
Classi�cation and Evaluation of the Algorithms for Vector

Bin Packing

Clément Mommessin
*

Thomas Erlebach
�

Natalia V. Shakhlevich
�

Abstract

Heuristics for Vector Bin Packing (VBP) play an important role in modern dis-
tributed computing systems and other applications aimed at optimizing the usage of
multidimensional resources. In this paper we perform a systematic classi�cation of
heuristics for VBP, with the focus on construction heuristics. We bring together exist-
ing VBP algorithms and their tuning parameters, and propose new algorithms and new
tuning parameters. For a less studied class of multi-bin algorithms, we explore their
properties analytically, considering monotonic and anomalous behavior and approx-
imation guarantees. For empirical evaluation, all algorithms are implemented as the
Vectorpack library and assessed through extensive experiments. Our �ndings may serve
as the basis for the development of more complex, hybrid algorithms, hyperheuristics
and machine learning algorithms. The Vectorpack library can also be adjusted for ad-
dressing enhanced VBP problems with additional features, which arise in applications,
especially those typical for modern distributed computing systems.

Keywords � Vector bin packing, bin packing, heuristics

1 Introduction

In the bin packing problem (BP), there are n items I = {1, 2, . . . , n} with given sizes si for
items i ∈ I, and a set of identical bins, each bin with capacity c. The items need to be
allocated to the minimum number of bins without exceeding the bin capacity c. We denote
by B the set of activated bins at some stage of an algorithm and in the �nal solution.

In the vector bin packing problem (VBP), sometimes called multi-capacity bin packing prob-

lem, each of the n items is characterized by a d-tuple of sizes sih, i ∈ I, 1 ≤ h ≤ d. The
bins are identical, with a given size ch for each dimension h, 1 ≤ h ≤ d.
Allocating a subset of items I ′ ⊆ I to one bin is feasible if∑

i∈I′
sih ≤ ch for each h = 1, . . . , d.

*IMT Atlantique, Nantes Université, École Centrale Nantes, CNRS, INRIA, LS2N, UMR 6004, F-44000
Nantes, France, and School of Computer Science, University of Leeds, UK

�Department of Computer Science, University of Durham, UK
�School of Computer Science, University of Leeds, UK

Corresponding author: N.Shakhlevich@leeds.ac.uk
Postal address: School of Computer Science, University of Leeds, LS2 9JT, UK

1

If a bin Bk is packed with a subset of items Ik ⊆ I, then its residual capacity is characterized
by d values

rkh = ch −
∑
i∈Ik

sih, 1 ≤ h ≤ d.

In what follows, we use the notations si = (si1, si2, . . . , sid) and rk = (rk1, rk2, . . . , rkd)
in bold font to denote the d-component vectors of item sizes and bin residual capacities.
During the course of an algorithm, we denote by I∗ ⊆ I the subset of unallocated items.

Allocating item i in addition to those already in the bin is feasible if

sih ≤ rkh for each h = 1, . . . , d. (1)

Without loss of generality, we assume that the bin sizes are normalized, so that

ch = 1, 1 ≤ h ≤ d. (2)

If an instance is given with ch 6= 1, then normalization is performed by setting ch = 1 and
replacing original values sih by sih/ch for all items i ∈ I and all dimensions h, 1 ≤ h ≤ d.
With normalized bin capacities, the simplest and most popular lower bound for the VBP
problem decomposes the d-dimensional problem into d one-dimensional subproblems. For
each subproblem corresponding to dimension h, the minimum number of bins is at least⌈∑

i∈I sih
⌉
. Therefore, the minimum number of bins for the main d-dimensional problem is

at least

LB = max
1≤h≤d

{⌈∑
i∈I

sih

⌉}
. (3)

For examples of advanced methods known for lower bound calculation, see Spieksma (1994),
Caprara and Toth (2001), Alves et al. (2014), Alves et al. (2016), Brandão and Pedroso
(2016), Gurski and Rehs (2020). Note that comparing the accuracy of lower bounds is
beyond the scope of our paper.

In the decision version of VBP, denoted by VBP(m), the number of bins m is given and
�xed, and the objective is to �nd a feasible allocation of n items into at most m bins, if one
exists. Note that the decision version of VBP coincides with the decision versions of the
following problems: vector scheduling (Chekuri and Khanna (2004)), d-constraint multiple

knapsack problem (Ahuja and Cunha (2005)), multiple multidimensional knapsack problem

(Cacchiani et al. (2022)), multidimensional bin packing to maximize the number of items

packed (Co�man et al. (2013)).

1.1 Literature review

In this paper we consider construction heuristics for VBP in the setting with arbitrary
dimension d: their general principles, implementation details, properties, and performance,
evaluated via experiments on several types of datasets. It complements the mainstream
research, which is mostly dominated by the approximability study and by the design of
enumerative algorithms and metaheuristics.

Summarizing approximability results we note that there are provable limitations on the
design of fast algorithms with guaranteed accuracy smaller than d; see the surveys by

2

Christensen et al. (2017), Csirik and Dósa (2018), Co�man et al. (2013), Epstein and van
Stee (2018). Considering exact methods, we refer to Delorme et al. (2016) and Bacldacci et
al. (2023) for the comparative analysis of state-of-the-art algorithms for the one-dimensional
case and to Pessoa et al. (2021) for both one- and multi-dimensional cases. Although major
progress has been recently achieved in the design of powerful solvers, computation time
is still quite high for di�cult one-dimensional instances with n ≤ 1000 and for multi-
dimensional instances with d ≤ 20 and n ≤ 200; the computation time in experiments is
usually limited to 1 hour, which is often unacceptable for real-world applications. Most of
the time, successful approaches, which compete very well in experiments and outperform
other approaches in terms of computation time and accuracy, are restricted to handling
2-dimensional problems only; see, e.g., Wei et al. (2020).

Considering metaheuristics, their comparison is performed mostly for the one-dimensional
case; see the survey by Munien et al. (2020). The comparison of several approaches for the
multi-dimensional case can be found in the recent paper by Nagel et al. (2023). Metaheuris-
tics are capable of �nding solutions of good quality, outperforming in some cases best-known
heuristics, but this is achieved at the cost of substantial computation time, up to 1 hour for
some methods.

To conclude our overview we cite Epstein and van Stee (2018) who observed that �after
many years of study, we still do not understand the multidimensional case as well as the one-
dimensional case�. While this observation is stated in relation to approximation algorithms,
it is generally true in relation to fast heuristics for VBP, the subject of our study. Note that
in the most recent handbook by Gonzalez (2018), which includes six surveys on packing
problems, only two surveys discuss practical packing algorithms (although geometric bin
packing is not very relevant for our study), while the remaining four surveys focus on
approximability results.

The number of publications which evaluate fast heuristics for VBP is relatively small and
quite often focuses on the two-dimensional case. The report by Panigrahy et al. (2011) has
been the main reference for researchers for more than 10 years. The need for an up-to-date
methodological paper on VBP heuristics has become particularly acute due to the growing
research in the context of distributed computing, where fast VBP algorithms are adapted
for solving enhanced problems with additional features typical for Grids and Clouds.

1.2 Contributions and paper outline

The main goal of our work is to systemize the collection of known VBP heuristics, to enrich
it with new approaches, and to compile a comprehensive list of algorithms' parameters. For
old and new methods, we study combinations of parameters not explored in prior research.
The parameters are special size measures for items and bins, as well as scores for item-bin
allocations, together with weights prioritizing the dimensions.

A high-level summary of the VBP heuristics and their complexity estimates is presented
in Fig. 1. The �rst approach, item-centric, stems from the classical algorithms originally
proposed in the context of one-dimensional BP. Item-centric algorithms consider items one-
by-one and �nd the �best� bin for a current item.

Bin-centric algorithms consider the bins one-by-one and �nd the �best� items to be allocated

3

to a current bin. In either case, a new bin is activated only if no further allocation can be
done with the current pool of activated bins - an important feature aimed at minimizing
the number of bins in use.

The two traditional classes of algorithms, item-centric and bin-centric, activate a new bin
only if an item cannot be allocated using activated bins. An alternative approach ismulti-bin

activation (MB). It solves a series of decision problems VBP(m), de�ned for di�erent target
numbers of bins m. The output is the smallest possible m for which a feasible solution is
found. For solving an individual problem VBP(m), we propose special adaptations of item-
centric algorithms and a new family of pairing algorithms. The latter consider all feasible
item-bin pairs when making allocation decisions.

The whole algorithmic toolkit for VBP is evaluated via computational experiments, provid-
ing guidelines for practitioners, with recommendations of the most appropriate algorithm
choice depending on the features of datasets.

Classi�cation and empirical analysis of the VBP algorithms may serve as the starting point
for the development of advanced algorithms: hybrid algorithms, hyperheuristics and ma-
chine learning algorithms for VBP. It can also be used for addressing enhanced problems
with additional features, which arise in applications, especially those typical for modern
distributed computing systems. Examples of such problems can be found in the papers
by Garefalakis et al. (2018), Cai et al. (2021) or Mommessin et al. (2023), which extend
the VBP problem with additional `a�nity' features, limited co-location of certain items to
one bin, or in the papers by Gabay and Zaourar (2016) and Jangiti et al. (2019a), with
non-identical bins.

The paper is organized as follows. We start with a summary of existing and new algorithms
for the item-centric and bin-centric approaches, presented in Sections 2 and 3. In Section 4,
we introduce expressions for weights used in heuristics for prioritizing the dimensions. The
new multi-bin approach is elaborated in Section 5. Overall, Sections 2-5 describe dozens
of algorithms and their variations, capable of producing di�erent solutions for the same
instance of the multidimensional VBP.

The new family of multi-bin activation algorithms is analyzed theoretically in Sections 6-7,
where we study the issues related to their monotonicity and anomalous behavior and discuss
their accuracy guarantees.

The whole range of the solution approaches is analyzed empirically using the existing and
new classes of benchmarks; see Section 8. Conclusions are presented in Section 9.

2 Item-centric approach

Algorithms for the BP problem have been under study since the early 1970s. Being a 1-
dimensional version of VBP, in the BP problem the items are prioritized according to their
sizes and partially loaded bins are prioritized according to their residual capacities.

A natural and widely explored approach is to replace an instance of the d-dimensional VBP
by an instance of the 1-dimensional BP and to apply the algorithms known in the BP
literature. This is done by aggregating the d-tuples for items' sizes and for bins' residual
capacities into single scalar measures: a combined size v(i) of item i ∈ I, and a combined

4

Figure 1: Heuristic Types for VBP

The list of items I in
The list of activated bins B in an arbitrary �xed order decreasing order of v(i)

an arbitrary �xed order First Fit (FF) First Fit Decreasing (FFD)
increasing order of v(Bk) Best Fit (BF) Best Fit Decreasing (BFD)
decreasing order of v(Bk) Worst Fit (WF) Worst Fit Decreasing (WFD)

Table 1: Ordering rules for Item-centric algorithms

residual capacity v(Bk) for an activated bin Bk ∈ B. There are multiple ways for computing
v(i) and v(Bk), as we discuss at the end of this section.

Any item-centric algorithm operates on an ordered list of items I and an ordered list of
activated bins B, where B initially consists of a single bin. The items are considered one by
one in accordance with their ordering in I. A current item is allocated to the �rst feasible
bin on the ordered list B, where feasibility is checked via (1), or a new bin is activated and
added at the end of list B, if no feasible allocation can be found. Since every allocation
changes the residual capacity of the bin used, the ordering of list B requires updating after
each packing of an item.

Typical priority rules for ordering I and B were originally formulated for one dimensional
BP and later on adopted for the multidimensional case of VBP, with scalars v(i) and v(Bk)
used as the size measures for items and bins. The summary of the item-centric algorithms
is presented in Table 1. Note that each algorithm from the table gives rise to multiple
versions, depending on the way the size measures v(i) and v(Bk) are computed.

In what follows we introduce the expressions for computing the size measures. Early exam-
ples of such measures can be found in the papers by Kou and Markowsky (1977), Maruyama
et al. (1977) and in the literature on the multidimensional knapsack problem (e.g., Kellerer
et al. (2004)). The most recent summary is provided by Panigrahy et al. (2011). The ex-
tended list of measures, which includes the latest �ndings from publications in Distributed

5

Measure type Combined size Combined residual
of item i ∈ I∗ capacity of bin Bk ∈ B

`∞-size v(i) = max
1≤h≤d

{whsih} v (Bk) = max
1≤h≤d

{whrkh}

`1-size v(i) =
d∑

h=1

whsih v (Bk) =
d∑

h=1

whrkh
forward
measures

`2-size v(i) =
d∑

h=1

wh(sih)2 v (Bk) =
d∑

h=1

wh(rkh)2

`2-size of bin load v(i) =
d∑

h=1

wh(sih)2 v (Bk) =
d∑

h=1

wh(1− rkh)2 reverse
measure

Table 2: Combined size measures of items and bins for Item-centric algorithms

Computing, is presented in Table 2.

The �rst three size measures are the `∞, `1 and `2 norms of the corresponding d-tuples.
The fourth size measure only di�ers from the third for the computation of the combined bin
residual capacity, which is based on the bin load vector, with components (1− rkh), instead
of the bin residual capacity vector, with components rkh. If an algorithm calls for creating
an ordered list of items and ordered list of bins, then the size measures v(i) and v(Bk) of
the same type are usually used. The partner measures are listed in one line of Table 2. For
simplicity, the square root is dropped from the expressions for the `2-size, as it has no e�ect
on the ordering of items and bins.

We distinguish between the forward and reverse size measures of bins. A forward size
measure is non-decreasing: if rk ≤ rj for the vectors of residual capacities of two bins Bk
and Bj , then v(Bk) ≤ v(Bj). The �rst three bin size measures in Table 2 satisfy this
property. A reverse size measure is non-inreasing. An example of such a measure is in the
last row of Table 2.

Note that the BF algorithm with the `2-size of bin residual capacity does not necessarily
produce the same solution as the WF algorithm with the `2-size of bin load. For example,
consider an instance where the �rst four items are of sizes (0.2, 0.9), (0.1, 0.8), (0.5, 0.6)
and (0.6, 0.4). For that instance any item-centric algorithm activates four bins, with one
item per bin. If we use BF with the `2-size of residual capacity, then v(B1) = 0.65, v(B2) =
0.85, v(B3) = 0.41, v(B4) = 0.52, and for allocating the next, �fth item, the bins are
considered in the order B3, B4, B1, B2. On the other hand, if we use WF with the `2-size of
bin load, then v(B1) = 0.85, v(B2) = 0.65, v(B3) = 0.61, v(B4) = 0.52, and for allocating
the next item the bins are considered in the order B1, B2, B3, B4.

All norms can be considered as unweighted, assuming wh = 1 for all 1 ≤ h ≤ d, or with
special non-negative weights de�ned for each dimension h. We give the formulae for wh in
Section 4.

We keep in Table 2 the most promising measures, as found in experiments. The `∞ and
`1-sizes are most popular and can be found in multiple sources; see, e.g., Caprara and Toth
(2001), Spieksma (1994). The `2-sizes were studied by Maruyama et al. (1977) (the �rst
version in Table 2) and Shi et al. (2013) (the version for bin load).

6

For completeness, we describe below the alternative formulae which appear to be less suc-
cessful in experiments:

� The Volume of items v(i) = Πd
h=1whsih and the unused volume of bins v(Bk) =

Πd
h=1whrkh, in their unweighted and weighted forms, were explored by Maruyama

et al. (1977) and later by Panigrahy et al. (2011). Note that if an item has size 0 in at
least one dimension, then the measure v(i) is 0, which leads to information loss while
comparing items.

� The Aggregated Rank was proposed by Jangiti et al. (2019b). It is de�ned as the sum
of rank-values of an item in every dimension, where for a given dimension, an item i
is given the rank u if it has the u-th smallest size in this dimension among all items.
The rank-values of bins are de�ned similarly, with respect to their residual capacities
in every dimension.

� There is no need for computing size measures if items and bins are ordered lexico-

graphically. Such an ordering may be useful in the presence of bottleneck dimensions.
The item-centric algorithms of this type were explored by Kou and Markowsky (1977)
and Stillwell et al. (2010).

A more complicated version of the item-centric approach is proposed by Spieksma (1994)
for the 2-dimensional case; see also Caprara and Toth (2001). Having found a �rst solution,
its part corresponding to �well-�lled� bins is kept, and an attempt is made to obtain a
better solution for the items from the remaining bins. The new, smaller problem is solved
by the same item-centric algorithm, but with modi�ed weights wh in the expressions for
the item and bin size-measures. Note that the `1-size measure is used by Spieksma (1994)
and Caprara and Toth (2001), while in fact the iterative heuristic can use any weighted size
measure from Table 2 in combination with any item-centric algorithm. The generalization
of that approach to the d-dimensional case with d > 2 is not trivial and beyond the scope
of our paper.

3 Bin-centric approach

Bin-centric algorithms pack bins one at a time. The unpacked items feasible for the current
bin are prioritized in accordance with a speci�ed policy, and they are assigned to the current
bin until no further items can be packed. After that a new bin is activated and the process
continues until all items are packed.

In the two simplest versions of the bin-centric approach, the items are prioritized either
according to their numbering or according to their size v(i), with the `largest item �rst'
rule. In the former case, the bin-centric algorithm produces the same solution as the item-
centric algorithm FF. In the latter case, the solution is the same as the one found by FFD.

Instead of considering item sizes in isolation, it can be preferable to take into account the
item sizes together with the free space in the current bin, and to estimate the appropriateness
of a candidate item to a bin. Table 3 presents various item-bin scores ξik, which measure
how well an unallocated item i ∈ I∗ �ts into a current bin Bk. The scores are computed
only for items which are feasible for bin Bk in terms of condition (1). The weights wh for

7

Score type Score formula with item i ∈ I∗, bin Bk ∈ B

Dot-Product 1 ξik =
d∑

h=1

whsihrkh

Dot-Product 2 ξik = 1
‖si‖2·‖rk‖2

d∑
h=1

whsihrkh

Dot-Product 3 ξik = 1

(‖rk‖2)
2

d∑
h=1

whsihrkh

Normalized Dot-Product ξik =
d∑

h=1

wh
sih
Dh
· rkhRh

(
Dh =

∑
i∈I

sih, Rh =
∑
Bk∈B

rkh

)†
`2-Norm of Slacks ξik = −

d∑
h=1

wh (rkh − sih)2

Tight Fill with Sum ξik =
d∑

h=1

wh
sih
rkh

Tight Fill with Min ξik = min
1≤h≤d

wh
sih
rkh

†The values Dh, 1 ≤ h ≤ d, are computed only once, considering the whole set of
items I, while the values Rh are recalculated dynamically each time the load of one of
the activated bins from B changes

Table 3: Bin-item scores for Bin-Centric algorithms

each dimension are de�ned in Section 4. The expressions for the scores are designed so
that the items which use the residual bin capacity to the highest extent receive the highest
scores. At each packing step, the bin-centric algorithm gives preference to the item which
delivers the largest score for the current bin.

For an item i and a bin Bk, the closeness between the vector of the item sizes si and the
vector of the bin residual capacities rk can be measured via the Dot-Product si ·rk of the two
vectors. The three dot-product scores in Table 3 di�er in scaling coe�cients. The �rst dot-
product score is a natural generalization of the dot-product formula which uses di�erent
weights wh for dimensions. It was proposed and evaluated in experiments by Panigrahy
et al. (2011). The other two dot-product scores were proposed by Gabay and Zaourar
(2016) to measure the angle between the two vectors (the lower the angle, the better), and
the projection of the item vector si to the free space vector rk (the larger the projection,
the better). Note that the di�erence in Dot-Product 1 and Dot-Product 3 scores has no
e�ect in a bin-centric algorithm since the scaling weight 1/ (‖rk‖2)

2 has a constant value
for the current bin. We keep the expression for Dot-Product 3 in the table since we reuse
the ξ-expressions in the MB-Pairing algorithm (Section 5), where the scores are computed
for all item-bin pairs.

The Normalized Dot-Product score can be considered as a slightly modi�ed version of the
Fitness score of Cai et al. (2021). In the expression, the item sizes sih are normalized by
Dh, the total demand of all items in dimension h, and the residual capacities rkh of the bins
are normalized by Rh, the total residual capacity of all bins in dimension h. While Dh is
treated as a constant computed once at the beginning of the algorithm, the values of Rh are
recalculated dynamically, each time an item is allocated to a bin and its residual capacity

8

Weights Static Dynamic Dynamic

Item-based Item-based Bin-based

Unit wh = 1 N/A N/A

Average wh = dh wh = d∗h wh = rh

Exponential wh = eεdh wh = eεd
∗
h wh = eεrh

Reciprocal Average wh = 1/dh wh = 1/d∗h wh = 1/rh

Utilization Ratio N/A wh = D∗h/Rh

Table 4: Weights wh for dimension h, 1 ≤ h ≤ d. For Exponential, a small constant ε is
selected for scaling

changes.

The `2-Norm of Slacks, also introduced by Panigrahy et al. (2011), measures the norm
of residual capacity that would be left in bin Bk if item i was allocated to it. The best
allocation corresponds to the smallest slack value. Since the bin-centric algorithm gives
preference to the highest score, the ξ-expression for the slack is set as negative.

We introduce in this work two new item-bin scores, denoted by Tight Fill, which measure
how well an item would use free space in a bin, if allocated. The ratios sih/rkh characterize
the �tness of item i for allocation to bin Bk with respect to dimension h. The �rst Tight
Fill expression is the weighted sum of the �tness values, while the second expression focuses
on the dimension with the smallest �tness value.

4 Prioritizing dimensions

The expressions for size measures v(i) and v(Bk) introduced in Section 2 and item-bin scores
ξik in Section 3 are presented in the most general form, possibly with di�erent weights wh
for dimensions h = 1, . . . , d. The expressions for wh, collected from multiple sources, are
summarized in Table 4. We do not report alternative de�nitions of wh that were found
unsuccessful in the existing body of research. In particular, the usage of the degree of

dominancy weight proposed by Maruyama et al. (1977) was not found superior to other
rules in the extensive experiments by Stillwell et al. (2010).

The expressions use the following characteristics of items and activated bins:

� dh = 1
|I|
∑
i∈I

sih, the average size (demand) of all items I in dimension h,

� D∗h =
∑
i∈I∗

sih and d∗h = 1
|I∗|

∑
i∈I∗

sih, the total and the average size (demand) of all

unallocated items I∗ ⊆ I in dimension h,

� Rh =
∑
Bk∈B

rkh and rh = 1
|B|

∑
Bk∈B

rkh, the total and the average residual capacity of all

activated bins B in dimension h.

The Unit weights are useful if all dimensions h, 1 ≤ h ≤ d, are of equal importance. They

9

were popular in early papers on VBP; see, e.g., Kou and Markowsky (1977), Maruyama
et al. (1977).

The Average weights, initially proposed by Caprara and Toth (2001) for the 2-dimensional
case, and Exponential weights, proposed by Panigrahy et al. (2011), are computed based on
the average demand dh of all items in dimension h or on average residual capacities of the
activated bins in dimension h.

The Reciprocal Average and Utilization Ratio weights were originally introduced by Gabay
and Zaourar (2016) for the purpose of solving VBP(m). The e�ect of using such weights is
similar to normalization of item sizes in each dimension. Note that a slightly modi�ed version
of the Reciprocal Average weight was used by Cai et al. (2021) for computing measures for
items and bins similar to our `1-size as de�ned in Section 2.

Each weight formula is de�ned in three variations, depending on whether the weights are
computed once, or updated dynamically and based on item or bin characteristics. Static
item-based weights are computed once, using the initial characteristics dh of the set of items
I. Dynamic item-based weighs are computed dynamically, every time a decision is made
to allocate an item to a bin. Therefore, their formulae depend on the subset of unallocated
items I∗ and (possibly) the subset of activated bins B. Dynamic bin-based weights take
into account activated bins only and they also require regular updates.

In the case of bin-centric algorithms, applying one of the expressions from Table 4 is straight-
forward: once the expression is selected, it is used consistently in all computations of
item-bin scores ξik. In the case of item-centric algorithms, di�erent approaches can be
adopted. One option is to select a single expression from Table 4 for computing the weights
(w1, w2, . . . , wd) and to use the common d-tuple of weights for �nding item sizes v(i) and
bin sizes v(Bk). Another option is to use one w-expression of type `static item-based' or
`dynamic item-based' for �nding item sizes v(i) and another w-expression of type `dynamic
bin-based' for �nding bin sizes v(Bk); see Section 8 for further details.

Overall the weight formulae presented in Table 4 are rather general and can be easily tuned
or replaced by other formulae, with wh ≥ 0. For example, in the presence of a bottleneck
dimension h′ it is reasonable to keep wh′ = 1 and to eliminate the remaining dimensions
from consideration by setting wh = 0 for h 6= h′. Note also that when the sum of item
sizes is equal in every dimension, then all static item-based weights are similar to the Unit
weights.

In the course of an algorithm, it may happen that the total size of remaining items in a
dimension h equals 0 or, possibly, the total residual capacity of the bins in the dimension
equals 0. In such a case, dimension h is deactivated by setting wh = 0. This way we avoid
numerical issues (division by 0) when computing the Reciprocal Average and Utilization
Ratio weights, as well as the item-bin scores of certain type, namely the Normalized Dot-
Product and Tight Fill.

5 Multi-bin activation approach

In this section we propose an approach that overcomes the myopic nature of item-centric
and bin-centric heuristics: instead of activating one bin at a time only when it is necessary, it
activates multiple bins at the start and makes decisions on the items' allocation considering

10

the whole pool of bins. Since the minimum number of bins is not known in advance, the
multi-bin (MB) algorithm solves a series of problems VBP(m), with a trial parameter m for
the number of bins in use. Depending on the outcome of solving VBP(m), the MB approach
stops and outputs the current feasible solution, or attempts to �nd a solution to VBP(m′)
with a di�erent input m′.

Compared to item-centric and bin-centric approaches, MB approach has more freedom in
decision making. This comes at the cost of increased running time since VBP(m) has to
be solved multiple times with di�erent trial values of m; see Fig. 1 for algorithm types and
complexity estimates.

The two key ingredients of an MB algorithm are the bin activation strategy to select the
trial values m, and an algorithm for solving VBP(m).

We use notation A(m) for a single call of an algorithm A that solves the VBP(m) problem,
and MB-A for multiple calls of A(m) with di�erent values of m, organized via a speci�ed
bin activation strategy.

5.1 Bin activation strategies

The simplest approach is incremental. It starts with a lower bound m on the number of
bins and solves a series of problems VBP(m), VBP(m+ 1), VBP(m+ 2), . . . , terminating
the �rst time when VBP(m + k) turns out to be solvable. The search can be sped up by
using a batched bin activation approach, incrementing m in larger steps.

Another approach is to use binary search over a series of trial m-values, with m ∈
{m, . . . ,m}, where m is the lower bound, as before, and m is an upper bound found by one
of the item-centric or bin-centric approaches.

The usage of the batched or binary search strategy is justi�able if an algorithm for solving
VBP(m) is monotonic; see Section 6 for de�nitions and monotonicity results.

5.2 Algorithms for solving VBP(m)

Any of the item-centric or bin-centric algorithms discussed in Sections 2-3 can be adapted
for VBP(m) by introducing an initial step: activatingm bins B = {B1, . . . , Bm} at the start.
An adaptation of an item-centric algorithm for VBP(m) considers a current item i and
selects one of the bins from the whole set B according to the rules from Table 1. For the
algorithm notation we use the same name as in Section 2, adding parameterm in parentheses
to highlight the main feature of the multi-bin approach (e.g., WFD(m)).

An adaptation of a bin-centric algorithm for VBP(m) computes item-bin scores ξik for all
unallocated items and the bins of the set B that can �t them, and selects a highest score pair
for the next allocation. Recall that the scores are de�ned in Table 3. We call the resulting
algorithms Pairing(m). Due to the large number of pairs to be explored, Pairing(m) is
more demanding in terms of computation time compared to the item-centric adaptation;
see Fig. 1 for algorithm types and complexity estimates.

Some versions of the adapted algorithms can be excluded from consideration since they
produce exactly the same solution as their counterparts with bins activated one-by-one.

11

Those which perform di�erently are listed in the next statement.

Statement 1. The following algorithms with m pre-activated bins produce (possibly) di�er-

ent solutions compared to those they produce in the traditional scenario, with bins activated

one-by-one:

� WF(m) and WFD(m) with a forward size measure (`∞, `1 and `2-sizes of residual

capacity);

BF(m) and BFD(m) with a reverse size measure (`2-size of bin load);

� Pairing(m) with ξ-scores computed as Dot-Product 1-3 and Normalized Dot-Product,

assuming the weights wh are non-negative, 1 ≤ h ≤ d.

Proof. Consider the �rst part of the statement, namely the item-centric algorithms WF(m)
and WFD(m) with a forward size measure. They prioritize the selection of the bin with the
largest residual capacity, measured as v(Bk), to pack an item. This way, they attempt to
achieve a balanced load over all m bins at every step, performing di�erently if compared to
WF and WFD applied in a scenario with bins activated one-by-one. The same is true for
BF(m) and BFD(m) with a reverse bin size measure.

The alternative item-centric algorithms, FF(m), FFD(m) (with any bin size measure),
WF(m) and WFD(m) with a reverse bin size measure, and BF(m) and BFD(m) with a
forward bin size measure, place a current item into an empty bin Bk only if that item does
not �t into any of the partially loaded bins B1, . . . , Bk−1. The resulting solution is the
same as the one found by one of the item-centric algorithms applied in a scenario with bins
activated one-by-one.

To prove the second part of the statement, we �rst show that the following algorithms
should be excluded from consideration:

� Pairing(m) with `2-Norm of Slacks score,

� Pairing(m) with Tight Fill with Sum score,

� Pairing(m) with Tight Fill with Min score.

Consider Pairing(m) with the `2-Norm of Slacks score. Let i be an item of size
(si1, si2, . . . , sid), Bk be a non-empty bin with residual capacity (rk1, rk2, . . . , rkd) and Bq
be an empty bin with residual capacity (1, 1, . . . , 1). We assume that item i �ts in bin Bk,
i.e.,

sih ≤ rkh ≤ 1 for all h = 1, . . . , d.

Then the scores for allocating i to Bk and Bq are

ξik = −
d∑

h=1

wh(rkh − sih)2 and ξiq = −
d∑

h=1

wh(1− sih)2, (4)

so that
ξik ≥ ξiq,

12

provided wh ≥ 0, 1 ≤ h ≤ d. Therefore, Pairing(m) uses an empty bin only if no item �ts
any of the partially loaded bins.

The proofs for the scores Tight Fill with Sum and Tight Fill with Min are similar. We just
need to replace expressions (4) by

ξik =
d∑

h=1

wh
sih
rkh

and ξiq =
d∑

h=1

whsih,

or by

ξik = min
1≤h≤d

wh
sih
rkh

and ξiq = min
1≤h≤d

whsih.

To illustrate that Pairing(m) algorithms with the scores listed in the second part of the
statement can produce di�erent solutions in the multi-bin scenario and in the scenario
with bins activated one-by-one, consider the following example with two dimensions and
unit weights. There are m = 2 bins and n = 2 items with sizes (0.3, 0.01) and (0.2, 0.01).
Both items �t into a single bin. However, in the cases of Dot-Product 1, Dot-Product 3
and Normalized Dot-Product, Pairing(2) places the �rst item into one bin and the
second item into another bin. In the case of Dot-Product 2, Pairing(2) selects initially
the second item and places it into one bin and then it places the �rst item into another bin.

Note that algorithms WF and WFD are not quite popular in the bin packing literature. A
rare exception is the application of WFD(m) as part of the MB approach for the version of
the one-dimensional BP problem with an additional constraint on the number of items per
bin. Proposed and analyzed by Krause et al. (1975), the algorithm was later cited under the
name Iterated Lowest Fit Decreasing ; see Co�man et al. (1984). In this work, we produce
complementary results on non-monotonicity of WF(m) and WFD(m); see Section 6.

The domain where WF(m) and WFD(m) are popular and recognized as successful ap-
proaches is scheduling, namely, the problem of allocating n jobs to m parallel identical
machines in order to minimize the makespan. The one-dimensional versions of WF(m) and
WFD(m) can be seen as the List Scheduling algorithm and the Longest Processing Time

(LPT) algorithm, both analyzed by Graham (1969). Note that LPT is one of the most
popular algorithms used by practitioners.

Finally, although FFD(m) is not useful as part of the MB approach for solving VBP accord-
ing to Statement 1, it plays the key role in solving the parallel machine scheduling problem
as part of the famous Multi�t algorithm proposed by Co�man et al. (1978) for solving the
makespan minimization problem onm parallel machines. Multi�t uses binary search, calling
algorithm FFD(m,C) for a series of trial values of the makespan C, where C corresponds
to the bin capacity in the BP interpretation. Algorithm FFD(m,C) is non-monotonic with
respect to C, as shown by Co�man et al. (1978): it can �nd a feasible solution for some C
but fails for a larger value of C. Contrarily, in the BP context, FFD(m,C) is monotonic
with respect to m: if the algorithm succeeds to solve VBP(m) for some m, then it uses the
same number of bins even if more than m bins have been activated initially, providing a
solution for VBP(m+ 1).

13

6 Monotonic and anomalous behavior of the algorithms for
BP(m) and VBP(m)

Problems BP(m) and VBP(m) are de�ned with parameter m for a given number of pre-
activated bins. As established in Section 5.2, only some algorithms bene�t from preacti-
vating multiple bins, namely, WF(m), WFD(m), BF(m), BFD(m) and Pairing(m), with
appropriately chosen size measures and scores; see Statement 1. In this section, we study
whether the listed algorithms have monotonic behavior or exhibit anomalies when the num-
ber of activated bins m changes. We de�ne the terms monotonicity and anomaly in De�ni-
tion 2.

Note that the known results in the literature on non-monotonic behavior of the bin-packing
heuristics are related to the item-centric applications in the one-dimensional case. In par-
ticular, each of the algorithms BF, BFD, FF, FFD, WF and WFD may use fewer bins when
applied to a dominating instance compared to the application of the same algorithm to an
instance which is smaller in the sense of the number of items and/or their sizes; see, e.g.,
Murgolo (1988) for a summary of the results.

For the multi-bin approaches we consider, there arem preactivated bins, a given set of items
to pack and algorithm A(m) for solving VBP(m). We declare that A(m) succeeds if it �nds
a feasible allocation of the items to m bins and fails if it cannot �nd a feasible allocation.

De�nition 2. Algorithm A(m) is monotonic if for any instance and any positive integers

m′ and k,

(i) whenever A(m′) succeeds, A(m′ + k) succeeds as well,

(ii) whenever A(m′) fails, A(m′ − k) fails as well (here m′ > k).

Algorithm A(m) is anomalous if there exists an instance such that A(m′) succeeds for some

m′ > 0, but A(m′ + k) fails.

Let m∗ be the smallest number of bins m, for which an algorithm employed for solving
VBP(m) �nds a feasible solution. If the algorithm is monotonic, then the binary search bin
activation strategy is guaranteed to �nd m∗, and the batched strategy is guaranteed to �nd
m∗ within a given accuracy bound. If an algorithm is anomalous or its monotonicity is not
established, then the incremental bin activation strategy should be used for �nding m∗.

It appears that the behavior of multi-bin activation algorithms depends essentially on the
dimension of an instance. Our two main results are formulated as Theorems 3 and 4,
and they are proved in Appendices A and B, respectively. In these theorems, we consider
only the algorithms listed in Statement 1, excluding from consideration those which do not
bene�t from multiple bin preactivation.

Theorem 3. In the one-dimensional case, the following algorithms are monotonic:

� WF(m) and WFD(m) with `∞, `1 and `2 size measures of residual capacity;

BF(m) and BFD(m) with the `2 size measure of bin load,

� Pairing(m) with ξ-scores computed as Dot-Product 1-3 and Normalized Dot-Product,

assuming the weights wh are non-negative, 1 ≤ h ≤ d.

14

Theorem 4 establishes that the majority of the listed algorithms are non-monotonic in the
multidimensional case, in contrast to their monotonic behavior in the one-dimensional case.
We assume that the size measures are static. We believe that the presented results also hold
for dynamic weights, but we do not have formal proofs for that.

Theorem 4. Algorithms WF(m), WFD(m) with the (static) `1, `2 and `∞ size measures,

and BF(m), BFD(m) with the (static) `2 size measure of bin load are non-monotonic if

d ≥ 2.
Algorithm Pairing(m) with the scores computed as Dot-Product 1 (with static weights) is

non-monotonic. The same is true for the static version of the Normalized Dot-Product

scores.

We leave the question about (non)monotonicity of Pairing(m) with the scores computed as
Dot-Product 2 or 3 as open. Note that in our computational experiments performed on
a broad variety of instances we have not observed non-monotonic behavior of Pairing(m)
with Dot-Product 2 and Dot-Product 3 scores, while there have been rare cases of non-
monotonic behavior of Pairing(m) with Dot-Product 1 score. The details of our experiments
are discussed in Section 8.

7 Theoretical analysis of the multi-bin activation algorithm

In this section we estimate the accuracy of the multi-bin activation algorithm, if it uses
WF(m) or WFD(m). We are interested in �nding out whether there exists a factor ρ(d)
such that algorithms WF(m) and WFD(m) are guaranteed to successfully pack all items
when m ≥ ρ(d) · OPT , where OPT is the minimum number of bins for a given instance,
and ρ(d) may depend only on the dimension, but not on the number n of items. We show
that for WF(m) no factor ρ(d) exists, while for WFD(m)

d/2 ≤ ρ(d) ≤ 2d, (5)

assuming a forward bin capacity measure is used and all dimensions have weights wh = 1,
h = 1, . . . , d.

Theorem 5. Assume that WF(m) uses a forward bin capacity measure. For d ≥ 1, there
is no factor ρ(d) (which may depend only on the dimension, but not on the number n of

items) such that WF(m) is guaranteed to successfully pack all items when m ≥ ρ(d) ·OPT .

Proof. Assume for a contradiction that there is such a factor ρ(d). Consider any K > 1 and
the following list of items: (ρ(d) ·K) tiny items of size sih = 1/(ρ(d) ·K) in each dimension
h = 1, . . . , d, followed by (K − 1) large items of size sih = 1 in each dimension. Observe
that OPT = K as all tiny items �t into one bin and there are K − 1 large items.

Run WF(m) for m = ρ(d) ·OPT = ρ(d) ·K. The algorithm packs one tiny item into each
of the m bins and then it fails to pack any of the large items. This is a contradiction to the
assumption that WF(m) successfully packs all items into m = ρ(d) ·OPT bins.

Consider now WFD(m). For norms `1 and `2 the algorithm always gives preference to an
empty bin, if one exists. For norm `∞ an algorithm may wrongly select a non�empty bin
Bk if its residual capacity computed as `∞-norm is 1. This happens if the total size of all

15

allocated items in one dimension is 0. Therefore, we assume the tie-breaking rule for the
`∞ size measure which always selects an empty bin if one exists.

Theorem 6. Assume that WFD(m) uses a forward bin capacity measure and all dimensions

have unit weights (wh = 1, h = 1, . . . , n). If m ≥ 2d · OPT , then WFD(m) successfully

packs all items.

Proof. Let v(i) denote the combined size of item i computed as `1-, `∞- or `2-norm; see
Table 2. For a bin Bk that already contains a set of items Ik, de�ne the total load of the
bin as

λ1(Bk) =
d∑

h=1

∑
i∈Ik

sih for `1−norm,

λ∞(Bk) = max
1≤h≤d

{ ∑
i∈Ik

sih

}
for `∞−norm,

λ2(Bk) =
d∑

h=1

(∑
i∈Ik

sih

)2

for `2−norm.

Note that

λ1(Bk) ≥ λ∞(Bk), (6)

λ1(Bk) ≥ (λ2(Bk))
1/2 . (7)

In the proof we use the following estimate on the optimal number of bins OPT :

OPT ≥ 1

d

d∑
h=1

∑
i∈I

sih, (8)

which follows from (3).

Assume for a contradiction that there is an input for which WFD(m) cannot successfully
pack all items into m bins for some m ≥ 2d · OPT . Let i be the �rst item that WFD(m)
cannot pack. We distinguish between two cases, depending on the size of item i.

Case 1: item i is `large', which is de�ned as v(i) ≥ 1
2 for norms `1 and `∞, and v(i) ≥ 1

4
for norm `2. Then each of the m bins already contains at least one item j with v(j) ≥ v(i)
(because j was packed before i).

Norm `1. For any bin Bk, 1 ≤ k ≤ m,

λ1(Bk) ≥
1

2
. (9)

Therefore, the combined `1-size of all items is no less than the combined size of all
packed items over all m bins plus the `1-size of item i, so that

d∑
h=1

∑
i∈I

sih ≥ m ·
1

2
+ v(i) > m · 1

2
.

By (8), we get OPT > m/(2d), a contradiction to m ≥ 2d ·OPT .

16

Norm `∞. For any bin Bk, 1 ≤ k ≤ m,

λ∞(Bk) ≥
1

2
,

which by (6) implies (9). The remaining part of the proof is the same as that for norm
`1.

Norm `2. For any bin Bk, 1 ≤ k ≤ m,

λ2(Bk) ≥
1

4
,

which by (7) implies (9). Again, the remaining part of the proof is the same as that
for norm `1.

Case 2: item i is `small', which is de�ned as v(i) < 1
2 for norms `1 and `∞, and v(i) < 1

4
for norm `∞. This means that, for any norm, sih <

1
2 for all h, 1 ≤ h ≤ d. As i does not

�t into any of the m bins, each of the m bins must have a load greater than 1
2 in at least

one dimension, and hence
d∑

h=1

∑
i∈Ik

sih ≥ 1
2 , or, equivalently, (9) holds for each bin Bk. The

remaining part of the proof is the same as that for Case 1.

An algorithm for VBP has approximation ratio ρ if it uses at most ρ · OPT bins on any
VBP instance, where OPT denotes the optimal number of bins for that instance. It has
asymptotic approximation ratio ρ if it uses at most ρ · OPT + c bins for some constant c
that is independent of the instance.

Corollary 7. The multi-bin algorithm that uses WFD(m) with binary search over m has

approximation ratio of at most 2d. This holds for `1, `2 and `∞ size measures.

Proof. As WFD(m) will pack the items successfully for all m ≥ 2d ·OPT , the binary search
is guaranteed to terminate with a value of m that is at most 2d ·OPT .

Example 1. We show that d
2 ·OPT bins are not always su�cient for WFD(m) to be able

to pack all items. We give an example for d = 2, but generalizing it to larger values
of d is straightforward. The example works for `1, `2 and `∞ size measures. Consider
the following set of items:

� (1, 0) (`1-size 1, `∞-size 1, `2-size 1)

� (0, 1) (`1-size 1, `∞-size 1, `2-size 1)

� (ε, ε) (`1-size 2ε, `∞-size ε, `2-size 2ε2)

These items can be packed into 2 bins: the �rst two items can be packed together into
bin 1, and the last item into bin 2. Hence, OPT = 2.

WFD(2) starts by packing the �rst two items into two separate bins and then it fails
to pack the last item. Therefore d

2 ·OPT = 2 bins are not su�cient.

The upper bound of 2d · OPT bins and the lower bound of d2 · OPT bins are a factor of 4
apart. We leave as an open question whether both the lower and the upper bounds can be
improved.

17

8 Computational Experiments

In the previous sections we described the main three classes of heuristics for VBP: item-
centric, bin-centric and multi-bin activation. In this section we analyze their performance
empirically.

Note that analytical results are available mostly for the one-dimensional case: for item-
centric and bin-centric approaches asymptotic approximation ratios are 11/9 for BFD and
FFD (Co�man et al. (2013)), and approximation ratios are 1.7 for BF and FF (Dosa and
Sgall (2013), Dosa and Sgall (2014)). For the d-dimensional case, asymptotic approximation
ratios are known only for FF and FFD, namely, d+0.7 and d+1/3 (see Garey et al. (1976)),
and also for several special algorithms, which are not closely related to item-centric and
bin-centric approaches (see the survey paper by Christensen et al. (2017)). Recall that in
Section 7 it is shown that the mutli-bin activation approach has an approximation ratio of
at most 2d.

The VBP algorithms discussed in this paper are implemented as a C++ library called
Vectorpack. It contains all versions of the item-centric, bin-centric and multi-bin approaches.
Taking into account di�erent size measures of items and bins, scores for item-bin pairs and
expressions for dimension weights, there are, in total, 351 algorithms and their variations
in Vectorpack : 209 item-centric, 66 bin-centric and 76 multi-bin activation algorithms. The
library is publicly available on GitHub1 under the LGPL-3.0 license and it is open for further
extensions. All experimental data, including benchmark generation scripts, the summaries
of the results and illustrative �gures, are available in a companion repository on GitHub2.
The total number of instances tested is 2,940.

8.1 Benchmark Instances

In our computational experiments we use 3 types of benchmark instances, which we denote
as Panigrahy, Triplet and New. Recall that the algorithms in the previous sections are
presented for the bins of unit capacities in all dimensions and item sizes normalized in [0, 1].
The instances used in experiments follow the setups from the original papers where they
were introduced. While we observe those setups, the data are then normalized in order to
apply the algorithms with size-measures and item-bin scores speci�ed in Tables 2�3.

The benchmark set Panigrahy consists of 9 classes of instances, proposed by Panigrahy
et al. (2011) as an extension of well-known classes of one-dimensional instances introduced
by Caprara and Toth (2001). Following the same setup, we generated 10 instances for each
class and each combination of the parameters d and n, with the number of dimensions
d ∈ {3, 5, 10} and the number of items n ∈ {20, 40, 60, 120, 250, 500}. In total, there are
10× 9× 3× 6 = 1620 instances of the Panigrahy type.

The benchmark set Triplet includes instances with `triplets' of items, where each triplet
perfectly �lls up a bin. We perform experiments with 2 classes of Triplet instances: the
�rst class is generated following the original procedure described by Falkenauer (1996),
while the second class is generated following the procedure described by Caprara and Toth
(2001) for their Class 10. We generated 10 instances for each class and each combination of

1https://github.com/Vectorpack/Vectorpack_cpp
2https://github.com/Vectorpack/experiments_vector_paper

18

d ∈ {3, 5, 10} and n ∈ {60, 120, 249, 501}. In total, there are 10× 2× 3× 4 = 240 instances
of the Triplet type.

The benchmark set New consists of 6 newly introduced classes of instances: Class 1 is
characterized by item sizes which are less uniform and more heterogeneous compared to the
Panigrahy and Triplet benchmarks; Classes 2 and 3 have small-size items and Classes 4, 5
and 6 consist of items of mixed sizes. In all instances of the New set, the bin capacity is set
to 100 for each dimension.

All instances in New Class 1 contain d groups of items. The items in group h have large
sizes in dimension h (1 ≤ h ≤ d) and small sizes in all other dimensions. There are n/d
items in each group, except for the last one, which may have additionally n mod d items, if
n is not divisible by d. The item sizes are randomly picked following a uniform distribution
in the range [50, 100] for a large size, and in the range [0, 25] for a small size.

The instances of New Classes 2 and 3 contain items that are small in every dimension.
Item sizes of Class 2 are randomly selected following the normal distribution with the mean
µ = 20 and standard deviation σ = 10. Item sizes of Class 3 follow the same distribution
with µ = 30 and σ = 15.

The instances of New Classes 4, 5 and 6 contain items of two types: items that are large in
every dimension and items that are small in every dimension. The number of large items in
each instance is randomly chosen from {0, 1, . . . , n} following the normal distribution with
parameters µ = n/10 and σ = 1

2

√
n. The sizes of large and small items in each dimension

are randomly selected following the normal distribution with di�erent parameters, speci�c
for each class: for Class 4, µlarge = 70, µsmall = 30, σ = 15; for Class 5, µlarge = 80,
µsmall = 20, σ = 10; for Class 6, µlarge = 70, µsmall = 15, σ = 10.

We generated 10 instances for each class of the New type and each combination of d ∈
{3, 5, 10} and n ∈ {20, 40, 60, 120, 250, 500}, so that, in total, there are 10×6×3×6 = 1080
instances.

8.2 Evaluation methodology and metrics

We run each of the 351 versions of the VBP algorithms on every instance of the three
benchmarks and, for each combination of algorithm and instance, we store the number of
bins of the solution found and the time taken to �nd the solution. The experiments are
performed on a single core of a machine equipped with one Intel Xeon Gold 6138 CPU
having 8 cores, with 16GB of memory per core.

To evaluate the performance of the algorithms, we use a primary metric % de�ned as the
average percentage error of the solution found relative to the optimal solution, when known,
or to the lower bound. A summary of available optimal solutions is presented in Appendix C.
Lower bounds are found as the maximum of the trivial lower bound computed by (3) and
a clique-based lower bound by Gurski and Rehs (2020). For the latter, we use the heuristic
max-clique algorithm by Johnson (1974) applied to the graph de�ned by Gurski and Rehs
(2020).

As a secondary metric, we compare the computation times of the algorithms.

19

8.3 Algorithm naming

The names of item-centric algorithms combine the heuristic name from Table 1: FF, FFD,
BF, BFD, WF, WFD, and the metric name of the size measure from Table 2: Linf, L1,
L2 and L2Load. Recall that the same type of metric is used for both, item sizes v(i) and
residual capacities of the bins v(Bk), if using algorithms BF, BFD, WF, WFD.

The names of bin-centric algorithms have pre�x BC followed by the score type from Table 3:
DP1, DP2 and DP3 for Dot-Product 1, 2 and 3, NormDP for Normalized Dot-Product,
L2Slacks for `2 Norm of Slacks, TFSum for Tight Fill with Sum, and TFMin for Tight Fill
with Min.

The names of the multi-bin activation algorithms start with MB-WFD, MB-BFD or MB-
Pairing, followed by the algorithm speci�cs: the size measure (for MB-WFD and MB-BFD)
or the score formula (for MB-Pairing).

Each algorithm name has an ending indicating the weights for dimensions, as de�ned in
Table 4: Unit, Avg, Expo, RecipAvg and UtilRatio. By default, the static item-based
weight formulae from Table 4 (�rst column) are used. Additional su�xes `-Dyn' and `-Bin'
indicate dynamic item-based (second column) and bin-based versions (third column) of the
weight formulae. Note that the bin-based weights are used only in conjunction with the BC
and MB-Pairing algorithms.

In addition, special notations are added to algorithms BFD and WFD to specify which
types of weights for dimensions are used. Type `T1' indicates that the same item-based
weights are used for ordering items and bins (�rst or second column of Table 4). Type `T2'
indicates that item-based weights are used for items (�rst or second column) and bin-based
weights are used for bins (third column), with both expressions taken from the same row
of Table 4. Type `T3' indicates a scenario similar to `T2', but with the two expressions
taken from di�erent rows of Table 4. For example, algorithm `WFD-T3-Linf-Avg-Dyn-
RecipAvg' denotes the version of WFD of type T3, in which item sizes v(i) are computed as
the `∞ size measure with Average dimension weights wh = d∗h updated dynamically, while
residual bin capacities v(Bk) are computed as the `∞ size measure with Reciprocal Average
weights wh = 1/rh. Algorithms MB-WFD and MB-BFD are based on their item-centric
counterparts but only for the type `T1' weights, and thus we omit the `T1' in their name.

8.4 Analysis of computational results

8.4.1 Preliminary notes

In our experiments, we observed that the item-centric algorithms BF and WF were often
outperformed by a simpler and faster algorithm FF, regardless of the measure or weights
formulae used. However, in a small proportion of instances (less than 100 instances out
of the 2,940), some BF and WF versions found better solutions not only in comparison
with FF, but even in comparison with the usually best performing algorithms BC-DP1 and
MB-Pairing-DP3. Since superior performance of BF and WF is rather rare, we do not show
their results in the summary diagrams presented in this section.

We eliminate from our analysis the multi-bin activation algorithms which use the incremen-

tal or batched bin activation strategies: the incremental method leads to extensive compu-

20

tation times, while the batched method is hard for tuning when choosing the increments
in m-values. In the summary diagrams we only keep multi-bin algorithms in combination
with the binary search strategy. In spite of the potential anomalies of WFD(m), BFD(m)
and Pairing(m) discussed in Section 6, the actual performance of these algorithms combined
with binary search is often fairly good.

Generally speaking, for each family of algorithms, there is no algorithm consistently outper-
forming the others. Moreover, the best performing algorithms vary for di�erent classes of
the three types of benchmarks. Looking for consistency in algorithms' behavior, we selected
4 representative classes. Instances of Panigrahy Class 5 typically have solutions with 14
items per bin on average, with item sizes between 25 and 100 and a bin capacity of 1, 000 in
every dimension. Instances of Panigrahy Class 8 are characterized by negative correlation
of item sizes in every two consecutive dimensions, and solutions contain 2 items per bin on
average. Instances of New Class 5 have about 10% of large items and 90% of small items,
and solutions contain 3 items per bin on average. The last class of benchmarks we selected
is the well-known class of Triplets constructed by Falkenauer's generation procedure: for
any instance, an optimum solution is characterized by triplets of items which perfectly �t a
bin without any gaps. We denote that class as Triplets Class F. Note that an optimal bin
number is known for any Triplet instance (it is equal to the lower bound (3)). Contrarily,
for the instances of Panigrahy Class 5 and New Class 5 optimal solutions are known only
for small size instances; see Appendix B.

In the following, we present the results for the 4 selected classes of instances. For complete-
ness, we keep the summary �gures for other classes of instances in the companion GitHub
repository3.

8.4.2 Comparing heuristics with Unit weights

When all dimensions have unit weights, we are left with the 26 algorithms, which we group
into `families' as follows:

Item-Centric

(a) FF (used as a reference to what is achievable by the fastest and simplest method);

(b) FFD, with 3 expressions for v(i) from Table 2;

(c) BFD, with 4 pairs of expressions for v(i) and v(Bk) from Table 2;

(d) WFD, also with 4 pairs of expressions for v(i) and v(Bk);

Bin-Centric

(e) 6 versions, with scores ξik de�ned in Table 3, with the exception of DP3, which in the
case of unit weights reduces to DP1;

Multi-Bin Activation

(f) MB-Pairing, with 4 scores ξik, namely DP1, DP2, DP3 and NormDP (the remaining 3
scores from Table 3 are excluded from consideration by Statement 1);

3https://github.com/Vectorpack/experiments_vector_paper

21

(g) MB-WFD, with 3 pairs of expressions for v(i) and v(Bk) from Table 2, namely Linf,
L1 and L2 (the pair of expressions from the last row of Table 2 is excluded from
consideration by Statement 1), and also MB-BFD, with L2Load size measure for v(i)
and v(Bk) (with remaining pairs of expressions excluded by the same statement).

Figures 2-3 show the average percentage error % of the algorithms as a function of the
number of items n. For readability of the �gures, each family of algorithms is represented
by the best performing algorithm. Interestingly, best performing algorithms of types FFD,
BFD and WFD produce very similar results and they are often represented by the same
plot in the �gures.

For instances of Panigrahy Class 5 (Figure 2(a)), the best multi-bin activation algorithm
(MB-Pairing-NormDP-Unit) and the best bin-centric algorithm (BC-L2Slacks-Unit) out-
perform other algorithms. Their average %-values, taken over all instances with di�erent d
and n, are % = 2.8 and % = 2.9, respectively. The next successful algorithm is from the
remaining multi-bin activation family (MB-WFD-L2-Unit), with % = 5.5. The best item-
centric algorithms conclude the list, with FFD-L2-Unit, BFD-T1-L2Load-Unit and WFD-
T1-L2Load-Unit, all having % = 5.9. Interestingly, the simplest item-centric algorithm FF
performs quite similarly compared to more sophisticated item-centric algorithms.

For instances of Panigrahy Class 8 (Figure 2(b)), the best multi-bin activation algorithm
(MB-WFD-Linf-Unit) achieves a slightly better accuracy compared to best item-centric
algorithm, with % = 1.5. The remaining item-centric algorithms consistently demonstrate
slightly larger %, but still they outperform the multi-bin activation algorithms of type MB-
Pairing (with % = 3.2 for MB-Pairing-DP3-Unit) and the family of bin-centric algorithms
(with % = 3.6 for BC-DP1-Unit). FF consistently demonstrates a worse performance.

For instances of New Class 5 (Figure 3(a)), the best algorithms in each family perform
similarly, with a slight advantage for the bin-centric and MB-Pairing families. Again, FF
consistently demonstrates a worse performance. Contrary to the two previous classes, the
%-values for New Class 5 signi�cantly depend on the number of dimensions d. Speci�cally,
considering best performing algorithms in each family, % ∈ [6.5, 7.4] when d = 3, % ∈
[10.8, 11.6] when d = 5, and % ∈ [17, 17.6] when d = 10.

Finally, for instances of Triplet Class F (Figure 3(b)), almost all algorithms perform similarly
with % = 17.8, except for one outlier � MB-Pairing-DP1-Unit. It achieves a lower average
error % = 11.7 when d = 3 and a larger average error % = 22.5 when d = 10.

Regarding algorithms' running times, the item-centric algorithms are the fastest, followed
by the bin-centric algorithms: FF and FFD families of algorithms are able to solve the
largest instances in less than 7 ms, BFD and WFD families need at most 15 ms, while the
bin-centric algorithms require up to 56 ms. For the multi-bin activation algorithms, the
family of MB-WFD and MB-BFD solves the largest instances in less than 105 ms. The
running times of the MB-Pairing algorithms are much larger: 12, 000 ms on average and up
to 32, 000 ms for the largest instances.

8.4.3 The impact of replacing Unit weights by Average weights

Introduction of Average weights generally improves the performance of the algorithms, and
using the dynamic version of Average weights leads to further improvements in the majority

22

0

5

10

15
Class 5 of Panigrahy, d=3

0

5

10

15

A
v
e
ra

g
e
 %

 e
rr

o
r d=5

20 40 60 120 250 500
Number of items

0

5

10

15
d=10

FF

FFD-L2-Unit / BFD-T1-L2Load-Unit / WFD-T1-L2Load-Unit

BC-L2Slacks-Unit MB-WFD-L2-Unit MB-Pairing-NormDP-Unit

(a) Panigrahy Class 5. For d = 10, the plot for MB-WFD-L2-Unit mostly coincides with the plots for the
group FFD-L2-Unit / BFD-T1-L2Load-Unit / WFD-T1-L2Load-Unit

0

5

10

15

Class 8 of Panigrahy, d=3

0

5

10

15

A
v
e
ra

g
e
 %

 e
rr

o
r d=5

20 40 60 120 250 500
Number of items

0

5

10

15

d=10

FF

FFD-Linf-Unit / BFD-T1-Linf-Unit / MB-WFD-Linf-Unit
WFD-T1-L2Load-Unit BC-DP1-Unit MB-Pairing-DP3-Unit

(b) Panigrahy Class 8

Figure 2: Performance summary of the best-performing algorithms with Unit weights in
each family

23

0

20

40

60
Class 5 of New, d=3

0

20

40

60

A
v
e
ra

g
e
 %

 e
rr

o
r d=5

20 40 60 120 250 500
Number of items

0

20

40

60
d=10

FF

FFD-L2-Unit / BFD-T1-L2Load-Unit / WFD-T1-L2Load-Unit / MB-BFD-L2Load-Unit

BC-DP1-Unit / MB-Pairing-DP3-Unit

(a) New Class 5

10

15

20

Class F of Triplet, d=3

10

15

20

A
v
e
ra

g
e
 %

 e
rr

o
r d=5

60 120 249 501
Number of items

10

15

20

d=10

FF

FFD-L1-Unit / BFD-T1-L1-Unit / WFD-T1-L1-Unit / BC-DP1-Unit / MB-WFD-L1-Unit

MB-Pairing-DP1-Unit

(b) Triplet Class F. For d = 10, the plot for MB-Pairing-DP1-Unit mostly coincides with the plot for FF.

Figure 3: Performance summary of the best-performing algorithms with Unit weights in
each family (cont.)

24

100 101 102 103

Average running time (ms) - log scale

4

5

6

7

8

9

10

11

A
v
e
ra

g
e
 %

 e
rr

o
r

Panigrahy class 5 - n=500 d=10

FFD-L2-Unit

FFD-L2-Avg

FFD-L2-Avg-Dyn

BFD-T1-L2Load-Unit

BFD-T1-L2Load-Avg

BFD-T1-L2Load-Avg-Dyn

WFD-T1-L2Load-Unit

WFD-T1-L2Load-Avg

WFD-T1-L2Load-Avg-Dyn

BC-L2Slacks-Unit

BC-L2Slacks-Avg

BC-L2Slacks-Avg-Dyn

MB-WFD-L2-Unit

MB-WFD-L2-Avg

MB-WFD-L2-Avg-Dyn
MB-Pairing-NormDP-Unit

MB-Pairing-NormDP-Avg

MB-Pairing-NormDP-Avg-Dyn
{

Figure 4: Impact of Average weights in the experiments for the Panigrahy Class 5, with
n = 500 and d = 10

of cases. We illustrate this by considering the algorithms identi�ed as the best ones in the
previous section for the instances from Panigrahy Class 5 restricted to n = 500 and d = 10.
The level of improvements is demonstrated in Figure 4.

Item-centric algorithms FFD-L2 and WFD-T1-L2Load, which have relatively large % = 11.5
in the case of Unit weights, achieve an improvement, with % = 10.9 and % = 11.2 for the
static version of Average weights, and even a further improvement, with % = 9.3, for the
dynamic version of Average weights. Algorithm BC-L2Slacks, the best-performing bin-
centric algorithm for the benchmarks under consideration, improves its %-value from 4.3, for
Unit weights, to 4, for both static and dynamic Average weights.

There are rare cases when the introduction of Average weights does not lead to better results,
or the improvement is insigni�cant. For example, there is generally no change in %-values for
MB-Pairing-NormDP and a minor change for MB-WFD-L2: % = 11.2 for Unit weights and
% = 10.9 for the static version of Average weights. Interestingly, dynamic version of Average
weights MB-WFD-L2-Avg-Dyn is less bene�cial than its static version MB-WFD-L2-Avg.

Regarding algorithms' running times, introduction of static Average weights instead of Unit
weights does not slow down the algorithms signi�cantly. The situation with dynamic Average
weights is di�erent. For item-centric algorithms, their running times increase by up to 100
times. Still the largest instances are solvable in less than 100 ms. A similar behavior is
observed for MB-WFD and MB-BFD algorithms, with a maximum running time of 382 ms
for the largest instances.

25

On the positive side, using dynamic weights does not essentially a�ect the running times of
the bin-centric algorithms and MB-Pairing. This is explained by the fact that the cost of
re-computing the weights in each packing step is dominated by the cost of computing the
scores for selecting the next item-bin pair. On average, the best bin-centric algorithms solve
the largest instances in under 20 ms, with a maximum of 40 ms, while the best MB-Pairing
algorithms solve the largest instances in less than 12, 000 ms, with a maximum of 33, 000
ms.

8.4.4 Comparing heuristics with all types of weights

We now discuss the experiments performed on all 351 variations of algorithms with di�erent
types of weights. Recall that for Unit weights we have 26 variations of algorithms.

Similar to the case of Unit weights, there is no algorithm consistently outperforming the
others, and the best-performing algorithms vary for di�erent types of instances. The results
for the selected four classes of instances are summarized in Figures 5-6. As before, we select
the best performing algorithm in each family of algorithms, where algorithms' families are
de�ned in Section 8.4.2. In this section, each family contains all versions of the relevant
algorithms with static item-based weights, dynamic item-based weights and dynamic bin-
based weights; see Table 4 for weight formulae. Recall that the complete summary of the
results is available in the companion GitHub repository.

For instances of Panigrahy Class 5, Panigrahy Class 8 and New Class 5, the majority
of best-performing algorithms use the dynamic versions of Average or Reciprocal Average
weights. For instances of Triplet Class F, the majority of best-performing algorithms use
the Utilization Ratio weights.

We now compare the algorithms within each family. For item-centric algorithms BFD and
WFD, the type T2 and type T3 are generally no better than their T1 counterparts; see
Section 8.3 for the de�nitions of T1-T3. The choice of a speci�c size measure does not
signi�cantly a�ect the performance of BFD, but in the case of WFD the reverse `2 measure
of bin load is bene�cial. Note that the latter version of WFD is similar to BFD with the
forward `2 measure, although they occasionally may produce di�erent results.

In the family of bin-centric algorithms, BC-DP1 with any type of dynamic weights is supe-
rior, although the dynamic Average weights stand out, followed by L2Slacks.

In the family of MB-Pairing algorithms, although the DP1 or NormDP scores with RecipAvg
weights are the best in some cases (e.g., Figures 5(a) and 6(b)), the DP3 score with static
Average weights is superior on average.

Considering the bin-based weights combined with the bin-centric and MB-Pairing algo-
rithms, we observe that they do not generally provide an improvement over the item-based
dynamic weights. Recall that bin-based weights are only applicable to bin-centric and MB-
Pairing algorithms.

In addition to the previously de�ned algorithms, we also evaluated the virtual performance
of two �meta� algorithms: meta-centric executes all versions of item-centric and bin-centric
algorithms and keeps the best solution found, and meta-all executes all versions of all
algorithms, item-centric, bin-centric and multi-bin activation, and keeps the best solution
found. The running time of a meta algorithm is de�ned as the sum of the running times of

26

0

5

10

Class 5 of Panigrahy, d=3

0

5

10

A
v
e
ra

g
e
 %

 e
rr

o
r d=5

20 40 60 120 250 500
Number of items

0

5

10

d=10

FFD-Linf-Avg-Dyn / BFD-T3-Linf-Avg-Dyn-Unit

WFD-T3-Linf-Avg-Dyn-RecipAvg BC-TFMin-RecipAvg-Dyn

MB-WFD-L2-Avg

MB-Pairing-NormDP-RecipAvg-Bin

(a) Panigrahy Class 5

0

2

4

6

Class 8 of Panigrahy, d=3

0

2

4

6

A
v
e
ra

g
e
 %

 e
rr

o
r d=5

20 40 60 120 250 500
Number of items

0

2

4

6

d=10

FFD-L2-Avg-Dyn / WFD-T1-L2Load-Avg-Dyn

BFD-T1-L2Load-Avg / MB-BFD-L2Load-Avg

BC-DP1-Avg-Dyn

MB-Pairing-DP3-Avg

(b) Panigrahy Class 8

Figure 5: Performance summary of the best-performing algorithm in each family considering
all weights

27

0

20

40

Class 5 of New, d=3

0

20

40

A
v
e
ra

g
e
 %

 e
rr

o
r d=5

20 40 60 120 250 500
Number of items

0

20

40

d=10

FFD-Linf-Avg-Dyn / BFD-T1-L2-Avg / WFD-T3-L2Load-Avg-Dyn-RecipAvg / MB-WFD-L2-Avg
BC-DP1-Avg-Dyn / MB-Pairing-DP3-Avg

(a) New Class 5

10

15

20

Class F of Triplet, d=3

10

15

20

A
v
e
ra

g
e
 %

 e
rr

o
r d=5

60 120 249 501
Number of items

10

15

20

d=10

FFD-L2-UtilRatio / BFD-T1-L1-UtilRatio / WFD-T1-L2Load-UtilRatio

MB-WFD-L1-Unit BC-DP1-Unit MB-Pairing-DP1-RecipAvg-Dyn

(b) Triplet Class F. The plot for BC-DP1-Unit mostly coincides with the plot for the group FFD-L2-UtilRatio
/ BFD-T1-L1-UtilRatio / WFD-T1-L2Load-UtilRatio

Figure 6: Performance summary of the best-performing algorithm in each family considering
all weights (cont.)

28

individual algorithms.

For instances of Panigrahy Class 5 (Figure 5(a)), meta-centric has % = 1.7 with a running
time of at most 6, 000 ms, and meta-all has % = 1.2 with a running time of 83, 000 ms on
average and 130, 000 ms at maximum. Since di�erent individual algorithms deliver superior
solutions on di�erent instances in the class, each individual algorithm cannot achieve the
accuracy of meta-all on all instances. In particular, the overall best-performing individual
algorithm is MB-Pairing-NormDP-RecipAvg-Bin with % = 2.1 and a running time under
6, 000 ms for the largest instances. Note that the best item-centric algorithm achieves
% = 4.7 and solves even the largest instances in less than 30 ms, while the best bin-centric
algorithm achieves % = 2.6 with a maximum running time of 46 ms.

For instances of Panigrahy Class 8 (Figure 5(b)), meta-centric has % = 0.2 with a running
time of 8 s on average, and meta-all does not get a further improvement in terms of %,
but incurs much more computation time, around 9 min. For comparison, the overall best-
performing individual algorithm is FFD-L2-Avg-Dyn with % = 1 and a running time of
27 ms.

For instances of New Class 5 (Figure 6(a)), meta-centric has % = 9.2 with a running time of
9 s on average, and meta-all only marginally improves this result with a running time of 10
minutes on average for the largest instances, and a maximum of 15 minutes. For comparison,
the overall best-performing individual algorithm is BC-DP1-Avg-Dyn with % = 11.1 and a
running time of 26 ms.

For instances of Triplet Class F (Figure 6(b)), meta-centric has % = 16.7 with a running
time of 9 s on average, and meta-all has % = 14.5 with a running time of about 9 minutes for
the largest instances, and up to 12 minutes at maximum. Interestingly the best-performing
individual algorithm is MB-Pairing-DP1-RecipAvg-Dyn, not included in meta-centric. It
outperforms the meta-centric algorithm, achieving % = 16.5 as the average value over all
experiments, but at the cost of a larger running time, 15 s. For comparison, the other
individual algorithms mostly achieve a similar % of 17.6, with a maximum running time
under 60 ms. It is also worth noticing that the performance of the MB-Pairing algorithm is
not stable when the number of dimensions changes. The algorithm signi�cantly outperforms
item-centric and bin-centric algorithms when d = 3, has a similar performance when d = 5,
but it is outperformed by the others when d = 10 (with the exception of the simplest
algorithm, FF).

As a summary, we present Figure 7 to illustrate the trade-o� between %-values and running
times for best-performing algorithms representing each family. The %-values are averaged
over all instances of Panigrahy Class 5. We highlight three algorithms: FFD-L1-RecipAvg is
very fast but moderately accurate (% = 10.6, the running time is 0.5 ms), BC-L2Slacks-Avg-
Bin is accurate but with intermediate running time (% = 4.3, the running time is 35 ms),
and MB-Pairing-DP3-Avg-Dyn is among the most accurate algorithms but with a larger
running time (% = 4, the running time is 1, 300 ms).

8.4.5 Impact of n and d on algorithms' accuracy

The experiments discussed in the previous sections focus on four classes of instances: two
of the Panigrahy type, one of the New type and one of the Triplet type. In this section we
summarize our �ndings for all classes of instances of all types, Panigrahy, New and Triplet.

29

100 101 102 103 104 105

Average running time (ms) - log scale

3

4

5

6

7

8

9

10

11

A
v
e
ra

g
e
 %

 e
rr

o
r

Panigrahy class 5 - n=500 d=10
FF

FFD-L1-RecipAvg

FFD-Linf-Avg-Dyn

BFD-T1-L1-RecipAvg

BFD-T1-Linf-Avg-Dyn

BFD-T2-L1-RecipAvg

BFD-T2-Linf-Avg-Dyn

BFD-T3-L2-Avg-RecipAvg

BFD-T3-Linf-Avg-Dyn-RecipAvg

WFD-T1-L2Load-Avg

WFD-T1-Linf-Avg-Dyn

WFD-T2-L2Load-Avg

WFD-T2-Linf-Avg-Dyn

WFD-T3-L2Load-Avg-RecipAvg

WFD-T3-Linf-Avg-Dyn-RecipAvg

BC-TFMin-Expo

BC-TFMin-RecipAvg-Dyn

BC-L2Slacks-Avg-Bin

MB-WFD-L2-Avg

MB-WFD-L1-Expo-Dyn

MB-Pairing-NormDP-Unit

MB-Pairing-DP3-Avg-Dyn

MB-Pairing-NormDP-RecipAvg-Bin

meta-centric

meta-allFFD-L1-RecipAvg

BC-L2Slacks-Avg-Bin
MB-Pairing-DP3-Avg-Dyn

Figure 7: Performance summary of algorithms for Panigrahy Class 5, with n = 500 and
d = 10. The marks for BFD-T1-Linf-Avg-Dyn and BFD-T2-Linf-Avg-Dyn mostly coincide
with the mark for BFD-T3-Linf-Avg-Dyn-RecipAvg.

In the majority of classes, %-values increase as the number of dimensions d increases. There
are 4 exceptions: the instances of Panigrahy Class 2 and Class 3, which are almost always
solved to optimality, the instances of Panigrahy Class 6, which were noted as the most
di�cult instances for the one-dimensional BP, and the instances of Panigrahy Class 7,
where item sizes have positive correlation in every two consecutive dimensions. It is worth
noticing that, for these 4 classes, solutions contain on average between 2 and 2.5 items per
bin.

For almost all classes of the Panigrahy type, %-values are close to 0 when n = 20 and they
increase with the number of items n. Exceptional instances are those of Panigrahy Class
8, for which the opposite is observed (Figure 5(b)), and Panigrahy Class 5, for which there
seems to be a plateau for large values of n (Figure 7).

For the instances of the New benchmark, the %-values increase as n increases. That increase
is generally more signi�cant in larger dimensions (see Figures 3(a) and 6(a)). On the
contrary, for the instances of the Triplet benchmark the %-values tend to decrease as n
increases.

Finally, quite naturally, the running times of algorithms increase when n and d increase.

30

8.4.6 Finding optimal solutions

Among the algorithms with Unit weights, guaranteed optimal solutions were found for 893
instances out of 1620 of the Panigrahy type, with 601 of them matching the lower bounds.
Note that the actual number of optimal solutions found might be higher, since comparison
is done with the lower bound if an optimal solution is not known. For the instances of the
New type, at least 200 optimal solutions were found out of 1080 instances, with 87 of them
matching the lower bounds. For 240 instances of the Triplet type, the algorithms did not
�nd provably optimal solutions.

The algorithms with non-unit weights �nd a larger number of optimal solutions. Considering
all algorithms with all weights, the number of guaranteed optimal solutions found increases
to 992 for the instances of the Panigrahy type, with 643 of them matching the lower bound,
260 optimal solutions for the instances of the New type, with 116 of them matching the
lower bound. Still no optimal solutions were found for the instances of the Triplet type.
Interestingly, the majority of optimal solutions are found by item-centric and bin-centric
algorithms, namely, 985 and 257 optimal solutions for the instances of the Panigrahy and
New type, respectively.

8.4.7 Summary of algorithms' evaluation

The experiments performed on instances of di�erent types con�rm that among the 351 al-
gorithm variations tested, there is no one which is an ultimate winner. Recommendations
can be given for instances with common features, like those grouped in special classes of
benchmarks. Depending on an acceptable time limit, practitioners can conduct experiments
with the whole collection of algorithms to pinpoint those which are best suited for a given
use-case. The results obtained with the two meta-algorithms show that executing all algo-
rithms, returning the best solution found, is consistently successful. The downside of this
method is the running time that may become prohibitively large, but on the positive side
the method helps in identifying most promising approaches for a class of instances under
consideration.

Alternatively, one may consider the following list of the most promising algorithms, selected
through our experiments on a variety of benchmarks:

� The bin-centric algorithm with Dot-Product 1 or `2-Norm of Slacks scores does
stand out, especially if combined with the static Average weights or dynamic Average
weights.

� In the group of multi-bin activation algorithms, MB-Pairing with Dot-Product 3 score
and static Average weights demonstrates particularly good performance, comparable
to or even better than the best performing bin-centric algorithms.

� In the group of item-centric algorithms, BFD- and WFD-type algorithms are not
signi�cantly superior if compared to the FFD-type algorithms.

On a di�erent note, optimal solvers, such as VPSolver by Brandão and Pedroso (2016), are
powerful but limited to small- or medium-size instances, when the number of items per bin
is not too large; see Appendix B. Larger instances can be solved in reasonable time mostly

31

in the case of d = 2; see Spieksma (1994), Caprara and Toth (2001) and Wei et al. (2020).
The usage of heuristics is fully justi�ed for large size instances in the multidimensional case.

9 Conclusions

Our work bridges the gap between the body of research on theoretical analysis of Bin Packing
and Vector Bin Packing algorithms, and applied work on actual performance of heuristics
when addressing real-world applications. The need for applied research on VBP has become
particularly apparent with the growing demand of modern distributed systems for e�ective
and e�cient algorithms which optimize resource usage, see, e.g., Kumaraswamy and Nair
(2019) and Mann (2015). Thus, the main motivation of our study is to analyze empirically
traditional and new heuristics for VBP, providing a foundation for future study of enhanced
VBP models arising in distributed computing and other areas.

The main contribution of our paper is twofold:

(1) a systematic classi�cation of heuristics for the Vector Bin Packing problem and algo-
rithms' tuning parameters of three types: size measures for items and bins, scores for
item-bin pairs, and weights to di�erentiate dimensions;

(2) evaluation of the algorithms' performance via extensive computational experiments,
identifying the most successful algorithms for datasets of di�erent types, global top
performers and less promising approaches.

In our study, we use elementary construction heuristics, item-centric and bin-centric, as
the basis for developing more complicated multi-bin activation heuristics. Some of the
newly introduced algorithms, e.g., MB-Pairing (with the tuning parameters Dot Product 3
for item-bin scores and dynamic Average weights for prioritizing dimensions) or MB-WFD
(with the `1-size measure for items and bins' residual capacities), can achieve superior results
compared to the traditional item-centric and bin-centric approaches. Note that algorithms'
tuning parameters are collected and put together from multiple sources and enhanced with
newly introduced parameters. Further evidence of the power of the proposed multi-bin
activation approach is provided in our recent work on optimizing resource provisioning in
shared clusters (Mommessin et al. (2023)).

We foresee the following directions for future work. First, the proposed multi-bin acti-
vation algorithms, presented in the context of the decision problem VBP(m), might be
useful for solving the Multiple Multidimensional Knapsack Problem, the decision version of
which is the same as VBP(m). Second, the toolkit for the classical VBP problem can be
adjusted and extended for solving the versions of VBP with additional features: packing
items with restrictions (e.g., con�icts, see Gendreau et al. (2004)), unequal bin capacities,
cost constraints (monetary or energy), and various further features arising, for example, in
the context of Distributed Computing. Finally, having classi�ed the VBP algorithms and
implemented them as the C++ Vectorpack library, we consider them as a starting point for
the design of more complicated, hybrid algorithms, as well as self-tunable hyperheuristics
and Machine Learning algorithms.

32

Acknowledgments

This work is supported by the project EP/T01461X/1 �Algorithmic Support for Massive
Scale Distributed Systems� funded by the UK Engineering and Physical Sciences Research
Council (EPSRC). We are grateful to the reviewers for their valuable comments and recom-
mendations.

Appendix A: The proof of Theorem 3

The �rst result of Section 6 is Theorem 3 that establishes monotonicity of WF(m) and
WFD(m) for `∞, `1 and `2 size measures, monotonicity of BF(m) and BFD(m) for the `2
size measure of bin load, as well as monotonicity of Pairing(m).

We start with the proof for WF(m). It holds for WFD(m) as well since ordering items in
a speci�c way does not a�ect the proof.

Compare the operation of WF(m) on an instance with n items and the operation of WF(m+
1) on the same instance. We call the two scenarios α and β, respectively. The comparison
is performed at various timesteps: at timestep 0 no item is packed yet; at timestep j, the
�rst j items have been packed.

Let rαk (j) and rβk (j) denote the residual capacity of the kth bin after timestep j in sce-
nario α and β, respectively. To simplify the analysis, we repeatedly renumber the bins in
nondecreasing order of residual capacities every time an item is allocated, so that for each
timestep j,

rα1 (j) ≤ rα2 (j) ≤ · · · ≤ rαm(j),

rβ1 (j) ≤ rβ2 (j) ≤ · · · ≤ rβm(j) ≤ rβm+1(j).

Without loss of generality we consider a tie breaking rule that always places a current item
into the last bin. At each timestep, the current item is allocated to the last bin and that
bin �bubbles� forward in the list to observe the residual capacity order.

The monotonicity of WF(m) follows from the property:

rαk (j) ≤ rβk (j), for each timestep j = 0, 1, 2, . . . , n and any k, 1 ≤ k ≤ m. (10)

Here we assume that item j can be feasibly packed by WF in both scenarios α and β.

Clearly, property (10) holds for any j ≤ m, since in either scenario, α or β, each of the j
items is placed into a separate bin. Consider timestep j > m and suppose (10) holds for all
previous timesteps 0, 1, 2, . . . , j − 1. We prove by induction that (10) holds for j.

Let k′ (k′′) be the index of the bin containing item j after that item is allocated under
scenario α (scenario β) and bins have been renumbered. Then the following useful property
holds:

rαk′(j) ≤ r
β
k′′(j) for j > m. (11)

Indeed

rαk′(j) = rαm(j − 1)− sj ,
rβk′′(j) = rβm+1(j − 1)− sj ,

33

and additionally

rαm(j − 1)

induction
hypothesis

≤ rβm(j − 1)

bin
numbering

≤ rβm+1(j − 1),

where the �rst inequality holds by the induction hypothesis and the second inequality holds
due to the bin numbering at timestep j − 1.

We now turn to proving inequality (10) for j > m, assuming it is satis�ed for 0, 1, 2, . . . , j−1.

If k < min {k′, k′′}, then

rαk (j) = rαk (j − 1)

induction
hypothesis

≤ rβk (j − 1) = rβk (j).

Similarly, if k > max {k′, k′′}, then

rαk (j) = rαk−1(j − 1)

induction
hypothesis

≤ rβk−1(j − 1) = rβk (j).

It remains to prove that inequality (10) holds for any k, min {k′, k′′} ≤ k ≤ max {k′, k′′}.
We distinguish between the following two cases.

Case 1: if k′′ ≤ k′, then for any k, k′′ ≤ k ≤ k′,

rαk (j)

bin
numbering

≤ rαk′(j)
(11)

≤ rβk′′(j)

bin
numbering

≤ rβk (j).

Case 2: if k′ < k′′, then for any k, k′ ≤ k < k′′,

rαk (j)

bin
numbering

≤ rαk+1(j) = rαk (j − 1)

induction
hypothesis

≤ rβk (j − 1) = rβk (j),

and for k = k′′

rαk′′(j) = rαk′′−1(j − 1)

induction
hypothesis

≤ rβk′′−1(j − 1) = rβk′′−1(j)

bin
numbering

≤ rβk′′(j).

The proof for BF(m) and BFD(m) with the `2 size measure of bin load is similar to the
proof presented above.

Consider now Pairing(m) with the scores listed in Theorem 3.

� Pairing(m) with Dot-Product 1 becomes MB-WFD. Indeed, the scores are ξik = sirk,
and the maximum value is achieved for the bin Bk with the largest rk and for the item
i with the largest size si, si ≤ rk. The same holds for Pairing(m) with Normalized
Dot Product.

� Pairing(m) with Dot-Product 2 computes the scores ξik = 1 for all item-bin combina-
tions, so that with an appropriate tie-breaking rule it performs like FF.

34

� Pairing(m) with Dot-Product 3 becomes BFD. Indeed, the scores ξik = si
rk

are com-
puted for all item-bin pairs with si ≤ rk, the pair (i∗, Bk∗) with the highest score
is selected and item i∗ is packed into bin Bk∗ . If i∗ has the largest size among all
unallocated items, then allocation (i∗, Bk∗) is the same as the one which would be
adopted by BFD. If i∗ is not the largest item, then BFD would handle larger items
�rst, which would not a�ect Bk∗ (larger items do not �t Bk∗) and at some stage it
would allocate i∗ to Bk∗ in the same fashion as Pairing(m).

Appendix B: The proof of Theorem 4

The second result of Section 6 is Theorem 4 that establishes non-monotonicity of multi-bin
and bin-centric algorithms in the multi-dimensional case. We consider multi-bin algorithms
in part B1 and bin-centric algorithms in part B2.

B1 Non-monotonicity of WF(m) and WFD(m)

The proof is based on the instance given by Table 5 with the set of n = 6 two-dimensional
items I = {a, b, . . . , f}. We show that for each size measure, all items can be packed by
the algorithm into m = 2 bins, but the same algorithm fails to �nd a feasible packing when
m = 3. According to the de�nition of algorithm WF(m), it considers the items from I
in the order they appear on the list. Since v(a) ≥ v(b) ≥ · · · ≥ v(f) for each type of the
forward size measure, the same item order is observed by algorithm WFD(m); see the three
bottom rows of Table 5.

Item a b c d e f

si1 0.485 0.484 0.505 0.495 0.02 0.01
si2 0.99 0.985 0 0 0.01 0.014

v(i) for `∞ 0.99 0.985 0.505 0.495 0.02 0.014
v(i) for `1 1.475 1.469 0.505 0.495 0.03 0.024
v(i) for `2 1.215325 1.204481 0.255025 0.245025 0.00050 0.000296

Table 5: Proof of Theorem 4: item sizes for WF(m) and WFD(m)

In the case of `∞, algorithms WF(2) and WFD(2) �nd a feasible solution {a, d, e}, {b, c, f}.
Algorithms WF(3) and WFD(3) �nd a partial solution {a}, {b, e}, {c, d}, failing to allocate
the remaining item f .

The decision making for WF(m) and WFD(m) with the `∞-size measure is illustrated
in Table 6, where X indicates the allocation of a current item to a bin and × indicates
impossibility of allocating an item to a bin. The numbers in the tables specify the residual
capacities v(Bk) of the bins computed via the `∞-norm after an allocation decision is made.

Now we show that for the `1-size measure, algorithms WF(2) and WFD(2) �nd a feasible
solution {a, d, e}, {b, c, f}, while algorithms WF(3) and WFD(3) fail to allocate all items
into 3 bins. In Table 7, X indicates the allocation of a current item to a bin and × indicates
impossibility of allocating an item to a bin. The numbers specify the residual capacities
v(Bk) of the bins computed via the `1-norm after an allocation decision is made.

35

Operation of WF(2) and WFD(2)
(`∞ size measure)

Item v(B1) v(B2)

a X 0.515 1
b 0.515 X 0.516
c 0.515 X 0.015
d X 0.020 0.015
e X 0 0.015
f 0 X 0.001

Operation of WF(3) and WFD(3)
(`∞ size measure)

Item v(B1) v(B2) v(B3)

a X 0.515 1 1
b 0.515 X 0.516 1
c 0.515 0.516 X 1
d 0.515 0.516 X 1
e 0.515 X 0.496 × 1
f × 0.515 × 0.496 × 1

Table 6: Operation of WF(m) and WFD(m) under `∞-size measure

Operation of WF(2) and WFD(2)
(`1 size measure)

Item v(B1) v(B2)

a X 0.525 2
b 0.525 X 0.531
c 0.525 X 0.026
d X 0.03 0.026
e X 0 0.026
f 0 X 0.002

Operation of WF(3) and WFD(3)
(`1 size measure)

Item v(B1) v(B2) v(B3)

a X 0.525 2 2
b 0.525 X 0.531 2
c 0.525 0.531 X 1.495
d 0.525 0.531 X 1
e 0.525 X 0.501 × 1
f × 0.525 × 0.501 × 1

Table 7: Operation of WF(m) and WFD(m) under `1-size measure

Finally, we repeat the calculations for the `2-size measure. The results are presented in
Table 8.

Operation of WF(2) and WFD(2)
(`2 size measure)

Item v(B1) v(B2)

a X 0.265325 2

b 0.265325 X 0.266481

c 0.265325 X 0.000346

d X 0.0005 0.000346

e X 0 0.000346

f 0 X 0.000002

Operation of WF(3) and WFD(3)
(`2 size measure)

Item v(B1) v(B2) v(B3)

a X 0.265325 2 2

b 0.265325 X 0.266481 2

c 0.265325 0.266481 X 1.245025

d 0.265325 0.266481 X 1

e 0.265325 X 0.246041 × 1

f × 0.265325 × 0.246041 × 1

Table 8: Operation of WF(m) and WFD(m) under `2-size measure

A similar reasoning can be applied to prove non-monotonicity of BF(m) and BFD(m) with
the `2-size measure of bin load.

Note that the item sizes given in Table 5 satisfy:
∑

i∈I si1 =
∑

i∈I si2 = 1.999. Thus, with
the common constant dh = 1

|I|
∑

i∈I sih for h = 1, 2, the theorem holds for any weight-
function presented in Table 4.

To conclude we observe that the results hold for any number of dimensions d ≥ 3 by setting
sih = 1

2(si1 + si2) for all items i ∈ I in dimensions h = 3, . . . , d. Note that for the modi�ed
data we have v(a) > v(b) > v(c) > v(d) > v(e) > v(f), so that the item ordering used by

36

WFD(m) remains the same as in the instance elaborated above, and algorithms WF(m)
and WFD(m) operate in the same way as in the two-dimensional case. Note also that for
the d-dimensional instance,

∑
i∈I sih is the same constant in each dimension h = 1, . . . , d,

so that the instance works for any weight-function.

B2 Non-monotonicity of Pairing(m)

Consider the instance of the two-dimensional problem with n = 6 items with sizes given in
Table 9.

Item a b c d e f

si1 0.485 0.484 0.505 0.495 0.02 0.011
si2 0.981 0.974 0.006 0.011 0.008 0.02

Table 9: Proof of Theorem 4: item sizes for Pairing(m)

Suppose the scores are computed as Dot-Product 1. The operation of Pairing(2) and
Pairing(3) is illustrated in Tables 10 and 11. The initial values of the residual capacities of
the bins and initial scores ξik are speci�ed in the top part of these tables. In both cases the
�rst decision is the same: allocating item a to bin B1, according to the largest score, with
ties broken in favor of the smallest indexed bin; the corresponding score is enframed. Next
steps perform regular updates of bin residual capacities and scores. Pairing(2) produces a
feasible solution {a, d, e}, {b, c, f}, while Pairing(3) produces a partial solution {a}, {b, e},
{c, d}, but fails to allocate item f .

rk1 rk2 a b c d e f

Initial values of rkh and ξik (i ∈ I, k = 1, 2, h = 1, 2)
B1 : 1 1 ξi1 : 1.466 1.458 0.511 0.506 0.028 0.031
B2 : 1 1 ξi2 : 1.466 1.458 0.511 0.506 0.028 0.031

The values of rkh and ξik after allocating a to B1

B1 : 0.515 0.019 ξi1 : - 0.268 0.260 0.255 0.010 0.006

B2 : 1 1 ξi2 : - 1.458 0.511 0.506 0.028 0.031

The values of rkh and ξik after allocating b to B2

B1 : 0.515 0.019 ξi1 : - - 0.260 0.255 0.010 0.006

B2 : 0.516 0.026 ξi2 : - - 0.261 0.256 0.011 0.006

The values of rkh and ξik after allocating c to B2

B1 : 0.515 0.019 ξi1 : - - - 0.2551 0.0105 0.0060
B2 : 0.011 0.020 ξi2 : - - - 0.0057 0.0004 0.0005

The values of rkh and ξik after allocating d to B1

B1 : 0.020 0.008 ξi1 : - - - - 0.00046 0.00038

B2 : 0.011 0.020 ξi2 : - - - - 0.00038 0.00052

The values of rkh and ξik after allocating f to B2

B1 : 0.20 0.008 ξi1 : - - - - 0.00046 -
B2 : 0 0 ξi2 : - - - - 0 -

Table 10: Operation of Pairing(m) when m = 2

37

rk1 rk2 a b c d e f

Initial values of rkh and ξik (i ∈ I, k = 1, 2, h = 1, 2)
B1 : 1 1 ξi1 : 1.466 1.458 0.511 0.506 0.028 0.031
B2 : ξi2 : 1.466 1.458 0.511 0.506 0.028 0.031
B3 : 1 1 ξi3 : 1.466 1.458 0.511 0.506 0.028 0.031

The values of rkh and ξik after allocating a to B1

B1 : 0.515 0.019 ξi1 : - 0.268 0.260 0.255 0.010 0.006

B2 : 1 1 ξi2 : - 1.458 0.511 0.506 0.028 0.031
B3 : 1 1 ξi3 : - 1.458 0.511 0.506 0.028 0.031

The values of rkh and ξik after allocating b to B2

B1 : 0.515 0.019 ξi1 : - - 0.260 0.255 0.010 0.006
B2 : 0.516 0.026 ξi2 : - - 0.261 0.256 0.011 0.006

B3 : 1 1 ξi3 : - - 0.511 0.506 0.018 0.031

The values of rkh and ξik after allocating c to B3

B1 : 0.515 0.019 ξi1 : - - - 0.2551 0.0105 0.0060
B2 : 0.516 0.026 ξi2 : - - - 0.2557 0.0105 0.0062

B3 : 0.495 0.994 ξi3 : - - - 0.2560 0.0178 0.0253

The values of rkh and ξik after allocating d to B3

B1 : 0.515 0.019 ξi1 : - - - - 0.01045 0.00604

B2 : 0.516 0.026 ξi2 : - - - - 0.01053 0.00620
B3 : 0 0.983 ξi3 : - - - - 0.00786 ×

The values of rkh and ξik after allocating e to B2

B1 : 0.515 0.019 ξi1 : - - - - - ×
B2 : 0.496 0.018 ξi2 : - - - - - ×
B3 : 0 0.983 ξi3 : - - - - - ×

Table 11: Operation of Pairing(m) when m = 3

We conclude the proof by observing that in the formulated instance Dh =
∑

i∈I sih = 2
and dh = 1

|I|
∑

i∈I sih = 2/7 for h = 1, 2. This implies that w1 = w2 whichever wh-formula
from column (a) of Table 4 is used.

Considering now the Normalized Dot-Product score, we observe that the scores for the
formulated instance are the same as for Dot-Product 1 subject to the multiplier 1

Dh
= 1/2,

common for all item-bin pairs.

Finally, non-monotonicity holds for the multidimensional case with any d ≥ 2 by setting
sih = 0 for all items i ∈ I in all dimensions h strictly greater than 2.

Appendix C: Optimal solutions for evaluating accuracy of
heuristics

Optimal solutions for the Triplet benchmarks are known, as the instances are generated to
get full occupancy of the bins.

For the remaining two types of benchmarks, Panigrahy and New, we attempt �nding optimal

38

solutions using the state-of-the-art solver for VBP by Brandão and Pedroso (2016), available
as open-source software VPSolver; see Brandão (2016). VPSolver is used in our experiments
in conjunction with the Gurobi solver 8.1.1. The Gurobi parameters are the same as in the
experiments by Brandão and Pedroso (2016), with the exception of MIPFocus = 1 and
Thread = 8. The experiments are performed on a single machine equipped with one Intel
Xeon Gold 6138 CPU having 8 cores, with 16GB of memory per core. We set a time limit
of 4 hours for the Gurobi solver.

The instances of the Panigrahy type are of mixed complexity for VPSolver. Instances of
Classes 1, 4 and 5 are the hardest to solve, as the average number of items per bin in a
solution is larger than for other instances (about 4, 8 and 16 items per bin, respectively).
Optimal solutions have been found for Class 1 instances with up to 120 items and only for
a few instances of Classes 4 and 5, with 20 or 40 items. It is worth noticing that instances
with hundreds of items often incur substantial computation time for creating the arc-�ow
model of VPSolver (e.g., more than 8 hours for a Class 1 instance with 500 items) and this
stage may fail due to memory over�ow (e.g., 128GB was insu�cient for one Class 4 instance
with 120 items). For the remaining classes of the Panigrahy type, all instances could be
solved in less than 5 minutes, and in some cases in a few seconds, except for the instances
with 500 items of Classes 6 and 7, which require up to 3 hours of computation time.

The instances of the New type are generally hard to solve optimally. For Classes 1, 2 and
5, no instance with 250 or 500 items could be solved under 4 hours. For Classes 3 and 4,
no instance with 500 items could be solved under 4 hours. For Class 6, only instances with
up to 60 items could be solved under 4 hours.

Finally, we observe that small dimension instances often incur more computation time than
higher dimension instances, if VPSolver is used. It is likely that there are more feasible com-
binations of items for packing when the dimension is smaller, and therefore the associated
arc-�ow model has more variables and constraints.

Appendix D: Supplementary data

The heuristics for VBP discussed in this paper are implemented as the C++ library Vector-

pack available at https://github.com/Vectorpack/Vectorpack_cpp. The library is open
for further extensions.

The supplementary materials, including all data, scripts, the summaries of the results
and illustrative diagrams, are available in a companion repository: https://github.com/
Vectorpack/experiments_vector_paper.

References

Ahuja, R.K., Cunha, C.B., 2005. Very large-scale neighborhood search for the k-constraint
multiple knapsack problem. J. Heuristics 11, 465�481. https://doi.org/10.1007/s10732-
005-2634-9.

Alves, C., de Carvalho, J.V., Clautiaux, F., Rietz, J., 2014. Multidimensional dual-feasible

39

functions and fast lower bounds for the vector packing problem. Eur. J. Oper. Res. 233,
43�63. http://dx.doi.org/10.1016/j.ejor.2013.08.011.

Alves, C., Clautiaux, F., de Carvalho, J.V., Rietz, J., 2016. Dual-Feasible Functions for Inte-
ger Programming and Combinatorial Optimization: Basics, Extensions and Applications.
Springer International Publishing, Cham. http://dx.doi.org/10.1007/978-3-319-27604-5.

Baldacci, R., Coniglio, S., Cordeau, J.F., Furini, F., 2023. A numerically ex-
act algorithm for the bin-packing problem. INFORMS J. Comput (in press).
https://doi.org/10.1287/ijoc.2022.0257.

Brandão, F., 2016. Arc-�ow Vector Packing Solver (VPSolver).
https://vpsolver.fdabrandao.pt/

Brandão, F., Pedroso, J.P., 2016. Bin packing and related problems: General
arc-�ow formulation with graph compression. Comput. Oper. Res. 69, 56�67.
https://doi.org/10.1016/j.cor.2015.11.009

Cacchiani, V., Iori, M., Locatelli, A., Martello, S., 2022. Knapsack problems � An overview
of recent advances. Part II: Multiple, multidimensional, and quadratic knapsack problems.
Comput. Oper. Res. 105693. https://doi.org/10.1016/j.cor.2021.105692.

Cai, B., Guo, Q., Yu, J., 2022. LraSched: Admitting more long-running applica-
tions via auto-estimating container size and a�nity. Comput. J. 65, 2377�2391.
https://doi.org/10.1093/comjnl/bxab072.

Caprara, A., Toth, P., 2001. Lower bounds and algorithms for the 2-dimensional vec-
tor packing problem. Discrete Appl. Math 111, 231�262. https://doi.org/10.1016/S0166-
218X(00)00267-5.

Chekuri, C., Khanna, S., 2004. On multidimensional packing problems. SIAM J. Comput.
33, 837�851. https://doi.org/10.1137/S0097539799356265.

Christensen, H.I., Khan, A., Pokutta, S., Tetali, P., 2017. Approximation and online al-
gorithms for multidimensional bin packing: A survey. Comput. Sci. Rev. 24, 63�79.
https://doi.org/10.1016/j.cosrev.2016.12.001.

Co�man, E.G., Csirik, J., Galambos, G., Martello, S., Vigo, D., 2013. Bin Packing Ap-
proximation Algorithms: Survey and Classi�cation. In: Pardalos, P., Du, D.Z., Graham,
R. (eds) Handbook of Combinatorial Optimization, pp. 455�531. Springer, New York.
https://doi.org/10.1007/978-1-4419-7997-1_35.

Co�man, E.G., Garey, M.R., Johnson, D.S., 1978. An application of bin-packing to multi-
processor scheduling. SIAM J. Comput. 7, 1�17. https://doi.org/10.1137/0207001.

Co�man, E.G., Garey, M.R., Johnson, D.S., 1984. Approximation Algorithms for Bin-
Packing � An Updated Survey. In: Ausiello, G., Lucertini, M., Sera�ni, P. (eds) Algo-
rithm Design for Computer System Design, International Centre for Mechanical Sciences,
Vol. 284, pp. 49�106. Springer, Vienna. https://doi.org/10.1007/978-3-7091-4338-4_3.

Csirik, J., Dósa, G., 2018. Performance guarantees for one-dimensional bin packing. In:
Gonzalez, T. (eds) Handbook of Approximation Algorithms and Metaheuristics, pp. 491�
517. Chapman and Hall/CRC, New York. https://doi.org/10.1201/9781351236423.

40

Delorme, M., Iori, M., Martello, S., 2016. Bin packing and cutting stock prob-
lems: Mathematical models and exact algorithms. Eur. J. Oper. Res. 255, 1�20.
https://doi.org/10.1016/j.ejor.2016.04.030.

Dosa, G., Sgall, J., 2013. First Fit bin packing: A tight analysis, in: 30th International
Symposium on Theoretical Aspects of Computer Science (STACS 2013), pp. 538�549.
https://doi.org/10.4230/LIPIcs.STACS.2013.538.

Dosa, G., Sgall, J., 2014. Optimal analysis of best �t bin packing. Lect. Notes Comput. Sc.
8572, pp. 429�441. https://doi.org/10.1007/978-3-662-43948-7_36.

Epstein, L., van Stee, R., 2018. Multidimensional packing problems. In: Gonzalez, T. (eds)
Handbook of Approximation Algorithms and Metaheuristics, pp. 553�570. Chapman and
Hall/CRC, New York. https://doi.org/10.1201/9781351236423.

Falkenauer, E., 1996. A hybrid grouping genetic algorithm for bin packing. J. Heuristics 2,
5�30. https://doi.org/10.1007/BF00226291.

Gabay, M., Zaourar, S., 2016. Vector bin packing with heterogeneous bins: Ap-
plication to the machine reassignment problem. Ann. Oper. Res. 242, 161�194.
https://doi.org/10.1007/s10479-015-1973-7.

Garefalakis, P., Karanasos, K., Pietzuch,P., Suresh, A., Rao, S., 2018. Medea: Sheduling of
long running applications in shared production clusters, in: Proceedings of the Thirteenth
EuroSys Conference, pp. 1�13. https://doi.org/10.1145/3190508.3190549.

Garey, M.R., Graham, R.L., Johnson, D.S., Yao, A.C.C., 1976. Resource con-
strained scheduling as generalized bin packing. J. Comb. Theory A 21, 257�298.
https://doi.org/10.1016/0097-3165(76)90001-7.

Gendreau, M, Laporte, G., Semet, F., 2004. Heuristics and lower bounds for the bin packing
problem with con�icts. Comput. Oper. Res. 31, 347�358. https://doi.org/10.1016/S0305-
0548(02)00195-8.

Gonzalez, T., 2018. Handbook of Approximation Algorithms and Metaheuristics. Chapman
and Hall/CRC, New York. https://doi.org/10.1201/9781351236423.

Graham, R.L., 1969. Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math.
17, 263�269. https://doi.org/10.1137/0117039.

Gurski, F., Rehs, C., 2020. Counting and enumerating independent sets with applica-
tions to combinatorial optimization problems. Math. Methods Oper. Res. 91, 439�463.
https://doi.org/10.1007/s00186-019-00696-4.

Jangiti, S., Jayaraman, R., Ramprasad, H., Shankar Sriram, V.S., 2019. Resource ratio
based virtual machine placement in heterogeneous cloud data centres. S	adhan	a 44, 236.
https://doi.org/10.1007/s12046-019-1215-9.

Jangiti, S., Sri Ram, E., Shankar Sriram, V.S., 2019. Aggregated rank in �rst-�t-decreasing
for green cloud computing, in: Mallick, P., Balas, V., Bhoi, A., Zobaa, A. (Eds), Cognitive
Informatics and Soft Computing. Advances in Intelligent Systems and Computing 768,
545-555. Springer, Singapore. https://doi.org/10.1007/978-981-13-0617-4_53.

41

Johnson, D.S., 1974. Approximation algorithms for combinatorial problems. J. Comput.
Syst. Sci. 9, 256�278. https://doi.org/10.1016/S0022-0000(74)80044-9.

Kellerer, H., Pferschy, U., Pisinger, D., 2004. Knapsack Problems. Springer.

Kou, L.T., Markowsky, G., 1977. Multidimensional bin packing algorithms. IBM J. Res.
Dev. 21, 443�448. https://doi.org/ doi: 10.1147/rd.215.0443.

Krause, K.L., Shen, V.Y., Schwetman, H.D., 1975. Analysis of several task-scheduling
algorithms for a model of multiprogramming computer systems. J. ACM 22, 522�550.
https://doi.org/10.1145/321906.321917.

Kumaraswamy, S., Nair, M.K., 2019. Bin packing algorithms for virtual machine
placement in cloud computing: a review. Int. J. El. Comput. Eng. 9, 512�524.
https://doi.org/10.11591/ijece.v9i1.pp512-524.

Mann, Z.Á., 2015. Allocation of virtual machines in cloud data centers�a sur-
vey of problem models and optimization algorithms. ACM Comp. Surv. 48, 1�34.
http://dx.doi.org/10.1145/2797211.

Maruyama, K., Chang, S.K., Tang, D.T., 1977. A general packing algorithm for
multidimensional resource requirements. Int. J. Comput. Inf. Sci. 6, 131�149.
https://doi.org/10.1007/BF00999302.

Mommessin, C., Yang, R., Shakhlevich, N.V., Sun, X., Kumar, S., Xiao, J., Xu, J., 2023.
A�nity-aware resource provisioning for long-running applications in shared clusters. J
Parallel Distrib. Comput. 177, 1�16. https://doi.org/10.1016/j.jpdc.2023.02.011.

Munien, C., Mahabeer, S., Dzitiro, E., Singh, S., Zungu, S., Ezugwu, A.E.-
S., 2020. Metaheuristic approaches for one-dimensional bin packing prob-
lem: A comparative performance study. IEEE Access 8, 227438-227465.
https://doi.org/10.1109/ACCESS.2020.3046185.

Murgolo, F.D., 1988. Anomalous behavior in bin packing algorithms. Discrete Appl. Math.
21, 229�243. https://doi.org/10.1016/0166-218X(88)90069-8.

Nagel, L., Popov, N., Süÿ, T., Wang, Z., 2023. Analysis of heuristics for vector scheduling
and vector bin packing. In International Conference on Learning and Intelligent Opti-
mization, Lect. Notes Comput. Sc. 14286, 583�598. https://doi.org/10.1007/978-3-031-
44505-7_39.

Panigrahy, R., Talwar, K., Uyeda, L., Wieder, U., 2011. Heuristics for vector bin packing.
Microsoft Research. https://www.microsoft.com/en-us/research/publication/heuristics-
for-vector-bin-packing/.

Pessoa, A., Sadykov, R., Uchoa, E., 2021. Solving bin packing problems using VRPSolver
models. Operations Research Forum 2, 20. https://doi.org/10.1007/s43069-020-00047-8.

Shi, L., Furlong, J., Wang, R., 2013. Empirical evaluation of vector bin packing algorithms
for energy e�cient data centers. In: 2013 IEEE Symp. Comp. Commu., pp. 000009�
000015. https://doi.org/10.1109/ISCC.2013.6754915.

42

Spieksma, F.C.R., 1994. A branch-and-bound algorithm for the two-dimensional vec-
tor packing problem. Comput. Oper. Res. 21, 19�25. https://doi.org/10.1016/0305-
0548(94)90059-0.

Stillwell, M., Schanzenbach, D., Vivien, F., Casanova, H., 2010. Resource allocation al-
gorithms for virtualized service hosting platforms. J. Parallel Distr. Com. 70, 962�974.
https://doi.org/10.1016/j.jpdc.2010.05.006.

Wei, L., Lai, M., Lim, A., Hu, Q., 2020. A branch-and-price algorithm for
the two-dimensional vector packing problem. Eur. J. Oper. Res. 281, 25�35.
https://doi.org/10.1016/j.ejor.2019.08.024.

43

Citation on deposit: Mommessin, C., Erlebach, T., &

Shakhlevich, N. V. (online). Classification and evaluation of

the algorithms for vector bin packing. Computers and

Operations Research, Article

106860. https://doi.org/10.1016/j.cor.2024.106860

For final citation and metadata, visit Durham

Research Online URL: https://durham-

repository.worktribe.com/output/2949011

Copyright statement: This accepted manuscript is licensed under the Creative

Commons Attribution 4.0 licence.

https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.1016/j.cor.2024.106860
https://durham-repository.worktribe.com/output/2873617
https://durham-repository.worktribe.com/output/2873617

