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1 | INTRODUCTION

Let G be a connected reductive group defined over a finite field F, of characteristic p, let F
be the associated Frobenius endomorphism of G, and let A be a subring of Q@ containing 2%].

Let B, be an F-stable Borel subgroup of G with (necessarily F-stable) unipotent radical U,,
and let ¢ : Ug —> A* be a regular (also called non-degenerate) character. The Gelfand-Graev
representation

F

Tgy i= Indggz,b

is an important representation of G (already studied in [5, section 10] and [7]). Its endomorphism
ring

AEG = EndAGF (FG,l,b)

is commutative, independent of the choice of ) up to isomorphism and, over @, may be identified
with the ring of Q-valued class functions on G, where (G*, F*) is a chosen Deligne-Lusztig
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dual of (G, F) (see [3]). Such an identification only depends on choices of group homomorphisms
Q/2), =~ EZ < 0", which we fix from now on.

There are then (at least) two natural A-lattices in QE: AE; and the lattice AK. spanned by
Brauer characters of irreducible representations of G*F": here, Kg+ is the Grothendieck ring of
the category of finite-dimensional [FqG*F “-modules. Denoting by GS*SF "/ ~ the set of semi-simple
conjugacy classes in G*" we may then, as in [12, section 2.5], identify

xF /N

e, =0 7 = ok, (11

as Q-algebras, where we recall that the second equality follows from the Brauer character iso-
G*F* s * * .
morphism QK. — Q ¢/ /™ and from the fact that G/~ = G*F"/ ~. Here G*I"/ ~ is the set of
) p SS p
p-regular conjugacy classes in G*".
The main result of this paper may now be stated as follows:

Main theorem. If all bad primes for G are invertible in A, then the two A-lattices AE5 and AK-
of QE are equal.

Here, we use the notion of ‘bad primes for G’ from [17]. Denoting by R the root system of G, a
prime number 7 is called bad for G if one of the following three conditions holds: (i) # = 2, and
R has an irreducible factor not of type A; (ii) £ = 3, and R has an irreducible factor of exceptional
type (G,, F4, Eg, E4, or Eg); (iii) £ = 5, and R has an irreducible factor of type Eg.

In this theorem, the assumption on the bad primes for G is due to the use of almost characters
in Lusztig’s work on unipotent characters, where bad primes appear in the denominators of the
‘Fourier transform matrix’. We expect that the theorem remains true without this assumption,
though our present method cannot prove it

Our theorem improves the equality Z[ —— oW Eg = Z[pIW JKg+ (where W is the Weyl group of G)
in [12, Theorem 2.3] whenever the adJ01nt group of G is simple of type other than F, or G, (in these
two excluded types, the bad primes and the primes dividing the order of the Weyl group coincide).
Moreover, via the Z-model E; of AE; from [12, section 1.5], if we denote by M is the product of
all bad primes for G, then the above theorem implies that Z[L]E = Z[L]KG*. Indeed, this

amounts to showing that the identification Z[ 1Eq = Z[ ]KG* in the above theorem is equiv-

ariant under the action of the Galois group Gal(@ /Q) on the coefficients, and the proof of this
equivariance is the same as that of [12, Corollary 2.4].

Relation with invariant theory

Let By be the ring of functions of the Z-scheme (TV J W)F *, where (GY,TV) is the split Z-
dual of (G,T) with T an F-stable maximal torus of G, W = Ngv(TV)/TV is the Weyl group of
(GY,TV),and FY : TV — TV is induced by the action of F on Y(TV) = X(T). If G* has simply
connected derived subgroup, then ABgy is also a A-lattice of QE; and appears to be significant
for the local Langlands correspondence in families. Indeed, for GL,,, in the course of constructing
this correspondence in joint work with Moss [14], Helm proved in [8, Theorem 10.1] the equality
AEg, = ABgpy for A being the ring of Witt vectors of F, with # # p. In our current context (G a
connected reductive group over [ ), when G* has simply connected derived subgroup, it is known
that Bgv = Kg+ (see [12, Theorem 3.13]), so that our main theorem yields the equalities
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for A = i[pLM]. In particular, for GL,,, M = 1 and so we provide an alternative proof of Helm-
Moss’s equality.

On the proof of the main theorem

Identify AE; = eyAGFe, C AGF where ¢, := ﬁ ZueUg Y(u~u is the primitive central
0

idempotent of AUg associated to ®. We may then consider the symmetrising form
T=1g 1= |Uglev, . : AEg — A

and denote its Q-linear extension again by r. Here eV p denotes the evaluation map at 1;r; recall
that a symmetrising form on a finite projective A-algebra Aisamap 7 : A — A such that the map
(a,b) — t(ab) is a perfect symmetric bilinear form. It has been shown in [12, Proposition 2.2]
that 7(Kg+) C Z and that 7|k, : AKg« — A is a symmetrising form. Therefore, the equality
AE; = AKg- will hold if

t(hr) € Aforall h € AE; and w € AK-. 1.2)

Indeed, (1.2) shows that each of AE; and AK- is contained in the dual of the other with respect
to the above bilinear form; as each is self-dual, they are equal.

After preparations on Deligne-Lusztig characters and Curtis homomorphisms (Section 2), we
will reduce (1.2) to the study of the condition ‘c(h7) € A’ for 7 the restriction to G*F~ of a (virtual)
algebraic Fq-representation of G*, by fitting G* into a central extension (Section 3) and studying
related compatibility questions (Sections 4 and 5). To study the condition ‘c(hr) € A’ for such 7,
we will extend the definition of T(hr) to h € GF (Section 6), reduce the discussion to the case
where the semi-simple part s of h is central in G (Section 7), and finally deal with the case of
central s (Section 8).

2 | PRELIMINARIES

In this section, we recall some properties of Deligne-Lusztig characters and Curtis homomor-
phisms that we will need later on.

Deligne-Lusztig characters

Let S be an F-stable maximal torus of G, let P be a Borel subgroup containing S, and let V' be the
unipotent radical of P. Then we have the Deligne-Lusztig variety (see [6, Definition 9.1.1])

DL, = {9V €G/V : g"'F(g) € V-F(V)},

which admits a (left) G x (S¥)°P-action. When there is no need to specify the chosen Borel
subgroup P, we will write DLS_, simply as DL .
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We consider the virtual #-adic cohomology H;(-) = > j}o(—l)f H g(- , @f), for # a prime distinct

from p. For every character y : SF' — ﬁx, upon choosing a field embedding @ < Q,, we have
the corresponding Deligne-Lusztig character

RGO 1= Tr( I (PLEy) @50 2 ) = g 2, Tr(( I (PLG ) x(57),

seSF

which is independent of the choice of P and which takes values in Q, a priori; but by [5, Proposi-
tion 3.3], for any (g, s) € GF' x SF, the trace Tr((g, s)|Hj(DLng)) is an integer independent of Z,
so in fact RS (y) takes values in @, and it can be verified that RS (y) is independent of the choices

of # and of the embedding Q@ < Q,.

Curtis homomorphisms
For an F-stable maximal torus S of G, we consider the Curtis homomorphism
Cur§ : QE; — QS*

defined as in [12, section 1.7] (see also [3, Theorem 4.2]). In terms of the Deligne-Lusztig dual,
the map Curg is simply a ‘restriction map to a dual torus’: indeed, upon fixing an F*-stable max-

imal torus S* of G* dual to S (whence a duality Irr@(SF ) ~ S*F" and thus a ring isomorphism
_ __qxF*
QSt ~ @S ), the map Curg is the unique ring homomorphism making the following diagram

commutative (see [12, Lemma 1.6]):

— —GiI"
QEg —— O

(0.1)

l i @.1)

QsfF —3 Q

We will later need the following formula of Bonnafé-Kessar ([1, Proposition 2.5], with the
missing sign factor corrected). For all h € QE; C QGF,

curS(h) = €55 Y Tr((h, s)|H*(DLC_))s~' € QS 2.2)
S |SF| c Scp
seSF

Here, as usual, ¢; = (—l)rk*q(G) for G any reductive group over F,. Observe that (2.2) shows that

Curg is independent of the choice of S*.

3 | ON CENTRAL EXTENSIONS

For our group G, we can fit its Deligne-Lusztig dual G* into an F*-equivariant exact sequence of
reductive groups
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1—272"—H'—G" —1 3.1

where the derived subgroup of H* is simply connected and Z* is a torus central in H*.
We fix a choice of F-equivariant exact sequence of reductive groups

1—G—HSZ7Z—1, (3.2)

which is dual to (3.1). Let Ty be an F-stable maximal torus of H, let B; be a Borel subgroup of H
containing T, and let V' be the unipotent radical of By;. Then

H _ H
DLy, cp, = |_| (DLTHCBH>(Z)

zezl

where for each z € ZF we have set
H . H . _
<DLTHC3H>(Z) = {hV epLl . :x(h)= z}.

Let Ty = ker(KlTH : Ty - Z) (resp., B = ker(x| By : Bu > Z)), which is an F-stable maximal
torus of G (resp., a Borel subgroup of G). Then T; C B, and the unipotent radical of B; is also V.
As T is connected, we have x(T%,) = Z*, so for each z € ZF we may choose a z € T}, such that
x(2) = z. Under the inclusion G c H, for each z € ZF we have

H NG .
DLTHcBH(z) = DLTGcBG -ZCH/V,
so that

D LIT:IHCBH (z) ~ DL7G~GC3G as (G" x (Tf)°P)-varieties.

In terms of virtual #-adic cohomology, we therefore have
H _ H
H; (DLTHCBH> = z H; (DLTHCBH(Z)>’
zezl
F F : * H iofiog:
and the H" X (T';;)°P-action on H;, (DLTH CBH) satisfies:

for every (h,t) € HY x (TfI)OP, (h,t)-H} (DL?HcBH(z)) CH; (DLIT:IHCBH(K(ht)Z)>;

forevery z € ZF', H* <DL¥HcBH(Z)> ~H; (DLG

z, CBG> as GF x (Tg)()p-modules.

In particular, we obtain the following trace formulae: for (h,t) € H x (T g)OP,

K(ht) 1 = Tr((h, )| H (DLH )) -0

Ty CBy
(3.3)

(h,0) € GF x (TE)® = Tr<(h, )| H (DL?HCBH» =17 .Tr((h, )|H (DLG ))

TgCBg

85UL0| 7 SUOWIWIOD aAee.D) |qeal|dde ay) Aq peusenob afe Sao1e YO 8sN JO S3|N. 10} ARig1T 8UIUO /8|1 UO (SUONIPUOD-pUR-SWB)W0D" A3 1M ARIq jBU1[UO//:SANY) SUOIIPUOD pUe SWie 1 8U1 89S " [20Z/0T/80] Uo Aklqiauljuo A8|IM ‘891 Aq 6682T SWA/ZTTT OT/I0PAU0Y" A8 1M AleJq 1 jBU 1 |UO"0SYRWPUO|//:Sdny Wwiouy pepeojumod ‘9 ‘€202 ‘02TZ697T



ON ENDOMORPHISM ALGEBRAS OF GELFAND-GRAEV REPRESENTATIONS II 2881

We will later need the compatibility (for y : TfI — @X):
Ry, OOler = RE (xqr). (3.4)

This follows immediately from the defining formula of RITiH () and (3.3) (see also [6, Proposition
11.3.10]).

4 | ACOMPATIBILITY LEMMA

Notation as in Section 3. We extend the F-stable Borel subgroup B, of G in Section 1 (used to deter-
mine the Gelfand-Graev module I' ) to the F-stable Borel subgroup B(’) of H, so that Bé /By =2
under (3.2); the unipotent radical of B(’) is then equal to U,, (the unipotent radical of B), and the
inclusion G ¢ H induced by (3.2) gives rise to a A-algebra inclusion

AEg = eyAG" ey & ey AH e = AE,. 4.1)
On the other hand, (3.1) yields the identification
G/~ = (HE )~ ) 1277, (4.2)

which enables us to regard functions on G;‘SF "/ ~ as functions on H, :sF * / ~ which are constant on
each Z*I" -orbit.
Let us prove the following ‘compatibility lemma’:

Lemma. The following diagram of rings is commutative:

— Gy~

QE; —> 0

(0.1)

()i e (43)

— L =HI~
QEy — Q
Proof. Let T and Ty be as in Section 3, and choose an F*-stable maximal torus T, of G* dual to
Tg (resp., Ty, of H dual to Tyy) such that T, /Z* = Té. Then the Weyl groups of (G, T;;), (G¥, Té),
(H,Ty) and (H*, T},) are all the same, and we denote this common Weyl group by W. For each
w € W, choose an F-stable maximal torus T, of G whose G*-conjugacy class corresponds to
the F-conjugacy class of w in W (with respect to T, so that we may choose T ; = T(;); choose
Té’w CG* Ty, CHand Ty~ C H*inasimilar way.
In the toric case where (G, H) = (T, Ty;), the commutativity of (4.3) follows from toric duali-
ties.
For the general case of (G, H), we use the Curtis embeddings Cur® = (Cur?cyw Jwew and Cur? =

(Cur?H‘w)weW (see Section 2) to embed (4.3) into the following cubic diagram of rings:

85UL0| 7 SUOWIWIOD aAee.D) |qeal|dde ay) Aq peusenob afe Sao1e YO 8sN JO S3|N. 10} ARig1T 8UIUO /8|1 UO (SUONIPUOD-pUR-SWB)W0D" A3 1M ARIq jBU1[UO//:SANY) SUOIIPUOD pUe SWie 1 8U1 89S " [20Z/0T/80] Uo Aklqiauljuo A8|IM ‘891 Aq 6682T SWA/ZTTT OT/I0PAU0Y" A8 1M AleJq 1 jBU 1 |UO"0SYRWPUO|//:Sdny Wwiouy pepeojumod ‘9 ‘€202 ‘02TZ697T



2882 LI and SHOTTON

# ¥

= _TG,w
[l o1, ——— Il @

wew wew
_ _ G~
QEq — Q

(4.4)
i/ F ~ _T;II,:J

[l ary, —|—— Il @

wew wew
— —H{"/~
QEg . > Q

In (4.4), the right face is clearly commutative; the top and the bottom faces are commutative
by (2.1); the back face is the toric case of (4.3) and is hence commutative. So to prove the
commutativity of (4.3), it remains to show that the left face in (4.4) is commutative.

Using (2.2) and the relation €uer, , = €ér, - the commutativity of the left face in (4.4)is

equivalent to the property that, for all h € @EG c QGF and all w € W, we have

— ¥ (o (o ))t=—— ¥ m(mom;(pg, )t @)

F = |\TF
|TH,w| teTZ,w |TG,w| teTgw

By (3.3) and the fact that T},  /T5 == ZF, we see that (4.5) is true for all h € G*, so the left face
in (4.4) commutes. This completes the proof of the lemma. 1

5 | REDUCTION TO THE STUDY OF 7(h~,)

Notation as in Section 3. As Z*f" is central in H*F", the association of each irreducible FQH L

module to its restriction to Z*F" induces a Z*F~ -graded decomposition

Ko = @ (Kyo)ywithKge = (Kgp),. (5.1)

Aez+F*

In particular, we have a ring inclusion K« C K+, and it is evident that the following diagram of
rings is commutative (where br denotes the Brauer character map):

— . =G~
OKg. —=5 Q

(i e (5.2)

— o =HT
QKye — Q
Let h € AE; and 7 € K«. Via the commutative diagrams (4.3) and (5.2), we can define the

— = =G~ —HF N — —
product hr consistently as an element of QEg;, QE;, Q * / ,Q % / , QK+ or QKpps. As 75 =
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|Ug|eV1GF = IUgleleF = 754, we deduce that
tg(hr) = ty(hm). (5.3)

Therefore, if we can prove (1.2) for t;;(hr), then we can prove it for t;(h).
Now let K(G*-mod) be the Grothendieck ring of the category of finite-dimensional algebraic
G*-modules and let K?., be the image of the restriction map

Res : K(G*-mod) — K.

Adopting similar notation for H, we have that Res is surjective (see[19, Theorem 7.4] and [9, The-
orem 3.10]) so that K? ., = K. We are therefore reduced to proving that 7,;(hm) € Afor r € KS,,.
This turns out to be true without the assumption that H* has simply connected derived subgroup;
in the following, we shall thus return to the group G and study the condition ‘z;(h7) € A for
TE KZ;*’.

6 | AN EXTENSION 7 FOR 7(h7)

We return to the group G (the derived subgroup of G* may not be simply connected) and write
7 = 7. Let T be an F-stable maximal torus of G, let W = N;(T)/T be the Weyl group of (G, T),
and let T, be an F-stable maximal torus of G associated with w € W (with respect to T) as in the
proof of (4.3). Recall the identification QE; = QK- from (1.1). Then, for h € QE and 7 € QK.

1
o) = S ey, (Curgw(hn)) (by [1, eq. 3.5])
wew w
= L G . G G . .
=W w;{/ evlTa (CurTw(h) CurTw(n')> (CurTw is a ring homomorphism)
= Y ¥ cud (- curd (0
W weW terh “ ?

-y Yy SGeT, -Tr((h, t)|H:(DL§w))-Curgw(n)(t) (by (1.2))

F
wew teT{Z, |Tw|

= wn Z it Z Z ng()()(h)' ){(t)~Cur§w(ﬂ)(t) (trace formula)

wew |T5| teTF F
€T, x€lrrg(Ty)

T R S e IS TR ) (61)

W F
| |U—’€W |Tw| )(Elrrﬁ(Ti)

Using the formula (5.1), we can extend the Q-bilinear map

@EG X @KG* —Q, (h7)+— t(hn),
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to a Q-bilinear map 7(-,-) : QGF x QK;. — Q by setting, for h € QG and 7 € QK;-,

1 €cer,,
) = X RE Qo) x(Curf (7). (6.2)
| | wew | w | )(Elrra(T{Z)

We then have

t(hr) = T(h, m)for allh € QEgand allr € QK. (6.3)

The formula (6.2) for 7 involves choices of T and T,,; we now derive an intrinsic formula for T

as follows.

Let 7 be the set of F-stable maximal tori of G, and let 7; /G be the set of G -conjugacy classes
in 7. For each S € T, let W;(S) = N5(S)/S. As the isomorphism class of T, depends only on
the F-twisted conjugacy class of w € W, and the stabiliser of w € W under F-twisted conjugacy

may be identified with W;(T,,)f', we have that there are IleE/S)FI elements w € W such that T,

is GF -conjugate to S. By (6.2), for h € QG' and 7 € QK:, we have:

~ €GE, 1
T(h,n) = Z W(fﬁﬁ XGIZ Rg(}()(h) : X(Curg(”))

SeT;/GF rr@(SF)
- ﬁ Yoeges Y RSQOM) - x(Curl(m)). (6.4)

S€ET; )(elrra(SF)

7 | REDUCTION TO THE CASE OF CENTRAL s

From now on, let h = su € G! with s € G (resp., u € G") the semi-simple (resp., unipotent) part
in the Jordan decomposition of k. Recall Deligne-Lusztig’s character formula [5, Theorem 4.2] for
each F-stable maximal torus S of G: (notation: ad(¢g)x = 9x = gxg~ 1)

R()(h) = Z Qua @) - ()(s), (7.0)

ICq ()°F|

g~ SgESF

where Qg = Rg(1)| of denotes the Green function and C(s)° is the identity component of the
unip
centraliser of s in G.
We shall write T = 7; to specify the group G. Substituting (7.1) into (5.4), we obtain: (below,
€ Kge)

Tg(h, ) = |GF| Z €c€Es Z

3, ol cuoo)

oF
SeTs XElrr(SF) |CG(S)
g~ SgESF
Ci(s)° G -1, 4
egeslS”| Qe (w) - Cur (71')(9 (s ))
|GF| ICq (s)oF| S; gggl ad(g)S S
g Lsgest
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(where we have applied the orthogonality of characters)

-1 1 Fl. gCol” .
"o iGoT 2  EIS Qus0 Curs (6T
geG SE€Ts

s€(ad(9)S)"

(where we have used Curgd(g) ((m(x) = Cur{ ()(x) for g € GF)

m D epestST- Q¥ ) - curb(m)s™h) (S —> ad(g7H)S)
G SeT,

seSF
1 Cs(s)° _
= T & egesISTT- Q5 ) - curd(m)s™), (72)
| G s |S€TCG(S)°

sest

where the last equality holds because for S € 7, if ST contains s then S € Cg(s)°.
Recall the subring K®,, C Kg+ from Section 5.

Lemma. Let A, be a subring of Q. Fix an h = su € G' as above, and consider the following
statement:

Tg(h,m) e A, forallmeK,. (7.3)

Suppose that (7.3) is true when G therein is replaced by C;(s)° (by [6, Proposition 3.5.3], u € C(s)°
and hence h € C;(5)°F). Then (7.3) is true for G.

As s is central in Cy(s)°, this lemma will reduce the study of the condition (7.3) to the case
where s is central in G.

Proof of lemma. First, we require a certain special set of generators for K%,.. As shown in [10,
chapter I1.2], for every maximal torus T* of G*, the associated formal character map gives a ring
isomorphism

ch : K(G*-mod) — z[X(T)]"

where X(T*) = Hornalg(T*, G,,,) is the character group of T* and W is the Weyl group of (G*, T*).
For A € X(T*), set

rga = Z p € zZ[X(THY and 75, i=ch '(rg)lgr € Kgs s
HEWA

where for 1 € X(T*), WA denotes the W-orbit of 1. Note that the Z-module Z[X(T*)]V
generated by {r; ; : 1 € X(T*)}, and so the 7 ; generate K?,, as a Z-module.

Choose an F-stable maximal torus T of G containing s, so that T is also an F-stable maximal
torus of C;(s)°. To verify (7.3) for the chosen h, it suffices to show that 7;(h, 75 ;) € A, for all
A e X(T*).
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Let S be an F-stable maziimal torus of G, choose an F*-stable maximal torus S* of G* dual to S
and with a duality™ : S¥ — Irrz (S*f"), and fix a choice of g € G* such that S* = 9T*. This dual-
q

F

ity and the fixed embedding ﬁ;( < @~ allow us to identify QS with @S . For each u € X(T*),
set ug. = Iu € X(S*), and define ¢5(u) € ST by the relation pg. |gur+ = Fs(w) € Irrz (S*7). We
q

then have a map ¢ : X(T*) — SF that extends to a ring homomorphism

_S*F*

¢s 1 QX(TH] — as’ =0
The following diagram then commutes (where W = W.(T*) = Ng.(T*)/T*):

QK(G*-mod) 2 > QX (T

e b
RL.\U*F*J/ \l/

QKge —=— @ REAENYs)

Combining this with (2.1), we see that the following diagram of rings also commutes:

e
0.1) —_ LurS

QK(G*-mod) —% QK. =2 QE,

QsF
a| (7.4)
a[xa)”
The commutative diagram (7.4) gives the relation
Cur{(mg ) = ¢s(rg. )- (7.5)

Via the identifications
W oo (T*) = We (5o (T) S W (T) = W (T),
we may write We.(T*)A = || W, (- (T*)A' for some finite subset Q of W.(T*)4, so thatrg ; =
AeQ

Cels)° .

AZQ reg (s, and then Cur§(ng ;) = /120 CurSG(S) (e (s)o,0) bY (7.5). Applying (6.2) to 7w = 7 ;,
e e

we thus deduce that

?G(l’l, 7TG,/1) = €G€CG(S)° Z ?CG(S)"(h’ an(S)",/l’)‘ (76)
AeQ

By (7.6) and the assumption of the lemma, we get 75(h, 75 ;) € A for all 1 € X(T*), whence
Tg(h,m) e Ayforall r e K- O

8 | THE CASE OF CENTRAL s

Keep the notation T, W and T,, as in Section 6. Let 7 € K+, let h = su € G’ be as in Section 7,
and suppose furthermore that s lies in the centre of G. Then C;(s)° = G, and (7.1) becomes
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Rg( x)(h) = Qg(u) x(s), so that (6.2) yields

€Ger,

Tolh ™) = 2 ]

Y Q& x®-x(cwd ()

Xelrra(T{;)

Z €ger, QT (u)(n'IT*Fa s~ 1>T*F* (orthogonality of characters)

|W| wew

= (ﬁ’ J/>G*F* (81)
where (using [5, Proposition 7.3])

1

wF*
= W Z eGeTwQ?w(u)Indg;ps—l = — Z QG (u)R s—l ® St

wew |W| weWw

and 7 is any extension of the Brauer character 7 to an ordinary virtual character (which exists
by [15, Theorem 33]). As s lies in the centre of G, s—1 is in fact a multiplicative character of
G*F", so

y = y’ ® S/;\l ® StG*
with

2, Q7 WRL (D). (8.2)

|W| wew
Our strategy will be to show that y’ is a Q-linear combination of irreducible G*I"* -representations
with only bad primes appearing in the denominators.

We need some facts from the theory of almost characters, following [13, chapters 3—4]; in the
notation of that book, we are considering the case n = 1 and L trivial. See also [2, section 7.3] for
a concise exposition, but with some extraneous hypotheses. Let ¢ be the order of the automor-
phism F on W (when G is split, we have ¢ = 1); denote by I/)V\ex the set of all ¢ € Irry, (W) that can
be extended to a Q-valued irreducible character of W := W X (F) (by [18, Corollary 1.15], every
irreducible representation of W over a characteristic 0 field is defined over Q); for each ¢ € Wex,
there exists such an extension (in fact, exactly two) ¢ € Ier(/j Fixing a choice of such $, we
then call

6t ._ 1 iy G*
RY = 7 w§V¢(wF)R -()

an almost character of G*F".
Recall from Section 1 the definition of bad primes for G. Note that a prime is bad for G if and

only if it is bad for G*. Define

M = product of all bad primes for G. (8.3)
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Using Lusztig’s work on unipotent characters,

each almost character RS is a Z[ML] -linear combination
¢ G (8.4)

of irreducible Q-valued unipotent characters of G*/"".

Indeed, if G* has connected centre, then [13, Theorem 4.23] expresses R$ as a linear combina-

tion of unipotent characters of G*'". By [13, (4.21.7)], the denominators divide the orders of certain
groups Gy of the form [] G5, where the product is over the irreducible factors of the root system of
G*. Each Gy, is defined in a case-by-case fashion, in a way depending only on the corresponding
irreducible factor of the root system, in [13, 4.4-4.13], and has order divisible only by bad primes
for that factor. If G* does not have connected centre, then we choose a short exact sequence

1-G">H" -Z">1
as in (3.2) (with the roles of G* and G reversed). Extending the chosen maximal F*-stable torus
and Borel from G* to H* as in Section 3, we may identify the Weyl groups of G* and H*. Using
(3.4) (with y = 1 therein), we then have
RE"| . =RY,
g lor =K

whence Rg* is Z[ML]-linear combination of restrictions to G*f of unipotent characters of H*F .
G

However, the restriction to G*/ of a unipotent character of H*/" is a unipotent character by [6,
Proposition 11.3.8], so (8.4) follows.
Now we prove the following lemma:

Lemma. The sumy’ in (8.2)is a finite Z[ML]-linear combination of almost characters ofG*F*.
G

Proof. We have

2 Rf @R @)

lWl wew
IWI D R (1)) Z $(wF)Rg* (see [2, p. 76])
wew peWey
= ) RIwRY;
PEWey i ?

by (8.4) and the fact that character values of representations of finite groups are algebraic integers,
all Rg must take values in Z[ML]. O
G

Remark. In the above lemma, the class function y’ can in fact be written as a finite Z-linear
combination of almost characters of G*/'". We will not need this stronger property of ¥’ later, so
here we only briefly explain how to achieve this, following the complete proof in [11, Remark of
Lemma 2.23]. First, one uses a theorem of Shoji ([16, Theorem 5.5]; see also [6, Theorem 13.2.3])
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to get that ng (w) = Tr(wF|H}(B,)) for all w € W, where B, is the variety of Borel subgroups of
G containing u. One then studies the contribution of each composition factor V' of the finite-
dimensional @fﬁ/\-module H:(B,) (¢ # p) to Tr(wF|H}(B,)); one proves that Tr(wF|V) # 0
only if V|, is irreducible, and in this case Tr(wF|V) = x(F) - Tr(wF|¢) for some linear char-
acter yy : (F) — @: and some ¢ € Irr@(@ fitting the definition of the almost character Rg*

and on which F¢ acts trivially, so that y’ is the sum of finitely many y, (F) - Rg* with V|, irre-

ducible. As all eigenvalues of the endomorphism F on H}(B,) lie in Z (see [4, Lemma 1.7]),

R . L= S F
each y,(F) must lie in Z", so ¥’ is a finite Z-linear combination of almost characters of G*/",
as desired.

Using the previous lemma, (7.1), (8.2) and (8.4), we get the following proposition:

Proposition. We have7T;(h, ) € i[ML] forall T € Kg- and all h € GF whose semi-simple part s
G
is central in G. (M is as in (8.3).)

End of proof of the main theorem in Section 1

From now on, we remove the assumption that s is central in G.

Observe that a prime number that is bad for C;;(x)° with x a semi-simple element of G¥ is
also bad for G; indeed, this follows from the definition of bad primes in Section 1 and from the
following two facts: (i) if G is simple of type A (resp., of classical type), then the centraliser of every
semi-simple element of G has only factors of type A (resp., of classical type); (ii) if G is simple of
type G,, F,, E¢ or E-, then the centraliser of every semi-simple element of G cannot have factors
of type Eg (for dimensional reasons).

Therefore, the previous proposition and the lemma in Section 7 together imply that 7;(h, 7) €
i[MLG] forallh € GFandallw € K¢ We then deduce from (6.3) that

to(hm) = Ty(h, ) € A[MLG] forall h € AEg and all 7 € K°,. (8.5)

Now fit G into the exact sequence (3.2). As H therein has the same type of root datum as G,
we have My = M, so (8.5) applied to H gives 7y (hr) € A[ML] for all h € AE;; and all 7 €
G

K?;: = Kp«. For our G, (5.3) then tells us that (1.2) is true when A therein is replaced by A[ML].
G

Consequently, when all bad prime numbers for G are invertible in A, we have A[ML] = A and
G
AEG = AKG* .
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