1

x−j
, (5.2.29)

73 Notice that this is basically the same string pattern we found in the XXX spin chain (exactly the same if we put
h=−1) .
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which using x−j = x(uj− i
h ) and equation (5.2.27) lead us to

y(1)j = y(2)j =
1

x−j
=

1

x

(
u+

(Q̄−2j)i
h

) , j = 1, . . ., Q̄− 1. (5.2.30)

5.2.4.3. Massless modes. The Bethe equations for the massless case are given by

eip̃kL
N1∏
j=1

S01
(
u(1)k ,uj

) N1̄∏
j=1

S̄01
(
u(1)k ,uj

)N(1)
0∏

j=1

S̄00
(
u(1)k ,u(1)j

)N(2)
0∏

j=1

S̄00
(
u(1)k ,u(2)j

)

×
2∏

α=1

N(α)
y∏
j=1

S̄0y
(
u(1)k ,y(α)j

)
=−1. (5.2.31)

In particular, the scattering matrices between massless particles and the other types of excita-
tion are given by

S00 (uk,uj) =
(
σ◦◦
kj

)−2
, S01 (uk,uj) =

1
S10 (uj,uk)

, (5.2.32)

S̄01 (uk,uj) =
1

S̄10 (uj,uk)
, S0y (uk,uj) =

1

S0y
(
uk, 1

yj

) . (5.2.33)

Massless excitations do not admit bound states, since their momenta and rapidities are real.
In particular−1< xα̇ < 1. The thermodynamic limit of equation (5.2.31) can be taken directly
without any problems.

5.2.4.4. Auxiliary equations. The auxiliary roots satisfy the following Bethe equations:

N1∏
j=1

Sy1 (yk,uj)
N1̄∏
j=1

S̄y1 (yk,uj)
2∏

α=1

Nα̇
y∏

j=1

S̄y0
(
yk,y

(α̇)
j

)
=−1. (5.2.34)

They do not carry momentum and therefore it does not make sense to create strings from them.
Let us now summarize the existing string configurations.
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• Q-particles:

uj = u+
Q+ 1− 2j

h
i, j = 1, . . .Q. (5.2.35)

We will represent the density of Q-particles as ρQ and the density of Q-holes as ρ̄Q

such that they satisfy ρQt = ρQ + ρ̄Q.
• Q̄-particles:

uj = u+
Q̄+ 1− 2j

h
i, j = 1, . . .Q̄. (5.2.36)

and additionally

y(1)j = y(2)j =
1

x−j
=

1

x

(
u+

(Q̄−2j)i
h

) , j = 1, . . ., Q̄− 1. (5.2.37)

Again, the density of Q̄-particles as ρQ̄ and the density of Q̄-holes as ρ̄Q̄ such that
they satisfy ρQ̄t = ρQ̄ + ρ̄Q̄.
• Massless particles: they do not form string configurations. They appear as excitations

of real mirror momentum and real energy. The rapidities are such that |u|> 2. The
density of massless particles can be written as ρ(α̇) while massless holes have density
ρ̄(α̇), with ρ(α̇)t = ρ(α̇) + ρ̄(α̇) and α̇= 1,2.
• Auxiliary particles: they do not carry momentum and cannot generate string com-

plexes. They satisfy (y(α))∗ = (y(α))−1. Similarly to the massless case, we can also
define densities for the auxiliary particles. In addition to defining particles and holes
we also divide these roots and corresponding densities into y+ (when Im y> 0) and
y− (when Im y< 0).

5.2.5. String hypothesis. As we saw for the XXX model, we can write the Bethe equations
completely in terms of the centers of strings. In the next subsection we will do this for AdS3.
The equations written in that way are very convenient for the thermodynamic limit, i.e.

L→∞, N→∞, with
L
N

= fixed. (5.2.38)

In particular, in these new equations the momentum (rapidity) is always real.
In AdS3 this idea will result in four types of objects, each connected to one type of excita-

tion. Namely, NQ
L and NQ

R satisfying

∞∑
Q=1

QN(Q)
L = NL and

∞∑
Q̄=1

Q̄N
(Q̄)
R = NR, (5.2.39)

two sets ofN(α̇)
0 massless particles, with pk ∈ R and |u|> 2, and finally the two sets of auxiliary

particles corresponding to the auxiliary roots y(α).
It is important to highlight that the auxiliary roots do not carry momentum and therefore

the mirror energy is the sum of the contributions of the massive and massless particles only.
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5.2.6. Free-energy. The free energy of the mirror theory is made of contributions from Q-
particles, Q̄-particles, massless particles and auxiliary particles. It is given by

f̃= f̃Q + f̃Q̄ + f̃(0) + f̃y
−
+ f̃y

+

(5.2.40)

where

f̃Q =
∞∑
Q=1

ˆ +∞

−∞
du

(
H̃Q(u)ρQ(u)− T̃

(
ρQ(u) log

ρQt (u)
ρQ(u)

+ ρ̄Q(u) log
ρQt (u)
ρ̄Q(u)

))
,

f̃Q̄ =
∞∑
Q̄=1

ˆ +∞

−∞
du

(
H̃Q̄(u)ρQ̄(u)− T̃

(
ρQ̄(u) log

ρQ̄t (u)

ρQ̄(u)
+ ρ̄Q̄(u) log

ρQ̄t (u)

ρ̄Q̄(u)

))
,

f̃(0) =
2∑

α̇=1

ˆ
|u|>2

du

(
H̃(0)(u)ρ(α̇)(u)− T̃

(
ρ(α̇)(u) log

ρ
(α̇)
t (u)

ρ(α̇)(u)
+ ρ̄(α̇)(u) log

ρ
(α̇)
t (u)

ρ̄(α̇)(u)

))
,

f̃(y
±) =−T̃

2∑
α=1

ˆ +2

−2
du

ρ(α)y± (u) log
ρ
(α)
y±,t(u)

ρ
(α)
y± (u)

+ ρ̄
(α)
y± (u) log

ρ
(α)
y±,t(u)

ρ̄
(α)
y± (u)

 .
(5.2.41)

Remember that T̃ = 1/R. Notice also that as expected there is no energy contribution of type
H̃y± .

We would like to compute the value of f̃when δ̃f= 0, where δ is the variation with respect to
the densities of all types of particles. In order to do this computation, we needmore information
about the densities. This information comes from the fused mirror Bethe equations, which are
the focus of the next subsection.

5.2.7. Fusion of the Bethe–Yang equations. As discussed above, the string complexes act as
bound states. It is therefore useful to discover how such bound states scatter each other and
how they scatter massless and auxiliary excitations. This information will play an important
role in the computation of the mirror theory free energy.

The idea for fusion here is the same as in the Heisenberg model. We can build S-matrices
describing the scattering of a particle with a Q-string first by multiplying S11(uk− uj)’s (see
for example (5.1.55) and the equations leading to it ). This results in

SQ1 (u,uj) =
Q∏

a=1

S11 (ua,uj) =
u− uj− (Q+ 1) i

h

u− uj +(Q+ 1) i
h

u− uj− (Q− 1) i
h

u− uj +(Q− 1) i
h

. (5.2.42)

In the same way we can build scatterings of aQ-string with aQ′-string, by multiplying several
SQ1(u,uj). This results in

SQQ
′
(u,u ′) =

u− u ′− (Q+Q ′) i
h

u− u ′ +(Q+Q ′) i
h

u− u ′− (Q ′−Q) i
h

u− u ′ +(Q ′−Q) i
h

×
Q−1∏
j=1

(
u− u ′− (Q ′−Q+ 2j) i

h

u− u ′ +(Q ′−Q+ 2j) i
h

)2

. (5.2.43)
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These expressions are again very similar to the XXX ones. Nevertheless, in this case, they
do not describe the full picture. The reason for that is that we need to also know how the
grading affects the expressions, take into account the dressing factor, as well as how the {Q, Q̄}-
excitations scatter massless and auxiliary particles, for example.

Despite that, although technically more challenging, all the procedure is very similar to
what was performed before, so we will not repeat the calculations. Therefore, in order to make
the presentation more fluid we will skip the details and write explicitly all the fused S-matrices
directly as

SQaQb
sl (ua,ub) =

SQaQb(ua− ub)−1(
ΣQaQb

ab

)2 , S̃QaQ̄b
sl (ua,ub)

eipa(
Σ̃QaQ̄b

ab

)2

1− 1
x+a x+b

1− 1
x−a x−b

1− 1
x+a x−b

1− 1
x−a x+b

,

SQa0(ua,xj) = ie−
i
2 pa

x+a xj− 1

x−a − xj

(
ΣQa0

BES(x
±
a ,xj)

)−2

Φ(γ+◦
aj )Φ(γ−◦

aj )
, SQay(ua,yb) = e

i
2 pa

x−a − yb
x+a − yb

,

SQ̄aQ̄b
su (ua,ub) =

(
x−a − x+b
x+a − x−b

)2
SQ̄aQ̄b(ua− ub)−1

e−ipa+ipb
(
ΣQ̄aQ̄b

ab

)2 , S00(uj,uk) =
a(γjk)Φ(γjk)2(
Σ00

BES(xj,xk)
)2 ,

S̃Q̄aQb
su (ua,ub) =

e−ipb(
Σ̃Q̄aQb(ua,ub)

)2

1− 1
x−a x−b

1− 1
x+a x+b

1− 1
x+a x−b

1− 1
x−a x+b

, S0Qb(xb,uj) =
1

SQb0(uj,xb)
,

S̄Q̄a0(ua,xj) = ie+
i
2 pa

x−a − xj
x+a xj− 1

(
ΣQ̄a0

BES(x
±
a ,xj)

)−2

Φ(γ+◦
aj Φ(γ−◦

aj )
, S̄0Q̄b(xb,uj) =

1

S̄Q̄b0(uj,xb)
,

S̄Qay(ua,yb) = e−
i
2 pa

x+a − 1
yb

x−a − 1
yb

=
1

SQay(ua, 1
yb
)
, S0y(xk,yj) = e+

i
2 pk

1
xk
− yj

xk− yj
=

1

S0y(xk, 1
yj
)
,

SyQ(y,u) =
1

SQy(u,y)
, S̄yQ(y,u) =

1
S̄Qy(u,y)

, S̄y0(y,u) =
1

S̄0y(u,y)
. (5.2.44)

For more details on the expressions above see [197].
Proceeding in a similar way as done in the spin chain case, we can write the fused Bethe–

Yang equations as

eip̃aL
NL∏
b ̸=a

SQaQb
sl (ua,ub)

NR∏
b=1

S̃QaQ̄b
sl (ua,ub)

2∏
α̇=1

Nα̇
0∏

j=1

SQa0
(
ua,u

(α̇)
j

)

×
2∏

α=1

N(α)
+∏

b=1

SQay
+

(
ua,y

(α)
b

)N(α)
−∏

b=1

SQy−
(
ua,y

(α)
b

)
= 1,

(5.2.45)

eip̃aL
NL∏
b=1

S̃Q̄aQb
su (ua,ub)

NR∏
b̸=a

SQ̄aQ̄b
su (ua,ub)

2∏
α̇=1

Nα̇
0∏

j=1

S̄Q̄a0
(
ua,u

(α̇)
j

)

×
2∏

α=1

N(α)
+∏

b=1

1

SQ̄ay
−

(
ua,y

(α)
b

) N(α)
−∏

b=1

1

SQ̄ay
+

(
ua,y

(α)
b

) = 1,

(5.2.46)
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eip̃kL
NL∏
b=1

S0Qb (uk,ub)
NR∏
b=1

S̄0Q̄b (uk,ub)

N(1)
0∏

j̸=k

S00 (uk,uj)

N(2)
0∏

j=1

S00 (uk,uj)

×
2∏

α=1

N(α)
+∏

b=1

S0y (uk,ub)

N(α)
−∏

b=1

1
S0y (uk,ub)

= 1,

(5.2.47)

eip̃kL
NL∏
b=1

S0Qb (uk,ub)
NR∏
b=1

S̄0Q̄b (uk,ub)

N(1)
0∏

j=1

S00 (uk,uj)

N(2)
0∏

j̸=k

S00 (uk,uj)

×
2∏

α=1

N(α)
+∏

b=1

S0y (uk,ub)

N(α)
−∏

b=1

1
S0y (uk,ub)

= 1,

(5.2.48)

NL∏
b=1

SyQ−
(
u(α)k ,ub

) NR∏
b=1

SyQ̄+
(
u(α)k ,ub

) N0∏
j=1

Sy0
(
u(α)k ,uj

)
=−1, (5.2.49)

NL∏
b=1

SyQ+
(
u(α)k ,ub

) NR∏
b=1

SyQ̄−
(
u(α)k ,ub

) N0∏
j=1

Sy0
(
u(α)k ,uj

)
=−1, (5.2.50)

where the auxiliary Bethe roots were separated depending on whether Im(y)> 0 (with density
ρ
(α)
y+ and y= x(u)) or Im(y)< 0 (with density ρ(α)y− and y= 1

x(u) ). In the same way, the index

‘±’ in SQa,y indicates if that S-matrix depends on a y+ or y−. With these expressions we can
now construct the counting functions. Notice that we are considering L→∞, N→∞ (with
L
N = fixed), and therefore using the string hypothesis (see (5.2.39)). With this mind, in the
equations above (5.2.45)–(5.2.50) we implicitly assumed that

NL∏
b=1

corresponds to
∞∏

Qb=1

NQ
L∏

b=1

. (5.2.51)

Following the strategy in [197], we have decided not to explicitly write this on the Bethe–
YangBethe–Yang equations at this stage, to avoid bulky expressions. An analogous expression
to (5.2.51) is true for the Q̄-particles.

5.2.8. Counting functions. By taking the logarithm of equations (5.2.45)–(5.2.50) we can
define the counting function for each type of particle. They will be very important to write the
free-energy. Like in the XXXmodel, the counting functions c(u) will be obtained by taking the
logarithm of the Bethe–Yang equations and then performing a step similar to (5.1.71). In the
thermodynamic limit, for Q-particles, Q̄-particles, massless particles as well as y± ‘particles’,
they are given by

146



J. Phys. A: Math. Theor. 57 (2024) 423001 Topical Review

cQ (u) =
p̃Q (u)
2π

+
1

2π i

ˆ ∞

−∞
du ′

 ∞∑
Q ′=1

logSQQ
′

sl

(
u,u ′)ρQ ′ (

u ′)+ ∞∑
Q̄ ′=1

logSQQ̄
′

sl

(
u,u ′)ρQ̄ ′ (

u ′)
+

1
2π i

2∑
α=1

ˆ 2

−2
du ′
(
logSQy+

(
u,u ′(α)

)
ρ
(α)

y+

(
u ′)+ logSQy−

(
u,u ′(α)

)
ρ
(α)

y−

(
u ′))

+
1

2π i

2∑
α̇=1

ˆ
|u ′|>2

du ′ logSQ0
(
u,u ′α̇

)
ρ
(α̇)
0

(
u ′) ,

(5.2.52)

cQ̄ (u) =
p̃Q̄ (u)
2π

+
1

2π i

ˆ ∞

−∞
du ′

 ∞∑
Q ′=1

logSQ̄Q
′

su

(
u,u ′)ρQ ′ (

u ′)+ ∞∑
Q̄ ′=1

logSQ̄Q̄
′

su

(
u,u ′)ρQ̄ ′ (

u ′)
+

1
2π i

2∑
α=1

ˆ 2

−2
du ′
(
logSQ̄y+

(
u,u ′(α)

)
ρ
(α)

y+

(
u ′)+ logSQ̄y−

(
u,u ′(α)

)
ρ
(α)

y−

(
u ′))

+
1

2π i

2∑
α̇=1

ˆ
|u ′|>2

du ′ logSQ̄0
(
u,u ′α̇

)
ρ
(α̇)
0

(
u ′) ,

(5.2.53)

c(0) (u) =
p̃(0) (u)

2π
+

1
2π i

ˆ ∞

−∞

 ∞∑
Q′=1

logS0Q
′ (
u,u ′)ρQ ′ (

u ′)+ ∞∑
Q̄ ′=1

logS0Q̄
′ (
u,u ′)ρQ̄ ′ (

u ′)
+

1
2π i

2∑
α=1

ˆ 2

−2
du ′ logS0y

(
u,u ′)(ρ(α)y+

(
u ′)− ρ

(α)

y−

(
u ′))

+
1

2π i

2∑
α̇=1

ˆ
|u ′|>2

logS00
(
u,u ′)ρ(α̇)0

(
u ′) ,

(5.2.54)

c(α)y− (u) = +
1

2π i

ˆ ∞

−∞
du ′

 ∞∑
Q=1

logSyQ−
(
u,u ′)ρQ (u ′)+ ∞∑

Q̄=1

logSyQ̄+
(
u,u ′)ρQ̄ (u ′)

+
1

2π i

2∑
α̇=1

ˆ
|u ′|>2

logSy0
(
u,u ′)ρ(α̇)0

(
u ′) ,

(5.2.55)

c(α)y+ (u) = +
1

2π i

ˆ ∞

−∞
du ′

 ∞∑
Q=1

logSyQ+
(
u,u ′)ρQ (u ′)+ ∞∑

Q̄=1

logSyQ̄−
(
u,u ′)ρQ̄ (u ′)

+
1

2π i

2∑
α̇=1

ˆ
|u ′|>2

logSy0
(
u,u ′)ρ(α̇)0

(
u ′) .

(5.2.56)

5.2.9. Densities. We can now compute the densities using the counting functions in the
following way

ρ(A) (u)+ ρ̄(A) (u) =
dc(A) (u)

du
, (5.2.57)
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where A= Q, Q̄,0,y−,y+. We can also define the Kernel as

KAB (u,u ′) =
1

2π i
d
du

(
logSAB (u,u ′)

)
. (5.2.58)

Given that the limits of integration change depending on which type of particle we are referring
to, it is convenient to define three types of convolution. The first type we will call massive,
(represented by ‘⋆ ’)

KAB ⋆ ρB (u) =
ˆ ∞

−∞
du ′KAB (u,u ′)ρB (u ′) , (5.2.59)

whose integral is related to {Q, Q̄}-particles. The second type is the massless convolution
(represented by ‘ ⋆̌ ’).

KAB ⋆̌ρB (u) =
ˆ
|u ′|>2

du ′KAB (u,u ′)ρB (u ′) . (5.2.60)

As the name indicates, this case involves integrals whose limit of integration are given by
|u|> 2 like the massless particles. Finally, the third type is given by

KAB ⋆̂ρB (u) =
ˆ 2

−2
du ′KAB (u,u ′)ρB (u ′) , (5.2.61)

and can be called auxiliary convolution and is represented by ‘ ⋆̂ ’.
With all these definitions in mind we can write the densities of the bound-states, massless

and auxiliary particles as given by

ρQ(u)+ ρ̄Q(u) =
1
2π

dp̃Q

du
+

∞∑
Q ′=1

KQQ ′

sl ⋆ ρQ
′
(u)+

∞∑
Q̄ ′=1

K̃QQ̄ ′

sl ⋆ ρQ̄
′
(u)

+
2∑

α̇=1

KQ0 ⋆̌ρ
(α̇)
0 (u)+

2∑
α=1

KQy
+ ⋆̂ρ

(α)

y+ (u)+
2∑

α=1

KQy
− ⋆̂ρ

(α)

y− (u),

(5.2.62)

ρQ̄(u)+ ρ̄Q̄(u) =
1
2π

dp̃Q̄

du
+

∞∑
Q ′=1

KQ̄Q ′
su ⋆ ρQ

′
(u)+

∞∑
Q̄ ′=1

K̃Q̄Q̄ ′
su ⋆ ρQ̄

′
(u)

+
2∑

α̇=1

K̃Q̄0 ⋆̌ρ
(α̇)
0 (u)+

2∑
α=1

KQ̄y
+ ⋆̂ρ

(α)

y− (u)+
2∑

α=1

KQ̄y
− ⋆̂ρ

(α)

y+ (u),

(5.2.63)

ρ(α̇)(u)+ ρ̄(α̇)(u) =
1
2π

dp̃(α̇)

du
+

∞∑
Q ′=1

K0Q ′
⋆ ρQ

′
(u)+

∞∑
Q̄ ′=1

K̃0Q̄ ′
⋆ ρQ̄

′
(u)

+
2∑

α̇=1

K00 ⋆̌ρ
(α̇)
0 (u)+

2∑
α=1

K0y ⋆̂ρ
(α)

y+ (u)−
2∑

α=1

K0y ⋆̂ρ
(α)

y− (u),

(5.2.64)

ρ
(α)

y− (u)+ ρ̄
(α)

y− (u) =
∞∑

Q ′=1

KyQ ′

− ⋆ ρQ
′
(u)+

∞∑
Q̄ ′=1

K0Q̄ ′

+ ⋆ ρQ̄
′
(u)+

2∑
α̇=1

Ky0 ⋆̌ρ
(α̇)
0 (u) , (5.2.65)

ρ
(α)

y+ (u)+ ρ̄
(α)

y+ (u) =
∞∑

Q ′=1

KyQ ′

+ ⋆ ρQ
′
(u)+

∞∑
Q̄ ′=1

K0Q̄ ′

− ⋆ ρQ̄
′
(u)+

2∑
α̇=1

Ky0 ⋆̌ρ
(α̇)
0 (u) . (5.2.66)
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5.2.10. The TBA equations. In order to obtain the ground-state energy, we now need to
first compute δ̃f= 0. This will give us a relation between the energies {H̃Q, H̃Q̄, H̃(0)} and the
densities. These results can be plugged in equation (5.2.40), together with (5.2.62)–(5.2.66) in
order to obtain f̃. To start we need to require

δ̃f= δ̃fQ + δ̃fQ̄ + δ̃f(0) + δ̃fy
−
+ δ̃fy

+

= 0, (5.2.67)

where

δ̃fQ =
∞∑
Q=1

ˆ +∞

−∞
du

(
H̃Q(u)δρQ(u)− T̃

(
δρQ(u) log

ρQt (u)
ρQ(u)

+ δρ̄Q(u) log
ρQt (u)
ρ̄Q(u)

))
,

δ̃fQ̄ =
∞∑
Q̄=1

ˆ +∞

−∞
du

(
H̃Q̄(u)δρQ̄(u)− T̃

(
δρQ̄(u) log

ρQ̄t (u)

ρQ̄(u)
+ δρ̄Q̄(u) log

ρQ̄t (u)

ρ̄Q̄(u)

))
,

δ̃f(0) =
2∑

α̇=1

ˆ
|u|>2

du

(
H̃(0)(u)δρ(α̇)(u)− T̃

(
δρ(α̇)(u) log

ρ
(α̇)
t (u)
ρ(α̇)(u)

+ δρ̄(α̇)(u) log
ρ
(α̇)
t (u)
ρ̄(α̇)(u)

))
,

δ̃f(y
±) =−T̃

2∑
α=1

ˆ +2

−2
du

δρ(α)y± (u) log
ρ
(α)

y±,t(u)

ρ
(α)

y± (u)
+ δρ̄

(α)

y± (u) log
ρ
(α)

y±,t(u)

ρ̄
(α)

y± (u)

 .
(5.2.68)

Notice that, like in the Heisenberg spin chain, terms of the type

ˆ
du

(
ρA δ log

ρAt
ρA

+ ρ̄A δ log
ρAt
ρ̄A

)
, (5.2.69)

vanish for any A. This is why we do not write these terms.
We now variate equations (5.2.62)–(5.2.66) and substitute the results in (5.2.68). With this

we obtain a large expression for δ̃f, containing terms depending on δρQ(u), while other terms
depend on δρQ

′
(u ′), etc. One can rewrite these expressions by swapping {u,u ′} (since they are

integrated over the same interval) in some terms as well asQ↔ Q ′. After a carefully rewriting
one obtains that

δ̃f=
∞∑
Q=1

ˆ ∞

−∞
du(EqQ)δρQ (u)+

∞∑
Q̄=1

ˆ ∞

−∞
du
(
EqQ̄

)
δρQ̄ (u)+

2∑
α̇=1

ˆ
|u|>2

du(Eq0)δρ(α̇) (u)

+
2∑

α=1

ˆ 2

−2
du
(
Eqy+

)
δρ

(α)
y+ (u)+

2∑
α=1

ˆ 2

−2
du
(
Eqy−

)
δρ

(α)
y− (u) = 0,

(5.2.70)

⇒ EqQ= 0, EqQ̄= 0, Eq0= 0, and Eqy± = 0. (5.2.71)

If we define the Y-functions as

YQ =
ρQ

ρ̄Q
, ȲQ̄ =

ρQ̄

ρ̄Q̄
, Y(α̇)0 =

ρ
(α̇)
0

ρ̄
(α̇)
0

, Y(α)± =−eiµα
ρ̄
(α)
y±

ρ
(α)
y±

, (5.2.72)
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with µα = (−1)αµ, and use them, we find that the TBA equations are given by

EqQ= 0 :

⇒ − logYQ = RH̃Q−
∞∑

Q ′=1

log
(
1+YQ

′
)
⋆KQ ′Q

sl −
∞∑

Q̄ ′=1

log
(
1+ ȲQ̄

′
)
⋆ K̃Q̄ ′Q

su

−
2∑

α=1

log

(
1− eiµα

Y(α)+

)
⋆̂KyQ

+ −
2∑

α=1

log

(
1− eiµα

Y(α)−

)
⋆̂KyQ

−

−
2∑

α̇=1

log
(
1+Y(α̇)0

)
⋆̌K0Q,

(5.2.73)

EqQ̄= 0 :

⇒ − log ȲQ̄ = RH̃Q̄−
∞∑

Q′=1

log
(
1+YQ

′
)
⋆ K̃Q ′Q̄

sl −
∞∑

Q̄ ′=1

log
(
1+ ȲQ̄

′
)
⋆KQ̄ ′Q̄

su

−
2∑

α=1

log

(
1− eiµα

Y(α)+

)
⋆̂KyQ̄

+ −
2∑

α=1

log

(
1− eiµα

Y(α)−

)
⋆̂KyQ̄

−

−
2∑

α̇=1

log
(
1+Y(α̇)0

)
⋆̌K0Q̄,

(5.2.74)

Eq0= 0 :

⇒ − logY(α̇) = RH̃(α̇)−
∞∑

Q ′=1

log
(
1+YQ

′
)
⋆KQ ′0−

∞∑
Q̄ ′=1

log
(
1+ ȲQ̄

′
)
⋆ K̃Q̄ ′0

−
2∑

α=1

log

(
1− eiµα

Y(α)+

)
⋆̂Ky0−

2∑
α=1

log

(
1− eiµα

Y(α)−

)
⋆̂Ky0

−
2∑

α̇=1

log
(
1+Y(α̇)0

)
⋆̌K00,

(5.2.75)

Eqy± = 0 :

⇒ logY(α)± =−
∞∑

Q ′=1

log
(
1+YQ

′
)
⋆KQ ′y

± −
∞∑

Q̄ ′=1

log
(
1+ ȲQ̄

′
)
⋆KQ̄ ′y

∓

∓
2∑

α̇=1

log
(
1+Y(α̇)0

)
⋆̌K0y,

(5.2.76)

where the convolutions presented here are from the right, namely

ρA ⋆KAB (u) =
ˆ ∞

−∞
du ′ρA (u ′)KAB (u ′,u) , (5.2.77)
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ρA ⋆̌KAB (u) =
ˆ
|u ′|>2

du ′ρA (u ′)KAB (u ′,u) , (5.2.78)

ρA ⋆̂KAB (u) =
ˆ 2

−2
du ′ρA (u ′)KAB (u ′,u) . (5.2.79)

Additionally, we also used T̃ = 1
R .

Notice also the introduction of µ via a twist on the TBA equations. For µ= 0 the equations
above describe even-winding number and supersymmetric vaccuum. On the other hand, the
choice µ 6= 0 breaks supersymmetry.

The equations (5.2.73)–(5.2.76) are called TBA equations. They are very coupled and are
in principle not easy to solve even numerically. Nonetheless, very importantly, they are non-
perturbative and contain all the information necessary for the computation of the ground-state
energy. This means that we can in principle study them in several regimes. One does not need
to stop, however, on the ground state. At this stage we could proceed and compute excited
states using analytical continuation [160] (see [161] for a review).

Additionally, systems with auxiliary excitations can be usually simplified, since not all
equations are independent (see for example section 2.5 in [161] for a pedagogical explana-
tion, and [175] for this applied to AdS5× S5). For this model, the authors of [197] performed
a first simplification on the TBA equations. It would be interesting to continue towards this
direction, and further understand the Y-system.

Exercise 5.9. Prove that (5.2.73)–(5.2.76) are the conditions required to obtain δ̃f= 0.
In order to do that just perform the few steps skipped in section (5.2.10).

5.2.11. The ground-state energy. As discussed earlier, the ground-state energy of the original
theory (with zero temperature and finite volume) is given by E0(R) = R̃f. By plugging the
previous results back into the mirror free-energy we find

E0 (R) =−
ˆ ∞

−∞

du
2π

dp̃Q

du
log
((

1+YQ
)(

1+ ȲQ̄
))

−
ˆ
|u|>2

du
2π

dp̃(0)

du
log
((

1+Y(1)0

)(
1+Y(2)0

))
. (5.2.80)

Exercise 5.10. Construct the mirror free-energy by replacing the TBA equations
as well as (5.2.62)–(5.2.66) in (5.1.84). Check that it is consistent with expres-
sion (5.2.80).

5.3. Conclusions

5.3.1. Summary. The main steps in the construction of the TBA for the pure-RR AdS3×
S3×T4 are:

• Introduce the mirror model and S matrix, which can be done through analytic continuation
of the original S matrix; this requires understanding in detail the rather intricate analytic
structure of the dressing factors.

151



J. Phys. A: Math. Theor. 57 (2024) 423001 Topical Review

• Construct the asymptotic Bethe ansatz for the mirror model, which is again related to the
one of the original model by analytic continuation.
• Formally solve the mirror Bethe–Yang equations for L→∞, i.e. formulate the ‘string hypo-

thesis’ for the model. In this case we have bound states and auxiliary particles (we do not
have, instead, complexes of several auxiliary particles). Both left- and right-particles can
form bound-states, and we can write the Bethe equations in a way (or more precisely, in a
grading) which makes either family of bound states simple, but not both. We choose ‘left’
bound states to have a straightforward form, and ‘right’ ones to involve auxiliary particles.
The massless modes cannot form bound states or strings.
• Use fusion to construct the S-matrices for bound-states depending only on the center of the

strings. This includes the cases where the first particle is of ‘left’ type and the second is of
any type, then the first of ‘right’ type and the second of any type, and so on and so forth;
• Compute the counting function for each type of excitations and then use them to compute

the sum of the densities;
• Keeping in mind that T̃ = 1

R , compute the TBA equations by requiring δ̃f= 0;
• Use the TBA equations and the densities to compute the mirror free-energy and obtain the

ground-state energy of the original model as a consequence;
• Simplify the TBA equations. In principle this step can be refined to give a Y-system, a T-

system and eventually the QSC; this has not been done for this model.

5.3.2. Open questions. There are some very interesting points still to be discussed and fur-
ther computed:

5.3.2.1. Simplifications and numerical results. The derivation of the mirror TBA yields the
equations in a ‘canonical’ form, which involves sums over infinite types of excitations. This
obscures the symmetry structure of the model and makes numerical computations quite chal-
lenging. In general, we expect that the canonical TBA equations can be simplified by exploit-
ing suitable identities between the kernels, as it was done in [195]. However, it is possible
that further simplifications can be engineered. This would be necessary in order to rewrite
the equations as a Y-system, meaning a set of functional equations supplemented by suitable
discontinuity conditions. This is the first step in the derivation of the QSC from the TBA.

5.3.2.2. Computing physical observables. The TBA equations which we have discussed
only describe the ground-state energy of the model. Because we are dealing with a supersym-
metric theory, this is zero, so there is nothing interesting about it! However, from the ground-
state equations it is possible to derive interesting predictions, by some minor modifications.
Firstly, we may twist the boundary conditions of certain fields in such a way to break (some)
supersymmetry (see (5.2.72), for example). Then, the ground-state energy will not vanish, and
instead it would be a function of the twist and of the volume. This was studied in [197], and
it is interesting to note that the contribution of the massless modes to the ground-state energy
presents some puzzling discrepancies with respect to what is expected from semiclassical argu-
ments. Another important application is to compute the spectrum of generic (non-protected)
states. It is believed [160] that the equations describing such states follow from the ground-state
ones by a suitable analytic continuation74. This route was taken in [111, 222] where the TBA

74 It should be noted that this procedure can be especially subtle for certain ‘exceptional’ set of excitations [221]; this
has not yet been investigated in this context.

152



J. Phys. A: Math. Theor. 57 (2024) 423001 Topical Review

equations for excited states were written down, and solved numerically in the small-tension
limit. Interestingly, at small tension, the most important contribution to the energy comes from
massless modes. However, unlike the case of the NSNS models, the tensionless spectrum is
not given by the symmetric-product orbifold CFT of T4, but by some yet-to-be-identified inter-
acting theory.

5.3.2.3. QSC. As mentioned earlier two proposals for a QSC were put forward recently
[198, 199]. Unlike what happened for AdS5× S5 and AdS4×CP3, however, these proposal are
not derived from the mirror TBA—in fact, they predate it! They were derived by imposing that
the QSC equations have the correct symmetries as well as some suitable analytic properties
(this last point is especially subtle in a model as complicated as this one). Then, the equations
were studied in [200] where they have been used to predict the small tension energy of certain
excited states. However, in the QSC formalism it is currently not clear how to describemassless
states, so the authors considered states containing only massive excitations. Hence, the results
of [200] and those of [111, 222] cannot be compared. It would be very desirable to either
derive the QSC from the TBA (or viceversa), or carefully compare the numerical prediction
for a given observable.

5.3.2.4. Mixed-flux. A more challenging but certainly more physically insightful question
is what is the spectrum of mixed-flux theories. To this end, it is necessary to construct the
TBA (or QSC) for the mixed-flux model. This is a very hard question due to the difficulty in
constructing the dressing phases, or in any case the difficulty in understanding the analytic
structure of mixed-flux models, especially in the mirror kinematics where they appear to be
non-unitary. Recent computations [112, 144] shed some light on this matter, but a full answer
is still to be found.

6. Introduction to the hybrid superstring

The twomajor approaches to superstring theory are the RNS formalism and the GS formalism.
The RNS (also sometimes NSR) formalism [223, 224] places worldsheet supersymmetry on
the center stage. Although worldsheet supersymmetry does not manifest as a supersymmetry
in the effective field theory of the target space, it has proved a powerful tool in the description
of superstrings, primarily due to the covariant quantisation it allows on the worldsheet. Indeed,
worldsheet observables can be written in a completely covariant way via the BRST proced-
ure that gauge-fixes the worldsheet (super-)Diffeomorphism×Weyl symmetry. On the other
hand, the GS formalism [225], reviewed in detail in sections 2 and 3, emphasizes manifest
spacetime/target space supersymmetry. However, it pays the price of not admitting a known
covariant quantisation, and instead is typically quantised in the lightcone gauge.

In these notes, we introduce a third, less known, formalism for superstring theory, known
as the hybrid formalism [23, 226, 227] (sometimes referred to in the literature as the Berkovits
superstring). The basic idea of the hybrid formalism is to consider spacetimes which factorise
into the form

X×M , (6.1)

where X is, typically, some non-compact spacetime whileM is typically taken to be compact.
Furthermore, we assume that the sigma models on X andM are independently supersym-
metric. The hybrid formalism can be thought of as a quantisation of the worldsheet theory
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which makes manifest the spacetime supersymmetries of X and which only makes manifest
the worldsheet supersymmetries ofM. In other words, the hybrid formalism treats the non-
compact dimensions of the target in a GS-like approach, while the compact dimensions are
taken in an RNS-like description. The benefit of the hybrid formalism, as we will see through-
out these notes, is that, while the spacetime supersymmetries of X are manifest, the resulting
worldsheet theory still retains a covariant quantisation, unlike traditional GS approaches75.

This section is structured as follows. In section 6.1, we provide a pedagogical review of the
covariant quantisation of the bosonic string and RNS superstring. We focus in particular on
BRST quantisation and picture changing. In section 6.2, we discuss the role of spacetime super-
symmetry in the RNS superstring and develop notions of off-shell spacetime supersymmetry,
largely following the treatment of [227]. In section 6.3, we introduce the hybrid string in four
dimensions, starting from RNS string theory compactified on a Calabi–Yau manifold. Special
care is given to the set of complicated field redefinitions taken to get to the hybrid description.
In section 6.4, we discuss the hybrid string on a the background AdS3× S3, again starting from
the RNS description. Along the way, we briefly introduce (supersymmetric) WZW models. In
section 6.5, we discuss some applications of the hybrid formalism, specifically the conceptual
ease of turning on RRflux in theAdS3× S3 background, and the application of the hybrid form-
alism to the ‘tensionless’ limit of IIB string theory on AdS3× S3×K3, which is conjectured
to be holographically dual to the symmetric orbifold CFT Sym(K3).

6.1. Review of the RNS superstring

In this section we provide a lightning review of the bosonic string and the RNS superstring.
We attempt to keep everything self-contained, while not going beyond the scope of what is
needed in later sections. For a more complete description, see, for example, [11, 12, 77]

6.1.1. Review of the bosonic string. We will begin with the simplest string theory that can
be written down: the bosonic string in D dimensions. The fields of this theory are D scalars X :
Σ→ RD which parametrise the coordinates of the worldsheetΣ in theD-dimensional ambient
space RD. Taking the target space metric to be gµν = δµν ,76 the dynamics of the worldsheet
theory are governed by the Polyakov action77

SP =
1
4π

ˆ
Σ

d2σ
√
hhαβδµν∂αX

µ∂βX
ν . (6.1.1)

Here, h is a metric tensor on the worldsheet, which, as we will see, can be (almost) entirely
gauged away. The above action is invariant under the following local symmetries:

• Reparametrisation σ→ σ̃(σ).
• Weyl transformations hαβ → eωhαβ .

75 Yet another approach to covariant superstring theory is the pure-spinor formalism, also developed by Berkovits
[228], which has been an extremely powerful tool in the computation of string amplitudes and treating backgrounds
with RR flux. While we will not discuss pure spinors here, we direct the interested reader to the pedagogical
introduction [38].
76 Throughout this section the signature will play a minor role, so we will stick to Euclidean signature for convenience.
77 Relative to section 2 we have set α ′ = 1, which we will do for the rest of this section.
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Using these two symmetries, it is possible to (locally) transform h into the flat metric δ. Thus,
the action becomes

Sp =
1
4π

ˆ
Σ

d2σδαβδµν∂αX
µ∂βX

ν . (6.1.2)

However, upon gauging h→ δ, there are still combinations of diffeomorphisms and Weyl
transformations which leave the metric invariant. These are the conformal transformations,
which are a mixture of coordinate transformations σ→ σ̃(σ) which act as h(σ)→ eϕh(σ̃),
and then a Weyl transformation to remove the eϕ factor. Thus, the gauge-fixed worldsheet the-
ory will have a residual conformal invariance, and thus will constitute a CFT, which will be
extremely useful in calculations. We will find it convenient to use complex coordinates z, z̄ on
the worldsheet. In these coordinates,

S=
1
4π

ˆ
d2z∂Xµ∂̄Xµ , (6.1.3)

where ∂ = ∂z and ∂̄ = ∂z̄. The equations of motion are

∂∂̄X= 0 , (6.1.4)

and the most general solution is

X(z, z̄) = XL (z)+XR (z̄) . (6.1.5)

In an appropriate quantum treatment of the string, as we know from gauge theory, we need
to be careful about gauge transformations. Just as a standard gauge theory with connection A
requires integrating over all connections A and dividing by the volume of the gauge group, in
string theory we integrate over all metrics hmoduli the group of local symmetries Diff×Weyl.
That is, the path integral takes the schematic form

Z=

ˆ
DhDX

Diff×Weyl
e−Sp[X,h] . (6.1.6)

Of course, the volume of diffeomorphisms and Weyl transformations on Σ is infinite, and
so this expression needs regulation. The standard trick is to introduce Fadeev–Popov ghosts
whose path integral formally computes the (inverse) volume. This is achieved in the case
of Diff×Weyl by introducing a pair of anti-commuting ghosts b,c with scaling dimensions
dim(b) = 2 and dim(c) =−1 and action

Sghost =
1
2π

ˆ
d2zb∂̄c . (6.1.7)

The equations of motion demand that b,c are holomorphic. To be complete, we have to include
an anti-holomorphic pair (b̄, c̄) and we have

Sb̄c̄ =
1
2

ˆ
d2z b̄∂c̄ . (6.1.8)

The full gauge-fixed string theory is then given by

Z=

ˆ
DXDbDce−S[X,b,c] (6.1.9)
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with

S [X,b,c] =
1
2π

ˆ
d2z

(
1
2
∂Xµ ∂̄Xµ+ b∂̄c+ b̄∂c̄

)
. (6.1.10)

Given the above action, we can write down its stress tensor in the usual way: either by re-
introducing a worldsheet metric h and taking the variation of the action Tµν ∼ δS/δhµν , or as
the conserved current under coordinate translations z→ z+ a. In either case, the stress tensor
can be derived. In complex coordinates, it is given by

Tzz (z, z̄) =
1
2
∂Xµ (z, z̄)∂Xµ (z, z̄)+ 2(∂c)b(z)+ c(∂b)(z) . (6.1.11)

The component Tz̄̄z is given by the same expression but with the ‘right-moving’ fields, and the
mixed components Tz̄z and Tz̄z vanish identically as a consequence of conformal symmetry.
By the equations of motion,

∂̄Tzz = 0 , ∂Tz̄̄z = 0 , (6.1.12)

i.e. Tzz is holomorphic and Tz̄̄z is anti-holomorphic. To simplify notation, we denote

Tzz (z, z̄) := T(z) , Tz̄̄z (z, z̄) := T̄(z̄) . (6.1.13)

We emphasize that T(z) is not necessarily the complex conjugate of T̄(z̄).

6.1.1.1. Quantisation and OPEs. The above discussion has given us a (classical) CFT whose
fundamental fields are the coordinates Xµ and the ghosts b,c (as well as their right-moving
counterparts). We will now discuss how to promote this theory to a proper quantum string
theory.

In standard QFT, we quantise by identifying the canonical momentum πϕ conjugate to a
field ϕ and then impose the equal-time commutation relations

[ϕ(x, t) ,πϕ (y, t)] = iδ (x− y) . (6.1.14)

These commutation relations tell us the algebraic properties that the operators ϕ and πϕ satisfy.
We then find representations of this algebra, and identify the states in these representations as
allowed physical states78. Of course, the choice of canonical conjugation relations requires a
choice of specific time direction t.

We can continue with this route in 2D CFT, but due to the holomorphicity of the operators
we are considering, it is more useful to phrase the above commutation relations in terms of
‘operator product expansions’ or OPEs. We will briefly review OPEs here, but see for example
[77] for a complete treatment.

Given a holomorphic field ϕ(z), we can find its conjugate momemtum πϕ(z) via the vari-
ation

πϕ (z) = 2π
δS

δ∂̄ϕ(z)
. (6.1.15)

78 In the case of gauge theories, we also must impose the BRST conditions, i.e. that the physical states lie in the
cohomology of the BRST charge QBRST.
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Figure 5. The geometry of radial quantisation: we let the coordinate z ∈ C parametrise
our worldsheet. Circles of constant radius are thought of as circles of constant time, and
z= 0 corresponds to the infinite past, where asymptotic states are prepared.

The factor of 2π is customary. In 2D CFT, we implement quantisation with the following
recipe:

• Radial quantisation: in order to quantise a QFT, we have to pick a time direction. However,
the complex plane has Euclidean signature, and so there is no canonical choice. We will
artificially pick the ‘time’ coordinate to the radial coordinate |z|. Specifically, we let z=
eτ+iσ, where τ is the ‘time’ coordinate. Thus, z= 0 corresponds to the infinite past τ =−∞,
and is therefore the place where we prepare ‘asymptotic’ states. Slices of constant time are
circles centred at the origin, see figure 5.

Similar to time ordering in standard QFT, we define the radial ordering of two fieldsΦ1(z)
and Φ2(w) to be

R(Φ1 (z)Φ2 (w)) =

{
Φ1 (z)Φ2 (w) |z|> |w| ,
Φ2 (w)Φ1 (z) |z|< |w| .

(6.1.16)

From here forward, we assume that all products of operators are radially ordered.
• Operator product expansion: in general, given two local operators A(z) and B(w), their

product will be singular as z→w. This is captured in the operator product expansion (OPE).
Quantisation of a 2D CFT is achieved by imposing that ϕ(z) and πϕ(w) satisfy the OPE

ϕ(z)πϕ (w)∼
1

z−w
+(finite as z→ w) , (6.1.17)

where, as always, the above expression is radially-ordered. To see how this relates to the
standard canonical commutation relations, we define the equal time commutation relation
to be obtained by the following setup:

[ϕ(z) ,πϕ (w)]|z|=|w| = lim
δ→0+

(
ϕ(z)πϕ (w)

∣∣
|z|=|w|+δ −πϕ (w)ϕ(z)

∣∣
|z|=|w|−δ

)
. (6.1.18)

Using the OPE, we have

[ϕ(z) ,πϕ (w)]|z|=|w| = lim
δ→0+

(
1

z−w

∣∣∣∣
|z|=|w|+δ

− 1
z−w

∣∣∣∣
|z|=|w|+δ

)
. (6.1.19)
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This expression vanishes when z 6=w and must be regulated when z=w, but the end result
is

[ϕ(z) ,πϕ (w)]|z|=|w| ∝ δ (z−w)
∣∣
|z|=|w| , (6.1.20)

i.e. the OPE is equivalent to the canonical commutation relations in QFT. The extra factor
of 2π comes from the factor of 2π in the definition of πϕ.

We can use this prescription to derive the OPEs of the various fields appearing in the bosonic
string:

• The scalars X have conjugate momentum ∂X. We have the OPE

Xµ (z)∂Xν (w)∼ δµν

z−w
+ · · · . (6.1.21)

Since X is not strictly holomorphic, it is usually more convenient to work with the OPE

∂Xµ (z) ∂Xν (w)∼− δµν

(z−w)2
+ · · · . (6.1.22)

• The ghost field c has conjugate momentum b. Thus, we have the OPE

c(z)b(w)∼ 1
z−w

+ · · · . (6.1.23)

Note that b and c are anti-commuting, so this should really be thought of as an anti-
commutation relation. We can also swap the order and we find

b(z)c(w)∼ 1
z−w

+ · · · . (6.1.24)

OPEs are incredibly useful tools since they package the commutation relations of quantum
fields in a way that is compatible with the powerful techniques of complex analysis.

6.1.1.2. States, operators, and charges. In CFT, there is very little difference between talk-
ing about states and local operators, and there is in fact a one-to-one correspondence between
these two concepts. This is the state-operator correspondence:

• The CFT contains a vacuum state |Ω〉. Given a local field Φ(z), you can define a state |φ〉
by taking the limit

|φ〉 := lim
z→0

Φ(z) |Ω〉

(This may need regularized.) Since z= 0 is the ‘infinite past’, this is like preparing an asymp-
totic state in QFT.
• This can also be done in reverse! Given a state |φ〉 ∈ H, you can construct a local operator
Φ(z) at any point z in the plane (see Polchinski [11, 12]).
• Given a (not necessarily local) operator O, we can think of O acting on a state |φ〉, or we

can think of it acting on a local operator Φ via the commutator [O,Φ(z)]:

O|φ〉 ⇐⇒ [O,Φ(z)] .
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While we will not prove the operator-state correspondence here, we will use it very often, and
sometimes not make a distinction between the concept of an operator and a state.

As an application, let us see how we can read off charges under conserved currents by
representing states as local operators and using the OPE. Let J(z) be a conserved current on
the worldsheet (for example ∂X). Then the conserved charge associated to J is given by the
integral of J over a spatial slice. However, since we are working in radial quantisation, ‘spatial
slices’ are just circles of constant radius |z|= R. Thus, we can write the conserved charge Q
as

Q=

˛
|z|=R

dz
2π i

J(z) . (6.1.25)

The factor of 2π i is again customary. Now, given a local operatorΦ(z) dual to a state |Φ〉with
charge Q|Φ〉= q|Φ〉, by the state-operator correspondence, we should have

[Q,Φ(z)] = qΦ(z) . (6.1.26)

We can also evaluate this commutator in terms of the OPE J(z)Φ(w). Writing Q as a contour
integral, we can write this commutator as

[Q,Φ(w)] =
˛

dz
2π i

(J(z)Φ(w)−Φ(w)J(z)) . (6.1.27)

Due to radial ordering, this commutator must be defined by putting |z|> |w| in the first com-
ponent and |z|< |w| in the second, i.e.

[Q,Φ(w)] =

(˛
|z|>|w|

dz
2π i
−
ˆ
|z|<|w|

dz
2π i

)
J(z)Φ(w) , (6.1.28)

where the integrand is radially-ordered. First computing the integral around the contour
|z|> |w| and then subtracting the integral around the contour |z|< |w| is equivalent to simply
integrating in a small circle around w (see figure 6), so that

[Q,Φ(w)] =
˛
w

dz
2π i

J(z)Φ(w) . (6.1.29)

Now, by the Cauchy theorem, we know that the result of the integral of a meromorphic
function of z over a small circle around w is just the residue of that function at w, i.e. the
coefficient of the simple pole in its Laurent expansion around w. That is, the charge q is just
the coefficient of the 1/(z−w) term in the OPE of J with Φ. Specifically,

J(z)Φ(w)∼ ·· ·+ q
z−w

+ · · · . (6.1.30)

Thus, OPEs can be used to read off charges of fields under conserved currents. As a piece
of terminology, we define a field Φ to be a highest-weight state of charge q under J if the
higher-order poles in the OPE (6.1.30) vanish.

Finally, we define a type of normal ordering which can fuse two local operators into a third
local operator. Since the product of two fields can have bad short distance behaviour as in
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Figure 6. The contour integrals for computing the commutator [Q,Φ(w)] of a charge
acting on a state Φ.

equation (6.1.30), one cannot simply multiply two fields at the same point and expect a well-
defined result. As such, given two fields Φ1 and Φ2, it is natural to define their normal-ordered
product (Φ1Φ2) to be their product minus the divergent parts. Specifically,

(Φ1Φ2)(w) = lim
z→w

(Φ1 (z)Φ2 (w)−OPE) , (6.1.31)

where ‘OPE’ stands for the divergent parts of the operator-product expansion. Another way to
calculate this is to take the integral

(Φ1Φ2)(w) =
˛
w

dz
2π i

Φ1 (z)Φ2 (w)
z−w

. (6.1.32)

Exercise. Show that these two definitions of normal-ordering are equivalent.

6.1.1.3. The stress tensor and critical dimension. An important consequence of the world-
sheet conformal symmetry is that the (left-moving) stress tensor T(z) is holomorphic. As a
consequence, if we take any function f (z), then the current f(z)T(z) is also conserved, since

∂̄ ( fT) = 0 . (6.1.33)

Taking f(z) = zn+1, we have the series of conserved currents

J(n) (z) = zn+1T(z) , (6.1.34)

and the conserved currents associated to J(n) are the Virasoro modes

Ln =
˛

dz
2π i

J(n) (z) =
˛

dz
2π i

zn+1T(z) . (6.1.35)
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The different modes generate infinitesimal conformal transformations on the worldsheet.
Among them, the mode L0 is special, as it generates transformations of the form z→ λz,
i.e. scaling transformations. We say that a field Φ has scaling dimension h if

[L0,Φ(w)] = hΦ(w) . (6.1.36)

Equivalently,

J(0) (z)Φ(w)∼ ·· ·+ h
z−w

+ · · · . (6.1.37)

Furthermore, since T(z) itself is the generator of translations z→ z+ a, and L−1 is the con-
served charge of T(z), we have

[L−1,Φ(w)] = ∂Φ(w) , (6.1.38)

or

T(z)Φ(w)∼ ·· ·+ ∂Φ(w)
z−w

+ · · · . (6.1.39)

Putting these two OPEs together, we have

T(z)Φ(w) = · · ·+ h

(z−w)2
+
∂Φ(w)
z−w

+ · · · . (6.1.40)

We say that Φ is a primary if the higher-order divergent terms in the OPE vanish.
For the bosonic string, we can write down the stress tensor

T=
1
2
∂Xµ∂Xµ+ 2∂cb+ c∂b , (6.1.41)

where all products are assumed to be normal-ordered. Since we know the OPEs of ∂X and of
b and c, we can derive the OPE of T with itself. We find

T(z)T(w)∼ D− 26

2(z−w)4
+

2T(w)

(z−w)2
+
∂T(w)
z−w

+ · · · . (6.1.42)

This OPE is known as the Virasoro algera with central charge c= D− 26, and it is a charac-
teristic of 2D CFTs that the stress tensor obeys this algebra.

Exercise. Compute the OPE T(z)T(w) from the above definitions.

The 1/(z−w)4 term tells us that T itself is not a primary field unlessD= 26. The coefficient
of 1/2(z−w)4 in the TT OPE is called the ‘central charge’ of the theory, and it turns out that
the worldsheet path integral (6.1.6) is plagued with anomalies unless this coefficient vanishes.
We thus conclude that bosonic string theory must have

D= 26 . (6.1.43)
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6.1.1.4. BRST quantisation. The action (6.1.10) on its own defines a QFT whose states are
excitations of some vacuum state |Ω〉 by the modes of the fields ∂X, b, and c. However, we
originally introduced the ghosts b,c in order to fix a gauge symmetry on theworldsheet, namely
the diffeomorphism and Weyl symmetry. Just as in the quantisation of Yang-Mills theories,
once we introduce the ghosts, the gauge symmetry is not completely lost. The worldsheet is
still invariant under the fermionic transformations:

δϵX
µ = ϵc∂X

δϵc= ϵc∂c

δϵb= ϵT .

(6.1.44)

This is the left-over BRST symmetry of the original diffeomorphism symmetry on the world-
sheet. The conserved current associated to it is

JBRST = cTX +
1
2
cTb,c , (6.1.45)

where the products are assumed to be normal-ordered, and TX and Tb,c are the components of
the stress-tensor made of X and of b,c, respectively. The conserved charge associated to this
current is the BRST charge

QBRST =

˛
dz
2π i

JBRST (z) , (6.1.46)

where, as usual, the integral is taken around a small circle centred at the origin.
The BRST chargeQBRST is used to identify physical states of the theory. One can check that

the square of the BRST charge vanishes if D= 26, which, as we mentioned, is required for a
consistent worldsheet theory. Thus, QBRST can be used to define a cohomology on the Hilbert
space of the theory. Physical states are those which lie in those cohomology, i.e. physical states
are those which are annihilated by the BRST charge

QBRST|ψ 〉= 0 , (6.1.47)

and we identify two states if they differ by a QBRST-exact term:

|ψ 〉 ∼ |ψ 〉+QBRST|φ〉 . (6.1.48)

By the state-operator-correspondence, we can also simply consider local operators ψ(z)
instead of states |ψ 〉. In this case, the action of QBRST on the operator ψ(z) is given by

[QBRST,ψ (z)} , (6.1.49)

where the bracket [·, ·} is an anticommutator if both operators are anticommuting and a com-
mutator otherwise. The BRST cohomology is then given by the equivalence relation

ψ (z)∼ ψ (z)+ [QBRST,φ(z)} . (6.1.50)

Furthermore, given the existence of the b,c ghost system, we define one more constraint
for the worldsheet theory, namely that physical states have no excitations in the b,c fields. We
define the ghost number current to be

Jbc = bc . (6.1.51)
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A physical state is said to have ghost number zero if the charge of the state under this current
vanishes. We demand that physical states have ghost number zero79.

6.1.2. The RNS superstring. Wenow turn our attention to theN = 1 superstring in flat space.
It is obtained by adding a worldsheet fermion ψµ which is the supersymmetric partner to the
worldsheet scalar coordinate Xµ. The action for this theory is given by

S=
1
4π

ˆ
d2z∂Xµ∂̄Xµ+

i
2π

ˆ
d2z
(
ψµ∂̄ψµ+ ψ̄µ∂ψ̄µ

)
. (6.1.52)

Here, we have taken the worldsheet metric to be flat (hαβ = δαβ). Just as in the bosonic string,
this is only a well-defined gauge if the total central charge of the worldsheet theory has central
charge c= 0, so that the Weyl transformations h→ eωh is truly a quantum symmetry of the
theory. We will revisit this point later when we discuss BRST quantisation.

The equations of motion are simply

∂∂̄Xµ = 0 , ∂ψ̄µ = 0 , ∂̄ψµ = 0 . (6.1.53)

As before, the general solution for X is a sum of left-movers and right-movers, whereas ψ (ψ̄)
is a holomorphic (anti-holomorphic) function. That is,

Xµ (z, z̄) = XµL (z)+XµR (z̄) , ψµ (z, z̄) = ψµ (z) , ψ̄µ (z, z̄) = ψ̄µ (z̄) . (6.1.54)

From now on, we will focus only on the left-moving (holomorphic) part of the theory. The
right-moving part will behave in precisely the same way. The RNS superstring action is invari-
ant under X→ X+ a. The conserved currents Jµ associated to this symmetry are simply given
by

Jµ = ∂Xµ . (6.1.55)

Since we can obtain Xµ (up to a constant term) by integrating Jµ, we will work with Jµ instead
of Xµ whenever possible. Thus, in the left-moving sector, we consider the pair (ψ,J) to be the
set of fundamental fields of the theory.

The action (6.1.52) has a further symmetry given by supersymmetry transformations on the
worldsheet. Let ε be a Grassmann-odd variable. Then the transformations

δεX
µ = εψµ , δεψ

µ =
i
2
ε∂Xµ , (6.1.56)

leave the action invariant. The conserved current defined by this symmetry is the supercurrent
and is given by

G(z) = Jµ (z)ψµ (z) . (6.1.57)

Finally, the action (6.1.52) is symmetric under worldsheet translations z→ z+ a. The con-
served current associated to this symmetry is the stress-tensor, and is given by

T(z) =
1
2
Jµ (z)Jµ (z)+

i
2
ψµ (z)∂ψµ (z) . (6.1.58)

79 There is an ambiguity in the definition of ghost number due to the normal-ordering procedure. Some authors demand
that the ghost number is +1, others + 1

2
, and others zero. Since we do not deal with the details of this constraint too

much, we will keep with the latter convention.
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Together, Jµ, G, and T make up the conserved currents of the worldsheet theory, and thus are
the fundamental objects we consider during quantisation.

The above supersymmetry transformation (6.1.56) defines what is known as N = (1,0)
supersymmetry, since it acts only on the left-moving worldsheet fermion ψ. An independent
supersymmetry transformation is given by

δεX
µ = εψ

µ
, δεψ

µ
=

i
2
ε∂Xµ . (6.1.59)

This generates so-called N = (0,1) supersymmetry, and the conserved current is the super-
partner G of the right-moving stress tensor T. Together (6.1.56) and (6.1.59) generate the full
worldsheet N = (1,1) supersymmetry.

Finally, we should emphasize that, a priori, worldsheet supersymmetry has nothing to do
with spacetime supersymmetry. The former is a symmetry under the exchange of worldsheet
quantities, whereas spacetime supersymmetry is either (i) a symmetry between spacetime
bosonic and fermionic fields or, alternatively, (ii) isometries of the superspace describing the
spacetime. As it stands, the worldsheet fermions ψµ have no spacetime geometric interpreta-
tion, but are rather just degrees of freedom we add to the worldsheet (in particular, the world-
sheet fermions are not spacetime superspace coordinates). Wewill see later that the RNS string
indeed has spacetime supersymmetry, but it is not obvious. There are alternate (and equival-
ent) formulations of superstring theory which make spacetime supersymmetry manifest. Two
examples are:

• The GS superstring. The action of this string theory quantifies the ‘area’ of the worldsheet
in the spacetime superspace. The GS string has the advantage of making spacetime super-
symmetry manifest, but the disadvantage of being difficult to quantise.
• The hybrid string, the subject of these lectures. The hybrid string makes (some) spacetime

supersymmetry manifest while also keeping manifest conformal symmetry on the world-
sheet. However, although the hybrid string allows for ‘covariant’ quantisation, it can only
be formulated on special backgrounds.

Exercise. Show that (6.1.52) is invariant under the supersymmetry transforma-
tions (6.1.56). Derive the conserved current G(z) from these transforamtions using the
Noether procedure.

6.1.2.1. Canonical quantisation, OPEs, and the superconformal algebra. Just as in the
bosonic string, we can quantise the theory by promoting ∂X,ψ to operators and imposing the
canonical OPEswith their conjugatemomenta.We note thatψ is its own conjugatemomentum,
and so it satisfies the OPE:

ψµ (z)ψν (w)∼ δµν

(z−w)
+ · · · . (6.1.60)

The JJ OPE was derived above and is given by

∂Xµ (z)∂Xν (w)∼− δµν

(z−w)2
(6.1.61)
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The conserved supercurrent G(z) and stress tensor T(z) are expressed in terms of J and ψ
as

G(z) = (∂Xµψµ)(z) , T(z) =
1
2
(∂Xµ∂Xµ)(z)+

i
2
(ψµ∂ψµ)(z) , (6.1.62)

where, as always, we take the products to be normal-ordered. One can compute the OPEs
among the fields G and T. The details of the computation are a bit tendious, but the result is

T(z)T(w)∼ 3D

4(z−w)4
+

2T(w)

(z−w)2
+
∂T(w)
z−w

,

T(z)G(w)∼ 3G(w)

2(z−w)2
+
∂G(w)
z−w

,

G(z)G(w)∼ D

(z−w)3
+

2T(w)
z−w

.

(6.1.63)

This is the so-calledN = (1,0) superconformal algebra, which is an extension of the Virasoro
algebra we saw in the bosonic string. The central charge of this algebra can be read off by the
TT OPE and is given by

c=
3D
2
. (6.1.64)

Quantisation of the worldsheet theory requires understanding representations of this algebra,
as they form the symmetry algebra of the worldsheet.

Exercise. Show that T(z) and G(z) satisfy the above algebra.

6.1.2.2. Ramond and Neveu–Schwarz sectors. One fundamental difference between the
worldsheet theory of the RNS string and that of the bosonic string is the existence of fields with
half-integer conformal weight. We will call such fields ‘spinors’ (and use the term ‘fermion’
to refer to anything which obeys fermionc, i.e. anticommuting, statistics).

A special feature of spinors is that, just as in standar QFT, they are only defined up to an
overall minus sign. Thus, if we consider, say, the OPEψ(z)Φ(w) as a function ofw, it is entirely
feasible that, as w traverses a small circle around z, their product can pick up a minus sign,
which can be re-absorbed into ψ. This defines a branch cut in the OPE of ψ with some state
Φ. Specifically, if such a branch cut is present, we have

ψ (z)Φ(w)∝ (z−w)n+
1
2 (6.1.65)

for some n ∈ Z. Of course, we can also have a state Φ whose OPE with ψ is globally defined,
i.e. has no branch cut.

It is useful to divide states into the Ramond (R) sector and the Neveu–Schwarz (NS) sector
based on whether the OPE has a branch cut or not:

Φ ∈

{
R sector , ψ (z)Φ(w) has a branch cut

NS sector , ψ (z)Φ(w) otherwise
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Note that, because of the superconformal symmetry, if a state is to be in a definite sector of G,
then it must be in the same sector for all of the ψµ.80 As a general rule, R sector states generate
spacetime fermions while NS sector states generate spacetime bosons.

6.1.2.3. BRST quantisation and the superconformal ghost system. Now that we have postu-
lated commutation relations (OPEs) on the worldsheet, we procede to actually quantising the
theory. Since worldsheet string theory is a gauge theory (the gauge symmetries being world-
sheet (super-)diffeomorphisms and Weyl transformations), a proper treatment of its quantisa-
tion requires the introduction of ghost fields conjugate to these gauge transformations, as well
as a BRST charge to define an appropriate cohomology.

Within the bosonic string this was accomplished by introducing two new fields (b, c) to the
worldsheet with anti-commuting statistics and weights h(b) = 2, h(c) =−1 with action

Sbc =
1
2π

ˆ
d2zb∂̄c . (6.1.66)

Upon quantisation, the conjugate momentum to b is c, and so we impose the OPEs

c(z)b(w)∼ 1
z−w

. (6.1.67)

The bc ghost system is required to fix worldsheet reparametrisation symmetry.
Similarly, in the superstring, we not only have to fix the reparametrisation invariance, but

also the choice of spin connection used to define the fermions on the curved worldsheet. This
is accomplished by introducing a commuting pair of ghosts (β,γ) with conformal weights
h(β) = 3

2 and h(γ) =− 1
2 . The action is given by

Sβγ =
1
2π

ˆ
d2zβ∂̄γ . (6.1.68)

Similarly to the bc ghost system, canonical quantisation of the βγ system takes the form of
the OPE

γ (z)β (w)∼ 1
z−w

. (6.1.69)

After gauge-fixing, the full action of the RNS string theory is given by

S= SRNS + Sbc + Sβγ . (6.1.70)

The full stress tensor of this theory is given by

T= TRNS + 2∂cb+ c∂b− 3
2
β∂γ− 1

2
∂β γ . (6.1.71)

The central charge of this stress tensor is tedious to calculate, but it can be done. It is broken
up into three pieces: the piece coming from the RNS string, the piece from the bc system, and
the piece from the βγ system. The full result is

c= cRNS + cbc + cβγ =
3D
2
− 26+ 11=

3(D− 10)
2

. (6.1.72)

80 However, a state can be in a different sector for the left- and right-moving components.
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Since the worldsheet theory is only consistent if the full central charge vanishes, we demand
c= 0, or D= 10. This is the origin of the critical dimension in the RNS superstring.

We can also define a supercharge G of the full RNS string with ghosts, and it is given by

G= (Jµψµ)+ (∂β)c+
3
2
β (∂c)− 1

2
bγ . (6.1.73)

Together, the ‘full’ stress tensor T and superchargeG satisfy theN = 1 superconformal algbera
with central charge c= 0, i.e.

T(z)T(w)∼ 2T(w)

(z−w)2
+
∂T(w)
z−w

+ · · · ,

T(z)G(w)∼ 3G(w)

2(z−w)2
+
∂G(w)
z−w

+ · · · ,

G(z)G(w)∼ 2T(w)
z−w

+ · · · .

(6.1.74)

6.1.2.4. BRST quantisation. Finally, just as in the bosonic string, we need to construct a
BRST charge and impose that physical states live in the BRST cohomology of this charge.
First, let us break up T and G into the contributions from the RNS fields (J,ψ) and from the
ghosts (b,c,β,γ). That is, we define

T= TJ,ψ +Tgh , G= GJ,ψ +Ggh . (6.1.75)

Then we can define a BRST current on the worldsheet as

JBRST = c

(
TJ,ψ +

1
2
Tgh

)
+ γ

(
GJ,ψ +

1
2
Ggh

)
, (6.1.76)

and a BRST charge as

QBRST =

˛
dz
2π i

JBRST (z) . (6.1.77)

Just as in the case of the bosonic string, one can show that, as long asD= 10, the BRST charge
satisfies

Q2
BRST = 0 , (6.1.78)

and thus can be used to define a cohomology. Physical states are now those which satisfy

QBRST|φ〉= 0 , |φ〉 ∼ |φ ′〉+QBRST|ψ 〉 , (6.1.79)

or, in the language of local operators

[QBRST,Φ}= 0 , Φ∼ Φ ′ + [QBRST,Ψ} . (6.1.80)
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6.1.3. Bosonisation. The RNS string as described above is composed of fields
(X,ψ,b,c,β,γ). The theory also has many conserved currents, such as the spacetime
momentum −i∂X, the ghost numbers bc and βγ, as well as a set of conserved currents
for the fermioins ψµ that we will discuss shortly. These currents commute amongst them-
selves, and thus their eigenstates should form a basis of the Hilbert space of states. By the
state-operator correspondence, we should be able to write down local operators which have
specific eigenvalues under these currents. For the scalar X, this is actually straightforward,
and we have

|k〉 ⇐⇒ eik·X . (6.1.81)

This state has spacetime momentum k. For the other currents, however, it is somewhat tricky
to write down states that have the appropriate quantum numbers.

For the fields ψ,b,cwe can try to do exactly this, using what is known as the fermion/boson
duality in two-dimensions. A classic example is the duality between the ‘Sine-Gordon’ model
and the ‘Thirring’ model [229]:

SSine-Gordon =
1
2π

ˆ (
1
2
∂αφ∂

αφ− gcosβφ

)
,

SThirring =
1
2π

ˆ (
ψ̄
(
i��∂−m

)
ψ− g ′ (ψ̄γµψ)(ψ̄γµψ)) . (6.1.82)

Although the fundamental fields and Lagrangians of these theories are different, Coleman
showed that they are equivalent at the quantum level [230]. Intuitively, the fermions ψ of the
Thirring model are thought to condensates or coherent states of the Sine-Gordon field, while
the scalars in the Sine-Gordon theory can be thought of as bound states of the fermions on the
Thirring model.

In our case, the fermionic degrees of freedom in the RNS are essentially described by the
free Thirring model withm= g ′ = 0. This is dual to the free sine-Gordon model with g= β =
0. Thus, we should, in a sense, be able to replace the fermions ψ,b,c with scalars. We will
show how to do this below.
Note:

• A boson is any local operator which satisfies commutation relations.
• A fermion is any local operator which satisfies anti-commutation relations.

Example. The conformal ghosts have h(b) = 2 and h(c) =−1 but are fermions. The super-
conformal ghosts have h(β) = 3/2 and h(γ) =−1/2 but are bosons.

6.1.3.1. Bosonising the bc system. Consider as a prototypical example the bc conformal
ghost system. This system consists of two (chiral) anticommuting fields with action

Sbc =
1
2π

ˆ
d2zb(z) ∂̄c(z) . (6.1.83)

This theory has a conserved current:

Jbc = bc (6.1.84)
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which generates the U(1) transformation b→ eiαb, c→ e−iαc. A simple computation shows
that the OPE of Jbc with itself is given by

Jbc (z)Jbc (w)∼
1

(z−w)2
. (6.1.85)

Recall that in the bosonic string the current JX associated to shifts in X was defined by

JX = ∂X , (6.1.86)

and satisfied the OPE

JX (z)JX (w)∼−
1

(z−w)2
. (6.1.87)

Given the formal resemblance between (6.1.85) and (6.1.87), onemight be tempted to postulate
the existence of a scalar field σ such that

Jbc = ∂σ . (6.1.88)

If such a scalar field exists, then its chiral half should satisfy the OPE

σ (z)σ (w)∼ log(z−w) . (6.1.89)

Given the fields bc, it is clear how to construct such a scalar: simply take the normal-ordered
product bc and integrate it to get

σ (z) =
ˆ z

bc . (6.1.90)

However, a remarkable property about 2D CFTs is that this process is invertible. If we define

b= e−σ , c= eσ , (6.1.91)

it is possible to show that the OPE between b and c is

b(z)c(w) = e−σ (z)eσ (w)∼ 1
z−w

. (6.1.92)

Furthermore, the normal ordered product of e−σ and eσ is ∂σ. Thus, by considering the expo-
nentials of σ, we can recover fields b,c which satisfy anticommuting statistics. These fields
satisfy the correct OPEs for a b,c system, and the product bc is simply ∂σ. This hints at an
invertible relationship

(b,c)←→ σ , (6.1.93)

and we can consider the scalar σ instead of the two fermions b,c.
Naively, however, this cannot be true, since we know that the central charge of the b,c

system is c=−26, while that of a free scalar is c= 1. However, this is reconciled by noting
that the stress tensor of the b,c system

T=
1
2
(∂b)c+

1
2
(∂c)b− 3

2
∂ (bc) (6.1.94)
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written in terms of the scalar σ is

T=
1
2
∂σ∂σ− 3

2
∂2σ . (6.1.95)

Thus, the stress tensor is not that of a standard scalar field, but is ‘twisted’ by a term−3∂2σ/2.
The central charge is computed by noting the leading term in the TT OPE, and we indeed verify
that the central charge of the scalar σ is c=−26.

6.1.3.2. Anomalous conservation. The extra term − 3
2∂

2σ has an interpretation in terms of
conservation laws. Let J= ∂σ. We can rewrite the stress tensor as

T=
1
2
JJ− 3

2
∂J . (6.1.96)

The OPE of T with J is given by

T(z)J(w)∼− 3

(z−w)3
+

J(w)

(z−w)2
+
∂J(w)
z−w

. (6.1.97)

The presence of the cubic pole signals that J is not a primary, and thus, as a quantum current,
is not conserved. This is not visible from the conformal gauge (hαβ = δαβ), but becomes clear
once we couple the worldsheet fields back to a curved worldsheet metric. It can be shown that
the above OPE is equivalent to the non-conservation law:

∇zJz =
3
4
R , (6.1.98)

where R is the curvature on the worldsheet. Although we typically choose the worldsheet
metric to be locally flat, this cannot always be done globally. If the worldsheet is a compact
Riemann surface with genus g 6= 1, then the curvature must be non-zero somewhere, because
of the Gauss-Bonet theorem, which states that the integral of the scalar curvature R over the
worldsheet is a topological invariant and therefore depends only on the genus g:

1
4π

ˆ
Σ

d2z
√
hR= 2− 2g . (6.1.99)

The non-conservation law (6.1.98) is a signal that there is a quantum anomaly in the ghost
number symmetry on the worldsheet.

A consequence of this non-conservation is that correlation functions of fields Φi vanish
unless their charges under J sum up to 3− 3g. To see this, note that

1
2π

ˆ
Σ

d2z
√
h

〈
∆zJz (z)

n∏
i=1

Φi (zi)

〉
=−

n∑
j=1

Res
z=zj

〈
J(z)

n∏
i=1

Φi (zi)

〉

=−

 n∑
j=1

Qj

〈 n∏
i=1

Φi (zi)

〉
,

(6.1.100)

where we have used the OPE (6.1.30) in passing from the first to second line, as well as the
identity

∂̄

(
1

z− zi

)
=−2πδ(2) (z− zi) . (6.1.101)
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However, by (6.1.98) and the Gauss–Bonet theorem, we have

1
2π

ˆ
Σ

d2z
√
h

〈
∆zJz (z)

n∏
i=1

Φi (zi)

〉
=

3
8π

ˆ
Σ

d2z
√
hR

〈
n∏

i=1

Φi (zi)

〉

= (3− 3g)

〈
n∏

i=1

Φi (zi)

〉
.

(6.1.102)

Thus, we conclude that either the correlator vanishes, or

n∑
i=1

Qi = 3g− 3 . (6.1.103)

6.1.3.3. Bosonising the worldsheet fermions. Now that we have bosonised the bc ghost sys-
tem, we can also consider the worldsheet fermions ψµ. In (6.1.52) they do not obviously have
U(1) conserved currents, but if we define the complex linear combinations

Ψ±i =
1√
2

(
ψ2i−1± iψ2i

)
, (6.1.104)

then the fermion action can be written as

Sψ =
i
2π

ˆ
d2zψµ∂̄ψµ =

i
2π

ˆ
d2z
(
Ψ+i∂̄Ψ−i +Ψ−i∂̄Ψ+i

)
. (6.1.105)

This action now looks roughly like D/2 copies of the bc system. In particular, there are
D/2 U(1) symmetries

Ψ±i→ e±iαΨ±i , (6.1.106)

and the conserved currents are

Ji =Ψ+iΨ−i . (6.1.107)

If D= 10, there are five such conserved currents81. Just as for the bc system, we can introduce
scalars σi such that

Ji =Ψ+iΨ−i = ∂σi . (6.1.108)

Given the scalars σi, we can also write the fermions Ψ±i as82

Ψ±i = e±σ
i

. (6.1.109)

Unlike in the case of the bc system, the currents Ji are truly conserved quantities in the
quantum theory. This is because the stress tensor (6.1.58) has no term analogous to the ∂(bc)
term in the b,c system stress tensor.

81 In reality, the fermionic action Sψ is invariant under a full set of SO(10) transformations. The aboveU(1) generators
are the Cartan generators of the (complexified) Lie algebra so(10).
82 Strictly speaking, in defining Ψ±i in terms of the scalars σi, we need to introduce phases called cocycle factors,
which ensure that Ψ±i and Ψ±j anticommute for i ̸= j. See [77] for a more careful treatment. We will generally drop
cocycle factors wherever they should appear.
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6.1.4. Vertex operators. The benefit of bosonisation is that it provides a direct way to con-
struct vertex operators with specified values under conserved currents. Assume we have a
current J on the worldsheet which has conformal weight h(J) = 1. As we discussed above, a
state |q〉 with charge q is equivalent to a local operator Φq such that

J(z)Φq (w)∼ ·· ·+
qΦq (w)
z−w

+ · · · . (6.1.110)

Rather than postulating the existence of such a state/operator, we can attempt to construct it.
Let us assume that a scalar σ exists which bosonises the above current, i.e. such that J= ∂σ.
Then by the above discussion, the state eqσ satisfies precisely the correct requirements, since

J(z) eqσ (w)∼ q
z−w

+ · · · . (6.1.111)

The exponential eqσ is therefore not only a state with the desired charge q, but moreover is a
highest-weight state for the current J (one for which the JΦ OPE has no higher-order poles).

We can apply the above construction to vertex operators in the RNS string: so far, we have
16 conserved currents that we know how to bosonise:

• The D= 10 spacetime momentum current JX = ∂X, bosonised trivially though X.
• The D/2= 5 fermion number currents Ji =Ψ+iΨ−i, bosonised through the scalars σ =
{σ1, . . . ,σ5} (with background charge Q= 0).
• The bc ghost number current Jbc = bc bosonised through the scalar σ (with background

charge Q= 3).

Using these currents, we can immediately write down a generic highest-weight state of these
currents:

eik·Xeλ·σeqσ , (6.1.112)

where kµ labels the spacetime momentum of the state and q labels the bc ghost number. The
5-component vector λ labels the ‘occupation numbers’ of the worldsheet fermions, such that
an excitation in Ψ+i counts for λi→ λi + 1 and Ψ−i counts for λi→ λi− 1.

Another advantage of the description of vertex operators via bosonisation is that it is imme-
diately clear which states live in the Ramond (R) sector and which live in the Neveu-Schwarz
(NS) sector. Recall that we defined a state Φ to be in the R sector if theΨ±iΦ OPE has square-
root branch cuts and in the NS sector otherwise. Writing the fermionsΨ±i as exponentials, we
can read off the Ψ±i OPEs with a state of the form eλ·σ as

Ψ±i (z) eλ·σ (w)∼ (z−w)±λi eλ±i·σ , (6.1.113)

where λ±i is the original weight vector λ with the replacement λi→ λi± 1. Thus, we see that
the state eλ·σ is in the R sector when the λi’s are half-integer and in the NS sector when the
λi’s are integer. Two special sets of choices of the weight vectors λ are:

• λ= (0,0,0,0,0), so that eλ·σ = 1 is the identity operator. This state is also referred to as
the ‘NS vacuum’, since it is the NS state with smallest conformal weight with h= 0.
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• λ= (± 1
2 ,±

1
2 ,±

1
2 ,±

1
2 ,±

1
2 ). These are the R sector states with the lowest conformal weight,

namely h= 5
8 , and have a 32-fold degeneracy. This is also the dimension 2D/2 = 32 of the

Dirac algebra inD= 10 dimensions. This is not a coincidence and, as we will discuss below,
these states are spinors in ten dimensions83. We label the states eλ·σ by Sα if there are an
even number of + signs in the exponential and Sα̇ if there are an odd number of + signs
in the exponential, where α= {1, . . . ,8} and α̇= {1̇, . . . , 8̇}. We will show later that these
form a representation of the 10 dimensional Clifford algebra.

6.1.5. Picture number and picture changing. We are finally ready to discuss the last ingredi-
ent necessary to define BRST-invariant vertex operators in the RNS string: the bosonisation of
the superconformal β,γ system.

As a reminder, the β,γ system is a CFT with conformal weights h(β) = 3
2 ,h(γ) =−

1
2 , and

is the superpartner of the b,c system. The action of this system is

Sβγ =
1
2π

ˆ
d2zβ∂γ . (6.1.114)

Naturally, there is a U(1) symmetry β→ eiαβ, γ→ e−iαγ, and the conserved current is given
by

Jβγ = βγ , (6.1.115)

which satisfies the OPE

Jβγ (z)Jβγ (w)∼−
1

(z−w)2
. (6.1.116)

This again is precisely the form of the OPE ∂φ(z)∂φ(w) for a scalar which satisfies

φ(z)φ(w)∼− log(z−w) . (6.1.117)

Therefore, we define the scalar φ such that

Jβγ =−∂φ. (6.1.118)

(The minus sign is arbitrary but customary.) One might be tempted to jump the gun and right
down an ansatz for β and γ in terms of φ, i.e.

β
?
= e−φ , γ

?
= eφ , (6.1.119)

however this cannot be the correct answer for two reasons:

• The vertex operators e±φ obey fermionic statistics, while the ghosts β,γ obey bosonic
statistics.

83 The fundamental reason for this is that the 5 scalars σi essentially label the Cartan subalgebra of the Lie group
so(10), the Lorentz algebra in ten (Euclidean) dimensions. The weight vectors λ represent labels on the Dynkin
diagram, and thus correspond to representations of so(10). Weight vectors with half-integer coefficients correspond
to the states in the spinor representation of so(10).
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• In order for e±φ to have the correct conformal weights, the stress tensor for the scalar has
to be

Tφ =−1
2
∂φ∂φ+ ∂2φ.

However, upon computing the TφTφ, we can derive the central charge of this stress tensor
to be

c(φ) = 13 ,

whereas we know that the central charge of the β,γ system is

c(β,γ) = 11 .

Thus, the scalar φ cannot be the full description of the theory.

The trick is to define a fermionic ghost system η,ξ with central charge c(η,ξ) =−2, so that
the scalar φ together with the η,ξ system has central charge

c(φ)+ c(ξ,η) = 13− 2= 11= c(β,γ) . (6.1.120)

Such a ghost system needs conformal weights h(η) = 1 and h(ξ) = 0, an action

Sηξ =
1
2π

ˆ
d2zη∂ξ (6.1.121)

and should satisfy the OPEs

η (z)ξ (w)∼ 1
z−w

, ξ (z)η (w)∼ 1
z−w

(6.1.122)

Once this system is defined, we can use it to ‘bosonise’ the β,γ system. It turns out that the
correct definition is

β = e−φ∂ξ , γ = ηeφ . (6.1.123)

We should also note that once the η,ξ system has been introduced, it contains its own
‘accidental’ U(1) symmetry η→ eiαη, ξ→ e−iαξ with current

Jηξ = ηξ , (6.1.124)

which can itself be bosonised by introducing a scalar χ with

Jηξ = ∂χ, χ(z)χ(w)∼ log(z−w) . (6.1.125)

In terms of χ, we can write

η = e−χ , ξ = eχ , (6.1.126)

and thus

β = e−φeχ∂χ, γ = e−χeφ . (6.1.127)

To summarize, the bosonisation of the β,γ system requires the introduction of two scalar fields
φ,χ. Alternatively, it requires the introduction of one scalar field φ and a fermionic ghost
system η,ξ.
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6.1.5.1. Picture number and picture changing. There is a subtlety of the above construction:
the β,γ ghost system is written only in terms of the fields φ,η,∂ξ and knows nothing about
the ‘zero mode’ (constant of integration) of ξ. Specifically, the shift

ξ→ ξ+ ζ , ∂ζ = 0 (6.1.128)

leaves the β,γ system invariant. That is, the algebra of observables generated by (φ,η,ξ) is
much larger than the original algebra of the β,γ ghost system. We refer to the former as the
large algebra and the latter as the small algebra. One can check that the conserved current
associated to the shift ξ→ ξ+ ζ is just η, and so operators in the small algebra are required to
satisfy [˛

dz
2π i

η,Φ

]
= 0 , (6.1.129)

i.e. that Φ is invariant under the ξ→ ξ+ ζ shift.
Another feature of the βγ system is that it has an infinite number of ‘ground states’ that one

could choose for quantisation. Given a state Φq with OPEs

β (z)Φq (w)∼O
(
(z−w)−3/2+q

)
, γ (z)Φq (w)∼O

(
(z−w)1/2+q

)
, (6.1.130)

we say that the state Φq is a ground state of the β,γ system with picture q. This state will still
have an OPE of with the current Jβγ = βγ of the form

Jβγ (z)Φ(w)∼O
(
(z−w)−1

)
, (6.1.131)

and thus still be highest-weight with respect to this current.
Upon bosonising the βγ system, the above vacua are manifested as different charges under

the so-called ‘picture counting’ operator:

Np =

˛
dz
2π i

(Jηξ − Jβγ) =
˛

dz
2π i

(∂χ− ∂φ) . (6.1.132)

This is the difference of the βγ ghost number and the ηξ ghost number. The β,γ ghosts have
picture number Np = 0, while the fields (φ,η,ξ) have

Np (e
qφ) = q , Np (η) =−1 , Np (ξ) = 1 . (6.1.133)

Any state which is built from the q-picture vacuum Φq with only operators built from β,γ will
stay in the q-picture sector.

As it turns out, the sectors with picture q and picture q′ are isomorphic to each other if
q− q ′ ∈ Z.84 Indeed, given a state Φq with picture number q, we can always construct new
vertex operators with other pictures q̃. A systematic way to construct such vertex operators is
to use the ‘picture-raising’ operator

Z ·Φq := [QBRST,(ξΦq)} , (6.1.134)

84 Since β,γ are spinor fields, states are either in the R or NS sector. The R sector must always have q half-integer,
and the NS sector must always have q integer.
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Figure 7. The physical Hilbert space in different ‘pictures’. The picture changing oper-
ator Z maps physical states to physical states, and thus defines an isomorphism Z :
H(QBRST :Hq →Hq)→ H(QBRST :Hq+1 →Hq+1) between BRST cohomologies at
different pictures.

i.e. one takes the normal-ordered product of ξ with V and then commutes the result with the
BRST operator. Since ξ has picture numberNp(ξ) = +1, the resulting state has picture number
q+ 1.

One may object that the state Z ·Φq is BRST-exact and thus trivial in the Hilbert space of
states. However, this is not quite true, since the BRST cohomology is defined in the small
Hilbert space, i.e. on those states for which[˛

dz
2π i

η (z) ,Φ

]
= 0 . (6.1.135)

However, the state ξΦq is a member of the large Hilbert space, and so [QBRST, ξΦq} is not
an exact state from the point of view of the BRST cohomology, which is only defined on the
small Hilbert space.

The picture-changing operator Z is a useful operator to consider since it allows for changes
in the picture number while mapping physical states to physical states. Indeed, if Vq is in the
BRST cohomology, then so is Z ·Vq since

[QBRST, [QBRST, ξVq}} ∝ [ξVq, [QBRST,QBRST}}= 0 , (6.1.136)

by the (graded) Jacobi identity. Finally, we mention that the inverse of the picture raising
operator Z is the picture lowering operator

Y= c∂ξ e−2φ , (6.1.137)

which has picture number Np(Y) =−1. The existence of Y shows that the map Z between
BRST cohomologies of different picture charge is truly an isomorphism. This is summarized
in figure 7.
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6.1.5.2. Physical states and ‘canonical’ picture. Now that we have bosonised the β,γ sys-
tem, we can write down vertex operators (states) which satisfy the BRST condition. A simple
guess would be

Vq,λ,k := eqφeλ·σeik·X . (6.1.138)

These states have definite charges under spacetime momentum, have definite fermion occupa-
tion numbers, and definite picture number. Moreover, one can compute the conformal weight
of this state and we find

h(Vq,λ,k) =−
k2

2
+

λ2

2
− q2

2
− q . (6.1.139)

Of course, for states in the Ramond sector, any half-integer picture q is allowed, and for states
in the NS sector, any integer picture q is allowed, but the following choice, dubbed the ‘canon-
ical’ picture, can be chosen such that states of the form (6.1.138) are physical without extra
ingredients. The canonical picture is defined as

q=

{
−1 , NS sector

− 1
2 , R sector

(6.1.140)

Recall that a necessary (but not sufficient) condition for a state to be BRST closed is that
its conformal weight is equal to one. Thus, if the above state has any chance at being physical,
we must have

−k2

2
+

λ2

2
− q2

2
− q= 1 . (6.1.141)

Let’s look at a few examples:

• λ= {0,0,0,0,0}: this is in theNS sector, sowe take q=−1, and the physical state condition
h= 1 becomes

k2

2
=−1

2
.

This is the so-called tachyon state and its mass is m2 = k2 =−1 (in Planck units).
• λ= {0, . . . ,±1, . . . ,0}: this is also in the NS sector, so we take q= 1, and the physical state

condition h= 1 becomes

−k2

2
+

1
2
− 1

2
+ 1= 1 ,

and so k2 = 0. These state is massless and there are ten of them, one for each vector index
in µ= 0, . . . ,9.
• λ= {± 1

2 ,±
1
2 ,±

1
2 ,±

1
2 ,±

1
2}: this is in the R sector, so we take q=− 1

2 , and the physical
state condition is

−k2

2
+

5
8
− 1

4
+

1
2
= 1 ,

or k2 = 0. These states will be spinors and also massless.
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Table 2. The first low-lying physical states of the (left-moving part of the) RNS string.

State Sector Mass

e−φeik·X Neveu–Schwarz M2 =−1
e−φ/2e±σ1/2±···±σ5/2eik·X Ramond M2 = 0
e−φe±σieik·X Neveau–Schwarz M2 = 0

The above states of the superstring constitute its low-lying spectrum, i.e. the physical states of
smallest possible mass. These states and their masses are summarized in table 2. An infinite
tower of other physical states can be constructed, and their masses will be strictly positive
M2 ⩾ 1. Since mass is measured in Planck units85, these states will be completely inaccessible
to low energy physics.

6.1.6. The GSO projection. The above low-lying spectrum for the superstring theory has two
primary problems.

• Most obviously, it contains a non-physical state with mass M2 =−1 (in Planck units). In
any physically sensible theory, such states need to be taken care of.
• Less obviously, once one puts together the left- and right-moving parts of the string spectrum,

the number of fermionic and bosonic degrees of freedom in the spacetime theory are not
equal. If we want to construct a theory which has spacetime supersymmetry at high energies,
then we need a way to reconcile this mis-match of the counting of degrees of freedom.

It turns out that both of these problems can be fixed in one fell swoop via the Gliozzi–Scherk–
Olive (GSO) projection [231].

The first step in the GSO projection is to define a quantum number (−1)F which, for a given
state, counts the number of fermionic modes acting on it. In practical terms, given a state of
the form

eqφeλ·σ , (6.1.142)

the fermion number (−1)F is defined by

(−1)F = (−1)q+
∑5

i=1λi . (6.1.143)

The GSO projection is the following recipe:

• In the NS sector, demand (−1)F = 1.
• In the Ramond sector, there are two choices: either demand (−1)F = 1 or (−1)F =−1.

These choices differ by a choice of normalisation, and the identification σi→−σi swaps
them. We will take (−1)F =−1 for convenience.

States which do not satisfy the above criteria are said to be projected out by theGSO projection.
We define the physical states of the RNS string to be those which survive the GSO projection.
Within the low-lying states, the Tachyon e−φ has (−1)F =−1, and is projected out. In the R
sector, the states

e−φ/2e±σ1/2±···±σ5/2 (6.1.144)

85 More specifically, units of ~c/ℓs, where ℓs is the string length.
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Table 3. The spectrum of the (left-moving part) of the RNS superstring after GSO pro-
jection. The tachyonic state of the NS sector gets projected out, along with half of the
R sector ground states.

State Sector Mass

e−φeik·X Neveu–Schwarz M2 =−1
e−φ/2 e±σ1/2±···±σ5/2︸ ︷︷ ︸

odd number of + signs

eik·X Ramond M2 = 0

e−φ/2 e±σ1/2±···±σ5/2︸ ︷︷ ︸
even number of + signs

eik·X Ramond M2 = 0

e−φe±σieik·X Neveu–Schwarz M2 = 0

have

(−1)F = (−1)#plus signs−3
, (6.1.145)

which is +1 for an odd number of plus signs and −1 for an even number of plus signs. Given
our above convention, we keep the states with an even number of plus signs. The physical
spectrum after GSO projection is listed in table 3.

6.2. Spacetime supersymmetry in the RNS string

In the previous lectures, we introduced the superstring in the RNS formalism. Let us briefly
review the salient features:

• The RNS string is based on the field content (Jµ = ∂Xµ,ψµ) as well as the superconformal
ghost system (b,c,β,γ). Together, if we assume µ= 1, . . . ,10, these fields form an N = 1
superconformal field theory on the worldsheet with vanishing central charge.
• The physical states are identified with the cohomology of the BRST charge

QBRST =

˛
dz
2π i

(
c

(
TJ,ψ +

1
2
Tgh

)
+ γ

(
GJ,ψ +

1
2
Ggh

))
.

• Physical states must have eigenvalue +1 under the ghost number charge

Qghost =

˛
dz
2π i

(bc+βγ) .

• After bosonising the β,γ ghost system, we require that vertex operators live in the ‘small’
Hilbert space of the η,ξ system, i.e.[˛

dz
2π i

η (z) ,Φ

]
= 0 . (6.2.1)

• Physical states must satisfy the GSO projection, which amounts to summing over spin
structures on the worldsheet. This ensures a consistent spacetime spectrum with spacetime
supersymmetry.
• Upon bosonising the ghost system, the Hilbert space contains infinitely physically equival-

ent copies of the same vertex operator which lie in the BRST cohomology. These vertex
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operators are differentiated by their ‘picture number’ q, and different picture numbers are
related to each other by the ‘picture raising’ and ‘picture lowering’ operators

Z= [Q, ξ ·} , Y= c∂ξ e−2φ .

The RNS formalism is incredibly powerful: it allows one to write vertex operators on the
worldsheet for every spacetime state generated by a single string, and can be used to compute
correlation functions in a conceptually straightforward manner. The drawback of the RNS
formalism, however, is that the symmetries of the spacetime are not always manifest. In par-
ticular, looking at the form of the action of the RNS string, it is not at all obvious that the target
space enjoys spacetime supersymmetry.

One way to make spacetime supersymmetry manifest is to abandon the RNS string alto-
gether and define a new worldsheet theory whose fundamental fields are the coordinates X,
along with anticommuting superspace coordinates θ, θ̄. This leads to theGreen-Schwarz form-
alism which we explored in section 2. An alternative route is to try to redefine the fields in the
RNS formalism such that they manifestly demonstrate spacetime supersymmetry. This will
lead to the hybrid formalism, which is the main topic of this section. As mentioned in above,
we will closely follow the treatment of [227].

In order to understand the hybrid formalism, wemust first understand how spacetime super-
symmetry is obtained from the RNS formalism in the first place.

6.2.1. Spacetime supersymmetry generators on the worldsheet. Recall that, in bosonic
string theory in flat space, there is a global symmetry corresponding to constant shifts Xµ→
Xµ+ aµ in the spacetime coordinates. The conserved current corresponding to this shift is
simply Jµ = ∂Xµ, and the conserved charge is computed by integrating Jµ over a constant
time slice on the worldsheet. In radial quantisation, a constant time slice is a circle encircling
the origin, and so the conserved charge is given by

Pµ :=

˛
dz
2π
∂Xµ . (6.2.2)

Since this is the conserved charge associated to shifts in the spacetime coordinate, we are
justified in calling this conserved charge the ‘spacetime momentum’86. We have defined Pµ

with a relative factor if i to the standard definition of the conserved charge associated to J,
because we want states of the form eik·X to have eigenvalue kµ under Pµ.

A string theory which describes a spacetime that has supersymmetry should have a con-
served charge on the worldsheet which generates this supersymmetry. While there is no obvi-
ous symmetry on the worldsheet which corresponds to spacetime supersymmetry, we can try to
hunt for such an operator regardless and hope it corresponds to the spacetime supersymmetry
transformations. Since all charges we have seen so far have been constructed as line integrals
of weight-1 fields on the worldsheet, we are searching for a worldsheet field q(z) which would
have to satisfy the following criteria:

• It would have to live in the Ramond sector, so that q(z) represents a spacetime fermion.
• It would have to transform in the spinor representation of the ten-dimensional Lorentz group.

86 Recall, again, that we supress right-moving contributions in these notes. The actual spacetime momentum
includes (6.2.2) together with its Hermitian conjugate.
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• They should generate the ten-dimensional supersymmetry algebra. Let α be a spinor index
in ten-dimensions. Then ifQα is the conserved charge associated to qα, then we should have

{Qα,Qβ}= ΓµαβPµ .

Aparticularly simple set of vertex operators in the RNS formalism satisfying the above require-
ments are given by

Vq,λ,k = eqφeλ·σeik·X , (6.2.3)

where q=−1 if λ has integer entries (NS sector) and q=− 1
2 if λ has half-integer entries

(R sector). Let us take k= 0 for simplicity. The lowest-energy states in the Ramond sector are
given by λ= {± 1

2 , . . . ,±
1
2} and have conformal weight

h=
λ2

2
− q2

2
− q= 1 , (6.2.4)

and are physical states, i.e. in the BRST cohomology. We will not show it here, since we have
not discussed the Lorentz symmetry generators on the worldsheet, but it can also been shown
that the above states transform in the spinor representation of SO(10).

There are 25 = 32 such states. The GSO projection tells us to only keep half of them, for
example only those with an even number of plus signs in λ. Thus, we collectively define

Sα = e±
σ1
2 ±σ2

2 ±σ3
2 ±σ4

2 ±σ5
2 , (6.2.5)

where α= 1, . . . ,16. It can be shown that the OPE between these Sα fields is given by

Sα (z)Sβ (w)∼
Γµαβψµ (w)

(z−w)3/4
+ · · · , (6.2.6)

where Γµ are the 10-dimensional Dirac matrices87.
We define the ‘spacetime supersymmetry’ generators Qα to be the integral of these vertex

operators at k= 0 around a circle centred at the origin88 That is, we define qα = e−φ/2Sα and

Qα =

˛
dz
2π i

qα (z) =
˛

dz
2π i

Sαe
−φ/2 . (6.2.7)

So far, we have simply defined a set of operators which we call the sapcetime supersym-
metry generators. For the operatorsQα to truly be the supersymmetry generators in spacetime,
then they must satisfy the supersymmetry algebra

{Qα,Qβ}= ΓµαβPµ =

˛
dz
2π

Γµαβ∂Xµ , (6.2.8)

87 The full spinor algebra in 10 dimensions in 32 dimensional. The GSO projection is equivalent to decomposing the
so(10) representations as 32= 16⊕ 16 ′, where 16 and 16 ′ are the Weyl representations. Here, we take spinors to be
in the 16 and the gamma matrices are the ones projected onto this subalgebra.
88 Since supersymmetry generators satisfy [Pµ,Qα}.= 0, they should carry no momentum.
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where in the second step we used that the momentum operator Pµ is the integral of the con-
served current ∂Xµ. However, we can compute the anticommutator ofQα withQβ and we find
(see the exercise below)

{Qα,Qβ}=
˛

dz
2π i

e−φψµΓ
µ
αβ . (6.2.9)

This is, of course, not the usual supersymmetry algebra. But why?
The answer lies in picture number. The gravitino vertex operator lives in the q=− 1

2 picture
(since it is defined with a factor of e−φ/2), and so the anticommutator {Qα,Qβ} has picture
number q=−1. However, the momentum operator clearly has picture number q= 0, since
there are no exponentials of φ in its definition. Thus, the anticommutator of the supercharges
never had a chance of reproducing the desired supersymmetry algebra. However, we can act
on the anticommutator {Qα,Qβ} with the picture changing operator Z, and we find

Z · {Qα,Qβ}=
˛

dz
2π i

ΓµαβZ ·
(
e−φψµ

)
=

˛
dz
2π

Γµαβ∂X
µ = ΓµαβP

µ . (6.2.10)

Thus, the spacetime supersymmetry algebra is satisfied up to picture-changing.

Exercise. Given the form of the supersymmetry generators Qα above, show that

{Qα,Qβ}=
˛

dz
2π i

e−φψµΓ
µ
αβ .

Hint: Use the OPEs

Sα (z)Sβ (w)∼
Γµαβψ

µ (w)

(z−w)3/4
+ · · · , (6.2.11)

eqφ (z)eq
′φ (w)∼ e(q+q ′)φ (w)

(z−w)qq
′ + · · · (6.2.12)

to figure out the OPE Qα(z)Qβ(w), and then perform contour integrals to extract the
anticommutator {Qα,Qβ}.

Exercise. Let Z be the picture-changing operator. Show that the spacetime supersym-
metry algebra is preserved up to picture-changing, i.e.

Z · {Qα,Qβ}= ΓµαβPµ .

6.2.2. Off-shell spacetime supersymmetry?. In the previous section we showed that the
spacetime supersymmetry generators Qα of the ten-dimensional superstring do not satisfy the
usual spacetime supersymmetry algebra, but instead satisfy the a modified version

Z · {Qα,Qβ}= ΓµαβPµ , (6.2.13)
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i.e. the generators obey the supersymmetry algebra up to the inclusion of the picture-changing
operator Z. This means that the spacetime supersymmetry algebra is only satisfied on-shell89.
In order to define a superstring theory for which the spacetime supersymmetry is manifest, we
need a supersymmetry algebra which closes off-shell.

Recall that the fundamental reason for the failure of the closure of the supersymmetry
algebra is that the operators Qα have picture number q=− 1

2 , while the momentum oper-
ator Pµ has picture number q= 0. One possible way to get a sensible supersymmetry algebra
would be to introduce supersymmetry generators Q̃α with picture number q=+ 1

2 . This would

allow the anticommutator {Qα, Q̃β} to have picture number q= 0, and thus have a chance at
reproducing the spacetime SUSY algebra off-shell. A natural guess for Q̃α would be simply
Z ·Qα. This operator can be calculated, and we have the resulting supersymmetry algebra is

qα (z) q̃β (w)∼
Γµαβ∂Xµ
z−w

=⇒
{
Qα, Q̃β

}
= ΓµαβPµ , (6.2.14)

where q̃α = Z · qα. That is, {Qα, Q̃β} indeed computes the correct supersymmetry algebra!
However, there is now a problem, namely that we have twice as many supersymmetry gen-

erators as we should. Thus, in order to have a well-defined set of supersymmetry generators,
we need to find a way to choose half of the original generators to be promoted to generat-
ors with picture number q=+ 1

2 . In ten dimensions, there is no Lorentz-invariant choice of
half of the supersymmetry generators. However, as we will see later, this is possible in four
dimensions, due to the chiral decomposition of the Lorentz algebra so(4)∼= su(2)⊕ su(2).

6.3. The hybrid string in four dimensions

In the previous section, we introduced the problems of spacetime supersymmetry in the RNS
string. Briefly restated, they are:

• The supersymmetry generators Qα on the worldsheet do not satisfy the supersymmetry
algebra (off shell).
• Spacetime supersymmetry is only preserved when the vertex operators are GSO projected.
• One can define new supersymmetry generators Q̃α such that {Qα, Q̃α}= ΓµαβPµ is the off-

shell supersymmetry algebra. However, there is no Lorentz-invariant choice of which super-
charges to keep as Qα and which to replace with Q̃α.

As we will see in this section, all of these problems can be avoided in the context of compac-
tifications to four dimensions.

6.3.1. The four-dimensional SUSY algebra. The magical feature of supersymmetry in four
dimensions is that the Lorentz algebra so(3,1) has a chiral splitting as su(2)⊕ su(2). The
spinor representation of the Lorentz group in terms of the su(2) algebras is

spinor of so(3,1)∼=
(
1
2 ,0
)
⊕
(
0, 12
)
. (6.3.1)

89 The idea of two states being ‘equivalent’ under picture changing is only true for states which satisfy the BRST
conditions.
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Thus, every spinor in four-dimensions can be written as the direct sum of two su(2) spinors
transforming under the two su(2) algebras.

This chiral splitting allows us to split the supersymmetry generators in four-dimensions
into two sets of two: the two generators Qα form a doublet of the first su(2) (i.e. transform in
the ( 12 ,0) of so(3,1)) while the other two generators Qα̇ form a doublet of the second su(2)
(i.e. transform in the (0, 12 ) of so(3,1)). The supersymmetry algebra, in an appropriate basis,
is then {

Qα,Qβ̇

}
= 2σµ

αβ̇
Pµ , {Qα,Qβ}=

{
Qα̇,Qβ̇

}
= 0 . (6.3.2)

Crutially, since Qα (resp. Qα̇) anticommute among each other, when defining string theory in
four dimensions, we can choose only one-half of the supercharges (say Qα̇) to modify so that
the spacetime supersymmetry algebra can close off-shell on the worldsheet. First, however,
we need to review the compactification of superstrings to four-dimensions.

6.3.2. Calabi–Yau compactifications. In order to describe a consistent superstring theory in
four-dimensions, we need to ‘compactify’ six of the original ten spacetime dimensions. This
is implemented by splitting the original superstring action into a four-dimensional part and a
six-dimensional ‘compactified’ part, i.e.

S=
1
2π

ˆ
d2z

(
1
2
∂Xµ∂̄Xµ+ iψµ∂̄ψµ+ iψ̄µ∂ψ̄µ

)
+ SC , (6.3.3)

where SC is the action of the six compactified directions, and now the index µ runs from
0 to 3.

Upon including the b,c conformal and the β,γ superconformal ghosts, the full central
charge of the theory should be 0. We know

c(X) = 4 · 1 , c(ψ) = 4 · 1
2
, c(b,c) =−26 , c(β,γ) = 11 , (6.3.4)

and so the total central charge of the X,ψ fields along with the ghosts is c(X,ψ,b,c,β,γ) =−9.
Thus, in order for the ten-dimensional theory to have a vanishing Weyl anomaly, we need

c(compactification) = 9 . (6.3.5)

There are several possible ways to achieve this. For example, the RNS string on R6/Λ, where
Λ is some lattice, is an example of such a theory.

For our purposes, we will consider a special class of string compactifications—so-called
Calabi–Yau compactifications. There are many ways to define a Calabi–Yau compactification,
see for example [12]. However, in the following we will only need to know that Calabi–Yau
manifolds define worldsheet CFTs with extended supersymmetry. Specifically:

A Calabi–Yau compactification defines a CFT with central charge c= 9 which
possesses an N = (2,2) superconformal algebra.

By anN = (2,2) superconformal algebra, wemean an extension of the standardN = (1,1)
superconformal algebra which has two supercharges G±

C in both the left- and right-moving
sectors. Furthermore, there is a conserved U(1) current JC under which G±

C carry charge ±1.
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Together with the stress tensor TC, the N = (2,0) (that is, the left-moving part of the full
N = (2,2)) algebra is given by

TC (z)TC (w)∼
c

2(z−w)4
+

2TC (w)

(z−w)2
+
∂TC (w)
z−w

,

TC (z)G
±
C (w)∼

3G±
C (w)

2(z−w)2
+
∂G±

C (w)
z−w

,

G+
C (z)G−

C (w)∼ c

6(z−w)3
+

JC (w)

2(z−w)2
+

2TC (w)+ ∂JC (w)
z−w

,

JC (z)G
±
C (w)∼±

G±
C (w)
z−w

,

JC (z)JC (w)∼
c

3(z−w)3
,

(6.3.6)

where, for our case, c= 9. We need no information about the structure of the six-dimensional
compactified theory except for the existence of the generators (TC,G

±
C ,JC).

The stress tensor and supersymmetry current of the full theory are given by

T=
1
2
∂Xµ∂Xµ+

i
2
ψµ∂ψµ+TC +Tghosts

G= ψµ∂Xµ+G+
C +G−

C +Gghosts .
(6.3.7)

Together, T,G generate the usual c= 0 N = (1,0) superconformal algebra.

6.3.3. Off-shell supersymmetry in four dimensions. The vertex operators which generate the
four-dimensional spacetime supersymmetry are given, as usual, by exponentials of the boson-
ised fermions ψµ. Let us define

Ψ±1 = ψ1± iψ2 , Ψ±2 = ψ3± iψ4 . (6.3.8)

Then we can define the fermion number currents

Ji =Ψ+iΨ−i (6.3.9)

and, as before, we bosonise this current by introducing scalars σi such that

Ji = ∂σi . (6.3.10)

In terms of these two scalars, we can write down fields in the NS sector of the four-dimensional
CFT as

Sα = e
α
2 (σ1+σ2) , Sα̇ = e

α̇
2 (σ1−σ2) , (6.3.11)

where α,α̇= {+,−}. Replicating what we did in ten dimensions, we can try to write down
a physical state corresponding to these fields by putting them into the ‘canonical’ q=− 1

2
picture, i.e. we consider the states

e−φ/2Sα , e−φ/2Sα̇ . (6.3.12)
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However, these cannot be physical states. To see why, we can just compute their conformal

dimension. Each e−φ/2 contributes− q2

2 − q= 3
8 , while the each term of the form e±σ1/2±σ2/2

contributes 1/4, and so the total conformal weight is

h
(
e−φ/2Sα

)
= e−φ/2Sα̇ =

3
8
+

1
4
=

5
8
, (6.3.13)

and in order to be a physical state, we require h= 1, and so something is missing—something
with conformal weight 3/8.

Fortunately, since we have a compactified theory with N = (2,2) superconformal sym-
metry, we have access to another scalar that we can use to construct states, namely the boson-
isation HC of the current JC. If we define

JC = ∂HC , (6.3.14)

then by the OPE of HC is determined by the self-OPE of JC, namely

JC (z)JC (w)∼
3

(z−w)2
=⇒ HC (z)HC (w)∼−3log(z−w) . (6.3.15)

The exponential of HC has conformal weight

h
(
eqHC

)
=

3q2

2
. (6.3.16)

Thus, vertex operators of the form e±HC/2 have conformal weight 3/8. Inspired by this, we
define states of the form

qα = e−φ/2Sαe−HC/2 , qα̇ = e−φ/2Sα̇eHC/2 , (6.3.17)

which have conformal weight h= 1. The plus and minus signs in the exponentials of HC are
chosen so that the full vertex operators qα,qα̇ have an even number of plus signs in the expo-
nents for the scalars (σ1,σ2,HC), and thus survive the GSO projection.

Now we have a candidate for the generators of four-dimensional supersymmetry. Indeed,
we can show that the spinor fields Sα,Sα̇ satisfy the algebra

Sα (z)Sβ̇ (w)∼ σ
µ

αβ̇
ψµ (w) , (6.3.18)

and so, using

e−HC/2 (z)eHC/2 (w)∼ 1

(z−w)3/4
, e−φ/2 (z)eφ/2 (w)∼ e−φ (w)

(z−w)1/4
, (6.3.19)

we have

qα (z)qβ̇ (w)∼
e−φσµ

αβ̇
ψµ (w)

z−w
. (6.3.20)

This is, of course, not precisely the supersymmetry algebra in four dimensions, and in par-
ticular it has the wrong picture number Np =−1. Just as in the ten-dimensional case, we can
hit the left-hand-side with the picture-raising operator Z, and we find
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Z ·
(
qα (z)qβ̇ (w)

)
∼
σµ
αβ̇
∂Xµ

z−w
, (6.3.21)

which is the supersymmetry algebra in four-dimensions.
As we mentioned in the ten-dimensional discussion, we can attempt to form a manifest 4D

supersymmetry algebra by picking half of the supersymmetry generators to lie in the q=+ 1
2

picture. This is possible in four-dimensions, since the supersymmetry algebra splits into two
pieces. Let us pick the dotted supersymmetry generators. We define the ‘new’ supersymmetry
generator to be

q̃α̇ = Z · qα̇
= eφGqα+ bηe2φqα

= Geφ/2+
α̇
2 (σ1−σ2)+HC/2 + bηe3φ/2+

α̇
2 (σ1−σ2)+HC/2 .

(6.3.22)

We can compute the OPE between the new supersymmetry generator and qα, and we find

qα (z) q̃β̇ (w)∼
σµ
αβ̇
∂Xµ (w)

z−w
, (6.3.23)

i.e. they satisfy the standard 4D supersymmetry algebra. Note that the qαqβ and q̃α̇q̃β̇ OPEs
are regular.

With the above discussion in mind, we define the 4D supersymmetry generators to be:

Qα =

˛
dz
2π i

qα ,

Qα̇ =

˛
dz
2π i

(
Geφ/2+

α̇
2 (σ1−σ2)+HC/2 + bηe3φ/2+

α̇
2 (σ1−σ2)+HC/2

)
.

(6.3.24)

The expression for Qα̇ in the RNS formalism is indeed a bit messy, but as we have seen it
is required for the supercharges to satisfy the 4D supersymmetry algebra without the need to
invoke picture changing.

6.3.4. The hybrid fields. Having constructed supersymmetry generators which satisfy the
off-shell supersymmetry algebra is not enough to say that we have ‘manifest’ spacetime super-
symmetry on the worldsheet. For that, we would need fields on the worldsheet which act as
odd coordinates in superspace. For example, we say that the bosonic string theory has ‘mani-
fest’ Poincaré symmetry since there are fields Xµ which represent the spacetime coordin-
ates on which the Poincaré transformations form a global worldsheet symmetry. Given four-
dimensional supersymmetry generators Qα,Qα̇, superspace coordinates θα,θα̇ must satisfy
the anticommutation relations:

{Qα,θα}= δα
β ,

{
Qα̇,θ

α̇
}
= δα̇

β̇ . (6.3.25)

On the worldsheet, we are thus searching for fields θα,θα̇ whose OPEs with qα, q̃α̇ are given
by

qα (z)θ
β (w)∼ δα

β

z−w
, q̃α̇ (z)θ

β̇ (w)∼ δα̇
β̇

z−w
. (6.3.26)
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For θα, there is a natural guess, given by taking the expression for qα and negating all of the
U(1) charges. Indeed, the operator

θα = eφ/2e−
α
2 (σ1+σ2)eHC/2 (6.3.27)

satisfies the desired OPEs. Similarly, we can write an ansatz for θβ̇ by similarly proposing a
state with opposite quantum numbers to q̃α̇. The appropriate guess is

θα̇ = cξ e−3φ/2e−
α̇
2 (σ1−σ2)e−HC/2 , (6.3.28)

where we think of the cξ prefactor as being conjugate to the bη factor in (6.3.22). This field
alone is conjugate to qα̇, and there is no need to introduce a separate term conjugate to the first
term in the second line of (6.3.22).

Now we have candidate fields θα,θα̇ behave precisely like superspace variables under
supersymmetry transformations. Furthermore, θα and θα̇ have trivial OPEs with each other.
We would like to write a field theory on the worldsheet in terms of these fields, so that the θ’s
become fundamental fields in a sigma model on superspace. A natural guess for such a theory
would be to introduce a conjugate field pα for θα and pα̇ for θα̇ such that (pα,θα) and (pα̇,θα̇)
form two fermionic systems. For such a conjugate field p to exist for each θ, we would demand
the OPEs:

pα (z)θ
β (w)∼ δα

β

z−w
, pα̇ (z)θ

β̇ (w)∼ δα̇
β̇

z−w
(6.3.29)

A natural candidate for the p fields are then just the supersymmetry generators qα, q̃α̇.
However, the supersymmetry generators have the problem that they have a non-trivial OPE
with each other, namely the supersymmetry algebra.We would like to have fields pα, pα̇ which
are conjugate to the θ’s and have trivial OPEs among themselves, so that they decouple. A
natural guess would be to take the expressions above for the θ’s and just reverse the quantum
number of every component. That is, we define

pα = e−φ/2eα(σ1+σ2)/2e−HC/2 , pα̇ = bη e3φ/2eα̇(σ1−σ2)/2eHC/2 . (6.3.30)

The field pα is just the original supersymmetry generator qα, while the field pα̇ is the second
term in the third line of (6.3.22).

After defining the fields θα,pα and θα̇,pα̇, by construction they satisfy the OPEs

pα (z)θ
β (w)∼ δα

β

z−w
, pα̇ (z)θ

β̇ (w)∼ δα̇
β̇

z−w
(6.3.31)

and are both anti-commuting fields. Crucially, the fields (pα,θα decouple from (pα̇,θα̇)
(i.e. their OPEs between each other are regular) This is precisely the OPE of four b,c ghost
systems described by the action

Sp,θ =
ˆ

d2z
(
pα∂̄θ

α+ pα̇∂̄θ
α̇
)
. (6.3.32)

We call the fields (θα,pα) and (θα̇,pα̇) the hybrid fields. Together with the scalars Xµ, they
describe a sigma model on superspace in four dimensions.

188



J. Phys. A: Math. Theor. 57 (2024) 423001 Topical Review

6.3.5. Decoupling the internal CFT. In the original RNS description of the 10D superstring
compactified to 4 dimensions, the 4D CFT described by Xµ,ψµ was completely decoupled
from the internal 6D CFT with action SC. The only assumptions we made on the form of the
internal field theory was that it possessed an N = (2,2) worldsheet supersymmetry and that
the action SC did not have any couplings to the 4D fields Xµ,ψµ or the ghosts. Other than those
two assumptions we have been completely agnostic of the details of this CFT.

So far, while trying to introduce a manifest supersymmetric 4D string theory, we have been
able to keep the compact CFT unaffected. However, the cost we paid is that the fields θα,pα
and θα̇,pα̇ were defined via the R-symmetry current JC = ∂HC. This was required so that, for
example, the supersymmetry generators qα,qα̇ obeyed the physical state conditions (h= 1).
A consequence of the use of HC in the definition of the hybrid fields, however, is that they can
no longer be said to decouple from the fields of the internal CFT. Indeed, we have the OPEs

JC (z)θ
α (w)∼ 3θα (w)

2(z−w)
, JC (z)θ

α̇ (w)∼− 3θα̇ (w)
2(z−w)

JC (z)pα (w)∼−
3pα (w)
2(z−w)

, JC (z)pα̇ (w)∼
3pα̇ (w)
2(z−w)

.

(6.3.33)

Since JC is built from fields in the internal CFT, this shows that the hybrid fields cannot be
thought of as decoupled from the 6D fields.

One way around this is to change the definition of the internal fields. The trick is to notice
that all of the hybrid fields obey the constraint QC− 3Np = 0 where QC is the charge under JC
and Np is their picture number. Indeed:

QC (θ
α) =

3
2
, QC

(
θα̇
)
=−3

2
, QC (pα) =−

3
2
, QC (pα̇) =

3
2
,

Np (θ
α) =

1
2
, Np

(
θα̇
)
=−1

2
, Np (pα) =−

1
2
, Np (pα̇) =

1
2
.

(6.3.34)

Thus, we can define the new current

JnewC := JC− 3P , (6.3.35)

where

P = ηξ− ∂φ (6.3.36)

is the picture-number current. The ‘new’ current JnewC has the property that its OPE with all of
the hybrid fields (X,θ,p) vanishes. Thus, we would like to ‘redefine’ the internal CFT such
that JnewC is the new R-symmetry current.

This can indeed be done. We consider the operator

W =

˛
dz
2π i

(φ−χ)JC =

˛
dz
2π i
PHC . (6.3.37)

The ‘new’ internal R-symmetry current JnewC can be shown to be related to the old R-symmetry
current JC by the following similarity relation:

JnewC = eWJCe
−W . (6.3.38)
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The result is a current which has regular OPEs with all of the hybrid variables (X,p,θ). One
can show that we can do the same for all of the fieldsΦC of the compact CFT, that is we define

Φnew
C = eWΦCe

−W , (6.3.39)

and the resulting fields will all have regular OPEs with the hybrid fields [227]. The effect of
this operation on the N = (2,0) generators in the compactified CFT is given by

G+,new
C = eφ−χG+

C , G−,new
C = e−φ+χG−

C ,

T new
C = TC + ∂ (φ−χ)JC +

3
2
(∂φ− ∂χ)2 .

(6.3.40)

These operators still satisfy the same c= 9 N = (2,0) supersymmetry algebra.

Exercise. Show that the new and old R-symmetry currents of the compact CFT are
indeed related to each other by conjugation with eW . That is, show that

eWJCe
−W = JC− 3P .

Hint: Consider eαWJCe−αW as a function of α.

6.3.6. The ρ-ghost and the hybrid action. So far, in defining a worldsheet string theory in
four dimensions, we have taken the original RNS fields are replaced them with four fermionic
systems (p,θ). However, it is not clear that this field redefinition is invertible. Let us take a
look at the bosonisation of each of the (p,θ) systems:

θα =⇒ φ

2
− α

2
(σ1 +σ2)+

HC

2
,

pα =⇒ −φ
2
+
α

2
(σ1 +σ2)−

HC

2
,

θα̇ =⇒ σ+χ− 3φ
2
− α̇

2
(σ1−σ2)−

HC

2
,

pα̇ =⇒ −σ−χ+
3φ
2

+
α̇

2
(σ1−σ2)+

HC

2
.

(6.3.41)

This defines the bosonisation of the four (p,θ) systems in terms of six scalars. TheHC belongs
to the compactified theory, and so to invert the field redefinitions, we need to make 5 inde-
pendent scalars out of the four (p,θ) systems. This yields four equations for five unknowns,
and thus is not an invertible transformation. We can fix this by introducing a new scalar ρ
made up of (σ,χ,φ,σ1,σ2,HC) such that the field redefinitions RNS→ hybrid is invertible.
The appropriate scalar is defined as

ρ=−3φ+σ+ 2χ−HC . (6.3.42)

This is the so-called ρ ghost and it defines the full content of the hybrid formalism. It satisfies
the OPE

ρ(z)ρ(w) =− log(z−w) . (6.3.43)
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Exercise. Show that ρ as defined above is the unique scalar which commutes with the
bosonisations of (pα,θα), (pα̇,θα̇), and JnewC and which also satisfies

ρ(z)ρ(w)∼− log(z−w) .

After the introduction of the ρ scalar, the action of the hybrid string is given by

S=
1
2π

ˆ
d2z

(
1
2
∂Xµ∂̄Xµ+ pα∂̄θ

α+ pα̇∂̄θ
α̇+ p̄α∂θ̄

α+ p̄α̇∂θ̄
α̇

)
+ SnewC [Φnew

C ] + Sghost [ρ] , (6.3.44)

where now Sghost includes contributions both from the b,c ghost system (equivalently the scalar
σ) and the ρ ghost.

6.3.7. The topological twist. In order for the hybrid string to be truly quantum equivalent to
the RNS string, we need the stress tensors of the two theories to be equal, so that the conformal
weights of all states agree. The stress tensor of the hybrid string is given by

Thybrid =
1
2
∂Xµ∂Xµ− pα∂θ

α− pα̇∂θ
α̇− 1

2
∂ρ∂ρ− 1

2
∂2ρ+T(new)

C . (6.3.45)

Now, we can compare this stress tensor by writing each of the hybrid variables (p,θ,ρ) in
terms of the original scalars of the RNS formalism. After a rather tedious calculation, we find

Thybrid = TRNS−
1
2
∂JnewC , (6.3.46)

and so there is a discrepancy between the stress tensors of the two theories.
To fix this discrepancy, we have to modify the internal CFT one more time by performing

a so-called ‘topological twist’

T new
C → T new

C +
1
2
JnewC . (6.3.47)

Under this twist, we have Thybrid→ Thybrid +
1
2J

new
C = TRNS. Thus, we have a quantum equival-

ence:

RNS strings on R4×M6

⇐⇒
hybrid strings on R4× topologically twistedM6 .

(6.3.48)

As a final sanity check, we can calculate the central charge of the hybrid stress tensor. The
central charge of the topologically twisted internal CFT is just c= 0. Indeed, we have

JnewC (z)JnewC (w)∼ 3

(z−w)2
=⇒ ∂JnewC (z)∂Jnewc (w)∼− 18

(z−w)4
, (6.3.49)
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which shows that the 1/(z−w)4 term in the topologically twisted OPE of T new
C (z)T new

C (w)
vanishes. Furthermore, we know the central charges of the p,θ systems

c(pα,θ
α) =−4 , c

(
pα̇,θ

α̇
)
=−4 , (6.3.50)

and the central charge of the ρ system is given by c(ρ) = 4. Thus, the full central charge of the
theory is

c(Xµ)+ c(pα,θ
α)+ c

(
pα̇,θ

α̇
)
+ c(ρ) = 0 , (6.3.51)

and so the hybrid formalism describes a consistent string theory with vanishingWeyl anomaly.

Show that, within the RNS formalism, the operators

G±,new
C = e±(φ−χ)G±

C

have conformal weight h(G+,new
C ) = 2, h(G−,new

C ) = 1. Show that, within the hybrid
formalism, this is consistent with the topological twist

Tnew
C → T new

C +
1
2
JnewC .

6.3.8. The physical state conditions. So far we have described in detail how to pass from
the RNS variables to the hybrid variables of [227]. However, a string theory is not described
only by its field content and stress tensor, but one also has to specify a guage-fixing procedure.
In the RNS formalism, this gauge-fixing was performed by demanding that physical states lie
in the BRST cohomology, i.e

[QBRST,Φ}= 0 , Φ∼ Φ ′ + [QBRST,Ψ} . (6.3.52)

Furthermore, since we are working in the bosonised description of the superconformal ghosts
β,γ, we have to restrict to the small Hilbert space, i.e. the states which are invariant under
the shift ξ→ ξ+ ε. This was imposed in the RNS formalism by demanding that we only keep
states in the kernel of η0, i.e.[˛

dz
2π i

η (z) ,Φ

}
= 0 . (6.3.53)

In terms of the hybrid fields x, (pα,θα), and ρ, the physical state conditions become quite
complicated [226, 227]. The BRST charge can be expressed in terms of the hybrid fields as

JBRST = eρdαd
α+G+

C , (6.3.54)

with

dα = pα+
i
2
σµα̇αθ

α̇∂Xµ−
1
8

(
θα̇θα̇

)
∂θα+

1
16
θα∂

(
θα̇θα̇

)
. (6.3.55)

Moreover, the fermion η can be written as

η = e−2ρ+HCdα̇dα̇+G−
C e−ρ+HC , (6.3.56)
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with

dα̇ = pα̇+
i
2
σµαα̇θ

α∂Xµ−
1
8
(θαθα)∂θα̇+

1
16
θα̇∂ (θ

αθα) . (6.3.57)

Note that we are raising/lowering spinor indices with the epsilon tensors εαβ ,εα̇β̇ .
The physical state conditions in the hybrid formalism, while complicated, also have an

interpretation in terms of a twisted topological N = 4 algebra. Out of the hybrid variables,
one can define worldsheet generators

T,G±, G̃±,J,J±± (6.3.58)

which satisfy the ‘small’ twisted N = 4 algebra on the worldsheet. Two of the supercharges
can then be identified with the BRST current and η, namely

G+ = JBRST , G̃+ = η . (6.3.59)

Thus, the physical state conditions can be written in the form:

[
G+

0 ,Φ
]
=
[
G̃+

0 ,Φ
]
= 0 , Φ∼ Φ ′ +

[
G+

0 ,Ψ
]
, (6.3.60)

for any state Ψ satisfying [G̃+
0 ,Ψ] = 0. However, G̃+

0 has trivial cohomology, since if
[G̃+

0 ,Ψ] = 0 then Ψ = [G̃+
0 , ξΨ]. Thus, the physical state conditions can be brought into the

more symmetric form

[
G+

0 ,Φ
]
=
[
G̃+

0 ,Φ
]
= 0 , Φ∼ Φ ′ +

[
G+

0 ,
[
G̃+

0 ,Ψ
]]
, (6.3.61)

for any state Ψ.
The above discussion identifies physical statesΦ in the hybrid formalism with the elements

of a double-cohomology of an N = 4 topological algebra. We will not go into more detail of
this point, as it is beyond the scope of these lectures, but see [23, 226, 227, 232] for more
details.

6.3.9. Summary. The full theory (the GS-like (X,p,θ) variables in four-dimensions, the
topologically twisted Calabi–Yau sigma model, and the ρ ghost) defines the full content of
the hybrid formalism in four dimensions. This theory has the following properties:

• It hasmanifest four-dimensional spacetime supersymmetry, since it describes a sigma-model
on superspace.
• The compactified CFT SC is modified to a new internal CFT SnewC , which is then topologically

twisted.
• Since the operators p,θ and all integer powers enρ of the ρ ghosts automatically have fermion

number (−1)F = 1, these operators are automatically GSO projected! That is, any composite
operator which can be constructed from products of the p’s and θ’s, as well as integer powers
enρ and exponentials eik·X automatically satisfies the GSO projection, and thus the above
theory automatically has spacetime supersymmetry in its spectrum by construction.
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• The hybrid string action bares a large formal resemblance to the GS action. Indeed, the
hybrid formalism as it is defined above can be defined in a completely independent way
by starting with the GS superstring and quantising it in a covariant fashion. This requires
adding a ghost field ρ and ‘twisting’ the internal manifold, just as we did in order to get
from the RNS string to the hybrid string. In fact, this is how the hybrid string was originally
discovered [226].

6.4. The hybrid string on AdS3 ×S3

Now that we have a basic understanding of the hybrid formalism in the example of a Calabi–
Yau compactification from ten to four dimensions, we can now turn to amore exciting example:
string theory onAdS3× S3×M4. This background is of particular interest due to the AdS/CFT
correspondence: string theory on this background is supposed to be dual to a 2D CFT which
lives on the boundary of AdS3. The dual 2D CFT has all of the (super)-isometries of AdS3× S3

as its (global) super-conformal symmetries. Thus, a formalism of string theory which makes
the super-isometries of AdS3× S3 manifest is invaluable for understanding the qualitative fea-
tures of the AdS3/CFT2 correspondence. The hybrid formalism on allows for such a descrip-
tion. Surprisingly, the hybrid formalism also offers a strength over the traditional RNS back-
ground in that, once one has defined the hybrid string on AdS3× S3, it is conceptually straight-
forward to add Ramond-Ramond flux [23].

In this section we will review the hybrid formalism on this background, starting with the
basics of strings on AdS3× S3, adding supersymmetry, then redefining to hybrid variables.
The result is a so-called WZW model on the supergroup PSU(1,1|2), which is the group of
super-isometries of AdS3× S3, as well as the group of super-conformal transformations in two
dimensions.

6.4.1. The geometry of AdS3 ×S3. The bosonic isometries of AdS3× S3 are given by
SL(2,R) transformations acting on AdS3 and SU(2) transformations acting on S3. Since these
transformations are non-abelian, their generators (Ja for sl(2,R) and Ka for su(2)) will have
non-trivial self-commutators, and satisfy the algebra:[

J+,J−
]
=−2J3 ,

[
J3,J±

]
=±J± ,[

K+,K−]= 2K3 ,
[
K3,K±]=±K± ,

(6.4.1)

Spacetime supersymmetry is added to this background in the same way as in flat space:
we introduce supercharges which transform as spinors under the bosonic isometries, and
whose anticommutators return the bosonic generators. It turns out that the appropriate (anti)-
commutation relations are satisfied by introducing 8 super-chargesQαβγ withα,β,γ ∈ {+,−}
which satisfy the algebra:[

Ja,Qαβγ
]
=

1
2
(σ̃a)αδQ

δβγ ,[
Ka,Qαβγ

]
=

1
2
(σa)βδQ

αδγ ,{
Qαβ+,Qγδ−

}
=−εβδ (σ̃a)αγJa + εαγ (σa)

βδKa .

(6.4.2)

with all other commutators vanishing. Here σa are the usual σ-matrices which generate the
two-dimensional spinor representation of su(2), while σ̃a are the sl(2,R) sigma matrices,
which differ from σ only by a sign, and which form the sl(2,R) spinor representation. Thus,
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the supercharges Qαβ and Q̃αβ are spinors of sl(2,R) in the first index and of su(2) in the
second index.

The above algebra, including bosonic and fermionic transformations, is the spacetime
supersymmetry algebra of the AdS3× S3 background. The above algebra has a name:
psu(1,1|2), and it is the algebra of super-isometries of AdS3× S3.90 As a supergroup,
PSU(1,1|2) is defined to have a block decomposition, where the diagonal blocks generate
SL(2,R) and SU(2), whereas the off-diagonal blocks contain the supersymmetry generators:

PSU(1,1|2)∼=
(

SL(2,R) supercharges
supercharges SU(2)

)
(6.4.3)

In fact, not only is PSU(1,1|2) the superisometry algebra of AdS3× S3, but it is possible to
write the superspace of AdS3× S3 as a quotient

Super
(
AdS3× S3

)∼= PSU(1,1|2)L×PSU(1,1|2)R
SL(2,R)×SU(2)

. (6.4.4)

The group PSU(1,1|2) will play a very important role when we discuss the hybrid formal-
ism on AdS3× S3, where the currents Ja,Ka,Qαβγ will be promoted to worldsheet fields which
generate a WZW model on PSU(1,1|2). We will review how this works in the RNS descrip-
tion in the next section, starting with the bosonic description and then introducing worldsheet
supersymmetry.

6.4.2. Bosonic WZW models. As was explained in detail in section 3, string theory on
AdS3× S3 is rare among superstring backgrounds in that it has a relatively simple worldsheet
description. This is because both AdS3 and S3 with their constant curvature metrics are iso-
metric to Lie groups:

AdS3
∼= SL(2,R) , S3 ∼= SU(2) , (6.4.5)

where the metric on the group is taken to be the Killing form on the Lie algebra91. String
theory backgrounds on group manifolds are particularly special due to the high amount of
symmetry, and the string theory on these backgrounds can be understood largely by studying
the representation theory of so-called affine algebrasgk, which for our purposes are the OPE
algebras of g-valued conserved currents J on the worldsheet.

The appropriate language to describe such backgrounds is in terms of so-called Wess-
Zumino-Witten models, which were also discussed in sections 2 and 3 in the context of GS
superstrings. We will briefly discuss them and their quantisation here. As this topic has already
been discussed in previous sections, this will be a lightning review: for more details about
WZW models, we direct the reader to the textbook [233] as well as the lecture notes [234].

Given a compact group G, we can describe the motion of a string worldsheet Σ in G by a
map g : Σ→ G. To define a field theory with g as the fundamental field, we start by writing
down a kinetic term:

90 The algebra psu(1,1|2) is also, very critically, the chiral part of the global N = 4 superconformal algebra in two-
dimensions. This is a very important observation in holography, since the super-isometry group of AdS3 × S3 becomes
the superconformal group of an N = 4 superconformal field theory living on the boundary.
91 Since the Killing form is a non-degenerate bilinear form g× g→ R, it defines a bilinear form on the space of
tangent vectors to any Lie group G, and thus defines a canonical G-invariant metric on G.
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Skin [g] =
1

4π f 2

ˆ
Σ

Tr
[
g−1∂gg−1∂g

]
. (6.4.6)

The fields g−1∂g and g−1∂g define g-valued one-forms on Σ, and the trace Tr is taken in the
adjoint representation of g. As a (familiar) example, let us take G= U(1). Any point in G is
expressed as eiα for some real α. Taking the derivative of g gives

g−1∂g= i∂α, g−1∂g= i∂α. (6.4.7)

And so the kinetic term for G= U(1) can be written in terms of the real field α as

Skin [α] =−
1

4π f 2

ˆ
Σ

∂α∂α, (6.4.8)

whic is just the kinetic term of a string in one flat dimension.
The equations of motion of the above action are of the form

∂
(
g−1∂g

)
+ ∂

(
g−1∂g

)
= 0 . (6.4.9)

This is equivalent to the conservation of the current

Jz = g−1∂g , Jz̄ = g−1∂g . (6.4.10)

This current is associated to the global symmetry of the theory associated to right-translations
g→ gg−1

R . In the language of differential forms, J is a g-valued one-form on the worldsheet
Σ, which is the pullback of the so-called Maurer–Cartan form:

J= g−1dg ∈ Ω1 (Σ)⊗ g . (6.4.11)

In a CFT, we want currents J for which the components are (anti)-holomorphic92. For this
to be the case, we would like, for example, that Jz is holomorphic and Jz̄ is anti-holomorphic.
However, for non-abelian groups G, we cannot have both ∂Jz̄ = 0 and ∂Jz = 0. To see this, we
note that the Maurer–Cartan form J= g−1dg satisfies the flatness condition

dJ+ J∧ J= 0 . (6.4.12)

However, if ∂Jz = ∂Jz = 0, then expanding in components J= Jzdz+ Jz̄dz̄, we have

dJ= ∂Jz dz̄∧ dz+ ∂Jz̄ dz̄∧ dz= 0 , (6.4.13)

since both terms vanish individually. However, we know that

dJ=−J∧ J (6.4.14)

does not vanish unless G is abelian. Thus, the components of J cannot be (anti)holomorphic
unless G is abelian. In order to improve the kinetic term so that the conserved currents are
(anti)holomorphic, we introduce the so-called Wess-Zumino term

92 Strictly speaking, we only need the stress-tensor of the theory to be holomorphic, via traclessness and conservation.
However, as we will discuss below, the stress-tensor is built out of bilinears in the conserved currents, i.e. T∼ Tr[JJ].
In most cases, then, we require J to be holomorphic for T to be holomorphic. If one allows G to be a supergroup, then
there are exceptions to this rule, see the discussion of section 6.5.
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Figure 8. The three-manifold B is constructed so that its boundary is the worldshet Σ.
Different choices of continuation of g as a function onB should be physically equivalent.

SWZ [g] =−
ik
2π

ˆ
B
Tr
[
g−1dg∧ g−1dg∧ g−1dg

]
. (6.4.15)

Here, B is a three-manifold with boundary ∂B =Σ, see figure 8. For abelian groups, this term
identically vanishes due to the anti-symmetry of the wedge product. For non-abelian groups, it
is necessary for the existence of a holomorphic stress tensor on the worldsheet. The equations
of motion for the total action Skin + SWZ are given by(

1+ f 2k
)
∂
(
g−1∂g

)
+
(
1− f 2k

)
∂
(
g−1∂g

)
= 0 . (6.4.16)

Thus, for f 2 = 1/k, we have that the right-moving current J= g−1∂g is anti-holomorphic. One
can also show that the current dgg−1 associated to left-translations g→ gLg has a holomorphic
conserved component if f 2 = 1/k. We call this choice of parameters the Wess-Zumino-Witten
point and, for most choices of group G the WZW model is not conformal unless we are at the
WZW point. Thus, the action of the WZW model is

SWZW [g] =
k
4π

ˆ
Σ

Tr
[
g−1dg∧ ⋆g−1dg

]
− ik

2π

ˆ
B
Tr
[
g−1dg∧ g−1dg∧ g−1dg

]
. (6.4.17)

The above construction should not depend on how we choose to extend the field g : Σ→ G
to a field g : B → G. It turns out that, if g, g̃ are two separate such extensions, then

SWZ [g]− SWZ [g̃] ∈ 2π kZ . (6.4.18)

Thus, in order for the path integrand eiSWZ to be independent of the choice g : Σ→B, we
demand that k is an integer93.

93 Here, it is important that G is compact, for which the above statement is equivalent to H3(G,Z)∼= Z. If G is non-
compact, then the action is truly independent of the continuation g : B → G, and there is no need to quantise k.
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From now on, we focus only on the left-moving part of the theory. The current J, as Lie-
algebra valued one-forms, admits an expansion in the basis of the Lie algebra g. Let us take
such a basis Ta to have

Tr(TaTb) = κab , (6.4.19)

where κab is the Killing form on g, whose inverse we denote by κab. Expanding in this basis,
we define the currents Ja as

J(z) = Ja (z)Ta . (6.4.20)

As an example, let us take g : Σ→ G close to the identity in G. Then

g= eTax
a

=⇒ J= g−1∂g= Ta∂x
a (6.4.21)

so that Ja is the holomorphic derivative of the local coordinate xa on G around the identity.
Upon quantisation of the theory, we impose canonical OPEs between fields and their con-

jugate momenta. Doing this for the WZW model, we find the following OPEs between the
currents Ja:

Ja (z)Jb (w)∼ kκab

(z−w)2
+

f abcJc (w)
z−w

. (6.4.22)

The above OPE algebra is actually the most general algebra that can be satisfied between two
fields of conformal weight h= 1 in a unitary CFT, and is known as a Kac–Moody algebra,
and is denoted by gk or sometimes ĝk. The current algebra is the primary object of study
in WZW models, and an understanding of the unitary representations of gk is paramount to
understanding the spectrum of the above CFT.

6.4.2.1. The Sugawara construction. Given the WZW model, there is a standard method of
constructing a stress tensor on the worldsheet given only the currents Ja. Using the flat space
string as an example, we had Jµ = ∂Xµ and the stress tensor was simply

T=
1
2
∂Xµ∂Xµ =

1
2
δµνJ

µJν . (6.4.23)

That is, the stress tensor is built purely as a bilinear in the holomorphic conserved currents Jµ.
A natural guess for the stress tensor of an arbitrary WZW model with current algebra gk

would be

T
?
= γκabJ

aJb , (6.4.24)

i.e. as the natural bilinear combination of the currents Ja. Since we know that the stress tensor
has to be of weight h= 1, we can fix the coefficient γ by demanding the OPE

T(z)Ja (w)∼ Ja (w)

(z−w)2
+
∂Ja (w)
z−w

. (6.4.25)

This calculation yields

γ =
1

2(k+ h∨)
, (6.4.26)
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where h∨ is the dual Coxeter number of the Lie algebra g, defined by

f dbcf
abc = h∨κad . (6.4.27)

Two examples that we will use later are g= sl(2,R) and g= su(2), for which

h∨ (sl(2,R)) =−2 , h∨ (su(2)) = 2 . (6.4.28)

Once we have constructed a stress tensor T for theWZWmodel, we can compute its central
charge by demanding

T(z)T(w)∼ c

2(z−w)4
+

T(w)

(z−w)2
+
∂T(w)
z−w

. (6.4.29)

This calculation is again quite tedious, but can be done, and at the end of the day the WZW
model on the Lie group G with level k is given by

c(gk) =
kdim(g)

k+ h∨
. (6.4.30)

For example,

c
(
sl(2,R)k

)
=

3k
k− 2

, c
(
su(2)k

)
=

3k
k+ 2

. (6.4.31)

6.4.2.2. As a string theory. The above discussion has so far treated WZW models only as
a 2D CFT. In order to promote them to a proper string theory, we need to couple them to a
dynamical worldsheet metric h which we then gauge away. The procedure is precisely ana-
logous to that of the flat space string, and the result is that we have to supplement the WZW
model with a b,c ghost system with central charge cb,c =−26.

For the resulting string theory to be consistent, the total central charge has to vanish. If
we consider the WZW model on G1× ·· ·×Gn, we can in principle pick different levels for
each simple factor, and the total central charge will be the sum of the central charges on the
individual factors. Thus, if our worldsheet theory is described entirely by a product of WZW
models, we require

n∑
i=1

c
(
giki
)
=

n∑
i=1

kidim
(
gi
)

ki + h∨ (gi)
= 26 . (6.4.32)

Alternatively, we can also balance the central charge by considering a model of the form G1×
·· ·×Gn×M, whereM is a 2D CFT of appropriate central charge which is not necessarily a
WZW model. For example, if we consider bosonic string theory on AdS3× S3×M, we need

3k
k− 2

+
3k ′

k ′ + 2
+ c(M) = 26 , (6.4.33)

where k and k′ are the levels of the SL(2,R) and SU(2) WZW models, respectively.
Finally, we comment on the physical meaning of the level k. For a spacetime like AdS3 or

S3 with constant curvature, we can associate a typical length scale (e.g. the inverse curvature)
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L with the spacetime. We can also associate a length scale to the string itself, which we denote
by ℓs. The level k is related to these scales by

k=

(
L
ℓs

)2

. (6.4.34)

In practice, we take the string length ℓs to be a fixed length (say the Planck length), and so
we interpret k as describing the size of the target space in string length units. The interesting
limits are

k� 1 , k→ 1 . (6.4.35)

The first limit describes a small string propagating in a curved background, and thus has an
interpretation of a ‘semi-classical’ limit. The second limit, on the other hand, describes a string
which is as large as the spacetime itself. This is the ‘tensionless’ limit, and we will discuss it
later at the end of these lectures in the case of AdS3× S3.

6.4.3. Supersymmetric WZW models. In flat space, we can construct a worldsheet the-
ory with N = 1 worldsheet supersymmetry by introducing spin- 12 Fermions ψµ which are
the superpartners of the bosonic currents Jµ = ∂Xµ. The supersymmetry transformations are
(focusing only on the left-moving sector) given by

δεψ
µ = εJµ , δεJ

µ = ε∂ψµ , (6.4.36)

so that the doublet(
ψµ

Jµ

)
(6.4.37)

is an N = 1 SUSY multiplet.
ThisN = 1worldsheet construction generalises immediately to non-abelianWZWmodels.

In the bosonic theory, one has (holomorphic) currents Ja transforming in the adjoint represent-
ation of the affine Lie algebra gk. In order to add worldsheet supersymmetry, one then simply
introduces worldsheet fermions ψa. The appropriate supersymmetry transformations are the
same as those in flat space, namely

δεψ
a = εJa , δεJ

a = ε∂ψa . (6.4.38)

The fields now satisfy the OPEs

Ja (z)Jb (w)∼ kκab

(z−w)2
+

f abcJc (w)
z−w

+ · · · ,

Ja (z)ψb (w)∼ f abcψc (w)
z−w

+ · · · ,

ψa (z)ψb (w)∼ kκab

z−w
+ · · · ,

(6.4.39)

where we recall that k is the level of the WZW model and κab is the Killing form on the Lie
algebra g. We denote theN = 1 WZW model on the group G with level k by the symbol g(1)k .
We refer to the above OPE algebra by the same name.
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6.4.3.1. Decoupling the fermions. The above construction of an N = 1 WZW model as a
doublet of fields (ψa,Ja) with ψa transformin in the adjoint of g is convenient in that it makes
the N = 1 supersymmetry on the worldsheet manifest. However, it is inconvenient from the
point-of-view of quantisation.

Recall that when we quantise a WZW model, we consider states |ψ 〉 which lie in highest-
weight representations of the current algebra. This ensures that these states have energieswhich
are bounded from below. However, the algebra (6.4.39) is rather complicated since the bosonic
currents Ja and the fermionic superpartners ψa have a non-zero OPE with each other, and thus
constructing its highest-weight representations is a rather difficult task.

Thankfully, there is a simple way around this difficulty. We simply define new bosonic
currents J a by

J a = Ja +
1
2k

fabc
(
ψbψc

)
. (6.4.40)

Given the definition of J a, one can check that the OPE of J a with the fermions is regular,
meaning that the new bosonic currents and the worldsheet fermions ‘decouple’. Similarly, one
can show that (J a,ψa) satisfy the algebra

J a (z)J b (w)∼ (k− h∨)κab

(z−w)2
+

f abcJ c (w)
z−w

,

ψa (z)ψb (w)∼ kκab

z−w
,

J a (z)ψb (w)∼ ·· · .

(6.4.41)

That is, the currentsJ a satisfy the algebra gk−h∨ . Therefore, if we chose to describe the world-
sheet theory with respect to the fields (ψa,J a), the algebra they satisfy is simply a bosonic
Kač-Moody algebra gk−h∨ and the algebra of dim(g) free fermions. That is,

g
(1)
k
∼= gk−h∨ ⊕ (dim(g) free fermions) . (6.4.42)

From this, we can immediately calculate the central charge of the N = 1 WZW model, and
we find

c
(
g
(1)
k

)
= c(gk−h∨)+

1
2
dim(g)

=
(3k− 2h∨)dim(g)

2k
.

(6.4.43)

Exercise. Show that the currents J defined in (6.4.40) satisfy the algbra gk−h∨ .

6.4.4. Coset WZW models. Before moving on to applying the technology of WZW models
to strings on AdS3× S3, let us briefly discuss another class of geometries which also yield
a solvable worldsheet description, namely coset spaces. These are worldsheet CFTs whose
target spaces are of the form G/H for some group manifold G and a subgroup H. These CFTs
are themselves not WZW models, but can be described as a mild generalisation known as a
gauged WZW model or a coset WZW model. Just as the notation gk can be used to refer to the
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level-k WZW model on G, the standard notation for coset WZW models is gk/hk′ for some
levels k,k ′. Some well-known examples include the so-called parafermion theories94

su(2)k
u(1)

(6.4.44)

and the unitary minimal models

su(2)k⊕ su(2)1
su(2)k+1

. (6.4.45)

As these models are not central to the content of this chapter, we will keep this discussion brief
and refer to the literature when appropriate. We also refer the reader to the lecture notes [234]
for a detailed discussion of coset models and their spectra.

Let G be a Lie group and H⊂ G a subgroup of dimension dim(H)< dim(G). H admits a
natural action on G by right-multiplication, i.e. g→ g · h. Quotienting G by this action gives
the topological space G/H. The coset space G/H has the structure of a manifold of dimension
dim(G)− dim(H), and has a natural metric tensor inherited from the Killing form on G. The
coset WZW model on G/H can be described at the level of the path integral by ‘gauging’
the symmetry generated by H, which involves introducing a gauge connection A which takes
values in h [235, 236]. Alternatively, one can describe the model on G/H algebraically at the
level of operators and states [237]. Since these two approaches are equivalent [238], we will
describe only the algebraic approach, commonly known as the Goddard-Kent-Olive (GKO)
construction.

Let Ta, a= 1, . . . ,dim(G) denote a set of generators for g and let ti, i = 1, . . . ,dim(H) denote
a set of generators of the subalgebra h⊂ g. Given the current J= g−1∂g, we can define a
current K by projecting J onto the subalgebra h. Since J takes values in g and K takes values
in h⊂ g, we can decompose them in terms of the generators Ta, ti:

J= JaTa , K= Kiti . (6.4.46)

The currents Ja, as we know, generate the current algebra gk. Similarly, the currentsKi generate
the algebra hk′ for some level k′. The precise value of k′ will depend on the exact group G and
subgroup H being considered.

Describing a worldsheet theory on the coset G/H can now be done as follows [237]. Since
Ki are the generators of right-translations by elements of H, we can restrict to the coset G/H
by demanding that our physical states are annihilated by Ki. Specifically, given an operator Φ
in the G WZW model, we can study the G/H WZW model by restricting to those operators
satisfying

Ki (z)Φ(w)∼ regular . (6.4.47)

That is, the spectrum of theG/H coset WZWmodel is found by restricting the spectrum of the
G WZW model to only those states which have trivial OPEs with the generators of hk′ . This
is a well-defined restriction, since if two operators Φ,Ψ have trivial OPE with Ki, then so will
their normal-ordered product (ΦΨ).

In order to define the CFT on G/H, one needs not only a set of operators, but also a stress
tensor. Let Tg be the stress tensor of the WZW model on G, defined through the Sugawara

94 Since U(1) is abelian, there is no well-defined notion of a level, and so the current algebra is just written as u(1).
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construction, and let Th be the stress tensor computed from the Sugawara construction on the
currents Ki. The stress tensor on G/H is just

Tg/h = Tg−Th . (6.4.48)

This stress tensor has a trivial OPEwithKi and satisfies the Virasoro algebra. A straightforward
calculation shows that the central charge of the gk/hk′ model is given by

c

(
gk
hk′

)
= c(gk)− c(hk′) . (6.4.49)

Intuitively, this makes sense, since for large values of k,k ′, the central charge is just dim(G)−
dim(H), which is the dimension of the manifold G/H. For the two examples of coset models
listed above, we have

c

(
su(2)k
u(1)

)
= c
(
su(2)k

)
− 1= 2

(
k− 1
k+ 2

)
,

c

(
su(2)k⊕ su(2)1

su(2)k+1

)
= c
(
su(2)k

)
+ c(su(2)1)+ c

(
su(2)k+1

)
= 1− 6

(k+ 2)(k+ 3)
.

(6.4.50)

The latter formula indeed reproduces the central charge of the unitary Virasoro minimal mod-
els. For a proof of their complete equivalence with the GKO construction see [233].

6.4.5. The RNS string on AdS3 ×S3. Now that we have reviewed WZW models in gen-
eral, let us turn to the problem of quantising strings on AdS3× S3. The key observation is that
the Riemannian manifolds AdS3 and S3 are isometric to the group manifolds SL(2,R) and
SU(2), respectively95. Thus, string theory on the background AdS3× S3 with pure NS-NS flux
is equivalent to the WZW model

sl(2,R)(1)k ⊕ su(2)(1)k′ . (6.4.51)

Recall that the central charge of an N = 1 WZW model g(1)k with dual coxeter number h∨(g)
is given by

c
(
g
(1)
k

)
=

(3k/2− h∨)dim(g)

k
, (6.4.52)

we can use h∨(sl(2,R)) =−2 and h∨(su(2)) = 2 and we have

c
(
sl(2,R)(1)k ⊕ su(2)(1)k′

)
=

3(3k/2+ 2)
k

+
3(3k ′/2− 2)

k
. (6.4.53)

95 Strictly speaking, since AdS3 is simply connected and π1(SL(2,R)) = Z, we identify AdS3 with the universal

cover ˜SL(2,R). This will largely play no role in the following.
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In order to have a well-defined superstring theory, we need the full worldsheet field content
(minus the ghosts) to have c= 15. We can add a four-dimensional compact theoryM4 with
central charge c= 6 and we find that the total central charge is

ctot = 3

(
3k/2+ 2

k
+

3k ′/2− 2
k ′

+ 2

)
. (6.4.54)

Demanding that this combination gives the critical central charge ctot = 15 leads to the
Diophantine equation

3k+ 4
k

+
3k ′− 4

k ′
= 6 =⇒ 1

k
− 1

k ′
= 0 . (6.4.55)

Thus, in order for AdS3× S3×M4 to be a consistent superstring background, we need the
levels of the SL(2,R) and SU(2) WZW models to be the same. In other words, the radius of
AdS3 and the radius of S3 must match.

As a side note, we also comment on the case of AdS3× S3×S3×S1, which is an interesting
holographic background in its own right, but not one wewill study in detail here.We canmodel
this as

sl(2,R)(1)k ⊕ su(2)(1)k1
⊕ su(2)(1)k2

⊕ u(1)(1) . (6.4.56)

Note that the ‘level’ of a U(1) WZW model is not defined, since U(1) is abelian, and so there
is no WZ term. The central charge of this theory is

c
(
sl(2,R)(1)k ⊕ su(2)(1)k1

⊕ su(2)(1)k2
⊕ u(1)(1)

)
=

3
2

(
3k+ 4

k
+

3k1− 4
k1

+
3k2− 4

k2

)
+

3
2

=
3
2

(
10+

4
k
− 4

k1
− 4

k2

)
,

(6.4.57)

which we demand is equal to 15 as to cancel the superconformal ghosts. This gives

1
k
=

1
k1

+
1
k2
. (6.4.58)

Recalling that the radius L of a spacetime is related to the string coupling by k= L2/ℓ2s , we
see that the radii of the factors in AdS3× S3×S3×S1 satisfy

R2 = R2
1 +R2

2 , (6.4.59)

i.e. they satisfy a Pythagorean relation. Defining R1 = Rsinα and R2 = Rcosα defines a two-
parameter family of AdS3 backgrounds parametrised by the level k of the AdS3 model and an
angle α.96

In the last subsection we argued that an N = 1 supersymmetric WZW model can be
‘decoupled’ in the sense that we can redefine the bosonic currents and arrive at an algebra

96 We emphasize that the levels k1,k2 are required by quantum consistency to be integers, while the level k can be
arbitrary (but positive). For example, taking α= π/4 gives k1 = k2 and k= k1/2.
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for which the bosonic and fermionic currents decouple. Specifically, given a WZW model
g
(1)
k , we have

g
(1)
k
∼= gk−h∨ ⊕ (dim(g) free fermions) . (6.4.60)

Applying this to the case of strings on AdS3× S3, and setting the level k of the two algebras to
be the same, we have

sl(2,R)(1)k ⊕ su(2)(1)k
∼= sl(2,R)k+2⊕ su(2)k−2⊕ (6 free fermions) . (6.4.61)

To summarize, the field content of the RNS formalism of string theory on AdS3× S3×M4 is
given by

• Bosonic sl(2,R) currents J a which form the algebra sl(2,R)k+2.
• Bosonic su(2) currents Ka which form the algebra su(2)k−2.
• 3 free fermions ψa associated to the sl(2,R) algebra, and 3 free fermions χa associated to

the su(2) algebra.
• The field content of the c= 6 compactified theoryM4.
• The usual bc and βγ ghost systems.

The stress tensor of this theory is complicated but straightforward to write down, and reads

T=
1
2k

(
−2J 3J 3 +J +J− +J−J + + 2ψ3∂ψ3−ψ+∂ψ−−ψ−∂ψ+

)
+

1
2k

(
2K3K3 +K+K− +K−K+− 2χ3∂χ3−χ+∂χ−−χ−∂χ+

)
+

1
2
(∂b)c+

1
2
(∂c)b− 3

2
∂ (bc)− 1

2
(∂β)γ+

1
2
(∂γ)β− ∂ (βγ)

(6.4.62)

6.4.6. The hybrid string on AdS3 ×S3. We are now ready to introduce the hybrid formalism
on AdS3× S3×M4. We recall briefly that the field content of the string theory in the RNS
formalism is given by

J a,ψa︸ ︷︷ ︸
sl(2,R)(1)k

Ka,χa︸ ︷︷ ︸
su(2)(1)k

b,c,β,γ︸ ︷︷ ︸
ghosts

. (6.4.63)

and the fields of the internal manifoldM4.
In the flat space superstring, we found it convenient to bosonise the worldsheet fermions

as well as the bc and βγ ghost system. For the worldsheet fermions ψa and χa, a convenient
basis for bosonisation is given by defining scalars σ1,σ2,σ3 such that

1
k
ψ+ψ− = ∂σ1 ,

1
k
χ+χ− = ∂σ2 ,

2
k
ψ3χ3 = ∂σ3 . (6.4.64)

Given the OPEs between the worldsheet fermions, one can readily calculate the OPEs of the
scalars σi and find

σi (z)σj (w)∼ δij log(z−w) . (6.4.65)
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From the scalars Hi, it is possible to recover the original RNS fermions via

ψ± =
√
ke±σ1 , χ± =

√
ke±σ2 , ψ3∓χ3 =

√
ke±σ3 . (6.4.66)

We also include the bosonised scalar φ of the βγ system whose charge gives the picture
number.

Finally, we assume that the internal manifoldM4 has at leastN = (2,2)worldsheet super-
symmetry and has a central charge c= 6 (as is the case forM4 = T4,K3). If this is the case,
the internalM4 theory contains a U(1) current JC which generates the R-symmetry of the
N = 2 algebra. We also bosonise this current by including a scalar H such that

∂HC = JC . (6.4.67)

Here, JC is normalized so that its self-OPE is

JC (z)JC (w)∼
c

3(z−w)2
=

2

(z−w)2
, (6.4.68)

so that H satisfies

HC (z)HC (w)∼ 2log(z−w) . (6.4.69)

Thus, we have a set {σi,φ,HC} of scalars which we can use to generate vertex operators.
In the flat space superstring, the scalars introduced to bosonise the fermions had the advant-

age that they allowed a simple description of both the R/NS-sector vertex operators, but also
of the spacetime supersymmetry generators. Similarly, we can define fields on the worldsheet
which generate spacetime supersymmetry on AdS3× S3 in a similar fashion. In particular, we
define a set of 8 fermionic generators by

qαβγ = exp

(
α

2
σ1 +

β

2
σ2 +

αβγ

2
σ3 +

γ

2
HC−

1
2
φ

)
, (6.4.70)

whereα,β,γ ∈ {+,−}. The e−φ/2 is again chosen so that the operator qαβγ is in the canonical
q=− 1

2 picture of R-sector operators. The conformal weight of this state is given by

h
(
qαβγ

)
=
α2 +β2 + 2γ2 +α2β2γ2

8
− 1

8
+

1
2
=

5
8
− 1

8
+

1
2
= 1 . (6.4.71)

Similar to in the flat space case, these generators are designed so that the number of minus
signs is even (excluding the − 1

2φ term), which is why the scalar σ3 has a funny coefficient of
αβγ. Also like in the flat space case, all of these operators are in the q=− 1

2 picture, and thus
there is no chance of their anti-commutators satisfying the supersymmetry algebra.

The trick to move from the RNS formalism to the hybrid formalism in AdS3× S3×M4 is
now the same as in four-dimensions: we define half of the supersymmetry generators to live in
the q=− 1

2 picture, while the other half is defined through picture changing to be in the q= 1
2 .

Let us pick qαβ+ to be in the q=− 1
2 , while we picture-change qαβ−. That is, we define

Sαβ+ = qαβ+ , Sαβ− = Z · qαβ− . (6.4.72)

The naming Sαβγ is conventional.
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Now we can search for superspace variables conjugate to the above supersymmetry gener-
ators. For the supercharges Sαβ+ this is achieved by just reversing the quantum numbers and
defining

θαβ = exp

(
−α

2
σ1−

β

2
σ2−

αβ

2
σ3−

1
2
HC +

1
2
φ

)
(6.4.73)

This field has weight h= 0 and satisfies

θαβ− (z)Sγδ+ (w)∼ δα
βδβ

δ

z−w
. (6.4.74)

Thus, the supersymmetry generators Qαβ+ act on the θ coordinates geometrically by transla-
tions. Writing the explicit form of Sαβ−, we might also look for coordinates θ̃αβ which trans-
form geometrically under Qαβ−. However, a careful analysis shows that one cannot introduce
θαβ+ in a way that is independent of θαβ , and in particular we cannot choose both to be free
fields. This is in stark contrast to the case of four flat spacetime dimensions, where all of the
superspace variables could be introduced and chosen independently to form free field theories.

The (unfortunate) conclusion of the above discussion is that the hybrid formalism onAdS3×
S3 can only make half of the spacetime supersymmetry completely manifest. Letting pαβ be
the conjugate momenta of θαβ , we can immediately write down

pαβ = exp

(
α

2
σ1 +

β

2
σ2 +

αβ

2
σ3 +

1
2
HC−

1
2
φ

)
. (6.4.75)

Together, the fields θ,p form a set of four first-order fermionic systems with OPEs

θαβ (z)p
γδ (w)∼ δα

γδβ
δ

z−w
. (6.4.76)

These four systems form four manifest super-coordinates in the target space. Bosonising gives
four scalars. Since we started with six scalars (the three bosonised fermion systems σi, the φ
of the βγ system, and the R-symmetry HC of the compactified theory), we simply do not have
enough scalars to generate a second set of super-coordiantes which make Qαβ− manifest.

Having introduced the system p,θ, however, we can write all of the supersymmetry
generators purely in terms of these free fields and J ,K. First, we define the ‘fermionic’
currents

Ja(f) =
1
2
(σ̃a)α

β (pαγθβγ) , Ka
(f) =

1
2
(σa)α

β (pγαθγβ) . (6.4.77)

It can be checked that these satisfy the algebras sl(2,R)−2 and su(2)2, respectively. In
fact, these are simply the fermion bilinears we subtracted from Ja,Ka in order to define the
‘decoupled’ currents J a,Ka, just expressed in the hybrid variables p,θ. Thus, we have

Ja = J a + Ja(f) , Ka =Ka +Ka
(f) . (6.4.78)

Second, we can use θ,p to write down the supersymmetry generators Sαβγ . By the definition
of pαβ , we have

Sαβ+ = pαβ . (6.4.79)
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Far less obviously, however, is the following expression for Sαβ−, namely

Sαβ− = k∂θαβ +(σ̃a)
α
γ

(
J a +

1
2
Ja(f)

)
θγβ − (σa)

β
γ

(
Ka +

1
2
Ka
(f)

)
θαγ , (6.4.80)

where we have raised the indices on θ using the usual ε symbol. Defining the supersymmetry
charges

Qαβγ =
˛

dz
2π i

Sαβγ (z) , (6.4.81)

a direct computation shows that the supercharges Qαβγ , along with the charges

Ja0 =
˛

dz
2π i

Ja (z) , Ka
0 =

˛
dz
2π i

Ka (z) (6.4.82)

satisfy the supersymmetry algebra psu(1,1|2) in equation (6.4.2).
In fact, we can do better. Taking the fields Ja,Ka,Sαβγ as being currents on the worldsheet,

we can determine their current algebra. They satisfy the current algebra

Ja (z)Jb (w)∼ kκ̃ab

(z−w)2
+

f̃ abcJb (w)
z−w

,

Ka (z)Kb (w)∼ kκab

(z−w)2
+

f abcKc (w)
z−w

,

Ja (z)Sαβγ (w)∼ (σ̃a)αδSδβγ (w)
z−w

,

Ka (z)Sαβγ (w)∼ (σa)βδSαδγ (w)
z−w

,

Sαβ+ (z)Sγδ+ (w)∼ kεαγεβδ

(z−w)2
+
εαγ (σa)

βδKa (w)− εβδ (σ̃a)αγ Ja (w)
z−w

,

(6.4.83)

where κ, f,σ (resp. κ̃, f̃, σ̃) are the Killing form, structure constants, and spinor generators of
su(2) (resp. sl(2,R)). This is the current algebra psu(1,1|2)k which would be obtained from a
WZW model on the supergroup PSU(1,1|2) at level k. A more careful analysis of the world-
sheet fields shows that the action of the hybrid variables p,θ along with J,K indeed describes
a WZW model on PSU(1,1|2) [23].

As a quick aside, we mention some of the group theoretic properties of the supergroup
PSU(1,1|2).97 As was mentioned in section 6.4.1, PSU(1,1|2) is a supergroup with bosonic
subgroup SL(2,R)×SU(2) andwith eight odd dimensions, corresponding to the supercharges
of AdS3× S3. As such, we can assign its ‘superdimension’ to be

sdim(PSU(1,1|2)) = 6− 8=−2 , (6.4.84)

where the superdimension counts the number of even dimensions minus the number of odd
dimensions of the supergroup. Moreover, the superalgebra psu(1,1|2) has the surprising prop-
erty that its dual Coxeter number h∨ vanishes98. Thus, a naive calculation for the central charge

97 The WZW model on PSU(1,1|2) was studied in detail in [239]. See also [240].
98 The supergroups with vanishing dual Coxeter number have been classified, and they are psl(n|n), ops(2n+ 2|2n),
and d(2,1;α).
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of the psu(1,1|2)k WZW model is

c
(
psu(1,1|2)k

)
=

ksdim(psu(1,1|2))
k+ h∨

=−2 . (6.4.85)

This agrees with the counting of central charges from the bosonic sl(2,R)k+2⊕ su(2)k−2

WZW models and the four first-order (p,θ) systems with c=−2 each:

c
(
sl(2,R)k+2

)
+ c
(
su(2)k−2

)
− 4 · 2= 3(k+ 2)

k
+

3(k− 2)
k

− 8=−2 . (6.4.86)

In order to quantise the worldsheet theory, we need something of central charge +2 to cancel
theWeyl anomaly of the psu(1,1|2)k theory. As we will see, this will be the total central charge
of the left-over ghost system in the hybrid formalism.

6.4.7. Decoupling the internal CFT. Since used the R-symmetry current JC ofM4 to define
the hybrid variables in AdS3× S3, there is no way that the hybrid variables can decouple from
the RNS variables onM4. Just like in the flat space example, however, we can perform a
similarity transformation

Φnew
C = eWΦCe

−W , (6.4.87)

where

W =

˛
dz
2π i

(HCP)(z) , (6.4.88)

where P = ∂χ− ∂φ is the picture current. The effect on the R-symmetry current is

JnewC = JC− 2P , (6.4.89)

which decouples from the hybrid fields. Just like in the flat space case, the c= 9 N = (2,0)
generators are modified to

G±,new
C = e±(φ−χ)G±

C , T new
C = TC−PJC +

3
2
P2 , (6.4.90)

which, together with JnewC , still satisfy an (untwisted) c= 6N = (2,0) superconformal algebra.

6.4.8. The σ,ρ ghosts. In the RNS formalism, we started with the six scalars

φ,χ,σ1,σ2,σ3,HC (6.4.91)

from which we defined four first order systems (p,θ) and a new R-symmetry current JnewC .
Thus, a scalar is missing. The p,θ system and the new R-symmetry are bosonised by the five
scalars

α

2
σ1 +

β

2
σ2 +

αβ

2
σ3 +

HC

2
− φ

2
, HC− 2χ+ 2φ. (6.4.92)

The unique linear combination which is orthogonal to all five of these currents and has OPE
ρ(z)ρ(w) =− log(z−w) is given by

ρ= 2φ−HC−χ. (6.4.93)
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This scalar has background charge Qρ = 3 and central charge

c(ρ) =
(
1+ 3Q2

ρ

)
= 28 . (6.4.94)

Furthermore, we never used the b,c system when constructing the hybrid fields, and so we still
have the σ ghost with c=−26. Together, ρ and σ define the full ghost content of the hybrid
formalism on AdS3× S3×M4, and we refer to them collectively as the (ρ,σ) system, which
has central charge

c(ρ,σ) = 28− 26= 2 . (6.4.95)

6.4.9. The topological twist. In the process of decoupling the internal CFT, we wound up
introducing supercharges G±,new

C and R-symmetry JnewC which, together with T new
C still satisfy

the c= 6N = (2,0) superconformal algebra. However, in the full theory, these redefined gen-
erators have the following two properties:

• G±,new
C have conformal weights h= 3

2 ±
1
2 with respect to the stress tensor T of the full 10-

dimensional theory.
• JnewC has a background charge of Q= 2.

As in the flat space case, this indicates that the stress tensor of the compactified theory has
been ‘twisted’. Indeed, a direct check gives

TRNS (J ,ψ,K,χ,b,c,β,γ,ΦC) = Thybrid (J,K,S)︸ ︷︷ ︸
psu(1,1|2)k

+Tghosts (ρ,σ)+ Tnew
C (Φnew

C )+
1
2
∂JnewC︸ ︷︷ ︸

topological twist

.

(6.4.96)

That is, in order for the hybrid theory to be equivalent to the original RNS description, we need
to include the topological twisting term to the compact theoryM4. Therefore, the full hybrid
formalism is given by the quantum equivalence:

hybrid strings on AdS3× S3×M4

⇐⇒
psu(1,1|2)k⊕ [(ρ,σ) ghosts]⊕ [topologically twistedM4] .

(6.4.97)

As a sanity check, we can calculate the full central charge of the theory. Since topologically
twisted theories have vanishing central charge, we have

ctot = c
(
psu(1,1|2)k

)
+ c(σ,ρ) =−2+ 2= 0 , (6.4.98)

and so the hybrid string on AdS3× S3×M4 defines a consistent string theory.

6.5. Applications

The hybrid formalism, as discussed above, is built from the RNS formalism from a complicated
series of field redefinitions. The conceptual advantage in the end is that one is left with a
covariant way to quantise the worldsheet theory while also having manifest super-Poincare
covariance in some component of the target space.
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Despite this nice conceptual feature, practical computations in the hybrid formalism are
generically technically difficult. One reason for this is that, upon performing all of the neces-
sary field redefinitions, the BRST operator of the theory becomes massively more complicated
than its RNS cousin.Moreover, the prescription for calculating correlation functions (whichwe
have not discussed here) also becomes muchmore complicated than the usual definitions in the
RNS formalism. Although both of these problems (the BRST cohomology and the definition
of correlation functions) can be given a natural interpretation in terms of anN = 4 topological
string [23, 226, 227, 232, 241], this reinterpretation does very little in the way of simplifying
actual calculations. (This is not to say that calculations in the hybrid formalism are entirely
impossible, see for example [242–245] and references therein).

However, as we will briefly review below, there are two things that the hybrid formalism
does extremelywell. Focusing on the case of theAdS3× S3×M4 superstring, the hybrid form-
alism allows for (1) a conceptually straightforward way to quantise strings on backgrounds
with nonzero RR-flux and (2) allows, in a very special limit, exact calculations of string cor-
relation functions at all orders in string perturbation theory.

6.5.1. Adding RR flux. In the previous section we defined the hybrid string on AdS3× S3 in
terms of a WZW model on the supergroup PSU(1,1|2) at level k. The level k of the WZW
model (and in turn of the current algebra psu(1,1|2)k) is determined by the amount of NS-
NS flux present in the string background. However, NS-NS flux is not the only type of flux
which can be present in a background of the form AdS3× S3×M4. Indeed, as discussed in
section 3, AdS3 string backgrounds are special among holographic string theories in that they
can be supported by a mixture of both NS–NS flux and RR flux. Mixed flux backgrounds
(backgrounds with both NS–NS and RR fluxes) are notoriously difficult to quantise from a
worldsheet perspective, particularly in the RNS formalism. However, in this section we will
show that within the hybrid formalism it is (conceptually) straightforward to include RR flux
on the worldsheet. In fact, this was one of the original motivators of formulating the hybrid
superstring on AdS3× S3×M4 [23, 246].

Let us consider a WZWmodel whose target is some (super)groupG. The fundamental field
is a map g : Σ→ G from the worldsheet into the G, and the action is given by

SWZW =
1

4π f 2

ˆ
d2zSTr

(
g−1∂gg−1∂̄g

)
+ kSWZ [g] , (6.5.1)

where SWZ is the WZ term

SWZ =−
i
2π

ˆ
B
STr
[
g−1dg∧ g−1dg∧ g−1dg

]
. (6.5.2)

In a standard WZW model, consistent quantisation requires that f 2k= 1.99 This is the require-
ment for conformal symmetry to be preserved on the worldsheet at the quantum level. The
reasoning is that if f 2k 6= 1, then the conserved current J is not holomorphic (equivalently, J̄
is not anti-holomorphic). This naively spoils worldsheet conformal invariance since the stress
tensor

99 Technically, we could also have f 2k=−1, but for the sake of discussion we will stick with f 2k= 1. These two
cases are related to each other by a reversal of worldsheet orientation.
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T=
1

2(k+ h∨)
κabJ

aJb (6.5.3)

will fail to be holomorphic.
As it turns out, psu(1,1|2) belongs to a class of Lie superalgebras for which the requirement

f 2k= 1 can be relaxed. Specifically, this is due to the fact that psu(1,1|2) has vanishing dual
Coxeter number, i.e. h∨ = 0. Supergroup WZW models with vanishing dual Coxeter number
were studied in detail in [247, 248] One can show that this property implies that the stress
tensor T, built from the Sugawara construction, is still holomorphic despite the fact that J
itself is not. Furthermore, the holomorphicity of T does not receive quantum corrections [23,
65]. This implies that the WZW model on PSU(1,1|2) is still a consistent quantum theory
away from the WZW point!

In the hybrid superstring on AdS3× S3×M4, relaxing the condition f 2k= 1 has the phys-
ical interpretation of adding RR flux to the background. In terms of the geometry of AdS3,
the first coefficient of the WZW model action is given by the radius of AdS3 in units of the
string length. The level k is associated to the amount of NS-NS flux. A supergravity analysis
[87] shows that, if one adds QRR

5 D5 branes to the NS5-F1 system, then the radius of the near-
horizon AdS3 geometry is given by (see the discussion around equation (3.1.19))

1
f 2

=
R2
AdS

ℓ2s
=

√(
QNS

5

)2
+ g2s

(
QRR

5

)2
=

√
k2 + g2s

(
QRR

5

)2
. (6.5.4)

Here, gs is the string coupling constant, which we take to be small. In terms of the value k of
NS-NS and QRR

5 of RR-flux, the quantity f 2k can be expressed as

f 2k=
k√

k2 + g2s
(
QRR

5

)2 =

(
1+ g2s

(
QRR

5

)2
k2

)−1/2

. (6.5.5)

If we take g2s to be small, we find that, although QRR
5 ∈ Z⩾0 the quantity f 2k is essentially

continuous on the interval 0⩽ f 2k⩽ 1.100 We should note that, in the notation of section 3, we
have

q= f 2k . (6.5.6)

Indeed, q= 1 is the condition of having a background with pure NS-NS flux, while q→ 0 is
given by the limit gsQRR

5 � k, i.e. the limit in which the background is entirely dominated by
RR flux.

While the addition of RR flux by choosing f 2k 6=±1 is conceptually straightforward, the
quantisation of such a theory is a complete mess. For one, the introduction of the deformation
term actually introduces nonlinear couplings between the fields of the WZW model and the
ρ,σ ghost, which makes the BRST quantisation of the theory nearly completely intractable.
Second, even at the level of the WZW model itself (i.e. ignoring the ghosts and BRST quant-
isation), the non-holomorphicity of the current J leads to an OPE algebra whose representation
theory is not well understood. The current algebra between the non-holomorphic conserved
currents can be derived as [248]

100 Without loss of generality, we have chosen the positive branch of the square root.
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Jaz (z)J
b
z (w)∼

(
1+ kf 2

)
κab

4f 2 (z−w)2
+

f abc
4

((
3− kf 2

)(
1+ kf 2

)
Jcz (w)

z−w
+

(
1− kf 2

)2
Jaz̄ (w)

(z−w)2

)
,

Jaz̄ (z)J
b
z̄ (w)∼

(
1− kf 2

)
κab

4f 2 (z̄− w̄)2
+

f abc
4

((
3+ kf 2

)(
1− kf 2

)
Jcz̄ (w)

z̄− w̄
+

(
1− kf 2

)2
Jaz (w)

(z̄− w̄)2

)
,

Jaz (z)J
b
z̄ (w)∼ (1− kf 2)2f abc

(
Jcz(w)

z̄− w̄
+

Jcz̄(w)

z−w

)
. (6.5.7)

The quantisation of this current algebra is extremely complicated. Here, by ~ we are excluding
terms in the OPE which are less divergent than 1/(z−w), such as terms like log(z−w).

Despite the complexity of the above algebra, certain properties of string theory in mixed-
flux backgrounds can be deduced from its representation theory. For example, for vanishing RR
flux, the worldsheet theory contains a continuum of states known as ‘long strings’ which can
propagate toward the boundary of AdS3 with finite cost in energy [17]. However, an analysis
of the current algebra (6.5.7) shows that as soon as the background includes any RR flux,
i.e. as soon as one perturbs kf 2 away from 1, the worldsheet conformal dimensions of these
long string states acquires a nonzero imaginary part, and thus cannot be part of the physical
spectrum of the worldsheet theory [249].

6.5.2. Applications to holography. So far, we have introduced the hybrid formalism as a
formal redefinition of the RNS formalism for which allows for manifest spacetime super-
symmetry without the need to artificially impose the GSO projection. As we argued above,
the hybrid formalism on AdS3× S3 can also be employed to study stringy backgrounds with
non-vanishing RR flux, even if it is technically challenging in practice. Here, we will explain
another advantage of the hybrid formalism which has only become clear in recent years: it
allows the study of AdS3× S3 backgrounds in the deeply stringy regime.

Recall that, in the RNS formalism, we can describe the N = (1,1) WZW model g(1)k by a
purely bosonic WZW model at level k− h∨ and dim(g) free, decoupled fermions. That is,

g
(1)
k−h∨

∼= gk−h∨ ⊕ (dim(g) free fermions) . (6.5.8)

Applied to the background AdS3× S3 (with pure NS-NS flux), we have

RNS strings on AdS3×S3 ∼= sl(2,R)k+2⊕ su(2)k−2⊕ (6 free fermions) . (6.5.9)

This is precisely the model we began with when defining the hybrid string on AdS3× S3.
In the brane construction of AdS3× S3 backgrounds, k represents the number of units of

NS-NS flux sourced by the stack of NS5 branes or, equivalently, the number of NS5 branes.
Clearly, the smallest value of k allowed, then, would be k= 1 (at k= 0 we no longer have an
AdS3× S3 near-horizon geometry). However, precisely at k= 1 the worldsheet theory becomes

sl(2,R)3⊕ su(2)−1⊕ (6 free fermions) . (6.5.10)

The negative level in the su(2)−1 factor is a problem and this factor alone is non-unitary.
Specifically, it has central charge

c
(
su(2)−1

)
=

3 · (−1)
−1+ h∨ (su(2))

=−3 . (6.5.11)
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It is still feasible to formally treat the su(2)−1 factor as a ‘ghost’ system, but beyond the
counting of states, it is not very clear how to do this.

An alternative approach is to simply start with the hybrid formalism. Since the hybrid form-
alism on AdS3× S3 is a WZW model on the supergroup PSU(1,1|2) with level k, we have101

hybrid strings on AdS3×S3 at k= 1∼= psu(1,1|2)1 . (6.5.12)

The affine Kač-Moody superalgebra psu(1,1|2)1 is perfectly well-defined and admits unitary
representations, and thus allows for a conceptually straightforward analysis of the worldsheet
(although the physical state conditions become rather complicated).

Typically, exact calculations in string theory on curved spacetimes are completely out of
reach. However, the key feature of the k= 1 worldsheet theory lies in the fact that, even though
the worldsheet lies on a highly curved target space, it can be described by a free world-
sheet theory. In particular, the WZW model psu(1,1|2)1 can be realised by eight free fields
[24, 250]: (

λ,µ†) , (
µ,λ†

)︸ ︷︷ ︸
four βγ systems with λ=1/2

(
ψa,ψ†

a

)︸ ︷︷ ︸
four bc systems with λ=1/2

(6.5.13)

To see this, we group the free fields into two supervectors of dimension 2|2:

Y=
(
µ† λ† ψ†

1 ψ†
2

)
, Z=


λ
µ
ψ1

ψ2

 , (6.5.14)

for which the action of the fields reads

S=
1
2π

ˆ
Σ

Y∂̄Z . (6.5.15)

This action contains a set of linear symmetries generated by any invertible supermatrix of
dimension 2|2 acting as

Z→MZ , Y→ YM−1 . (6.5.16)

This symmetry generates the supergroup GL(2|2), and the conserved currents, which are gen-
erated by bilinears of the form Jab = YaZb, generate the algebra gl(2|2)1. If one also gauges
the current

Z =
1
2
Y ·Z , (6.5.17)

which generates the diagonal U(1) subgroup Z→ αZ Y→ α−1Y, one reduces the symmetry
group from GL(2|2) to PSU(1,1|2). See [250, 251] for more details. The advantage of this
free field realisation is that much of the difficulty of string theory on AdS3× S3 reduces to
computing quantities in a free CFT (although a slightly unconventional one).

101 We also have to topologically twist the internal manifold M4 and include the ρ,σ ghosts.
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Holographically, string theory on AdS3× S3×M has long believed to be dual to a CFT in
the moduli space of so-called symmetric orbifold theories [89–94, 252] (see also [253] for a
review). These theories are CFTs obtained by starting with a ‘seed’ theory X of central charge
c and tensoring it with itself N times to obtain the CFT X⊗N. One then gauges or ‘orbifolds’
the SN symmetry of permuting the copies of X to obtain the CFT

SymN (X) := X⊗N/SN , (6.5.18)

which has central charge cN = cN. Taking N large then gives a large-c CFT, which potentially
has a hologrpahic dual. When we say that string theory on AdS3× S3×M lives in the same
moduli space as SymN(X), what is meant is that the dual theory is given by deforming SymN(X)
by an exactly marginal operator O which breaks the orbifold structure.102

The strength of the deformationO determines how far away one is from the so-called ‘orbi-
fold point’, i.e. the point in the moduli space for which the dual CFT is exactly a symmetric
orbifold. Since the spectrum of symmetric orbifold theories does not meet the requirement to
be described by an effective theory of AdS3 supergravity (specifically, symmetric orbifolds
do not have sparse spectra), they cannot be dual to the supergravity limit of string theory. It
is thus believed that the orbifold point is a string theory for which the spacetime curvature is
very large.

If the background has pure units of NS/NS flux, this means that the level k of the psu(1,1|2)k
WZW model should be small. However, since it is quantised, there is a smallest value it can
reach while still describing a consistent theory, namely k= 1. In recent years, using the above
free field realisation of psu(1,1|2)1, a large amount of evidence has been gathered supporting
the fact that the k= 1 limit of AdS3 string theory is exactly dual to a symmetric orbifold.
Specifically,

pure NS-NS strings on AdS3×S3×M4 at k= 1

⇐⇒
the symmetric product CFT SymN (M4) .

(6.5.19)

Evidence for this proposal includes:

• A full matching of the physical spectra [24, 254, 255].
• A full matching of correlation functions of twisted-sector ground states at tree-level [250,

256, 257].
• A full matching of correlation functions of twisted-sector ground states at all loop-level

[258, 259].
• A matching of the first nontrivial terms in the perturbative series as one deforms away from

the orbifold point [260].

All of these calculations were performed within the framework of the hybrid formalism. In
fact, it is not currently known how to treat the k= 1 theory in the RNS or GS formalisms, so
for now the only method we have of exploring this region in the parameter space of superstring
theories is with the hybrid formalism.

102 By this, we mean that the deformed theory can no longer be written as SymN(Y) for some CFT Y.

215



J. Phys. A: Math. Theor. 57 (2024) 423001 Topical Review

6.6. Outlook

In the previous sections, we presented in detail the hybrid formalism of superstrings both
in four dimensional flat space and on the background AdS3× S3×M4. In an attempt to be
completely self-contained, there were unfortunately aspects of the theory which could not be
addressed. Most notably, we only made a passing reference to the physical state conditions
one must impose on worldsheet states, and we have not made any mention of exactly how
to compute correlation functions of the theory. For both of these topics, we encourage the
interested reader to consult [23, 227].

Before we conclude our discussion of the hybrid formalism, let us briefly discuss two
points that we believe to be important gaps in our knowledge, which will hopefully be bet-
ter understood.

6.6.1. The hybrid formalism in other backgrounds. Since the hybrid formalism is such a
powerful tool for analysing backgrounds like R4 and AdS3× S3 in a way that is SUSY-
covariant, one might ask whether the formalism can be readily generalised to other back-
grounds. The formulation of the hybrid superstring on R4 required the background to be
obtained by a Calabi–Yau compactification. Similarly, defining the hybrid string on AdS3×
S3×M4 required us to use the fact thatM4 is either T4 or K3. In both of these cases, the
existence of N = (2,2) supersymmetry in the compactified directions was a crucial ingredi-
ent in the field redefinitions in passing from the RNS formalism to the hybrid formalism. Thus,
it seems that the ability to write down a hybrid superstring on a background is dependent on
the details of that background.

Interestingly, there are other backgrounds on which the hybrid formalism can be defined.
For example, the hybrid formalism can be described R2×M8, whereM8 is a Calabi–Yau
four-fold [261], as well as on AdS2× S2×M6, whereM6 is a Calabi–Yau three-fold [56].
More recently, it has been shown that the background AdS3× S3× S3× S1 also admits a hybrid
description, which is based on a WZW model with group D(2,1;α) [262], where α controls
the relationship between the radii of the two S3’s (see section 3).

Despite this, the holy grail of holographic backgrounds, namely type IIB superstrings on
AdS5× S5, has no known hybrid description. There are hints [56, 263, 264] that the appropriate
description should be based on a WZW model with group PSU(2,2|4). However, a consistent
hybrid description with this group is not currently known.

6.6.2. The geometric meaning of the hybrid formalism. The RNS formalism is at its heart
a geometric theory of supergravity in two dimensions. Indeed, the bc and βγ ghost systems
of the RNS formalism are nothing more than the Fadeev-Popov ghosts needed to gauge the
diffeomorphism and super-diffeomorphism symmetry on the worldsheet. When passing to the
hybrid formalism on, say, AdS3× S3, the βγ system gets lost in all of the field redefinitions.
What is left is the PSU(1,1|2) WZW model, the compact CFTM4, the original bc diffeo-
morphism ghosts, and a new scalar dubbed ρ.

The existence of the extra scalar left over after field redefinitions is a smoking gun of the
hybrid formalism. Despite usually being referred to as a ‘ghost’, it is not clear what, if anything,
ρ is actually gauging. It might be natural to guess that ρ, similar to the bc and βγ ghosts, is
gauging some sort of geometric structure on the worldsheet, but there are very few hints as to
what this kind of structure would be.

While the hybrid formalism as presented in this section is obtained from the RNS formalism
via a series of field redefinitions, one would hope that there would be a kind of ‘intrinsic’
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derivation of the hybrid formalism that is independent of the RNS or GS formalisms. Such a
derivation could potentially shed light on the meaning of the hybrid ghost ρ, as well as the
complexity of the physical state conditions in the hybrid formalism103.

7. Matrix theory and the string worldsheet

We give a pedagogical review of aspects of nonperturbative string theory in connection with
Matrix theory. This section has a different but closely related motivation compared to the rest
of the review: we would like to develop tools to understand how string theory behaves when
the string coupling is very large, where conventional perturbative treatments fail to apply.
A thorough understanding of nonperturbative phenomena in string theory is indispensable
before one can justly determine how it should be applied to Nature [12]. For example, in the
Standard Model, one would have falsely concluded that strong and weak forces were short
ranged without understanding the nonperturbative phenomena such as the Higgs mechanism
and quark confinement. From a broader perspective, viewing string theory as a mathematical
framework that provides useful techniques and insights for other fields, it is equally important
to map out various nonperturbative aspects in order to reveal its full power for solving related
problems in other disciplines of theoretical physics.

It is well known that the nature of ten-dimensional type IIA (and E8×E8 heterotic) super-
string theory changes in the strongly coupled regime, where an eleventh dimension emerges
and the fundamental role played by the string is replaced with the membrane [266–269]. This
eleven-dimensional theory of the supposedly fundamental membranes is conjectured to be
‘M-theory’ [269]. One important lesson that we have learned from the second superstring
revolution is that the hypothetical M-theory unifies different perturbative superstring theories,
namely, type I, IIA, IIB, and heterotic superstring theory, which describe remote corners in the
web of solutions of the single eleven-dimensional theory. Although we have acquired a fairly
comprehensive understanding of perturbative string theory, our knowledge of the fundamental
nature of M-theory, i.e. nonperturbative string theory and quantum gravity, is still rather lim-
ited. One major technical difficulty is that, viewing M-theory as a UV-complete theory, the
dynamics of the supermembrane is described by a nonrenormalisable sigma model and non-
perturbative methods are required for its quantisation [269]104. Moreover, due to its intrinsic
instability [272], the supermembrane probably does not even exist as a fundamental object and
tends to be dissolved into dynamical bits. This begs for a multiparticle state (and membrane
field-theoretical) interpretation [273]. In this sense, the approaches that we will review in this
section are ‘exact’ in nature, as they are beyond perturbative string theory. Moreover, to be
distinguished from a standard review on M-theory, and in line with the title of this current
review, we focus on the recent progress of related string worldsheet approaches [274], which
appear to be surprisingly powerful in terms of mapping out various nonpeturbative corners in
string and M-theory.

Even though the fundamental principles of M-theory remain mysterious, we are still able
to learn a great deal about different facets of it via studying certain (decoupling) limits of
string and M-theory. In such decoupling limits, one zooms in on self-consistent corners where

103 See [265] for recent progress in this direction in the context of the AdS3 × S3 ×T4 hybrid string.
104 See [270, 271] for a candidate UV-completion of the supermembrane using the theory of quantum critical mem-
brane, whose associated sigma model is power-counting renormalisable and it flows back to the conventional super-
membrane sigma model at low energies, at least at the classical level.
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certain states become inaccessible. These corners are often significantly simpler than the ori-
ginal theory. We have learned that perturbative superstring theories are corners of M-theory,
which are achieved by compactifying M-theory over the eleventh dimension with a very small
radius, such that the membrane-related excitations are suppressed. Field-theoretical limits of
string and M-theory give rise to ten- and eleven-dimensional supergravities, where the excita-
tions associated with any extended objects, such as strings and D-branes, are decoupled. The
renowned AdS/CFT correspondence also arises from a decoupling limit, where the bulk IIB
supergravity modes are decoupled from the near-horizon AdS geometry, and the latter is then
identified with N = 4 super Yang-Mills (SYM) theory on the asymptotic boundary [3, 275].

In this section, we focus on the decoupling limits in type II superstring theories that are
related to Matrix theory [273], which describes M-theory in the discrete light cone quantisa-
tion (DLCQ) [276–278]. DLCQM-theory is usually defined via a limiting procedure: we start
with M-theory compactified over a spacelike circle, and then perform an infinite momentum
limit along this circle, which can be heuristically thought of as an infinite boost transformation.
Effectively, this procedure turns the originally spacelike circle lightlike. In this sense, DLCQ
M-theory in practice means that we compactify M-theory over a lightlike circle. In the infinite
momentum limit, almost all light excitations except the Kaluza–Klein (KK) particle states in
the lightlike compactification are decoupled. The associated particle dynamics is described
by Banks–Fischler–Shenker–Susskind (BFSS) Matrix theory [273], which is a nonrelativistic
quantum mechanical system of nine N×Nmatrices. Here, N is associated with the KK excita-
tion number. In the language of type IIA superstring theory, such a KK state with momentum
number N corresponds to a bound state of N D0-particles. It is conjectured that the BFSS
Matrix theory may describe the full M-theory at large N, where the lightlike circle decompac-
tifies. Recently, there has been a revival of ideas related to the original Matrix theory conjec-
ture, from the perspectives of the soft theorem and infrared structure of M-theory [279, 280],
restoration of Lorentz symmetry in eleven dimensions [281], nonperturbative computation of
the three-point amplitude [282], the Berenstein–Maldacena–Nastase conjecture [116] relating
Matrix theory and M-theory on a PP-wave background [283], etc.

In spacetime with a lightlike compactification, the system exhibits nonrelativistic beha-
viours [284]. This might be counter-intuitive as one typically expects nonrelativistic physics
to appear when the speeds of the physical contents are small105, while at large boost everything
moves almost at the speed of light. We dedicate section 7.1 as a pedagogical review to explain
this exotic phenomenon. In section 7.2, we review the basic ingredients of Matrix theory and
discuss the related decoupling limit in type IIA superstring theory. In section 7.3, we discuss
the worldsheet theory of the fundamental string in this IIA corner and review its T-duality
transformations, which allow us to make contact with the worldsheet description of spin mat-
rix theory (SMT) in section 8. SMT refers to certain near BPS limits of N = 4 SYM and the
AdS/CFT correspondence, which lead to a class of integrable models including the Landau–
Lifshitz theory [286]. In section 7.3.4, we review a further extension of the duality web via
S-duality and the corner of nonrelativistic string theory, which is a self-contained, perturbative
string theory with a Galilean invariant string spectrum [287]106. Section 7.4 further elaborates
the basics of nonrelativistic string theory, which plays an anchoring role in the duality web and

105 Along different lines, it is also possible to consider a more general nonrelativistic framework that provides can-
didate UV-completions of relativistic systems [270, 285].
106 There is a recent review [288] that focuses on the geometric aspects of nonrelativistic string theory, which is
complementary to the current review.
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Figure 9. Duality web of decoupling limits that are discussed in the review. Here,
‘DLCQ’ stands for Discrete Light Cone Quantisation, i.e. the theory is compactified
over a lightlike circle, and ‘MpT’ stands for Matrix p-brane Theory.

in the original derivation of the SMT string. We will review the relation between the decoup-
ling limit that leads to nonrelativistic string theory and the TT̄ deformation in section 7.4.6.
In section 7.5, we discuss the M-theory uplift of nonrelativistic string theory and its U-dual
relation to DLCQM-theory. See figure 9 for a road map of the duality web to be detailed in this
section, and see [274, 289] for recent advances and further extensions of this duality web. We
will focus on the bosonic contents throughout this section, which is sufficient for conveying
the central ideas.

7.1. Nonrelativistic physics from an infinite boost

We know that Newtonian physics is valid for describing the macroscopic world where objects
move at a relatively much smaller speed compared to the speed of light c. More explicitly,
consider a relativistic particle with a rest mass m0 that satisfies the dispersion relation

E2− |p|2 c2 = m2
0 c

4 , (7.1.1)

where E is the energy and the spatial momentum p is related to the velocity u of the particle
via

p=
m0u√

1− |u|2/c2
. (7.1.2)

In the regime where |u|/c� 1, we find
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E−m0 c
2 =

1
2
m0 |u|2 +O(|u|/c)4 . (7.1.3)

Define ε∼ E−m0 c2 to be the effective energy. In the low-speed regime, we obtain the fol-
lowing quadratic dispersion relation:

ε=
|p|2

2m
. (7.1.4)

This is the standard nonrelativistic limit that we usually consider.
Intriguingly, there is another, less intuitive, way to take a limit of special relativity such

that nonrelativistic behaviours arise. Instead of keeping the speed of the massive particle much
smaller than the speed of light, we now take an infinite boost limit such that themassive particle
moves almost at the speed of light in a particular direction that we call x1 [284]. In the infin-
itely boosted frame, the velocity components of the particle in all the other spatial directions
approach zero. This observation can be made manifest in the Lorentz transformation of velo-
city. Let the massive particle move in the original frame Swith a velocity of u= (u1 ,w), where
u1 is along x1. Consider a boosted frame S′ moving with a relative velocity of v= (−v1 ,0)
with respect to S. For an observer in S′, the particle moves with a velocity of u ′ = (u ′

1 ,w
′),

where

u ′
1 =

u1 + v1
1+ u1 v1/c

2
, w ′ = w

√
1− v21/c

2

1+ u1 v1/c
2
. (7.1.5)

After a large boost in x1, with δ ≡ 1− v1/c→ 0+, we find u ′
1 = c+O

(
δ
)
and w ′ = O

(
δ1/2

)
.

In S′, denote the spatial momentum as p ′ = (p ′
1 ,k

′), where p ′
1 is the momentum in x ′1 and k ′

is the transverse momentum. Using equation (7.1.2) , we find

p ′
1 = mcδ−1/2 +O(δ) , k ′ =

m0w√
1− |u|2/c2

+O
(
δ2
)
, (7.1.6)

where

m=
1√
2

(1+ u1/c)√
1− |u|2/c2

m0 . (7.1.7)

Effectively, we are taking an infinite momentum limit in x1 while keeping the momentum
components in the other spatial directions finite. Expanding with respect to a small δ, we find
that the relativistic dispersion relation (7.1.1) becomes

δ−1/2 (E ′− |p ′
1|c) =

1
2m

(
|k ′|2 +m2

0 c
2
)
+O

(
δ2
)
. (7.1.8)

Further define the effective energy to be ε∼ δ−1/2 (E ′− |p ′
1|c). In the zero δ limit, the effective

dispersion relation is

ε=
1
2m

(
|k ′|2 +m2

0 c
2
)
, (7.1.9)

which, at a fixed m, can be interpreted as nonrelativistic.
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This infinite-momentum frame can be equivalently obtained by going to the lightcone
spacetime coordinates (x+, x−, xi)with i = 1, · · · ,d− 2, which are related to x= (x0, xd−1, xi)
via

x+ =
1√
2

(
x0 + xd−1

)
, x− =

1√
2

(
x0− xd−1

)
. (7.1.10)

Here, x0 is the time direction and d refers to the spacetime dimension. For simplicity, we
take d= 4, such that i = 1 , 2. From now on, we also take the natural unit such that c= 1. The
dispersion relation in the lightcone frame is−2p− p+ + |k|2 +m2

0 = 0. In terms of the effective
energy ε≡ p+, we find the following dispersion relation at a fixed lightcone momentum p− :

ε=
1

2p−

(
|k|2 +m2

0

)
, (7.1.11)

which resembles equation (7.1.9). This procedure of fixing the lightcone momentum allows
us to restrict to the Bargmann subgroup of the Poincaré group. To make this manifest, we start
with the Poincaré algebra with the non-vanishing commutators[

Mµν ,Pρ
]
= ηνρPµ− ηµρPν , (7.1.12a)[

Mµν ,Mρσ

]
= ηµσMνρ+ ηνρMµσ − ηµρMνσ − ηνσMµρ . (7.1.12b)

Perform the following changes of variables [290]:

H=
1√
2
(P0−P3) , G2 =

1√
2
(M10 +M13) , S1 =

1√
2
(M10−M12) , (7.1.13a)

N=
1√
2
(P0 +P3) , G3 =

1√
2
(M20−M23) , S3 =

1√
2
(M20 +M23) , (7.1.13b)

and define J=M12. The generators H, Pi, Gi, J, and N form the Bargmann algebra, defined by
the following non-vanishing commutators:

[H , Gi ] = Pi , [Pi , J] = ϵijPj , (7.1.14a)

[Pi , Gj] = δijN , [Gi , J] = ϵijGj . (7.1.14b)

Here, H is associated with the time translation, Pi the spatial translations, Gi the Galilei
boosts, J the spatial rotation, andN the central extension. The central extensionN is associated
with the conservation of particle number.

Going to an infinite momentum frame in both QFTs and string/M-theory has the bene-
fit of zooming in on a much simpler vacuum, which has Galilean symmetry. The associated
dynamics can be described by a Hamiltonian for a quantummechanical systemwith conserved
particle number.

7.2. M-theory as a matrix quantum mechanics

The infinite momentum frame turns out to be useful for understanding M-theory and is closely
related to its matrix theory description. We now give a brief introduction to this topic. See
[291] for a comprehensive review. Part of the current review also follows the textbook [292]
by Kiritsis.
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7.2.1. Quantisation of themembrane. Wewill follow the historical route that led to theMatrix
theory description of M-theory. It is natural to start with the supermembrane in order to con-
struct such a microscopic interpretation. This is because we would naïvely expect that the
fundamental role played by the string in superstring theory should now be replaced by the
supermembrane. For simplicity, we will only focus on the bosonic contents of the supermem-
brane in the following discussions. We start with the Nambu–Goto action for the membrane
in 11D flat spacetime [266],

S=−T
ˆ

d3σ
√
−det(∂αXM ∂βXM) , α= 0 , 1 , 2 , M= 0 , 1 , · · · ,10 . (7.2.1)

This action can be rewritten in the Polyakov formulation by introducing an auxiliary world-
volume metric γαβ , such that

S=−T
2

ˆ
d3σ
√
−γ
(
γαβ ∂αX

M ∂βXM− 1
)
, (7.2.2)

where γαβ is the inverse of γαβ and γ = det(γαβ). Varying the action with respect to γαβ
leads to the following equation of motion:(

−γαγ γβδ + 1
2 γ

αβ γγδ
)
∂γX

M ∂δXM− 1
2 γ

αβ = 0 , (7.2.3)

which is solved by γαβ = ∂αXM ∂βXM. As in bosonic string theory, we can use the diffeo-
morphisms to fix some of the components of the worldvolume metric γαβ . On the three-
dimensional worldvolume, there are three diffeomorphism symmetries, which we use to per-
form the following gauge fixing:

γ0a = 0 , γ00 =−det
(
∂aX

M ∂bXM
)
. (7.2.4)

We have taken the split of the worldvolume index α= (0 ,a), with a= 1 ,2. However, unlike
string theory, we are unable to fix all the metric components up to a conformal factor. Namely,
γab is not fixed. The membrane action then becomes

S=
T
2

ˆ
d3σ

[
∂τX

M ∂τXM− det
(
∂αX

M ∂βXM
)]
. (7.2.5)

Note that σα = (τ , σa). Define the Poisson bracket,

{f , g} ≡ ϵab ∂f
∂σa

∂g
∂σb

. (7.2.6)

Then, the gauge-fixed action (7.2.5) can be rewritten as

S=
T
2

ˆ
d3σ

[
∂τX

M ∂τXM− 1
2

{
XM, XN

}
{XM , XN}

]
, (7.2.7)

where we have integrated out γab. This needs to be supplemented with the constraints from
varying γ00 and γ0a in equation (7.2.2), before fixing them as in equation (7.2.4). Varying γ00
gives the constraint

∂τX
M ∂τXM =−1

2

{
XM, XN

}
{XM , XN} . (7.2.8)
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Varying γ0a gives

∂aX
M
[
∂1XM ∂τX

N ∂2XN− (1↔ 2)
]
= 0 . (7.2.9)

The constraint (7.2.9) is equivalent to ∂τXM ∂aXM = 0, which implies
{
∂τXM,XM

}
= 0.

In order to solve the above constraints, we define the lightcone coordinates X± = X0±
X10 in the target space and consider the lightcone gauge X−(τ ,σa) = τ . The constraints now
become

∂τX
+ =

1
4
∂τX

i ∂τX
i +

1
8

{
Xi,Xj

}{
Xi,Xj

}
, (7.2.10a)

∂aX
+ =

1
2
∂τX

i ∂aX
i, (7.2.10b)

0=
{
∂τX

i,Xj
}
, (7.2.10c)

where i = 1 , . . . , 9. The lightlike momentum p= 1
2 (p0 + p1) is then fixed to be p= VT, with

V= 2π the spatial volume of the membrane. The lightcone Hamiltonian is

H=
T
2

ˆ
d2σ

(
∂τX

i ∂τX
i +

1
2

{
Xi,Xj

}{
Xi,Xj

})
. (7.2.11)

Even though the constraints in equations (7.2.8) can be solved by going to lightcone gauge
just like in string theory, the equations of motion for the membrane are not linear as they are
for the string. Namely, the equations of motion from varying Xi in the membrane action (7.2.7)
are

Ẍi =
{{

Xi,Xj
}
,Xj
}
, (7.2.12)

which is nonlinear and thus hard to solve. Unlike string theory, it is still very difficult to quant-
ise the membrane in lightcone gauge.

It is possible to quantise a regularized version of the membrane by discretizing the two-
dimensional spatial manifold of the worldvolume [293, 294]. For simplicity, we assume that
the membrane surface is a sphere, in which case the worldvolume has the topology R× S2.
We then take both σ1 and σ2 to have N lattice points. As a result, the embedding coordinates
Xi now become Hermitian N×N matrices,

Xi
(
τ , σ1, σ2

)
→ Xi

I J(τ) , I, J= 1, . . . ,N . (7.2.13)

Meanwhile, the Poisson brackets become matrix commutators,

{f, g}→− i
2
[f, g] , (7.2.14)

and the integral over the membrane surface is replaced with

ˆ
d2σF(τ,σa)→ V

N

N∑
I=1

FI I(τ) . (7.2.15)

The matrix Hamiltonian associated with equation (7.2.11) is [295] (see also [296–298])

H=
T
8
tr

(
∂τX

i (τ) ∂τX
i (τ)− 1

2

[
Xi (τ) ,Xj (τ)

] [
Xi (τ) ,Xj (τ)

])
, (7.2.16)
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which is supplemented by the constraint
[
∂τXi, Xi

]
= 0. Moreover, the nonlinear equation of

motion (7.2.12) gives rise to the matrix equations of motion,

∂2
τX

i =−
[[
Xi,Xj

]
,Xj
]
. (7.2.17)

This is a quantum mechanical system described by nine N×N matrices. This theory has a
symmetry group U(N), under which the matrices Xi are in the adjoint representation. This is
true even when the membrane surface is a general Riemann surface of any genus. The U(N)
symmetry can be traced to the symmetry group of the so-called area-preserving diffeomorph-
isms satisfied by the membrane. The fact that the U(N) Matrix theory is not associated with a
particular topology implies that it can probably approximate the system ofmultiplemembranes
with arbitrary topologies. Even though we started with the first-quantised theory of the mem-
brane, it seems that we are led to a Matrix-theory description of the second-quantised theory!
In retrospective, this is somewhat expected: the continuum limit of the discretized membrane
is not guaranteed to only give a single first-quantised membrane, but instead it leads to a multi-
membrane scenario where a second quantisation interpretation is required.

7.2.2. The matrix theory interpretation. In string theory, it is important that there is a discrete
spectrum of states, resulting in massless states in the string Hilbert space that are in one-to-one
correspondence to particle states in the target space. This property is key to the interpretation
that there is a massless graviton state separated from massive excitations.

In contrast, the membrane spectrum turns out to be continuous and is plagued by intrinsic
instability [272]. This can be seen already at the classical level. Let us create a spike that is
roughly cylindrical on the membrane surface, which costs energy ∼ TAL, where A is the area
of the cross section of the cylinder and L is the length. Recall that T is the membrane tension.
Consider a very narrow and long spike, i.e. with a small A but a large L. The energy required
for creating such a configuration can be arcitrarily low. This suggests that a membrane tends
to have many long-spike fluctuations, which makes it unlikely to define the membrane as a
localized object.

The instability of the membrane is associated with a set of flat directions in matrix the-
ory. It is cured in the quantum bosonic matrix theory, where an effective confining potential
emerges and the flat directions of the classical theory are removed. However, such instability
reappears in the supersymmetric theory, indicating that there is no simple interpretation of the
supermembrane states as a discrete particle-like spectrum.

The problem of continuous spectrum finds its resolution in the BFSS proposal of the matrix
theory conjecture [273], which suggests that the large N limit of supersymmetric matrix the-
ory might describe the full M-theory in lightcone coordinates. The BFSS argument involves
initially compactifying M-theory over a spacelike circle, which leads to type IIA superstring
theory in ten dimensions. The KK momentum states in the compact eleventh dimension cor-
respond to the D0-branes in the IIA theory, with mass

τ0 =
1

gsα ′1/2 , (7.2.18)

where gs is the string coupling andα ′ the Regge slope. For anyN D0-branes there is a ultrashort
multiplet of bound states that has mass Nτ0. In the context of M-theory, this mass formula can
be interpreted as the KK momentum in the compact direction, with the radius of the circle
being

R0 = gsα
′1/2 , (7.2.19)
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which implies that a single D0-brane state corresponds to a graviton in M-theory with a
unit longitudinal momentum. In the strongly coupled limit gs→∞, the M-theory circle
decompactifies.

Next, we take a further limit where the momentum in the compact circle is taken to be infin-
ite, such that all light excitations except the D0-branes are suppressed. Therefore, the Matrix
theory Hamiltonian (7.2.16) now gains an alternative interpretation as the low-energy effect-
ive action of D0-branes in the infinite momentum limit. We will discuss in the next subsection
how to make this description more precise, using the discrete lightcone quantisation (DLCQ)
of M-theory.

We now discuss the implications of the D0-brane interpretation for the continuous spectrum
of the membrane. Consider a set of nine block-diagonal matrices,

Xi =


xi1 0 0 0

0 xi2 0 0

0 0 · · · 0

0 0 0 xik

 , (7.2.20)

where xir are mr×mr matrices with
∑

rmr = N. Plugging equation (7.2.20) into the Matrix
equation of motion (7.2.17), we find the following decoupled equations:

∂2
τx

i
r =−

[[
xir , x

j
r

]
, xjr
]
, r= 1 , . . . , k . (7.2.21)

These classically independent equations of motion govern the dynamics of k Matrix the-
ory objects. For example, these can be bound D0-brane states in type IIA superstring the-
ory that correspond to (super)gravitons in M-theory. In this case, the matrix configuration
in equation (7.2.20) describes a multi-particle state of independent, classical gravitons in M-
theory, while the off-diagonal entries encode interactions between these gravitons. From the
string theoretical perspective, these interactions are mediated by the ground-state open strings
connecting the D0-branes. Given that Matrix theory should describe a second quantised the-
ory, the puzzle of the continuous spectrum is resolved. The long, narrow spikes that seemed to
cause instability of the membrane correspond to a configuration in the target space with mul-
tiple macroscopic membranes connected by narrow tubes of infinitesimally small energies.
The above observation implies that Matrix theory is already beyond perturbative string theory,
since the latter describes a first-quantised theory in the target space.

7.2.3. M-theory in the DLCQ. We now study further the compactification of M-theory on
a circle, which gives rise to the type IIA superstring description. We will provide detailed
formulae that further support the observations in section 7.2.2 and review howM-theory in the
DLCQ, i.e. M-theory in spacetime with a lightlike compactification, corresponds to the BFSS
Matrix theory [276–278].

The desired lightlike circle is commonly defined via a subtle infinite boost limit of a space-
like circle. Boosting along a compact direction might be somewhat deceptive as the compacti-
fication already breaks Lorentz invariance, but this way of thinking at least makes some sense
in the case where the circle is very large, especially bearing in mind that we are ultimately
interested in the decompactification limit where M-theory in eleven dimensions is recovered.
Even though we are really dealing with a decoupling limit, this heuristic argument using the
infinite boost still provides valuable intuitions.
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To be concrete, we denote the target-space coordinates asXM, M= 0 ,1 , . . . ,10 and consider
a large boost transformation along X10, i.e.,

X ′0 = γ
(
X0 + vX10

)
, X ′10 = γ

(
X10 + vX0

)
, (7.2.22)

together with the periodic boundary condition, X10 ∼ X10 + 2π R0, which implies that the x10

direction is compactified over a circle of radius R0. Here, γ = 1/
√
1− v2 is the Lorentz factor.

We have set c= 1. Define the change of variables in the boosted frame,

X ′+ = X ′0 +X ′10 , X ′− = X ′0− vX ′10 , (7.2.23)

such that X ′− = X0/γ does not contain any periodicity and therefore can be identified with the
effective time direction in a lightlike coordinate system. Indeed, in the ‘boosted frame’ with a
large γ, we find

X ′+ = 2γ
(
X0 +X1

)
+O

(
γ−1

)
, X ′− =

X0

γ
, (7.2.24)

and the boundary conditions are X ′+∼X ′+ + 2π
(
2γR0

)
+O(γ−1) and X ′−∼X ′−. Also note

that, in the infinitely boosted frame where v is almost the speed of light, equation (7.2.23) does
give the lightcone coordinates. In the double scaling limit [277],

γ→∞ , R0→ 0 , R≡ 2γR0 is fixed, (7.2.25)

we find

X ′+ ∼ X ′+ + 2πR , X ′− ∼ X ′− , (7.2.26)

which defines a lightlike circle. The above procedure defines DLCQ M-theory.
We have discussed that the BFSS Matrix theory describes certain D0-brane excitations in

type IIA superstring theory. We have learned that DLCQ M-theory is defined via the double
scaling limit (7.2.25). From the string theoretical perspective, this double scaling limit must
correspond to a limit of the IIA theory. The resulting string theory in this limit is precisely the
one that arises from compactifying M-theory over the lightlike circle. In order to understand
how this string theory looks like, we start with M-theory and consider the probe membrane
described by the action (7.2.1). Wrap the membrane around the target space lightlike circle,
such that X+ = σ2. It is not difficult to show that the membrane action (7.2.1) now reduces to
the following string worldsheet action [274]:107

Sstring =−T
ˆ

d2σ

√√√√−det

(
0 ∂βX0

∂αX0 ∂αXi ∂βXi

)
, α= 0 , 1 , i = 1 , . . . , 9 . (7.2.27)

107 See also [299] for related studies of the same Nambu–Goto action. The compactification of the M2-brane
over a lightlike circle has also been studied in [300], where equation (7.2.27) appeared as an intermediate step in
equation (3.3). However, the last equality in equation (3.3) does not hold unless it is modified to be∣∣∣∣∣ 0 τβ

τα hαβ

∣∣∣∣∣= det
(
−τα τβ + hαβ

)
− det

(
hαβ

)
.
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Here, X0 =−X− and Xi = xi. We also defined σα = (τ,σ). The string action (7.2.27) also
arises from a nonrelativistic limit of the conventional Nambu–Goto action

SNG =−T
ˆ

d2σ

√
−det

(
∂αX

µ ∂βXµ
)
, µ= 0 , . . . , 9 . (7.2.28)

Here, T= (2πα ′)−1 is the string tension. Perform the rescaling

X0→
√
ωX0, Xi → 1√

ω
Xi, α ′→ α ′ (7.2.29)

in equation (7.2.28), we find that the action (7.2.27) is recovered at ω→∞. Note that, up
to subleading orders in large ω, we have ω ∝ γ, where γ is the Lorentz factor introduced
in equation (7.2.22). Therefore, the infinite-boost limit γ→∞ in M-theory translates to the
ω→∞ limit in type IIA superstring theory.

We now discuss how the BFSSmatrix theory arises from the ω→∞ limit of the D0-branes.
For pedagogical reason, we first focus on a single D0-brane, so we expect to reproduce the free
action in the BFSS matrix theory (7.2.16), with the action

SBFSS ∝
ˆ

d2τ ∂τX
i ∂τX

i . (7.2.30)

Before the ω→∞ limit is performed, the effective action for a single D0-brane describes a
relativistic particle,

SD0 =−
1

gsα ′1/2

ˆ
dτ
√
−∂τXµ ∂τXµ . (7.2.31)

Here, gs is the string coupling. Plug equation (7.2.29) into the D0-brane action (7.2.31), and
expand with respect to a large ω, we find

SD0 =
ω−3/2

gsα ′1/2

ˆ
dτ
[
−ω2 + 1

2 ∂τX
i ∂τX

i +O
(
ω−2

)]
. (7.2.32)

We have chosen the static gauge X0 = τ . In order for the desired term ∂τXµ ∂τXµ to survive at
ω→∞, we are required to rescale the string coupling gs as

gs→ ω−3/2 gs . (7.2.33)

However, there still remains a divergent term in equation (7.2.31), which can be canceled upon
the introduction of the RR 1-form. The RR term in the D0-brane action is in form the same as
an electromagnetic gauge potential coupled to the D0-particle,

SCS =

ˆ
dτ ∂τX

µCµ . (7.2.34)

Setting

C(1) = ω2 g−1
s dX0 , (7.2.35)

we find that the ω divergence in SD0 + SCS cancel and the ω→∞ limit leads to a finite action
that recovers the free part (7.2.30) of the BFSS matrix theory.
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When a stack of D0-branes are considered, the same limiting prescription gives rise to the
full (bosonic) BFSS matrix theory (7.2.16) [289]. The bosonic sector of the non-abelian action
describing N coinciding D0-branes is given by [301]

SD0 =−TD0

ˆ
dτ tr

√(
−∂τXµ ∂τXµ

)
det
(
δij + 2π i α ′ [Xi , Xj]

)
, (7.2.36)

where Xi are scalars in the adjoint representation of U(N). The appearance of the com-
mutator [Xi,Xj] can be understood from compactifying ten-dimensional N = 1 SYM the-
ory all the way to (0+1)-dimension. Plugging equations (7.2.29) and (7.2.33) into the
non-abelian action (7.2.36), and further taking into account the ω2 term from the RR 1-
form in equation (7.2.35), the action principle associated with the bosonic part of the
Hamiltonian (7.2.16) (with α ′ ∼ 1) for the BFSS Matrix theory is recovered in the ω→∞
limit.

The above ω→∞ limit defines a decoupling limit of type IIA superstring theory, which
we refer to as Matrix 0-brane theory (M0T). In M0T, the D0-branes are the light excitations,
which coexist with a whole range of extended objects, such as all the other Dp-branes and
the fundamental string. Importantly, this decoupling limit is associated with a nontrivial RR
1-form (7.2.35) that is tuned to its critical value, such that it cancels the background D0-brane
tension. We therefore refer to such an ω→∞ limit as the critical RR 1-form limit [274, 289].
See also a historical account of related limits in e.g. [302, 303] focusing on the ‘open string’
decoupling limits and [287, 304] for the ‘closed string’ limits without the necessity of intro-
ducing any D-branes.

7.3. Worldsheet formalism and duality web from two DLCQs

We now turn our attention to the string worldsheet under the critical RR 1-form limit and
study its T-dual properties. We have derived the associated Nambu–Goto action (7.2.28) from
compactifying the M2-brane over a lightlike circle. We start with reviewing the Polyakov for-
mulation of the same fundamental string [274], which will prepare us to consider the T-duality
transformations later in this subsection.

7.3.1. Polyakov action. The Polyakov formulation for the Nambu–Goto action (7.2.28) is
given by [274]:108

SP =−
T
2

ˆ
d2σ e

[(
eα0 ∂αX

0
)2

+ eα1 e
β
1 ∂αX

i ∂βX
i +λeα1 ∂αX

0
]
. (7.3.1)

We have introduced the zweibein field eαa with a= 0 ,1 being the frame index, together with
its inverse eαa = e−1 ϵαβ eβ

b ϵab and e= ϵαβ eα
0 eβ

1. Here, λ is a Lagrange multiplier that
imposes the constraint eα1 ∂αX0 = 0, which is solved by eα1 =Ωϵαβ∂βX0. Plugging this solu-
tion back into equation (7.3.1), we find

SP→
T
2

ˆ
d2σ

[
1

Ω2 e
−Ω2 e det

(
0 ∂βX0

∂αX0 ∂αXi ∂βXj

)]
, (7.3.2)

108 See also [305] where an in-form similar string sigma model is considered in the context of tropological sigma
models.
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where now e=
(
Ωeα0 ∂αX0

)−1
. Integrating out e in equation (7.3.2) leads to the Nambu–Goto

action (7.2.27). Equation (7.3.1) describes the fundamental string theory in M0T.
In flat gauge with eαa = δaα, the Polyakov action (7.3.1) becomes

SP =−
T
2

ˆ
d2σ

(
∂τX

0 ∂τX
0 + ∂σX

i ∂σX
i +λ∂σX

0
)
. (7.3.3)

This action exhibits non-Lorentzian structures in both the target space and worldsheet: it is
invariant under the target space Galilean boost transformation

δGX
0 = 0 , δGX

i = ΛiX0, δGλ=−2Λi ∂σX
i, (7.3.4)

as well as the worldsheet Galilean boost transformation109

δgτ = 0 , δgσ = vτ , δgλ= 2v∂τX
0 . (7.3.5)

It is expected that the target space develops a non-Lorentzian behaviour, as the space and time
are rescaled differently in equation (7.2.29), followed by settingω to infinity. However, it might
be surprising that the worldsheet geometry also becomes non-Lorentzian. In fact, in order to
derive equation (7.3.3) from a decoupling limit of the conventional string theory action

S=−T
2

ˆ
d2σ∂αX

µ ∂αXµ , (7.3.6)

we have to supplement the anisotropic rescalings of the embedding coordinates Xµ in
equation (7.2.29) with the following rescaling of the worldsheet coordinates:

τ → ωτ , σ→ σ . (7.3.7)

Under these rescalings of both the embedding coordinates and worldsheet coordinates, we
expand equation (7.3.6) with respect to a large ω as

S=−T
2

ˆ
d2σ

[
−ω2 ∂σX

0 ∂σX
0 + ∂τX

0 ∂τX
0 + ∂σX

i ∂σX
i +O

(
ω−2

)]
. (7.3.8)

Rewrite the ω2 term using the Hubbard-Stratonovich transformation,

−ω2 ∂σX
0 ∂σX

0→ λ∂σX
0 +

λ2

4ω2
, (7.3.9)

Equation (7.3.3) is recovered atω→∞. It is shown in [274] that, uponWick rotation, the topo-
logy of the nonrelativistic worldsheet is described by the nodal Riemann spheres, akin to the
case in ambitwistor string theory [306, 307]. This relation to ambitwistor string theory [308]
is expected: matrix 0-brane theory is dual to tensionless string theory [309, 310] via a timelike

109 Note that the worldsheet is Carrollian instead of Galilean in [274]. In Carrollian spacetime, it is the space instead
of the time that is absolute. The Carrollian and Galilean worldsheets are formally equivalent to each other in Wick
rotated time. We stick to the Galilean worldsheet in order to be aligned with the convention in section 8.
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T-duality transformation [274, 289]110, where the latter is closely related to ambitwistor string
theory when a ‘flipped’ vacuum is chosen [311–313].

In the rest of this section, we will review different T-duality transformations of the string
action (7.3.3). As a preparation, we start with a review of conventional T-duality transforma-
tions in string theory.

7.3.2. Introduction to T-duality. For an extensive review of T-duality, see e.g. [314]. Consider
conventional string theory in d-dimensional flat spacetime. In conformal gauge, the relevant
string action is given by equation (7.3.6). Compactify the spatial X1 direction over a circle of
radius R by imposing the boundary condition

X1 (σ+ 2π) = X1 (σ)+ 2πRw , w ∈ Z , (7.3.10)

where w describes how many times that the string wraps around the X1 direction. To T-dualise
X1, we start with rewriting the action (7.3.6) equivalently as

Sparent =−
T
2

ˆ
d2σ

(
∂αX

m ∂αXm +VαVα+ 2 X̃1 ϵαβ ∂αVβ
)
, (7.3.11)

wherem= (0 , 2 , · · · , d− 1). Integrating out the Lagrange multiplier X1 in the associated path
integral leads to the constraint, ϵαβ ∂αVβ = 0, which, by Poincaré’s lemma, can be solved
locally by

Vα = ∂αΘ . (7.3.12)

Identifying Θ= Y1, we recover the original action (7.3.6) from the ‘parent’ action (7.3.11).
Instead, in order to derive the T-dual action, we integrate out Vα in equation (7.3.11). Varying
the action (7.3.11) with respect to Vα gives the equation of motion,

Vα =−ϵαβ ∂βX̃1 . (7.3.13)

Plugging equation (7.3.13) into equation (7.3.11) gives the dual action,

Sdual =−
T
2

ˆ
d2σ

(
∂αX̃

1 ∂αX̃1 + ∂αX
m ∂αXm

)
. (7.3.14)

This action describes another string theory with the dual worldsheet field (X̃1,Xm).
The worldsheet field X1 in equation (7.3.6) satisfies the equation of motion, ∂α∂αX1 = 0.

Taking into account the boundary condition (7.3.10), this equation of motion is solved by

X1 = x1 +α ′ p1 τ +Rwσ+ oscillations. (7.3.15)

For the physical vertex operator exp
(
i pµX

µ
)

to be single-valued, the boundary condi-
tion (7.3.10) implies (see e.g. [11])

exp(2π i Rwp1) = 1 =⇒ p1 =
n
R
, n ∈ Z . (7.3.16)

110 It is also shown in [274, 289] that further dualising tensionless string theory leads to string theory coupled to
Carroll-like geometries in the target space.
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Here, n is the KK number. Similarly, we have the following generic solution to X̃1 :

X̃1 = x̃1 +α ′ p̃1 τ + R̃ w̃σ+ oscillations. (7.3.17)

We have assumed that X̃1 is compactified over the dual circle with a radius R̃. Over this com-
pactification, we have

p̃1 =
ñ

R̃
. (7.3.18)

Using equation (7.3.12) with Θ= X1 together with equation (7.3.13), we find the duality
mapping,

∂αX
1 =−ϵαβ ∂βX̃1 , (7.3.19)

i.e., ∂τX1 = ∂σX̃1 and ∂σX1 = ∂τ X̃1. Plugging equations (7.3.15) and (7.3.17) into
equation (7.3.19) gives α ′R−1 n= R̃ w̃ and Rw= α ′ R̃−1 ñ. We therefore find the T-dual
dictionary,

ñ= w , w̃= n , R̃=
α ′

R
. (7.3.20)

In the T-dual frame, the theory is compactified over a dual circle of radius α ′/R, and the KK
and winding numbers are swapped. This T-duality symmetry is manifestly reflected in the
closed string dispersion relation,

−pm pm =
n2

R2
+

w2R2

α ′2 +
1
α ′ (N+ N̄− 2) , (7.3.21)

where N and N̄ are the string excitation numbers. This dispersion relation is supplemented
with the level-matching condition, N− N̄= nw. In the T-dual frame, the dispersion relation
and the level-matching condition take the same form, with

−p̃m p̃m =
ñ2

R̃2
+

w̃2 R̃2

α ′2 +
1
α ′ (N+ N̄− 2) , N− N̄= ñ w̃ . (7.3.22)

Therefore, T-duality is a Z2 symmetry in the target space, where ‘T’ is for ‘Target.’

7.3.3. T-dual string worldsheet in Matrix 0-brane theory. We are now ready to discuss the
T-duality transformations of the M0T string action (7.3.3). We first consider the T-duality
transformations along p spatial directions, which requires us to rewrite the M0T action (7.3.3)
as [274]

Sparent =−
T
2

ˆ
d2σ
(
∂τX

0 ∂τX
0 + ∂σX

A′
∂σX

A′
+λ∂σX

0

+Vu
σ V

u
σ + 2 X̃u ϵαβ ∂αV

u
β

)
.

(7.3.23)

We have split the transverse index i = 1 , . . . , 9 to be i = (u ,A ′), with u= 1 , . . . , p and
A ′ = p+ 1 , . . . , 9. Integrating out X̃u imposes the constraint ϵαβ ∂αVu

β = 0, which is solved
by Vu

α = ∂αXu. Plugging this solution back into equation (7.3.23) gives back the original M0T
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string action (7.3.3). Instead, integrating out Vu
σ in the parent action (7.3.23) gives the dual

action [274]

SMpT =−
T
2

ˆ
d2σ

(
−∂τ X̃A ∂τ X̃A + ∂σX

A′
∂σX

A′
+ λ̃A ∂σX̃

A
)
, (7.3.24)

where X̃A = (X0, X̃u) and we have defined λ̃u = (λ, 2Vu
τ ), A= 0 ,1 , . . . , p. For simplicity, we

drop the tildes on X̃A and λ̃u below. This dual action arises from a decoupling limit of type II
superstring theories that naturally generalises the M0T limit in section 7.2.3. This generalised
decoupling limit is defined by the following reparametrisations [274, 289, 302, 303]:

XA→
√
ωXA , XA′

→ XA′

√
ω
, (7.3.25a)

gs→ ω
p−3
2 gs , C(p+1)→ ω2

gs
dX0 ∧ ·· · ∧ dXp+1 . (7.3.25b)

Here, C(p+1) is an RR (p+1)-form. The ω→∞ limit of type II superstring theory leads
to the Matrix p-brane theory (MpT), where the light excitations are the Dp-branes that are
described byMatrix gauge theory [289]111. For examples,M1T is associatedwithMatrix string
theory [316] and M3T is associated with N = 4 SYM theory.

We have seen in section 7.2.3 that M0T arises from the DLCQ of M-theory. An interesting
observation is that it is now possible to consider a second DLCQ inMpTwith p 6= 0 by forming
a lightlike circle. In this review, we focus on the simplest case of DLCQ M1T, where the
fundamental string action is given by

SDLCQ
M1T =−T

2

ˆ
d2σ

(
−2∂τX+ ∂τX

− + ∂σX
A′
∂σX

A′
+λ+ ∂σX

+ +λ− ∂σX
−
)
, (7.3.26)

where X± = (X0±X1)/
√
2, λ± = (λ0±λ1)/

√
2, and the lightlike direction X+ is compacti-

fied over a circle. In order to understand better what this DLCQ M1T means, we perform a
T-duality transformation in X+ and show that it maps the lightlike X+ circle to a spatial circle.
We start with introducing the parent action,

Sparent =−
T
2

ˆ
d2σ
(
∂σX

A′
∂σX

A′
+λ− ∂σX

−− 2Vτ ∂τX
− +λ+Vσ + 2 X̃ϵαβ ∂αVβ

)
,

(7.3.27)

Integrating out the Lagrange multiplier X̃ gives back the DLCQ M0T string action (7.3.26).
Instead, integrating out Vα leads to the dual action,

Sdual =−
T
2

ˆ
d2σ

(
∂σX

A′
∂σX

A′
+λ− ∂σX

−
)
, ∂σX̃= ∂τX

− . (7.3.28)

This dual action is invariant under the transformations when it is on shell,

δXA′
= ΛA′

X− , δX̃= vX− , δX− = 0 . (7.3.29)

111 MpT has been generalised to the cases where p< 0 [274, 289]: whileM(-1)T is related to tensionless and ambitwis-
tor string theory and IKKT Matrix theory, MpTs with p<−1 are associated with strings in Carroll-like target space.
See also [315] for previous discussions on Carroll strings.
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Interpreting X− as the time direction, we define X̃0 = X− and X̃1 = X̃, we find that v is the
Galilean boost velocity in the X̃0–X̃1 sector while ΛA′

parametrises the Galilean boost in the
X̃0–X̃A′

sector112. Also note that the original lightlike circle along X+ in the DLCQM1T string
action (7.3.26) becomes spacelike along X̃1 in the T-dual frame. Further define λ̃0 = λ−, we
rewrite equation (7.3.28) as [274, 289]

Sdual =−
T
2

ˆ
d2σ

(
∂σX

A′
∂σX

A′
+ λ̃A ∂σX̃

A− λ̃1 ∂τX
0
)
. (7.3.30)

Here, A= 0 ,1. We have introduced the Lagrange multiplier λ̃1 to incorporate the constraint
from equation (7.3.28). Note that the new action (7.3.30) is invariant under the boost trans-
formations in equation (7.3.29) even when it is off shell, as long as we introduce the additional
transformation

δλ̃0 =−2ΛA′
∂σX

A′
− v λ̃1 . (7.3.31)

This dual string action (7.3.30) is closely related to the SMT discussed in section 8 (see
equation (A.15) in [318]). This fundamental string lives inMulticritical Matrix 0-brane Theory
(MM0T), which arises from a limit of type IIA superstring theory with multiple background
fields taken to be ‘critical’ [289].

We now review the ‘multicritical’ decoupling limit of type IIA superstring theory that leads
to MM0T [274, 289]. We again start with the conventional string action (7.3.6), but now sup-
plemented with an electric B-field term, such that equation (7.3.6) becomes

S=−T
2

ˆ
d2σ

(
∂αX

µ ∂αXµ+ ϵαβ ∂αX
µ ∂βX

ν Bµν
)
. (7.3.32)

Next, we perform the reparametrisation in equation (7.3.32),

X0→ ωX0 , X1→ X1 , XA′
→ XA′

√
ω
, B→−ωdX0 ∧ dX1 , (7.3.33)

together with the rescaling of the worldsheet coordinates in equation (7.3.7). Note that we have
taken B01 to be constant here, in which case the B-field term in equation (7.3.32) is a boundary
term. The inclusion of this term is important for the self-consistency of the theory, particularly
when a more general B-field or compactifications are considered. The string action (7.3.32)
now becomes

S=−T
2

ˆ
d2σ

[
−ω3

(
∂σX

0−ω−2 ∂τX
1
)2

+ω
(
∂σX

1− ∂τX0
)2

+ ∂σX
A′
∂σX

A′
−ω−2 ∂τX

A′
∂τX

A′
]
.

(7.3.34)

112 Interpreting X− as a spatial direction and X̃ as the target space time, these two directions are related to each other
via a Carrollian boost, which results from a zero (instead of infinite for the Galilean boost) speed-of-light limit of
Lorentzian boost. The resulting string action is then identified with the longitudinal Carrollian string in [317] (see
also [274]).
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Using the Hubbard-Stratonovich method to integrate in the auxiliary fields λA, A= 0 ,1, we
rewrite equation (7.3.34) as

S=−T
2

ˆ
d2σ

[
∂σX

A′
∂σX

A′
+λ0

(
∂σX

0−ω−2 ∂τX
1
)
+λ1

(
∂σX

1− ∂τX0
)

−ω−2 ∂τX
A′
∂τX

A′
+

λ2
0

4ω3
− λ2

1

4ω

]
.

(7.3.35)

In the ω→∞ limit, we recover the MM0T string action (7.3.30).
In addition to the prescriptions in equation (7.3.33), the T-dual of equation (7.3.25) also

implies that we are required to take into account the following reparametrisations of the back-
ground string coupling and RR 0-form [289]:

gs→ ω−1 gs , C(1)→ ω2 g−1
s dX0 . (7.3.36)

In order to gain some intuition about why the prescription (7.3.36) is necessary, we apply
the MM0T limit defined above to the conventional D0-brane action that is a sum of
equations (7.2.31) and (7.2.34), which gives

SD0→−
1

gsα ′1/2

ˆ
dτ

[
ω2− 1

2
∂τX

1 ∂τX
1 +O

(
ω−2

)]
, (7.3.37a)

SCS→
ω2

gsα ′1/2

ˆ
dτ . (7.3.37b)

Note that we have taken the static gaugeX0 = τ . Theω→∞ limit of SD0 + SCS gives a finite
D0-brane action in MM0T, which describes a particle moving along the background string
associated with the critical background B-field. As there are two different background fields,
B and C(1), that become critical (such that they cancel respectively the string and D0-brane
tension in the background bound F1-D0 configuration), it is natural to refer to this decoupling
limit of type IIA superstring theory asmulticriticalM0T. It is also possible to generaliseMM0T
to MMpT, where a background bound F1-Dp configuration is taken to be critical. See [274,
289] for further discussions.

7.3.4. Lorentzian worldsheet from S-duality. So far, we have only considered T-duality trans-
formations of the fundamental strings associated with various matrix theories. T-dualities are
perturbative and do not alter the nature of the string worldsheet. We have learned that the string
worldsheets in these theories are non-Lorentzian, which makes it somewhat exotic to consider
their quantisation. In fact, the light excitations in these decoupling limits of type II string the-
ories are described by various matrix theories, which supposedly encode the dynamics ana-
logous to how the fundamental string encodes the dynamics in perturbative string theories.
Intriguingly, before this connection to matrix theories was established, there has been already
abundant literature discussing the (perturbative) quantisation of related string theories with
similar non-Lorentzian worldsheet in the context of tensionless [310] and ambitwistor [308,
319] strings. All these worldsheet theories are related to the M0T string sigma model (7.3.1)
via T-duality transformations [274].
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We now review a decoupling limit of type IIB superstring theory that is related to Matrix
1-brane theory (M1T) via an S-duality transformation [287, 304, 316, 320]113. TheM1T string
sigma model is given by equation (7.3.24). We will see that the S-duality transformation maps
the non-Lorentzian M1T string worldsheet to the conventional Lorentzian worldsheet. In this
S-dual frame, standard conformal field theoretical techniques become available again on the
Lorentzian string worldsheet.

We start with constructing the D1-brane action in M1T. A single D1-brane in type IIB
superstring theory is described by the effective action,

SD1 =−
1

gsα ′

ˆ
d2σ

√
−det

(
∂αX

µ ∂βXµ+Fαβ
)
+

1
gsα ′

ˆ
C(2). (7.3.38)

We have set the B-field to zero and F= dA is the U(1) gauge strength on the D1-brane. Using
the prescription (7.3.25), the ω→∞ limit of the D1-brane action (7.3.38) gives rise to the
following D1-brane action in M1T:

SM1T
D1 =− 1

2gsα ′

ˆ
d2σ
√
−τ
(
ταβ ∂αX

A′
∂βX

A′
− 1

2 τ
αγ τβδ Fαβ Fγδ

)
, (7.3.39)

where τ = detταβ and ταβ is the inverse of ταβ , with ταβ = ∂αXA ∂βXA. We recall that
A= 0 , 1 and A ′ = 2 , . . . , 9. Now, we are ready to consider the S-dual of the D1-brane
action (7.3.39) in M1T, which can be implemented as a magnetic duality of the U(1) gauge
potential Aα. Therefore, we rewrite equation (7.3.39) as

Sparent =−
1

2gsα ′

ˆ
d2σ
√
−τ
[
ταβ ∂αX

A′
∂βX

A′
− 1

2 τ
αγ τβδ Fαβ Fγδ

−Θαβ
(
Fαβ − 2∂[αAβ]

)]
,

(7.3.40)

where Fαβ is treated as an independent two-form instead of an exact form. Integrating out
the anti-symmetric two-form Θαβ in equation (7.3.40) imposes that F= dA, under which
equation (7.3.40) gives back equation (7.3.39). Instead, integrating out Aα in equation (7.3.40)
imposes the condition dΘ= 0, which is solved locally byΘαβ = θ ϵαβ , with θ being constant.
Further integrating out Fαβ in equation (7.3.40) gives the S-dual action,

Sparent→−
1

2gsα ′

ˆ
d2σ
√
−τ ταβ ∂αXA′

∂βX
A′
− 2gs θ

2
ˆ

dX0 ∧ dX1 . (7.3.41)

In the case where θ= 0, we find the Nambu–Goto action [323],

SNG =−T
2

ˆ
d2σ
√
−τ ταβ ∂αXA′

∂βX
A′
. (7.3.42)

In terms of the auxiliary metric hαβ = eα
a eβ

b ηab, a= 0 ,1, the associated Polyakov formula-
tion is [287, 324, 325]

SP =−
T
2

ˆ
d2σ
√
−h
(
hαβ ∂αX

A′
∂βX

A′
+λ ēα ∂αX+ λ̄eα ∂αX

)
, (7.3.43)

113 See [320–322] for the SL(2 ,Z) generalisation, which exhibits novel branching behaviours and reveals a polyno-
mial realisation of SL(2 ,Z).
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where

eα = eα0 + eα1 , eα = eα
0 + eα

1 , X= X0 +X1 , (7.3.44a)

ēα =−eα0 + eα1 , ēα =−eα0 + eα
1 , X= X0−X1 . (7.3.44b)

Moreover, hαβ is the inverse worldsheet metric, eαa = e−1 ϵαβ eβ
b ϵab is the inverse

zweibein field, e=
√
−h, and h= det(hαβ). Integrating out the Lagrange multipliers λ

and λ̄ in equation (7.3.43) imposes the constraints ϵαβ eα ∂βX= 0 and ϵαβ ēα ∂βX= 0,
which are solved locally by eα ∝ ∂αX and ēα ∝ ∂αX. Plugging these solutions back into
equation (7.3.43) recovers the Nambu–Goto action (7.3.42). The string action (7.3.43) has
a conventional Lorentzian worldsheet and defines nonrelativistic string theory [287, 304,
326], which has a (string) Galilean invariant string spectrum that we will review in the next
subsection.

7.4. From DLCQ to nonrelativistic string theory

At the end of the previous subsection, we introduced type IIB nonrelativistic superstring theory
via the S-duality transformation of Matrix 1-brane theory (M1T). We have learned that the
light excitations in M1T are bound states of D1-branes that are described by Matrix string
theory [89], and the fundamental string in M1T is defined on a non-Lorentzian worldsheet.
Meanwhile, the light excitations in nonrelativistic string theory are the fundamental strings,
whose string worldsheet is Lorentzian. Therefore, the dynamics of the nonrelativistic string
can be described by CFT, which allows us to quantise it as in conventional perturbative string
theory. This observation shows that nonrelativistic string theory plays an anchoring role in the
duality web of decoupling limits in string theory, in view of that the target space physics can
be derived in nonrelativistic string theory from first principles. The physical quantities114 in
nonrelativistic string theory can then be mapped to other corners in the duality web that are
nonperturbative from the string perspective. It is therefore valuable to develop a comprehensive
understanding of nonrelativistic string theory, which we review in this subsection.

As M1T is related to DLCQ M-theory, nonrelativistic string theory, which is S-dual to
M1T, is also related to DLCQ M-theory. This relation via Matrix p-brane theories (MpTs),
although concrete, is somewhat a roundabout. At the beginning of this subsection we will
review a more direct relation to DLCQ M-theory: nonrelativistic string theory arises from T-
dualising the lightlike circle in the DLCQ of conventional string theory [287, 304], while the
latter arises from compactifying DLCQ M-theory over a spatial circle. This procedure recov-
ers the same string sigma model (7.3.43) that describes nonrelativistic string theory, which is
unitary, UV-complete and its string spectrum and S-matrix enjoy nonrelativistic symmetry. In
this T-dual frame described by nonrelativistic string theory, the lightlike circle in DLCQ string
theory maps to a regular spatial circle, and the non-Lorentzian nature of the spacetime geo-
metry becomes manifest. In this sense, nonrelativistic string theory provides a first principles
definition of the DLCQ of relativistic string theory [325].

7.4.1. Lightlike T-dual of DLCQ string theory. We now present a more direct route fromDLCQ
M-theory to nonrelativistic string theory, without relying on the S-duality transformation in

114 See e.g. [287, 304, 327] for discussions on string amplitudes in nonrelativistic string theory.
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section 7.3.4. We start with compactifying DLCQ M-theory over a transverse, spatial circle.
This extra compactification leads to the DLCQ of type IIA superstring theory, where the target
space lightlike circle from the DLCQ in M-theory still survives in the ten-dimensional theory.
The embedding coordinates in DLCQ string theory are Xµ, µ= 0 , . . . , 9, with the lightlike
directions X± = X0±X1. We require that X+ be compactified, i.e.

X+ (σ+ 2π) = X+ (σ)+ 2πRw , w ∈ Z , (7.4.1)

withw thewinding number inX+. It might be strange to think about windings around a lightlike
circle, but we will soon find a simple physical interpretation in the T-dual frame. In terms of the
lightlike coordinates X± and the transverse coordinates XA′

, where A ′ = 2, . . . ,9, we rewrite
the conventional string action (7.3.6) as

S=−T
2

ˆ
d2σ

(
∂αX

A′
∂αXA′

− ∂αX+ ∂αX−
)
. (7.4.2)

The KK momentum in X+ is quantised, with

p+ =
n
R
, n ∈ Z . (7.4.3)

Note that p+ ∼
´
dσ∂τX+ is the momentum conjugate to Y+.

In order to perform a lightlike T-duality transformation in X+, we rewrite equation (7.4.2)
equivalently as

Sparent =−
T
2

ˆ
d2σ

(
∂αX

A′
∂αXA′

−Vα ∂
αX−− X̃1 ϵαβ ∂αVβ

)
. (7.4.4)

Upon integrating out X̃1, we find the local solution,

Vα = ∂αX
+ , (7.4.5)

plugging this back into the parent action (7.4.4), the original action (7.4.2) is recovered.
Instead, integrating out Vα gives rise to the action

Sdual =−
T
2

ˆ
d2σ∂αX

A′
∂αXA′

, (7.4.6)

which is supplemented by the constraint,

∂αX̃
0 =−ϵαβ ∂βX̃1 , X̃0 ≡ X− . (7.4.7)

In terms of the lightlike coordinates on the worldsheet and target space,

∂ = ∂τ + ∂σ X= X̃0 + X̃1 , (7.4.8a)

∂̄ =−∂τ + ∂σ , X= X̃0− X̃1 , (7.4.8b)

the constraint (7.4.7) becomes

∂X= ∂̄X= 0 , (7.4.9)

According to equation (7.4.9), we have

X= X(τ +σ) , X= X(τ −σ) . (7.4.10)
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We have used the indicative notation X̃0 and X̃1 in equation (7.4.8), implying that X̃0 is the
time direction and X̃1 a spatial direction in the T-dual frame. It then follows that X and
X are lightlike coordinates in the dual theory. This is demanded by the target space sym-
metries, which we demonstrate now. We consider the dual theory in the decompactification
limit, where the Lorentz boost in the longitudinal sector is recovered. The chiral conditions
in equation (7.4.10) demand that the most general symmetry transformations for X and X
are X→ f(X) and X→ f̄(X), where f and f̄ are arbitrary functions. Infinitesimally, we find
δX=

(
Θ+Λ

)
X and δX=

(
Θ−Λ

)
X. Here, Θ and Λ receive the interpretation as the para-

meters for the dilatation and Lorentz boost transformation, respectively, only if X and X are
interpreted as the target space lightlike coordinates. See [325] for further details of this T-
duality transformation that maps between DLCQ and nonrelativistic string theory. See [328]
for the same duality map from the limiting procedure and see [286, 318, 329, 330] using the
method of null reduction.

To further understand the physics in the dual frame, we study the mode expansions. We
start with considering the mode expansions of X± in DLCQ string theory,

X+ = x+ +α ′ p− τ +Rwσ+ oscillations , (7.4.11a)

X− = x− +α ′ p+ τ + oscillations . (7.4.11b)

Recall that p+ is defined in equation (7.4.3), which is quantised. Using equations (7.4.7),
we find

X̃0 = x̃0 + w̃ R̃τ + oscillations , (7.4.12a)

X̃1 = x̃1 + w̃ R̃σ+ oscillations , (7.4.12b)

where

w̃= n , (7.4.13)

is the winding number in X̃1 in the dual frame, and the dual circle is now spacelike in X̃1, with
a radius R̃= α ′/R. This is rather surprising: T-duality maps the spacetime with a lightlike
compactification to a regular spacetime with a spacelike compactification!

As a final crosscheck, equation (7.4.8) implies

X= x+ w̃ R̃ (τ +σ)+ oscillations , (7.4.14a)

X= x̄+ w̃ R̃ (τ −σ)+ oscillations , (7.4.14b)

which indeed satisfy the constraints in equation (7.4.9).

7.4.2. Nonrelativistic closed strings. Next, we will show that the above lightlike T-duality
leads us to nonrelativistic string theory, which has a Galilean-invariant string spectrum [274].
We are therefore trading exotic physics in lightlike compactifications with more familiar non-
relativistic physics in spacelike compactifications.

We have seen in equation (7.4.12b) that the KK number n in string theory over a lightlike
circle is mapped to winding along the spatial circle in the dual theory. The winding along the
lightlike circle should be mapped to momentum in the dual spatial circle. However, there is no
dual KKmomentum in the zero modes of the mode expansions of X and X in equation (7.4.14).
Where is the KK momentum hiding?
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The dual action (7.4.6) can be rewritten in a way such that the constraints (7.4.9) are incor-
porated via Lagrange multipliers. This essentially gives back the ‘parent’ action (7.4.4), which
we rewrite by defining

λ=−1
2
(Vτ +Vσ) , λ̄=−1

2
(−Vτ +Vσ) . (7.4.15)

The resulting dual action is

S=−T
2

ˆ
d2σ

(
∂αX

A′
∂αXA′

+λ∂̄X+ λ̄∂X
)
. (7.4.16)

This is referred to as the Gomis–Ooguri theory in the literature [287], which is identical to
the action (7.3.43) in conformal gauge. Here, λ and λ̄ are one-form fields that play the role
of Lagrange multipliers. Integrating out these Lagrange multipliers recovers the constraints
in equation (7.4.9). One intriguing consequence of these constraints is that the moduli space
is now localized to be a submanifold of the one in relativistic string theory. For example, in
the calculation of the one-loop free energy where the worldsheet torus wraps over a spacetime
torus that involves a Euclidean time direction, the integral over the moduli space of the fun-
damental domain associated with SL(2,Z) is now localized to be a sum over a set of discrete
points within the fundamental domain. Moreover, it turns out that the critical dimensions for
the bosonic and supersymmetric strings are the same as in the standard case, which are 26 and
10, respectively. This string theory is known to be unitary and ultra-violet complete and can
be studied independently of the full relativistic string theory.

According to the duality map (7.4.5), we find [331]

λ=−∂X+ , λ̄=−∂̄X+ . (7.4.17)

These one-form fields are associated with the conjugate momenta of X and X, with

λ=
2
T

∂L
∂ (∂τX)

, λ̄=−2
T

∂L
∂
(
∂τX

) , (7.4.18)

with L the Lagrangian density associated with the action (7.4.16). Note that the following
variables with tildes match the ones in section 7.4.1. Define the energy (conjugate to X̃0) to
be p̃0 and the longitudinal spatial momentum (conjugate to X̃1) to be p̃1, we then have the
following mode expansions:

λ=−α ′ (p̃0 + p̃1)+ oscillations , λ̄=−α ′ (p̃0− p̃1)+ oscillations . (7.4.19)

Since the dual coordinate X1 is compactified over a circle of radius R̃= α ′/R, we have

p̃1 =
ñ

R̃
, (7.4.20)

where ñ is the KK number in the T-dual frame described by nonrelativistic string theory.
Comparing equations (7.4.5), (7.4.11) and (7.4.15), we find the following dictionary between
the two mutually dual frames:

p̃0 = p− , ñ= w . (7.4.21)

This completes the duality map between n and w̃ in equation (7.4.13). Therefore, we still have
the common lore that T-duality maps the KK and winding number to each other, however, in
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the Gomis–Ooguri theory described by equation (7.4.16), the KK and winding number are not
on the same footing anymore.

Back in the DLCQ of relativistic string theory, and in the case of zero winding, we have
the dispersion relation, 2p+ p− = pA′ pA′ + · · · . Using equation (7.4.3) with p+ = n/R, we find
p− = pA′ pA′ R/(2n)+ · · · . In the T-dual frame, we have

p̃0 =
α ′

2 w̃ R̃
pA ′ pA ′ + · · · . (7.4.22)

Intriguingly, this implies that the only asymptotic states in the string spectrum of the Gomis-
Ooguri theory (7.4.16) are those with nonzero windings, and the dispersion relation is Galilei
invariant. This is the reason why we refer to the Gomis–Ooguri theory as nonrelativistic string
theory115.

7.4.3. Critical B-field limit. Instead of viewing nonrelativistic string theory as a T-dual of
the DLCQ of relativistic string theory, we now review how to derive the Gomis–Ooguri
action (7.4.16) from a decoupling limit, where a background critical B-field is fine tuned to
cancel the background fundamental string tension [287]. For simplicity, we drop the tildes over
various variables in nonrelativistic string theory that we have used in sections 7.4.1 and 7.4.2.

We start with the sigma model (7.3.32) describing relativistic strings in a nontrivial B-field,
and perform the following reparametrisation that replaces the one in equation (7.3.32):

XA→ ωXA , XA′
→ XA′

, Bµν →−ω2 dX0 ∧ dX1 . (7.4.23)

Here, A= 0 , 1 and A ′ = 2 , . . . , 9. The action (7.3.32) then becomes

S→−T
2

ˆ
d2σ

(
−ω2 ∂̄X∂X+ ∂αX

A′
∂αXA′

)
. (7.4.24)

Superficially, it seems that the first term diverges in the ω→ 0 limit. However, this divergence
disappears upon integrating in the auxiliary fields λ and λ̄, such that

S→−T
2

ˆ
d2σ

(
∂αX

A′
∂αXA′

+λ∂̄X+ λ̄∂X+ω−2λλ̄
)
. (7.4.25)

Now, the ω→ 0 limit is well defined, which precisely leads to the Gomis-Ooguri
action (7.4.16). In this limiting procedure, the infinite boost in DLCQ string theory is encoded
by the fine-tuned critical B-field that cancels the background string tension.

In the presence of theB-field configuration and the rescalings in equation (7.4.23), and in the
case where the string is wrapped w̃ times around the compactified X1 direction, the relativistic
string dispersion relation (7.3.21) is modified to be(

p0
ω

+
wωR
α ′

)2

− pA ′ pA ′ =
n2

(ωR)2
+

w2 (ωR)2

α ′2
+

1
α ′ (N+ N̄− 2) , (7.4.26)

which in the ω→ 0 limit gives the dispersion relation in nonrelativistic closed string theory,

p0 =
α ′

2wR

[
pA ′ pA ′ +

1
α ′ (N+ N̄− 2)

]
. (7.4.27)

115 Nonrelativistic string theory is also referred to as ‘wound string theory’ in [304].
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This dispersion relation reproduces equation (7.4.22) derived from dualizing the closed string
spectrum in DLCQ string theory.

7.4.4. Symmetries and curved target space. We now examine the symmetries of the nonre-
lativistic string action (7.4.16), which is invariant under the following global transformations:

δXA =ΘA−ΛϵABX
B , (7.4.28a)

δXA′
=ΘA′

−ΛA′

B′ XB′
+ΛA

A′
XA , (7.4.28b)

δλA =−ΛϵABλB−ΛAA′ ∂τX
A′
− ϵABΛB

A′ ∂σX
A′
, (7.4.28c)

where λ0 =
1
2

(
λ− λ̄

)
and λ1 =

1
2

(
λ+ λ̄

)
. The target-space manifold is partitioned into the

longitudinal sector with the index A= 0 , 1 and the transverse sector with the index A ′ =
2 , . . . , 9. The Lie algebra parameters ΘA, ΘA′

, Λ, ΛA′B ′
, and ΛAA′

are respectively associated
with the following generators:

longitudinal translations HA

transverse translations PA′

longitudinal Lorentz boost M

transverse rotations JA′B ′

string Galilean boosts GAA′ .

(7.4.29)

Note that the string Galilean boost δXA = 0 and δXA′
= ΛA

A′
XA is a direct generalisation of

the Galilean boost δt= 0 and δxA
′
= vA

′
t for nonrelativistic particles. We then find a stringy

generalisation of the Bargmann algebra (7.1.14), defined by the following non-vanishing com-
mutators [328, 332]:116

[HA ,M] = ϵA
BHB , [HA ,GBA′ ] = ηABPA′ , (7.4.30a)

[PA′ ,JB′C ′ ] = δA′B ′ PC′ − δA′C ′ PB′ , [GAA ′ ,M] = ϵA
BGBA′ , (7.4.30b)

[GAA′ ,JB′C ′ ] = δA′B ′ GAC ′ − δA′C ′ GAB′ , (7.4.30c)

[JA′B ′ ,JC′D ′ ] = δB′C ′ JA′D ′ − δA′C ′ JB′D ′ + δA′D ′ JB′C ′ − δB′D ′ JA′C ′ . (7.4.30d)

These commutators define the string Galilei algebra in nonrelativistic string theory that
replace the Poincaré algebra in relativistic string theory117.

The target space geometry can be constructed by associating spacetime gauge fields to each
of the generators in equation (7.4.29). In particular, we define τµA and EµA

′
to be the vielbein

fields encoding the geometry of the longitudinal and transverse sectors, respectively. These
vielbein fields are associated with the longitudinal and transverse translational generators HA

116 Noncentral extensions of the algebra are required for the quantum consistency in nonrelativistic string theory [331].
117 See [333] for discussions on F-string Galilei algebra, whose gauging leads to the geometry that incorporates the
B-field [334].
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and PA′ , respectively. In curved spacetime, the flat spacetime action (7.4.16) is generalised to
the interacting sigma model,

S=−T
2

ˆ
d2σ
[
∂αX

µ ∂αXν Eµν(X)+λ∂̄Xµ τµ(X)+ λ̄∂Xµ τ̄µ(X)

+ ϵαβ ∂αX
µ ∂βX

ν Bµν(X)
]
,

(7.4.31)

where, up to a redefinition of λ and λ̄, the symmetric two-tensor Eµν can be brought into the
form Eµν = Eµ

A′
Eν

B′
δA′B ′ , which can be regarded as a metric in the transverse sector. Note

that Eµν is a rank 8 matrix and does not constitute a metric in the ten-dimensional target space.
We also defined τµ = τµ

0 + τµ
1 and τ̄µ = τµ

0− τµ1. The appropriate target-space geometry
to which nonrelativistic string theory is coupled is equipped with a codimension-two foliation
structure. The longitudinal and transverse sectors are related to each other via a string Galilean
boost,

δτµ
A = 0 , δEµ

A′
= ΛA

A′
τµ

A . (7.4.32)

Supplemented with appropriate transformations of λ, λ̄, and Bµν , the sigma model
action (7.4.31) is invariant under the string Galilei boost. This non-Lorentzian geometry is
referred to as string Newton–Cartan geometry, which naturally generalises Newton–Cartan
geometry associated with Newtonian gravity. Dynamically, there is no graviton in this theory.
Instead, the only gravitational interaction in nonrelativistic string theory is the Newton-like
force between winding strings.

So far, we have been working with conformal gauge. Undoing this introduces an auxili-
ary worldsheet zweibein field eαa, a= 0,1 as in equation (7.3.43), and the action describing
nonrelativistic string theory with a dynamical worldsheet is then given by [325]

S=−T
2

ˆ
d2σ e

(
hαβ ∂αX

µ ∂βX
ν Eµν +λ ēα ∂αX

µ τµ+ λ̄eα ∂αX
µ τ̄µ

)
− T

2

ˆ
d2σϵαβ ∂αX

µ ∂βX
ν Bµν +

1
4π

ˆ
d2σ
√
−hR(h) Φ . (7.4.33)

Here, e= det(eαa), a= 0 , 1, R(h) is the scalar curvature associated with hαβ , and Φ is the
dilaton field. Integrating out the non-dynamical worldsheet metric hαβ gives rise to the fol-
lowing Nambu–Goto action that generalises equation (7.3.42) to curved spacetime [323]:

SNG =−T
2

ˆ
d2σ

(√
−τ ταβ ∂αXµ ∂βXν Eµν + ϵαβ ∂αX

µ ∂βX
ν Bµν

)
, (7.4.34)

where we have omitted the dilaton term.
The Weyl anomalies of the interacting sigma model (7.4.33) have been analysed in [328,

331, 335–337]. We refer the interested readers to the recent review [288] on nonrelativistic
string theory for further details on its curved target space geometry. Note that the λλ̄ term
in (7.4.25) would be generated due to quantum corrections, which deforms nonrelativistic
string theory towards relativistic string theory. It is shown in [331, 335, 337] that it is pos-
sible to impose extra symmetries such that the λλ̄ term is prevented from being generated
at the quantum level in the string sigma model. One consequence of these global worldsheet
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symmetries is that they impose extra geometric constraints on the target space vielbein data:
certain components of the intrinsic torsion of the vielbein τµA are now set to zero. Note that
similar constraint also naturally arises in nonrelativistic supergravity [338]. For this reason,
this λλ̄ term is referred to as the torsional deformation [331]. When the torsional deforma-
tion is included, we are essentially working with relativistic string theory expanded around the
nonrelativistic string vacuum. This deformation plays an important role when it comes to the
standard AdS/CFT correspondence. See e.g. [339–341] in the context of the gravity dual of
noncommutative open string theory.

7.4.5. A first principles definition of DLCQ string theory. Now, we are ready to use nonre-
lativistic string theory described by the action principle (7.4.31) to provide a first principles
definition of the DLCQ of string theory, via a well-defined T-duality transformation in a lon-
gitudinal spatial isometry [325]. See also [286, 318, 329] for the perspective of null reduction,
which will be discussed in section 8.2.2.

Assume that there is a Killing vector kµ∂µ satisfying

kµ τµ
0 = 0 , kµ τµ

1 6= 0 , kµEµ
A′
= 0 . (7.4.35)

We then take a coordinate system Xµ = (y ,Xm), m= 0 , 2 , . . . , 9 adapted to kµ, with kµ ∂µ =
∂y. This abelian isometry is represented by a translation in the longitudinal spatial direction y.
We then write the embedding coordinates as Xµ = (y ,Xi). Rewrite the action (7.4.31) describ-
ing nonrelativistic string theory as follows:

Sparent =−
T
2

ˆ
d2σ

[
∂αX

m ∂βX
nEmn +λ

(
Vτy + ∂̄Xm τm

)
+ λ̄

(
V τ̄y + ∂Xm τ̄m

)]
− T

2

ˆ
d2σ ϵαβ

(
2Vα ∂βX

mBym + ∂αX
m ∂βX

nBmn + 2 Ỹ∂αVβ
)
. (7.4.36)

Integrating out ỹ imposes the constraint ∂αVβ = 0. Locally, this can be solved by Vα = ∂αy.
Plugging this into the action (7.4.36) gives back to the original action (7.4.31). Instead, integ-
rating out Vα leads to the T-dual action

S̃=− 1
4πα ′

ˆ
d2σ

(
∂αX

µ ∂αXν G̃µν + ϵαβ ∂αX
µ ∂βX

ν B̃µν
)
, (7.4.37)

with X̃µ = (Ỹ,Xi) and the Buscher-like rules

G̃yy = 0 , G̃mn = Emn +
Bym τn

0 +Bn τm
0

τy
1

, G̃ym =
τm

0

τy
1
, (7.4.38)

B̃ym =
τym
τyy

, B̃ij = Bmn +
Bym τn

1−Byn τm
1

τy
1

. (7.4.39)

Moreover, the dilaton field transforms as Φ̃ = Φ − log
∣∣τy1∣∣. This dual theory is coupled to a

regular pseudo-Riemannian target-space geometry and describes relativistic string theory. The
fact that G̃yy = 0 implies that the dual ỹ direction is a lightlike isometry. Therefore, this dual
theory is relativistic string theory in the DLCQ.
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7.4.6. Relation to the TT̄ deformation. Before we end this subsection, we review an intriguing
relation between the critical B-field limit that leads to nonrelativistic string theory and the TT̄
deformation [342], and show how the TT̄ deformation is related to the torsional deformation
λλ̄when the target space is three dimensional. In the TT̄ deformation, a two-dimensional QFT
defined by a Lagrangian L is deformed by an irrelevant term that is the determinant of the
energy-momentum tensor. To be more specific, we follow a trajectory in the space of field
theories parametrised by t [29–31]. Each point of this trajectory is associated with a 2D QFT,
whose Lagrangianwe denote asL(t), such thatL(0) = L, i.e. the original theoryL is recovered
at t= 0. Denote the stress energy tensor associated with L(t) by Tαβ(t). The trajectory that we
are interested in is then defined via the flow equation

dL(t)
dt

= det
[
Tαβ (t)

]
. (7.4.40)

In terms of the lightcone coordinates z= 1
2 (τ +σ) and z̄= 1

2 (−τ +σ), we find

det
[
Tαβ (t)

]
=

1
4

[
Tzz (t) Tz̄̄z (t)−T2

z̄z (t)
]
. (7.4.41)

We chose the definition of z and z̄ such that

∂ =
∂

∂z
= ∂τ + ∂σ , ∂̄ =

∂

∂z̄
=−∂τ + ∂σ , (7.4.42)

which matches the convention in equation (7.4.8). If the original theory is conformal, Tz̄z =
Tαα(0) = 0 andwe are left with TT̄with T∼ Tzz and T̄∼ Tz̄̄z in equation (7.4.41), whichmotiv-
ates the name of the TT̄ deformation. Despite the deformation being irrelevant, the deformed
theory is relatively well-behaved. In particular, the deformation is solvable: it acts in a simple
way on the spectrum of the model, so that the deformed energy levels can be determined from
the undeformed ones by an ordinary differential equation [30, 31]. It also affects in a simple
way the S-matrix of the model [343]. However, it does spoil locality and, unless we are con-
sidering a supersymmetric theory [344], some energy levels of the deformed theory become
complex.

• Nambu–Goto action from TT̄ deformation.We start with a brief review of the TT̄ deform-
ation of a free boson before relating it to nonrelativistic strings. This relationship was first
noticed in [31]. We start with the free action of a single massless real scalar ϕ,118

S=−1
2

+∞ˆ

−∞

dτ

Lˆ

0

dσ∂αϕ ∂
αϕ. (7.4.43)

The deformed Lagrangian L(t) has the stress energy tensor

Tαβ (t) =
∂L(t)
∂ (∂αϕ)

∂βϕ − ηαβL(t) . (7.4.44)

118 It is straightforward to generalise this to any number of scalar fields.
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Starting from equation (7.4.43) at t= 0, the deformed Lagrangian can be constructed order by
order. Expanding L(t) with respect to t gives

L(t) =
∞∑
n=0

tnL(n), L(0) =−1
2
∂ϕ ∂̄ϕ. (7.4.45)

The first-order correction given by the TT̄ deformation is built out of the stress-energy tensor
of the free theory

L(1) = det
[
Tαβ (t)

]
t=0

=
1
4

(
∂ϕ∂̄ϕ

)2
. (7.4.46)

The subsequent orders would be built from the stress-energy tensor of the deformed theory.
This iterative procedure can be resummed to give an analytic function of t as in [31]. A more
straightforward and generalisable approach [345] is to first note that the deformed Lagrangian
can only be a function of the dimensionless quantity t∂ϕ ∂̄ϕ (recall that t has mass dimension
[t] =−2), i.e. L(t)∼ F(t∂ϕ ∂̄ϕ). To recover the free theory (7.4.43) at small t, we impose the
condition

F(0) = 0 , F ′ (0) =−1
2
, (7.4.47)

The deformed action takes the form

S(t) =

+∞ˆ

−∞

dτ

R/2ˆ

−R/2

dσL(t) , L(t) = 1
t
F
(
t∂ϕ ∂̄ϕ

)
, (7.4.48)

The stress-energy tensor Tαβ(t) in equation (7.4.44) implies

det
[
Tαβ (t)

]
=

1
t2

[
2xF(x) F ′ (x)−F(x)2

]
, (7.4.49)

where the explicit t-dependence signals that the operator is irrelevant with dimension 4. Hence,
the flow equation (7.4.40) gives(

x
d
dx
− 1

)[
F(x)−F(x)2

]
= 0 , (7.4.50)

Imposing the initial conditions in equation (7.4.47), we find

L(t) =− 1
2 t

(√
1+ 2 t∂αϕ ∂αϕ− 1

)
, (7.4.51)

which takes the form of the Nambu–Goto action that describes the fundamental string in static
gauge.

It is worth noting that the energy levels of the theory are also deformed in a simple way. In
the undeformed theory, the energy levels En(R) of a CFT on a cylinder of circumference R are

En (R) =
2π
R

(
n− c

24

)
, n ∈ N . (7.4.52)
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Here, n and n̄ are the eigenvalues of the Virasoro generators and c is the central charge. For
simplicity, we focus on the zero-momentum states that satisfy n= n̄ in equation (7.4.52). In the
special case of equation (7.4.43), c= 1. The deformed energy levels En(t ,R) obey the Burgers
equation [30, 31],

∂

∂t
En (t ,R) = En (t ,R)

∂

∂L
En (t ,R) , (7.4.53)

which implies that

En (t ,R) = En (R+ tEn (t ,R)) . (7.4.54)

Also note that En(0 ,L) = En(L). Plugging equation (7.4.52) into equation (7.4.54) gives

En (t ,R) =
R
2 t

[√
1+

4 t
R
En (R)− 1

]
. (7.4.55)

Note that, when t is sufficiently large, the energy E0 is imaginary, which resembles the tachyon
in bosonic string theory.

• TT̄ as a torsional deformation of nonrelativistic string theory. We are now ready to
identify the relation [342] between the TT̄ deformation and the critical B-field limit discussed
in section 7.4.3, where the latter leads to nonrelativistic string theory. We start with the con-
ventional Nambu–Goto action in three-dimensional target space,

SNG =−T
ˆ

d2σ

√
−det

(
∂αX

µ ∂βXµ
)
−T
ˆ

B , µ= 0 , 1 , 2 . (7.4.56)

Plugging equation (7.4.23) that parametrises the critical B-field limit into the Nambu–Goto
action (7.4.56), we find in the static gauge X0 = τ and X1 = σ that

SNG =−T
ˆ

d2σω2
(√

1+ω−2 ∂X2 ∂̄X2− 1
)
. (7.4.57)

Identifying X2 = ϕ and ω−2 = 2 t, we find that L(t) in equation (7.4.51) is the same as the
Lagrangian associated with the Nambu–Goto action (7.4.57). Moreover, the ω→∞ limit of
equation (7.4.57) leads to the Nambu–Goto formulation of the nonrelativistic string in three-
dimensional spacetime. Therefore, the TT̄ deformation of the free boson receives the inter-
pretation as the deformation from nonrelativistic to relativistic string theory. In the Polyakov
formulation (see equations (7.3.43), (7.4.25) and (7.4.33)), the TT̄ deformed action associated
with the Nambu–Goto action (7.4.57) becomes

SP =−
T
2

ˆ
d2σ e

(
hαβ ∂αϕ ∂βϕ +λ ēα ∂αX+ λ̄eα ∂αX+ 2 tλλ̄

)
. (7.4.58)

Here, X= τ +σ and X= τ −σ. Note that we already set X2 = ϕ and ω−2 = 2 t. Integrating
out the auxiliary fields eαa, λ, and λ̄ in equation (7.4.58) gives the theory defined by the
Lagrangian (7.4.51). The λλ̄ term in equation (7.4.58) is precisely the torsional deformation
in [331], which we discussed briefly at the end of section 7.4.4. In this special case with a
three-dimensional target space, the torsional deformation of nonrelativistic string theory is the
TT̄ deformation.
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• Uniform lightcone gauge. Finally, we revisit the TT̄ deformation by starting with conven-
tional Polyakov action for the free closed string,

S=−T
2

+∞ˆ

−∞

dτ

R/2ˆ

−R/2

dσgαβ ∂αX
µ ∂βXµ , (7.4.59)

where gαβ is the unit-determinant worldsheetmetric.We again take the target space to be three-
dimensional, with coordinates Xµ = (t , φ, ϕ). Define the canonical momenta that is conjugate
to Xµ, with

Pµ =
δS

δ∂τXµ
=−Tgτα ∂αXµ . (7.4.60)

We slightly generalise the discussion of section 4.1, and perform the following change of
variables following [346]

X+ = (1− a) t+ aφ, P+ =
1

∆ab
[(1− b) Pt + bPφ ] , (7.4.61a)

X− =−bt+(1− b) φ, P− =
1

∆ab
[−aPt +(1− a) Pφ ] , (7.4.61b)

where 0⩽ a< 1 and 0⩽ b< 1 are parameters, and ∆ab = 1− a− b+ 2ab 6= 0. Recall that
these conjugate momenta are related to two conserved charges

E=−
R/2ˆ

−R/2

dσPt , J=

R/2ˆ

−R/2

dσPφ . (7.4.62)

We choose the uniform lightcone gauge [21]

X+ = τ , P− =
1

1− b
. (7.4.63)

As reviewed in section 4.1, the Hamiltonian of the model is one of the lightcone momenta,

H=

R(a)/2ˆ

−R(a)/2

dσP+ =
1

∆ab
[−(1− b) E+ bJ] , (7.4.64)

while the other lightcone momentum fixes the volume of the model

P− =

R(a)/2ˆ

−R(a)/2

dσP− =
1

∆ab
[aE+(1− a) J] =

L(a)
1− b

. (7.4.65)

Using equation (4.1.24), we find that the Hamiltonian is (for simplicity, we set b= 1/2)

H=−
R(a)/2ˆ

−R(a)/2

dσ
1
2a

[√(
1− 2aP2

ϕ

)
(1− 2a∂σϕ)− 1

]
, (7.4.66)
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The associated Lagrangian is

L=
1
2a

(√
1− 2a∂ϕ ∂̄ϕ− 1

)
. (7.4.67)

Clearly, this is the same Lagrangian (and Hamiltonian) of the TT̄-deformed theory defined by
equation (7.4.51), upon setting a=−t. The Burgers equation (7.4.53) explains why there is a
relationship between TT̄-deformed theories and strings in the uniform lightcone gauge [28].
Clearly, in string theory the choice of the gauge parameter a must not have any effect on
observables such as the spectrum:

d
da

H=− d
da

R(a)/2ˆ

−R(a)/2

dσP+ (a) = 0 . (7.4.68)

Hence, the effect of changing the volume R(a) of the string should be perfectly compensated
by the a-dependence of the Hamiltonian density −P+(a). But the volume dependence from
equation (7.4.65) is exactly the one predicted by the Burgers equation (7.4.54):

L(a) =
1− b
∆ab

[aE+(1− a) J] = L(0)− aH . (7.4.69)

We have used equation (7.4.64) here. Hence, the a-dependence of the Hamiltonian density
−P+(a) is that of a TT̄ deformed theory with parameter a=−t. The above structure can be
extended to more general actions (also the ones involving fermions) and has been used to
generate a plethora of TT̄-deformed theories in closed form [140].

• T-duality revisited. The uniform lightcone gauge can be related to the (perhaps more
straightforward) static gauge in a T-dual frame. Define X̃− to be the T-dual coordinate with
respect to X−. The gauge-fixing condition now becomes X̃− ∼ σ. In the original theory, the
target-space line element is

ds2 =
1

(∆ab)2

[
−
(
1− 2b

)(
dX+

)2
+ 2
(
a+ b− 2ab

)
dX+ dX−

+
(
1− 2a

)
(dX−)2

]
+
(
dϕ
)2
.

(7.4.70)

By the Buscher rules, we T-dualise along X−, which generates a constant B-field in the T-dual
frame with

B̃=
a+ b− 2ab

1− 2a
dX+ ∧ dX̃− , (7.4.71)

while the T-dual metric is

ds̃2 =− 1
1− 2a

(
dX+

)2
+

(∆ab)
2

1− 2a

(
dX̃−

)2
+(dϕ)2 . (7.4.72)

The Nambu–Goto action is then

SNG =−T
ˆ

d2σ

[√
−det

(
∂αX

µ ∂βXν G̃µν
)
+ ϵαβ ∂αX

µ ∂βX
ν B̃µν

]
. (7.4.73)
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We are interested in the almost light-like limit, where a= 1
2 + ϵ and b= 1

2 + ϵ with a small
ε. By setting the static gauge conditions X+ = τ , X̃− = σ/∆ab, we find that the gauge fixed
action reads,

SNG = T
ˆ

d2σ
1
2ϵ

[
1−

√
1− 2ϵ∂ϕ ∂̄ϕ+O

(
ϵ2
)]
. (7.4.74)

Upon the identification ϵ=−t, equation (7.4.74) matches equation (7.4.51) up to subleading
terms in ε. Note that, in terms of ε, the dual metric (7.4.72) and B-field (7.4.71) become

ds̃2 =− 1
2ϵ

[
−
(
dX̃0
)2

+
(
dX̃1
)2
]
+(dϕ)2 +O(ϵ) , B̃=

1
2ϵ

dX̃0∧ dX̃1 +O(ϵ) .

(7.4.75)

Here, X̃0 =−X̃+ and X̃1 = X̃−/2. Identify 2ϵ=−ω−2, equation (7.5.8) matches the repara-
metrisation (7.4.23) that defines the decoupling limit for nonrelativistic string theory (in three
dimensions). In the limit ϵ→ 0, the above T-duality is identified with the T-duality relation
between DLCQ and nonrelativistic string theory that we discussed in section (7.4.1). See
section 7.4.5 and [325] for discussions on T-duality transformations of nonrelativistic string
theory in curved background fields, and see [328, 347] for the associated limiting proced-
ures119. See [342] for relations between the TsT transformation [349] (which corresponds to
a TT̄ deformation) and nonrelativistic T-duality, where the nonrelativistic limit is viewed as a
‘reverse TT̄ deformation.’ As TT̄ deformations preserve integrability, it is curious to think what
this may imply for the nonrelativistic string limit of the AdS5× S5 superstring (see e.g. [324]
and relevant studies of integrability in [350–353]).

7.5. Back to M-theory

In this final subsection, we review nonrelativistic M-theory that uplifts nonrelativistic string
theory. A simple way to derive this uplift is by studying nonperturbative dualities of the probe
D-branes in nonrelativistic string theory [347]. We also use this subsection to summarize how
the string theories discussed above are defined in curved target space.

7.5.1. Decoupling limits in curved spacetimes. Beforewe consider theD-braneworldvolume
actions in nonrelativistic string theory. We first review how the decoupling limits of type II
superstring theories that lead to nonrelativistic string theory and (multicritical) Matrix p-brane
theories are defined in curved backgrounds [274, 289]. Using the curved geometry data from
section 7.4.4, the limiting prescriptions can be readily generalised to arbitrary bosonic back-
ground fields (see equation (7.3.25) for Matrix p-brane theory, equations (7.3.33) and (7.3.36)
for multicritical Matrix p-brane theories, and equation (7.4.23) for nonrelativistic string the-
ory. The bosonic contents in type II superstring theories include the metric field Ĝµν , B-field
Bµν , dilaton field Φ̂, and RR potentials Ĉ(p). Define

τµν = τµ
A τν

B ηAB , Eµν = Eµ
A′
Eν

A′
. (7.5.1)

119 See [348] for a recent generalisation to nonrelativistic heterotic string theory.
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We summarize these limiting prescriptions below (the desired corners are defined by sending
ω to infinity; see [274, 289] for further details):

• Matrix p-brane theory (A= 0 , · · · , p and A ′ = p+ 1 , . . . ,9):

Ĝµν = ωτµν +ω−1Eµν , Φ̂ = Φ + 1
2 (p− 3) lnω , (7.5.2a)

Ĉ(p+1) = ω2 e−Φ τ 0 ∧ ·· · ∧ τ p , (7.5.2b)

while B̂= B and Ĉ(q) = C(q) for q 6= p+ 1. Different matrix p-brane theories are related to
each other via T-duality transformations along spatial directions. We apply the MpT pre-
scription (7.5.2) to the conventional string sigma model in curved background fields,

Ŝ=−T
2

ˆ
d2σ

(√
−ĥ ĥαβ ∂αXµ ∂βXν Ĝµν + ϵαβ ∂αX

µ ∂βX
ν B̂µν

)
. (7.5.3)

Together with the reparametrisation of the string worldsheet metric,

ĥαβ =−ω2 eα
0 eβ

0 + eα
1 eβ

1 , (7.5.4)

that covariantizes equation (7.3.7), we find that, in the ω→∞ limit, the action (7.5.3)
becomes the MpT string action in curved spacetime,

SMpT =
T
2

ˆ
d2σ e

[(
eα0 e

β
0 τµν − eα1 e

β
1Eµν

)
∂αX

µ ∂βX
ν −λA eα1 ∂αX

µ τµ
A
]

− T
2

ˆ
d2σ ϵαβ ∂αX

µ ∂βX
ν Bµν , (7.5.5)

which naturally generalises the action (7.3.24).
• Multicritical matrix 0-brane theory (A ′ = 2 , . . . , 9):

Ĝµν =−ω2 τµ
0 τν

0 + τµ
1 τν

1 +ω−1Eµν , Φ̂ = Φ − lnω , (7.5.6a)

Ĉ(1) = ω2 e−Φ τ 0 +C(1) , B̂=−ωτ 0 ∧ τ 1 +Bµν , (7.5.6b)

C(q) = ωτ 0 ∧ τ 1 ∧C(q−2) +C(q) , q 6= 1 . (7.5.6c)

This ω→∞ corner is T-dual to matrix (p+1)-brane theory in the DLCQ. This T-duality
transformation maps the x1 isometry direction associated with τ 1 to the lightlike circle
in DLCQ M(p+1)T . Together with the worldsheet reparametrisation (7.5.4), we find the
MM0T string action in the ω→∞ limit,

SMM0T =
T
2

ˆ
d2σ e

(
eα1 e

β
1 ∂αX

µ ∂βX
ν Eµν +λA e

α
1 ∂αX

µ τµ
A−λ1 e

α
0 ∂αX

µ τµ
0
)

− T
2

ˆ
d2σϵαβ ∂αX

µ ∂βX
ν Bµν . (7.5.7)

• Nonrelativistic string theory (A= 0 , 1 and A ′ = 2 , . . . ,9):

Ĝµν = ω2 τµν +Eµν , Φ̂ = Φ + lnω , (7.5.8a)

B̂µν =−ω2 τ 0 ∧ τ 1 +Bµν , Ĉ(q) = ω2 τ 0 ∧ τ 1 ∧C(q−2) +C(q) . (7.5.8b)
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This prescription is S-dual to the M1T prescription in equation (7.5.2). We have learned that
the string worldsheet in nonrelativistic string theory is Lorentzian. The ω→∞ limit of the
string action (7.5.3) in terms of the reparametrisation (7.5.8) reproduces the string sigma
model (7.4.33) in nonrelativistic string theory.

7.5.2. Dual D-branes in nonrelativistic string theory. Equipped with the complete set of the
limiting prescription (7.5.8) that leads to nonrelativistic string theory, we are able to derive
the Dp-brane worldvolume actions in nonrelativistic string theory, by taking the ω→∞ limit
of the corresponding Dp-brane actions in relativistic string theory. We start with the effective
action of a single Dp-brane in relativistic string theory,

ŜDp =−Tp
ˆ

dp+1σ e−Φ̂

√
−det

(
Ĝαβ + F̂αβ

)
+

ˆ ∑
q

Ĉ(q) ∧ eF̂
∣∣∣
p+1

. (7.5.9)

Here, F̂ = B̂+ dA and

Ĝαβ = ∂αf
µ (σ) ∂β f

ν (σ) Ĝµν , B̂αβ = ∂αf
µ (σ) ∂β f

ν (σ) B̂µν , (7.5.10)

where fµ(σ) is the embedding function that defines how the Dp-brane is embedded in the target
spacetime, i.e.,

Xµ
∣∣
Σp

= fµ (σ) , (7.5.11)

with Σp the Dp-brane submanifold. It is understood that only (p+ 1)-forms are kept in
equation (7.5.9).

Taking the ω→∞ limit in equation (7.5.9), which we reparametrise using (7.5.8), leads to
the following Dp-brane action in nonrelativistic string theory [347, 354]:

SDp =−Tp
ˆ

dp+1σ e−Φ

√
−det

(
0 τβ
τ̄α Eαβ +Fαβ

)
+

ˆ ∑
q

C(q) ∧ eF
∣∣∣
p+1

, (7.5.12)

which can also be derived from the worldsheet perspective by requiring quantum consistency
in nonrelativistic open string theory [354] (see [339, 355] for closely related studies of non-
relativistic/noncommutative open strings). This action is in form similar to its counterpart in
relativistic string theory, but there is an important distinction: the matrix within the determin-
ant is a (p+ 2)× (p+ 2) matrix instead of a (p+ 1)× (p+ 1) matrix as in equation (7.5.9).
Moreover, such a Dp-brane is coupled to the string Newton–Cartan geometry of the closed
strings; this non-Lorentzian target-space has a codimension-two foliation structure.

Wewill mostly focus on type IIA superstring theory in the following discussion, where there
are only RR potentials of odd degrees. To probe what kind of M-theory should correspond to
type IIA nonrelativistic superstring theory, we study a electromagnetic duality transformation
of the associated D2-brane action,

SD2 =−T2

ˆ
d3σ e−Φ

√
−det

(
0 τβ
τ̄α Eαβ +Fαβ

)
+

ˆ (
C(3) +C(1) ∧F

)
. (7.5.13)
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We now dualise [347] the U(1) gauge field Aα on the D2-brane in nonrelativistic string theory
by first rewriting the action (7.5.13) equivalently as

SD2 =−T2

ˆ
d3σ e−Φ

√
−det

(
0 τβ
τ̄α Eαβ +Fαβ

)

+

ˆ (
C(3) +C(1) ∧F

)
+

1
2

ˆ
d3σ Θ̃αβ (Fαβ − 2∂αAβ) ,

(7.5.14)

where F = B+F and Fαβ is treated as an independent field. Integrating out Θ̃αβ imposes the
condition F= dA and thus recovers the original D2-brane action (7.5.13). Instead, integrating
out F and A leads to Θ̃αβ = ϵαβγ ∂γΘ, and furthermore the dual action,

S̃=−1
2

ˆ
d3σ
√
−γ γαβ Ẽαβ −

ˆ
A(3) , (7.5.15)

with γαβ = γα
u γβ

v ηuv and γα
u = ∂αfM γM

u, where M= 0 , . . . , 10, f10 =Θ, and u , v=
0 , 1 , 10. The longitudinal vielbein γM

u is given by

γM
u = e−Φ/3

(
τµ

A 0

eΦ C(1)
µ eΦ

)
. (7.5.16)

We also defined the pullbacks Ẽαβ = ∂αfM ∂β fN ẼMN and A(3)
αβγ = ∂αf

M ∂β f
N ∂γ f

LA(3)
MNL. The

transverse metric ẼMN and the three-form potential A(3) are given by

ẼMN = e2Φ/3
(
Eµν 0

0 0

)
, A(3)

µνρ =−C(3)
µνρ , A(3)

µν10 = Bµν . (7.5.17)

The dual action (7.5.15) describes the M2-branes in propagating in eleven-dimensional space-
time, with the dual fieldΘ playing the role of the extra eleventh dimension. Note that this M2-
brane is coupled to eleven-dimensional membrane Newton–Cartan geometry equipped with
a codimension-three foliation structure, in contrast to ten-dimensional string Newton–Cartan
geometry with a codimension-two foliation to which nonrelativistic string theory is coupled.
Unlike DLCQ M-theory, there is no lightlike circle the membrane Newton–Cartan geometry.

7.5.3. U-duality between decoupling limits of M-theory. We now use the probe M2-
brane action (7.5.15) to define the M-theory uplift of nonrelativistic string theory. We start
with reviewing how to derive the M2-brane action (7.5.15) from the standard M2-brane
action (7.2.1) supplemented with the Chern–Simons term. We transcribe this conventional
M2-brane action in general bosonic background fields below:

ŜM2 =−T
ˆ

d3σ

√
−det

(
∂αXM ∂βXN ĜMN

)
−T
ˆ

Â(3) . (7.5.18)

Consider the following reparametrisations [320, 347, 356] (see also e.g. [287, 302, 304, 357–
359] for related decoupling limits):

ĜMN = ω4/3 γMN +ω−2/3EMN , Â(3) =−ω2 γ0 ∧ γ1 ∧ γ2 +A(3) . (7.5.19)
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We have defined

γMN = γM
u γN

v ηuv , u= 0 , 1 , 2 ; EMN = EM
u′ EN

v′ ηu′v ′ , u ′ = 3 , . . . , 10 . (7.5.20)

In the ω→∞ limit, the M2-brane action (7.5.18) gives rise to the action (7.5.15) that is dual to
the D2-brane action in nonrelativistic string theory. The decoupling limit defined by taking the
ω→∞ of M-theory reparametrised as in equation (7.5.19) defines nonrelativistic M-theory,
whose 11D target space membrane Newton–Cartan geometry has a codimension-three foli-
ation structure.

We now consider U-duality transformation that maps DLCQ to nonrelativistic M-theory.
For simplicity, we focus on the flat spacetime limit. We start with a review of the standard U-
duality rules in M-theory (see e.g. [360]; see also [361] for an extensive review of U-duality).
Compactify the directions X1, X2, and X10 over circles of radii R1, R2, and R10, respectively.
Regard the X10 circle as the M-theory circle. Equation (7.2.19) implies R10 = gs ℓs, where gs
and ℓs = α ′1/2 are the string coupling and string length, respectively, from the perspective of
type IIA nonrelativistic string theory. T-dualising the X1 and X2 circles gives the dual X̃1 and X̃2

circles of radii R̃1 and R̃2, respectively, with R̃1,2 = ℓ2s/R1,2. In terms of the eleven-dimensional

Planck length ℓ11 = g1/3s ℓs, we find the generalised T-duality transformations,

R̃1 =
ℓ311

R1R10
, R̃2 =

ℓ311
R2R10

. (7.5.21)

Moreover, the string coupling gs transforms under the T-duality as

g̃s = gs
ℓps

R1R2
=⇒ R̃10 =

ℓ311
R1R2

, ℓ̃311 =
ℓ611

R1R2R10
. (7.5.22)

We have used the fact that the string length ℓs does not change under the T-duality transforma-
tion. We can also apply an S-duality transformation that swaps the X̃1 and X̃2 circles, in which
case the U-duality transformation becomes

R̃I =
ℓ311

RJRK
, ℓ̃311 =

ℓ611
RIRJRK

. (7.5.23)

Here, I , J , and K take distinct values in {1 , 2 , 10}. The above U-duality transformations apply
to any M-theory, as long as the compact circles are orthogonal to each other.

We now turn out attention to DLCQ M-theory in flat spacetime. In terms of the lightlike
coordinates X± and the transverse coordinates Xi, i = 1 , · · · ,9, the Lorentz boost in the X+−
X− sector takes the form

X+→ γX+ , X−→ γ−1X− , Xi → Xi . (7.5.24)

The γ→∞ defines DLCQ M-theory. Next, we consider the U-duality transformation of
DLCQ M-theory compactified over a three-torus along X−, X1, and X2. We assume that X−

is the M-theory circle so that it plays the role of the ‘tenth’ spatial direction. Denote the radii
associated with the X1, X2, and X− circle as R1, R2, and R10, which scale under the boost
transformation as

R1,2→ R1,2 , R10→ γ−1R10 . (7.5.25)

253



J. Phys. A: Math. Theor. 57 (2024) 423001 Topical Review

According to the U-duality transformation (7.5.22), we find that the dual radii and the Planck
length in eleven dimensions scale as

R̃1,2→ γ R̃1,2 , R̃10→ R̃10 , ℓ̃11→ γ1/3 ℓ̃11 . (7.5.26)

It then follows that the U-dual coordinates scale as

X̃0→ γ X̃0 , X̃1,2→ γ X̃1,2 , X̃u′ → X̃u′ , u ′ = 3 , . . . , 10 . (7.5.27)

We have defined X̃0 = X+. In order to measure the dual coordinates with respect to the rescaled
Planck length, we define xM = X̃M/ℓ̃11, which acquire the following γ scalings:

xu→ γ2/3 xu , u= 0 , 1 , 2 ; xu
′
→ γ−1/3 xu

′
, u ′ = 3 , . . . , 10 . (7.5.28)

The associated metric at a finite γ takes the form

ds2

ℓ̃211
= γ4/3 dxu dxv ηuv + γ−2/3 dxu

′
dxu

′
. (7.5.29)

Identifying the original Lorentz factor γ withω, we observe that themetric (7.5.29)matches the
nonrelativistic M-theory prescription (7.5.19). A more careful analysis shows that the three-
form in equation (7.5.19) also arises in the U-dual frame. Therefore, in the γ→∞ limit, we
find that DLCQ M-theory is U-dual to nonrelativistic M-theory [289]. Intriguingly, under this
U-duality transformation, the lightlike circle in DLCQ M-theory maps to the transverse X10

circle in nonrelativistic M-theory, which becomes spacelike.
Note that it is also possible to further consider the U-dual of DLCQ nonrelativistic M-

theory, which gives rise tomulticritical M-theory that uplifts certainMMpTs.We also note that
MM0T arises from compactifying nonrelativistic M-theory over a lightlike circle. See [289]
for relevant discussions. A powerful complementary perspective is studied in [362], where the
U-dual orbits that involve one or multiple DLCQs are considered in the context of the BPS
mass formulae.

8. SMT limits

Building on the previous section, we now further explore applications of nonrelativistic strings
to decoupling limits in the context of the AdS/CFT correspondence. In particular, we will study
a certain class of decoupling limits ofN = 4 super-Yang–Mills that describes a small subset of
the full spectrum by zooming in on the dynamics close to a BPS bound. In these limits, which
are known as Spin Matrix limits [363], the remaining spectrum becomes non-relativistic, and
there turns out to be a natural connection to the non-relativistic strings discussed in the previous
section. Again, the contents of this section are slightly out of focus with the majority of the
rest of this review, as we will work in the context of holography with a five-dimensional AdS
bulk. However, developing similar decoupling limits in the context of string theory on a three-
dimensional AdS background and its holographic duals is an important open problem, and we
hope that the tools presented in the totality of this review will aid and motivate research in this
direction.

To motivate these Spin Matrix decoupling limits from the perspective of holography, recall
that it has been extremely fruitful to consider the planar limitN→∞ ofN = 4, whereN is the
rank of the gauge group SU(N) and the ’t Hooft coupling λ= g2YMN is held fixed. The planar
limit allows us to use integrability to bridge the gap between perturbative computations in
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field theory at weak ’t Hooft coupling and perturbative computations on the string worldsheet,
which correspond to strong ‘t Hooft coupling. However, it has proven difficult to extend the
integrability perspective beyond the planar limit. Since this prevents us from exploring many
interesting aspects of the holographic correspondence, including strong gravity effects and
non-perturbative states such as black holes in the bulk, it is important to explore different
approaches to AdS/CFT that have the potential to lead to tractable computations on both sides
of the correspondence at finite N.

One such approach is represented by the aforementioned SpinMatrix limits, which zoom in
on the one-loop dynamics ofN = 4 close to BPS bounds while keeping N fixed but arbitrary.
As such, this perspective goes beyond the integrable spin chain description that emerges in
the planar limit at N→∞, and 1/N corrections allow for splitting and joining of a ‘gas’ of
such spin chains. See the review [364] for an overview on recent work constructing the explicit
Hamiltonians for these limits. In the current discussion, we will focus mainly on the N→∞
limit, but even though we are at small ’t Hooft coupling, it turns out that the Spin Matrix limits
still allow for a string worldsheet description in the bulk. However, in line with the decoupling
limits discussed in the previous section, these string worldsheets will be non-relativistic.

After first introducing the Spin Matrix limits in more detail in section 8.1 from a field
theory perspective, we will focus on the semiclassical large charge regime, where the res-
ulting non-relativistic Hamiltonians can be represented by non-relativistic sigma models. For
the particular Spin Matrix limit where the remaining global symmetry group is SU(2), this
gives the Landau–Lifshitz model. Subsequently, we will translate these limits to the bulk
in section 8.2. We first focus on constructing appropriate non-relativistic backgrounds from
AdS5× S5. Building on the non-relativistic string actions constructed in section 7.4.4 we then
take the Spin Matrix limit on the worldsheet, where it results in an action similar to the mul-
ticritical Matrix 0-brane theory (MM0T) strings discussed in section 7.3. After gauge fixing,
we see that these string actions reproduce the non-relativistic sigma models, and in particular
we recover the Landau–Lifshitz model from the SU(2) string limit.

Spin Matrix limits are not the only non-relativistic decoupling limits that can be considered
in the context of AdS/CFT. Following the work of Gomis et al [324], one can also consider an
AdS5 version of the critical B-field limit considered in section 7.4.3 above, and several aspects
analogous to (but often subtly different from) the relativistic string integrability picture have
been developed, see for example [352, 353, 365–371]. See also [340] for a recent discussion
of the relation between non-relativistic string limits, non-commutative open string theory and
the AdS/CFT correspondence.

8.1. Spin matrix decoupling limits in field theory

To start, we give a very brief introduction to the field theory origins of these limits, see the
reviews [363, 364] formore information. ConsiderN = 4Yang–Mills theorywith gauge group
SU(N) onR× S3. The PSU(2,2|4) global symmetry of this theory leads to several BPS bounds
of the form

E⩾ Q, (8.1.1)

whereQ= J+ S is a particular combination of the Cartan generators of the SU(4) R-symmetry,
which we denote as (J1,J2,J3), and the Cartan generators of the SO(4) symmetry of the S3,
which we denote as (S1,S2). In the following, we will only consider integer combinations.
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Table 4. Spin groups of spin matrix theories obtained from integer BPS bounds E⩾ Q.

charge Q spin group

J+ 1+ J2 SU(2)
J+ 1+ J2 + J3 SU(2|3)
S1 + J1 SU(1,1)
S1 + J1 + J2 PSU(1,1|2)
S1 + S2 + J1 SU(1,2|2)
S1 + S2 + J1 + J2 + J3 PSU(1,2|3)

Using the ’t Hooft coupling λ= g2YMN, consider the limit

λ→ 0, N fixed,
E−Q
λ

fixed. (8.1.2)

This limit zooms in on fluctuations directly above the BPS bound (8.1.1), with interactions
governed by the one-loop Hamiltonian. This greatly simplifies the theory. For example, if
we take Q= J= J1 + J2, the corresponding limit only preserves states that transform under a
SU(2) subgroup of the total PSU(2,2|4) global symmetry. Other BPS bounds lead to different
subgroups (as listed in table 4), which correspond to the ‘spin group’ associated to the remain-
ing excitations. Since the fields are also matrices in the adjoint of SU(N), these subsectors
are called Spin Matrix limits. In principle, we can consider this limit for any N, and a general
procedure to obtain the corresponding interacting Hamiltonians has recently been developed
in [372–376].

Instead, we will focus on the planar limit N→∞, which results in a nearest-neighbor spin
chain for single-trace operators of length J, corresponding to the total R-charge. The 1/N
corrections allow for splitting and joining of the chains, but we will not consider them here. For
the SU(2) case, the N→∞Hamiltonian corresponds to the XXX1/2 ferromagnetic Heisenberg
spin chain. Its semiclassical large J regime can be described using the Landau–Lifshitz sigma
model

SLL =
J
4π

ˆ
d2σ

(
cosθ φ̇− 1

4

[
(θ ′)

2
+ sin2 θ (φ ′)

2
])

. (8.1.3)

Here, the S2 coordinates (θ,φ) are functions of (σ0,σ1), and we take σ1 to be 2π-periodic. The
total momentum along σ1 vanishes due to the cyclicity of the trace in the original operators.
Note that the Spin Matrix limit in this regime is similar to the limit considered by Kruczenski
in [377], although that limit considers J→∞ with λ/J2 fixed, while the Spin Matrix limit
takes λ→ 0 with J fixed.

8.2. Translating Spin Matrix limits to string theory

In the following, we will recover the sigma model (8.1.3) as the gauge-fixed worldsheet action
of a limit of non-relativistic strings on AdS5× S5. For this, our goal is first to translate the
field theory limit (8.1.2) to the bulk. We will investigate how we can choose appropriate bulk
coordinates to implement the limit. We will then see that the limit constrains the dynamics of
the string to a particular submanifold of AdS5× S5 which depends on what BPS bound we
choose. This discussion largely follows [286, 318, 378], see also the review [288].
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8.2.1. Choosing adapted bulk coordinates. Preparing for the limit, we will now discuss how
to construct appropriate bulk coordinates. Recall that we can see AdS5 and S5 as hypersurfaces
in R2,4 ' C1,2 and R6 ' C3 using

−|z0|2 + |z1|2 + |z2|2 =−R2, |w1|2 + |w2|2 + |w3|2 = R2, (8.2.1)

where R is the AdS5 and S5 radius. Writing z0 = Rcoshρeit and (z1,z2) = Rsinhρ(v1,v2)
where (v1,v2) describe a three-sphere S3 ⊂ C4, we obtain the metric for AdS5× S5 in global
coordinates,

ds2 = R2
[
−cosh2 ρdt2 + dρ2 + sinh2 ρdΩ2

3 + dΩ2
5

]
. (8.2.2)

Here, dΩ2
3 and dΩ2

5 denote the unit S
3 and S5 metrics, respectively. The AdS5 conformal bound-

ary at ρ→∞ corresponds to the R× S3 background in the dual field theory. As a result, the
energy E in the field theory is associated to the bulk (asymptotic) isometry i∂t. On the other
hand, the SO(4) and SU(4) Cartan charges correspond to particular combinations −i∂ζ and
−i∂γ of the S3 and S5 isometries given by the rotations of the complex zi and the wi coordin-
ates in (8.2.1), respectively.

To take the limit (8.1.2), we then want to combine the coordinates (t, ζ,γ) into new coordin-
ates (x0,u) such that their conserved charges are

i∂x0 = E−Q, −i∂u =
1
2
(E− S+ J) . (8.2.3)

Now recall from the AdS/CFT dictionary that λ= 4πgsN. To take the limit, we rescale

x0 =
x̃0

4πgsN
=⇒ i∂x̃0 =

E−Q
4πgsN

. (8.2.4)

Taking λ→ 0with fixedN then corresponds to sending gs→ 0, and we see that the limit (8.1.2)
corresponds to sending gs→ 0 with N and the rescaled coordinate x̃0 fixed. In this limit, we
see that the charge −i∂u corresponds to the total angular momentum J along the S3, which is
the momentum in the dual spin chain.

Now let us see how this works for the SU(2) case, whereQ= J1 + J2. This charge only con-
tains S5 isometries and we can therefore parametrise it using a coordinate vector for a suitable
coordinate γ on the S5. Specifically, the Cartan generators Ji correspond to the isometries−i∂wi

of the embedding coordinates in equation (8.2.1). Now to combine J1 and J2 we parametrise
the S3 ⊂ S5 using Hopf coordinates,

w1 = Rsin(β/2)sin(θ/2)ei(γ−φ/2), (8.2.5a)

w2 = Rsin(β/2)sin(θ/2)ei(γ+φ/2), (8.2.5b)

w3 = Rcos(β/2)eiα, (8.2.5c)

where β and θ run from 0 to π and γ, φ and α are 2π-periodic. Then −i∂γ = J1 + J2. Using
these coordinates, the metric (8.2.2) is

ds2/R2 =−cosh2 ρdt2 + dρ2 + sinh2 ρdΩ̄2
3

+
1
4
dβ2 + sin2 (β/2)

(
dΣ2

1 +(dγ+A)2
)
+ cos2 (β/2)dα2,

(8.2.6)
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where the Hopf potential and Fubini–Study metric are

A=
1
2
cosθdφ, dΣ2

1 =
1
4

(
dθ2 + sin2 θdφ2

)
. (8.2.7)

Next, to achieve (8.2.3) we use the coordinate transformation

t= x0− u
2
, γ = x0 +

u
2
. (8.2.8)

Then the metric becomes

ds2/R2 = sin2 (β/2)

[
2

(
dx0 +

1
2
A

)
(du+A)+ dΣ2

1

]
−
[
sinh2 ρ+ cos2 (β/2)

](
dx0− 1

2
du

)2

+ dρ2 + sinh2 ρdΩ2
3 +

1
4
dβ2 + cos2 (β/2)dα2.

(8.2.9)

If we then rescale x0 = x̃0/(4πgsN) the second line of thismetric results in a quadratic potential
on the worldsheet that is proportional to

[
sinh2 ρ+ cos2(β/2)

]
/gs. As a result, the gs→ 0 limit

forces the string excitations to a submanifold where ρ= 0 and β = π.
Thus, in the SU(2) Spin Matrix limit, we zoom in on string configurations that are restricted

to lie at the center of AdS5 (since ρ= 0) and that only probe the S3 ⊂ S5 corresponding to
w3 = 0 in the embedding coordinates (since β = π). Together with the global AdS time t, the
Hopf fiber γ of this S3 is combined into the coordinates x0 and u, and the base S2 gives rise
to the SU(2) global symmetry. In total, the dynamics is constrained to a four-dimensional
submanifold of AdS5× S5 which is described by x0, u and the S2 coordinates θ and φ. On
this submanifold, both x0 and u are null isometries. On the other hand, in the SU(1,2|3) case,
the corresponding x0 and u coordinates are null isometries across all of AdS5× S5, and the
full ten-dimensional target space is retained in the limit. Other limits in table 4 fall in between
these two examples. The interplay between SpinMatrix limits and Penrose limits has also been
discussed in [378] and results in non-relativistic versions of pp-wave background metrics.

To understand the effect of the Spin Matrix limit on the string action, it is useful to take
this submanifold as an intermediate step. More precisely, by restricting the string dynamics
to this submanifold, we first obtain a non-relativistic string using a null T-duality along the
u-direction of the above background, along the lines of section 7.4.1. We then implement the
Spin Matrix limit on the resulting non-relativistic string action, which will result in a novel
sigma model with non-relativistic geometry on the worldsheet.

8.2.2. Null isometry submanifolds and non-relativistic string backgrounds. In the above, we
saw that the SU(2) SpinMatrix limit constrains the string dynamics to a submanifold where the
appropriate x0 and u coordinates parametrise null isometries. This happens for any of the Spin
Matrix limits in table 4 above, and different limits will keep string excitations along different
directions of AdS5× S5. Using the appropriate coordinates, we can write the metric restricted
on the resulting submanifold M as

ds2|M/R2 = 2τ 0
(
du−mi dx

i
)
+Eijdx

i dxj, (8.2.10)

where the one-form τ 0 has components τ 0 = dx0 + τi
0dxi and none of the components of the

metric depend on the x0 and u coordinates. Here, i = 1, . . . ,2k is an appropriate even-numbered
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set of indices—in the SU(2) case, we saw that k= 1 and xi = (θ,φ). Less restrictive Spin
Matrix limits retain a larger part of the global symmetries and are therefore able to probe more
directions of the AdS5× S5 geometry.

For simplicity, we will set the AdS radius R to one for now, but we will reintroduce it later.
In the SU(2) case, the decomposition (8.2.10) on the ρ= 0 and β = π submanifold corresponds
to the top line of (8.2.9), which we can write as

τ 0 = dx0 +
1
4
cosθdφ, mi dx

i =−1
2
cosθdφ,

Eijdx
i dxj =

1
4

(
dθ2 + sin2 θdφ

)
.

(8.2.11)

Following the discussion in section 7.4.1, we can map the relativistic string action on the
Lorentzian background (8.2.10) to a non-relativistic string action coupling to the dual non-
relativistic geometry. Now using xM = (x0,u,xi) to denote the 2(k+ 1)-dimensional manifold
described by (8.2.10), we can apply a T-duality along the u-direction, which results in the
following non-relativistic geometry,

τµ
0dxµ = dx0 + τi

0dxi, τµ
1dxµ = dv,

Eµνdx
µdxν = Eijdx

i dxj, Bµνdx
µ ∧ dXν = mi dx

i ∧ dv.
(8.2.12)

Note that the T-duality turns on a Kalb–Ramond field corresponding to gui =−mi in the ori-
ginal Lorentzian metric. Additionally, recall that we are considering string configurations that
have momentum J along the u direction in the Lorentzian background. This coordinate gets
mapped to a dual coordinate v, and the u-momentum J gets mapped to a winding mode along
this v coordinate.

The non-relativistic string background (8.2.12) will be modified in the SMT limit. Since
we rescale the x0 coordinate according to (8.2.4), the one-form τ 0 reduces to dx̃0. The other
objects do not depend on x0 and their expressions do not change. However, as we will now
see, the Spin Matrix limit changes their coupling to the string action.

8.2.3. Limit in non-relativistic string action. Our starting point is the non-relativistic string
Polyakov action (7.4.33),

S=− 1
4πα ′

ˆ
d2σ

[√
−hhαβ∂αXµ∂βXνEµν + ϵαβ∂αX

µ∂βX
nBµν

]
− 1

4πα ′

ˆ
d2σ

[
λϵαβeα∂βX

µτµ+ λ̄ϵαβ ēα∂βX
µτ̄µ
]
,

(8.2.13)

where we have introduced worldsheet vielbeine eαa such that hαβ = ηabeαaeβb. Furthermore,
we use eα = eα0 + eα1 and ēα = eα0− eα1, as well as τα = τα

0 + τα
1 and τ̄α = τα

0− τα1.
Finally, we decompose λα = λα

0 +λα
1 ands λ̄α = λα

0−λα1. Following our previous dis-
cussion, we will mainly be interested in backgrounds of the form (8.2.12), but we will keep
them general for now.

We now want to implement the Spin Matrix limit in the non-relativistic string
action (8.2.13). In fact, it is easier to first consider the limit in the corresponding Nambu–Goto
action (7.4.34). We will ignore the dilaton term, so the action is

S=− 1
4πα ′

ˆ
d2σ

[√
−τηABταAτβBEαβ + ϵαβBαβ

]
. (8.2.14)
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Here, ταβ = ηABτα
Aτβ

B is the Lorentzian worldsheet metric that is induced by τµA, the target
space longitudinal one-forms. We then consider the scaling limit

τµ
0 = ω2 τ̃µ

0, τµ
1 = ω τ̃µ

1, α ′ = ω α̃ ′,

Eµν = Ẽµν , Bµν = ωB̃µν ,
(8.2.15)

where we have defined ω =
√
4πgsN so that ω→∞ corresponds to gs→ 0 with N fixed. This

results in a non-relativistic Galilean limit on the worldsheet of the theory, since we are scaling
the induced vielbeine ταA separately. Dropping the tildes, the resulting action is

S=− 1
4πα ′

ˆ
d2σ

[√
−ττα1τ

α
1Eαβ + ϵαβBαβ

]
. (8.2.16)

We can equivalently take this limit on the level of the Polyakov action. Then the worldsheet
vielbeine and the Lagrange multipliers scale as follows,

eα
0 = ω2ẽα

0, eα
1 = ω ẽα

1, λ0 =
1

2ω3
λ̃0, λ1 =

1
2ω2

λ̃1. (8.2.17)

Dropping the tildes, the resulting Polyakov-type action is

S=− 1
4πα ′

ˆ
d2σ

[
eeα1e

α
1Eαβ + ϵαβBαβ

]
− 1

4πα ′

ˆ
d2σ

[
λ0ϵαβeα

0τβ
0 +λ1ϵαβ

(
eα

0τβ
1 + eα

1τβ
0
)]
.

(8.2.18)

This reproduces the Nambu–Goto above action upon integrating out the constraints. These
actions match the multicritical Matrix 0-brane theory (MM0T) string actions (7.5.7) above,
see also [274]. In particular, the SU(1,2|3) Spin Matrix limit can be directly related to the
MM0T limit (or equivalently the DLCQ of the Matrix 1-brane theory) applied to AdS5× S5.
In theMM0T limit, including the dilaton term in the limit gives rise to nodal Riemann surfaces,
which have also been observed in the context of ambitwistor string theory [306].

We are mainly interested in non-relativistic metric data of the form (8.2.12). In the ω→∞
limit, the τ 0 longitudinal one-form simplifies, as we discussed previously, and the resulting
backgrounds are

τµ
0dxµ = dx0 τµ

1dxµ = dv,

Eµνdx
µdxν = Eijdx

i dxj, Bµνdx
µ ∧ dXν = mi dx

i ∧ dv.
(8.2.19)

For the SU(2) background (8.2.11), this corresponds to τ 0 = dx0 and τ 1 = dv and

Eµνdx
µdxν =

1
4

(
dθ2 + sin2 θdφ2

)
, Bµνdx

µ ∧ dXν =
1
2
cosθdv∧ dφ. (8.2.20)
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8.2.4. Non-Lorentzian worldsheet structure and residual GCA symmetries. The Polyakov-
type action (8.2.18) is still invariant under Weyl transformations,

eA→ ΩeA, λA→ Ω−1λA. (8.2.21)

However, instead of the local Lorentz symmetries of hαβ = ηabeαaeβb, the worldsheet is now
invariant under local Galilean boosts acting on the vielbeine e0 and e1 (plus appropriate trans-
formations of the Lagrange multipliers),

e0→ e0, e1→ e1 + γ e0, λ0→ λ0− γ λ1, λ1→ λ1. (8.2.22)

This reflects the fact that the worldsheet geometry is no longer Lorentzian but Galilean.
As a result, going to flat gauge, the residual symmetries are also no longer given by the

Virasoro algebra. One way to see this is by solving the constraints in the action (8.2.18) on the
general background (8.2.19). If we use the flat gauge e0 = dσ0 and e1 = Jdσ1 so that the total
string length is J, the constraint multiplying λ0 implies

0= X ′MτM
0 = X ′0 =⇒ X0 = F

(
σ0
)
. (8.2.23)

On the other hand, the constraint multiplying λ1 implies

JX ′MτM
1 = ẊMτM

0 =⇒ Xv =
Ḟ
(
σ0
)

J
σ1 +G

(
σ0
)
. (8.2.24)

We see that after going to flat gauge, the two embedding functions X0 and Xv contain two arbit-
rary functions of the worldsheet time, which correspond to the coordinate reparametrisations
generated by

ξ = f
(
σ0
)
∂σ0 +

(
g
(
σ0
)
+ ḟ
(
σ0
)
σ1
)
∂σ1 . (8.2.25)

Expanding these generators in the modes Lm andMm of these functions, we see that they satisfy
the Galilean conformal algebra (GCA),

[Lm,Ln] = (m− n)Lm+n, [Lm,Mn] = (m− n)Mm+n, [Mm,Mn] = 0. (8.2.26)

Note that this algebra is closely related to the BMS3 algebra of three-dimensional asymptotic-
ally flat spacetimes [379], and it also appears in the context of tensionless limits of strings [310,
313, 380].

At this point, the algebra (8.2.26) is purely classical, and it is not known if central
charges can arise upon quantisation on general backgrounds. Covariant quantisation of the
action (8.2.18) is subtle due to the non-Lorentzian structure encoded in the constraints. (For a
recent discussion on gauge fixing and global symmetries in these actions, see [317].) However,
the classes of backgrounds we have derived in the above are directly motivated by consistent
decoupling limits in the boundary field theory, so they should be good candidates for consist-
ent string backgrounds. As we will now see, fixing the residual GCA symmetry allows us to
reproduce the Landau–Lifshitz action for the SU(2) background.
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8.2.5. Gauge-fixed action. Now let us fix the residual GCA symmetry by setting F(σ0) =
J2σ0 and G(σ0) = 0, so

X0 = J2σ0, Xv = Jσ1. (8.2.27)

After this Monge-like gauge fixing, we obtain the action

S=− JR2

2πα ′

ˆ
d2σ

[
mi Ẋ

i +
1
2
EijX

′iX ′j
]
. (8.2.28)

Here, we have restored the AdS radius R that we previously dropped from the background vari-
ables. The AdS/CFT dictionary then tells us that R2/α ′ = (R/ℓs)2 =

√
λ=
√
4πgsN, which

is precisely the parameter ω we split off from α ′ in (8.2.15). Therefore, the effective string
tension is just given by 1/(2π), so that the action is

S=− J
2π

ˆ
d2σ

[
mi Ẋ

i +
1
2
EijX

′iX ′j
]
. (8.2.29)

Plugging in the background data that we obtained from the SU(2) limit in equation (8.2.11),
we see that the corresponding gauge-fixed action becomes

S=
J
4π

ˆ
d2σ

(
cosθ φ̇− 1

4

[
(θ ′)

2
+ sin2 θ (φ ′)

2
])

. (8.2.30)

This is precisely the Landau–Lifshitz model in (8.1.3) corresponding to the N→∞ and large
J limit of the SU(2) SMT.
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