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1 Introduction

The Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix is a central parameter in
the Standard Model of particle physics (SM). Precision determinations of its elements are
key to understanding the origin of (quark) flavour. The CKM element |Vcs| is currently the
second-most precisely known CKM element. The Particle Data Group (PDG) has determined
a reference value for |Vcs| with a relative uncertainty of 0.6% [1]. In computing this value,
the contemporary world averages of the total branching ratios of D → K̄ℓ+ν and D+

s → ℓ+ν

decays are used in combination with theoretical determinations of the relevant hadronic
form factors and decay constants.

In this work, we study exclusive flavour-changing c → sℓ+ν processes in a global fit.
These processes include D̄s → ℓ+ν, D̄∗

s → ℓ+ν, D → K̄ℓ+ν, and Λc → Λℓ+ν. First, we
determine if the available data can be simultaneously described by the available theory
predictions. This question is not trivial since the hadronic matrix elements are connected
within the framework of dispersive bounds [2–4].

We determine |Vcs| from the global fit within this setup and discuss the agreement of
the result with CKM unitarity. We also probe if determinations of |Vcs| from the individual
decay processes agree with each other and with the quoted PDG value [1]. Finally, we
determine how Beyond the Standard Model (BSM) effects are constrained by c → sℓ+ν
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processes by determining the maximally allowed parameter space within the scνℓ sector of
the Weak Effective Theory (WET) [5–7]. Our analysis leverages procedures and techniques
first developed in the context of a study of b → uℓ−ν̄ decays [8].

Two previous studies of leptonic and semileptonic c → sℓ+ν decays are available in
refs. [9, 10]. Our study improves upon both analyses in three ways. First, we consider
two additional decays, D∗+

s → e+ν and Λc → Λℓ+ν, which both provide complementary
information compared to the (semi)leptonic decays investigated in these works. Second, we
include updates to the measurements used in these works, primarily by the BESIII experiment.
Third, we use new lattice QCD results for the required hadronic matrix elements. Moreover,
we account for the first time for the dispersive bounds connecting the various hadronic matrix
elements in exclusive c → sℓ+ν processes. In this, we closely follow what has been done in
ref. [11] for local form factors in rare b decays.

In addition, our study is the first to simultaneously account for the full set of Wilson coef-
ficients of a semileptonic sector of the WET and all hadronic nuisance parameters using disper-
sive bounds in a joint analysis. For this analysis, we strictly assume lepton-flavour universality.

Further studies include refs. [12, 13], which focus on investigating the potential for
lepton-flavour universality violation in c → sℓ+ν and ref. [14], which focuses on exploring
c → sℓ+ν physics through the exclusive decays D+

s → η(′)ℓ+ν.
The structure of this paper is as follows. We discuss the analysis setup in section 2,

describing the theoretical framework (in section 2.1), the statistical approach (in section 2.2),
the experimental data used (in section 2.3), our choice of statistical models and parameters
of interest (in section 2.4), and our choice of prior for the hadronic nuisance parameters
(in section 2.5). Section 3 is dedicated to documenting the methods used before presenting
our numerical results, with subsections dedicated to the main objectives. We discuss the
compatibility of theory predictions and measurements in section 3.1, our determinations of
|Vcs| in section 3.2, the implications for CKM unitarity in section 3.3, and constraints on
potential BSM effects in section 3.4. We conclude in section 4. Our treatment of the hadronic
matrix elements is documented in detail in appendix A.

2 Analysis setup

2.1 Theoretical framework

The dimension-six effective Hamiltonian of the scνℓ sector can be normalised as [5–7]1

Hscνℓ = −4GF√
2

Ṽ ∗
cs

∑
i

Cℓ
i (µc)Oℓ

i + h.c. , (2.1)

where Cℓ
i are the Wilson coefficients and Oi the local field operators. The normalisation in

terms of the Fermi constant GF and an arbitrary constant Ṽcs proves to be convenient later
on. The Wilson coefficients encode the dynamics of the full theory, either the SM or any
viable BSM theory, above the separation scale µc ≃ 1.275GeV. The matrix elements of the
operators encode the dynamics below the separation scale. Here, we assume that there are

1Here “sector” refers to a set of operators in the Hamiltonian that do not mix with other terms at
leading-order in GF ∼ g2/M2

W [15].
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no right-handed neutrinos of mass less than µc. Consequently, the basis of operators of mass
dimension six reduces to five independent operators. Our choice of basis reads

Oℓ
V,L = [s̄γµPLc] [ν̄γµPLℓ] , Oℓ

V,R = [s̄γµPRc] [ν̄γµPLℓ] ,
Oℓ

S,L = [s̄PLc] [ν̄PLℓ] , Oℓ
S,R = [s̄PRc] [ν̄PLℓ] ,

Oℓ
T = [s̄σµνb] [ν̄σµνPLℓ] .

(2.2)

Matching the effective Lagrangian to the SM amplitudes, one finds that [16]

Cℓ
V,L(µ) = 1 + αe

π
ln

(
MZ

µ

)
≃ 1.01, (2.3)

while all other Wilson coefficients are zero. In the SM, we identify Ṽ ∗
csCℓ

V,L with the conjugated
CKM matrix element V ∗

cs. Beyond the SM, the Wilson coefficients provide a low-energy
footprint of the genuine BSM dynamics at or above the electroweak scale. These coefficients
can then be used to constrain the parameters of a UV-complete BSM model.

2.2 Approach

Our analysis follows the Bayesian approach to statistics, focusing on minimising or sampling
from the posterior probability density function (PDF)

P (ϑ⃗, ν⃗ |D, M) ∝ P (D | ϑ⃗, ν⃗, M)P0(ϑ⃗, ν⃗ |M) . (2.4)

Here, ϑ⃗ represents the parameters of interest, and ν⃗ represents the nuisance parameters.
The latter arise exclusively from our description of hadronic matrix elements in the observ-
ables. The posterior PDF is proportional to the likelihood function P (D | ϑ⃗, ν⃗, M), which
encapsulates the experimental and theoretical constraints imposed by the data D under
consideration, and to the prior PDF P0(ν⃗, ϑ⃗ |M), which accounts for our prior knowledge
about the parameters in the model M . We discuss the various datasets and fit models
entering our analysis in section 2.3 and section 2.4, respectively.

To compare two models M1 and M2, it is instrumental to determine the normalisation
of eq. (2.4) for either model and a common dataset D, i.e.,

P (D |Mi) ≡
∫∫

dϑ⃗ dν⃗ P (D | ϑ⃗, ν⃗, Mi)P0(ϑ⃗, ν⃗ |Mi) . (2.5)

Their ratio, the so-called Bayes factor K ≡ P (D |M1)/P (D |M2), then provides information
about the efficiency of the two models in describing the common dataset D. Following
Jeffreys’ interpretation [17], the model M1 is preferred over the model M2 if K > 1. This
preference can be characterised either as strong if 10 < K < 100 or as decisive if 100 < K.
A Bayes factor 3 < K < 10 is still interpreted to be substantially in favour of M1 over M2,
whereas a Bayes factor of 1 < K < 3 is “barely worth mentioning”. For K < 1, the above
interpretation favours M2 over M1 with the replacement K → 1/K.
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2.3 Experimental data

Our analysis uses the following experimental data of exclusive c → sℓ+ν processes:

D+
s → {µ+, τ +}ν For D+

s → µ+ν, the BESIII experiment has contributed a recent measure-
ment [18] that is not yet included in the world averages compiled by the HFLAV [19] and
PDG [20] collaborations. Using this new result together with results by the BaBar [21],
Belle [22], BESIII [23, 24], and CLEO-c [25] experiments, we obtain as the world average
as of 2024

B(D+
s → µ+ν)avg = (5.35± 0.10)× 10−3 . (2.6)

For D+
s → τ+ν, the situation is similar, with BESIII measurements [26, 27] appearing

after the most recent HFLAV/PDG world average, which itself is based on refs. [21–
25, 28, 29]. We obtain the world average as of 2024

B(D+
s → τ+ν)avg = (5.39± 0.12)% . (2.7)

These measurements contribute a total of 2 observations for our analysis.

D∗+
s → e+ν For D∗+

s → e+ν, we use a recent measurement of the BESIII experiment [30]

B(D∗+
s → e+ν) = (2.1+1.2

−0.9 ± 0.2)× 10−5 . (2.8)

However, the total decay width of the D∗+
s is currently unknown from any experiment.

Instead, we use the prediction for the decay width determined in ref. [31]. This value
is obtained from the PDG world average of the experimental measurements of the
dominant branching ratio B(D∗+

s → D+
s γ) [20] and a lattice QCD prediction for the

partial decay width Γ(D∗+
s → D+

s γ) [31].

This measurement contributes a total of 1 observation for our analysis.

D0 → K−{e+, µ+}ν For D0 → K−e+ν, we use the PDG world average of the branching
ratio measurement [20]

B(D0 → K−e+ν) = (3.525± 0.023)% , (2.9)

which is based on results by the Belle [32], BES [33], BESIII [34, 35], and CLEO-c [36]
experiments. This average is dominated by the BESIII measurement in ref. [34].

For D0 → K−µ+ν, we use the world average of the branching ratio measurements [20]
by the Belle [32] and BESIII [37] experiments

B(D0 → K−µ+ν) = (3.41± 0.04)% , (2.10)

which is dominated by the BESIII measurement in ref. [37]. In addition, we use the
available q2-binned differential rate for both decays from refs. [34, 37], which we convert
to the normalised decay rate 1/Γ dΓ/dq2.

These measurements contribute a total of 36 observations for our analysis.
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D+ → K̄0{e+, µ+}ν For D+ → K
0
e+ν, we use the world average [20],

B(D+ → K̄0e+ν) = (8.72± 0.09)% , (2.11)

based on measurements from BES [38], BESIII [35, 39–41]. The differential decay
rate is also available from ref. [41], which we implement as the normalised decay
rate 1/Γ dΓ/dq2. For D+ → K̄0µ+ν, we use the only available results coming from
BESIII [42],

B(D+ → K̄0µ+ν) = (8.72± 0.07± 0.18)% . (2.12)

These measurements contribute a total of 10 observations for our analysis.

Λc → Λℓ+ν For Λc → Λ{e+, µ+}ν decays, we use measurements of the branching ratios by
the BESIII experiment [43, 44], yielding

B(Λc → Λe+ν) = (3.56± 0.11± 0.07)% ,

B(Λc → Λµ+ν) = (3.48± 0.14± 0.10)% .
(2.13)

Although measurements of the differential distributions for the decay chain Λc →
Λ(→ pπ)e+ν have been undertaken by BESIII [43, 44], the data have not been made
public. The differential data strongly constrain the BSM parameters space, as discussed
in the context of Λb → Λc(→ Λπ)ℓ−ν̄ [45]; the analogue of the Λc decays among
semileptonic b → cℓ−ν̄ processes. BESIII also recently measured for the first time the
leptonic and hadronic asymmetries of Λc → Λℓν decays [44]. However, we cannot use
these measurements in our global analysis, because of the absence of publicly available
information on their correlations.
These measurements contribute a total of 2 observations for our analysis.

We thus have a total of 51 observations.
We do not use decays to η(′) because their form factors, while available from light-cone

sum rules and lattice QCD [46–48], are not yet as stringently constrained as the ones for
the other modes used in this analysis. We also do not use measurements of D+ → K̄∗0ℓ+ν

nor D+
s → ϕℓ+ν, because their hadronic final states are unstable vector resonances. As such,

they may suffer from S-wave pollution, which is a problem from the point of view of both
the experimental extraction of the observables and the theoretical predictions. Therefore,
we do not consider them to be competitive with the processes included above.

2.4 Parameters of interest and their priors

We analyse the available data using three fit models, which we label SM, CKM, and WET.
These models share a common set of (hadronic) nuisance parameters ν⃗ but differ in terms
of the parameters of interest ϑ⃗.

SM This model has no parameters of interest. We use a fixed normalisation Ṽcs = 0.975,
corresponding to the average determined by the Particle Data Group [1]. The left-
handed Wilson coefficient Cℓ

V,L is set to its SM value in (2.3), and all other Wilson
coefficients are fixed to zero. This fit model serves as the null hypothesis for our model
comparisons.
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CKM This model has a single parameter of interest: |Ṽcs|, which is floated within the
interval [0.88, 1.03] with a uniform prior PDF. The Wilson coefficients are treated as in
the SM fit model.

WET This model has nine parameters of interest, which describe the degrees of freedom for
the five complex Wilson coefficients that appear in the effective Hamiltonian eq. (2.1).
The tenth degree of freedom, which can be chosen by imposing arg Ṽcs = 0 = arg Cℓ

V,L,
is fixed since the overall phase of the effective Hamiltonian is unobservable. To provide
an absolute scale for the magnitude of these Wilson coefficients, we fix |Ṽcs| = 0.975, as
in the SM fit model. We assume lepton-flavour universality of the Wilson coefficients.
The parameters are floated in intervals chosen to fully contain the likelihood, using
independent uniform prior PDFs. These intervals are

0.88 ≤ Re Cℓ
V,L ≤ 1.03 ,

−0.05 ≤ Re Cℓ
V,R ≤ +0.02 , −0.8 ≤ Im Cℓ

V,R ≤ +0.8 ,

−0.055 ≤ Re Cℓ
S,L ≤ +0.055 , −0.1 ≤ Im Cℓ

S,L ≤ +0.1 ,

−0.07 ≤ Re Cℓ
S,R ≤ +0.055 , −0.1 ≤ Im Cℓ

S,R ≤ +0.1 ,

−0.12 ≤ Re Cℓ
T ≤ +0.12 , −0.25 ≤ Im Cℓ

T ≤ +0.25 ,

(2.14)

2.5 Hadronic nuisance parameters and their priors

At leading order in αe, the leptonic and hadronic matrix elements factorise. Non-factorisable
corrections occur only at O(αe) ≃ 1/137. Hard virtual corrections are included as part of
the SM value for the Wilson coefficient Cℓ

V,L [16] while soft real radiation and soft structure-
independent corrections are accounted for in the experimental data using the PHOTOS
software [49]. Structure-dependent non-factorisable corrections are currently not available
for exclusive c → sℓ+ν decays.

In our analysis, hadronic matrix elements are described by a substantial number of
nuisance parameters. They need to be varied to account for the theoretical uncertainties of
the hadronic matrix elements. In the case of leptonic decays, the nuisance parameters are
decay constants of the decaying hadrons. In the case of semileptonic decays, the nuisance
parameters relate to hadronic form factors, i.e. real-valued functions of q2 = m2

ℓ+ν . The
semileptonic nuisance parameters depend on our choice of parametrisation for these form
factors. For this analysis, we employ a form factor parametrisation that respects dispersive
bounds, leading to controlled (i.e., parametric) systematic uncertainties in the fit. A summary
of the hadronic nuisance parameters pertaining to this analysis is provided below. We refer
to appendix A for further details on the definitions of these parameters.

D+
s → ℓ+ν Leptonic decays of the pseudoscalar D+

s meson are described by single decay
constant fDs ; see eq. (A.1) for the definition. This quantity is well known from lattice
QCD studies. We use the world average [50] of Nf = 2+ 1 + 1 results by the ETM [51]
and FNAL/MILC [52] collaborations

fDs = 0.2499± 0.0005GeV , (2.15)

at a precision of 0.2%. The total number of nuisance parameters is 1.
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D∗+
s → ℓ+ν Leptonic decays of the pseudoscalar D+

s meson are described by a vector decay
constant fD∗

s
and a tensor decay constant fT

D∗
s
; see eq. (A.2) for their definitions. The

vector D∗+
s decay constant is not as well known as the pseudoscalar D+

s decay constant.
It has been determined from a recent lattice QCD analysis [31] with ∼ 2% precision

fD∗
s
= 0.274± 0.006GeV . (2.16)

The tensor decay constant is even less well known, and no lattice QCD results exist.
We use a QCD sum rule determination of its ratio with respect to the pseudoscalar
decay constant [53]

f
D∗,T

s

fDs

∣∣∣∣
QCDSR

= 1.13± 0.07 . (2.17)

For the reader’s convenience, this translates to the approximate constraint

f
D∗,T

s
≃ 0.28± 0.02GeV . (2.18)

The total number of nuisance parameters is 2.

D → K̄ℓ+ν Assuming isospin symmetry, semileptonic D+(0) → K̄0(−)ℓ+ν decays are
described by three independent hadronic form factors fD→K̄

+ (q2), fD→K̄
0 (q2), and

fD→K̄
T (q2). We parametrise these form factors within the dispersively-bounded series

expansion shown in eq. (A.18), where each form factor is parametrised in a series
of polynomials in z(q2), and we truncate the series at order K = 3. Our choice of
parametrisation ensures the identity fD→K̄

+ (q2 = 0) = fD→K̄
0 (q2 = 0), thereby reducing

the number of independent parameters by 1.

Our analysis uses lattice QCD results by the HPQCD collaboration [54] for all three
form factors, which are provided as parameters of the BCL parametrisation [55]. Since
our parametrisation eq. (A.18) differs from the BCL one, we reconstruct the form
factors and their correlations for all three form factors at three different values of the
momentum transfer q2. We remove one of these points for the form factor fD→K̄

+ due
to the exact relation between fD→K̄

+ and fD→K̄
0 at q2 = 0. We further use lattice QCD

results by the FNAL/MILC collaboration [56]2 for the two form factors fD→K̄
+ and

fD→K̄
0 , which are also provided in terms of the BCL parameters but with a different

truncation order than the HPQCD results. We also reconstruct the form factors and
their correlations for both form factors at four different values of the momentum transfer
q2. Again, the exact form factor relation at q2 = 0 allows us to remove one of these
q2 points. Besides the results of the FNAL/MILC and HPQCD collaborations, results
from the ETM collaboration are also available [57, 58]. These results provide a total of
8 data points across all three form factors. We comment on the compatibility between
the different lattice determinations below.

The total number of nuisance parameters is 3(K + 1)− 1 = 11.
2The HPQCD and FNAL/MILC analyses [54, 56] have a partial overlap in the ensembles used in their

calculation. As the number of configurations used in the shared ensembles differs, we estimate that the
correlation between these two sets of results can be safely neglected.
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Λc → Λℓ+ν Semileptonic Λ+
c → Λ0 decays are described by ten independent hadronic form

factors; six of these describe (axial)vector and (pseudo)scalar currents, and four further
form factors describe tensor currents. Our analysis uses lattice QCD results from
ref. [59] for the (axial)vector and (pseudo)scalar form factors. To our understanding,
no lattice QCD results are presently available for the tensor form factors. Therefore,
we use approximate relations between the tensor and the (axial)vector form factors for
the same polarisation states. These relations arise from HQET and SCET symmetry
considerations as discussed in appendix A.3. Similar to the D → K̄ form factors, each
form factor is parametrised in a series expansion in z(q2) polynomials; see eq. (A.18).
We choose to truncate the series at order K = 2 since we find that the form factor
uncertainties arising at this order are virtually indistinguishable from those obtained
at K = 3. Even for K = 2, our lack of constraints on the tensor form factors implies
that our parameter space is only bounded by the dispersive bounds. Four equations of
motion and one algebraic identity lead to a total of five exact relations among the form
factor parameters [60], reducing the number of independent parameters by 5.

The total number of nuisance parameters is 10(K + 1)− 5 = 25.

Comment on the D → K̄ form factor predictions. Before proceeding with our
analysis, we discuss the mutual compatibility of the individual D → K̄ lattice form factor
results. The 2021 FLAG average [50] includes the ETM results [57] and since-superseded
HPQCD results [61] and shows a small tension at the 2σ level between the two form factor
determinations. The average is dominated by the HPQCD results. There is currently no FLAG
average that includes the new determinations by FNAL/MILC [56] and HPQCD 2022 [54].

A simultaneous fit with our parametrisation to both HPQCD and FNAL/MILC con-
straints yields acceptable agreement, with a total χ2 = 9.8 for 4 degrees of freedom and a
p value of about 4%, above our a-priori threshold of 3%. However, the ETM results are
not mutually compatible with the FNAL/MILC and HPQCD results, producing a total
χ2 = 63.46 for 10 degrees of freedom in a simultaneous fit (p value below 10−9). We show the
data points corresponding to all three lattice QCD results in figure 1. The tension between
ETM on the one hand and FNAL/MILC & HPQCD on the other hand is clearly visible,
especially at q2 close to its maximum value.3

In case of the combination of univariate Gaussian distributions with substantial tensions,
the PDG rescales the individual uncertainties with a scale factor

S2 ≡ χ2

Nd.o.f.
. (2.19)

In principle, this recipe does not apply to our case since we aim to combine three multivariate
Gaussian distributions. Nevertheless, we adopt the PDG procedure since there is no standard
procedure for our case. We obtain S2 = 6.346. Such a large value further indicates
that the ETM and FNAL/MILC & HPQCD results are incompatible and warrant further
investigations on the lattice side.

3We also note that the ETM-predicted differential rates agree very poorly with the experimental distributions.
Comparison plots are provided in the supplementary material [62].
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1Figure 1. Prior-predictive distributions for the D → K̄ form factors f+, f0, and fT as functions of
the squared momentum transfer q2 at truncation order K = 3. The 68% probability envelopes for the
“nominal” results are shown as light-blue bands, the envelopes for the ETM results are shown as purple
bands; see the discussion in section 2.5. The data points by the ETM [57, 58], FNAL/MILC [56], and
HPQCD [54] collaborations are overlaid.

This substantial tension between the individual lattice QCD results leads us to defining our
“nominal” scenario, in which we assume that the ETM results are an outlier and, therefore, drop
them entirely. Hence, we exclusively use the combination of FNAL/MILC and HPQCD results.

In addition, we consider a conservative scenario labelled “scale factor” defined to study
the impact of removing the ETM results. In this scenario, we assume that the ETM,
FNAL/MILC, and HPQCD determinations all underestimate their respective uncertainties
by a common factor. We therefore adjust them by rescaling all three covariance matrices
by the factor S2 = 6.346.

3 Methods and results

We pursue three objectives with our analysis, which can be summarised by the following
questions:

(a) Can the available data on exclusive c → sℓ+ν processes be described jointly by a single
value for the CKM matrix element |Vcs|, while simultaneously respecting the dispersive
bounds?
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Scenario Fit model M χ2 d.o.f. p value [%] lnP (D, M)

nominal
SM 60.9 51 16.1 240.3± 0.3

CKM 51.7 50 40.9 251.7± 0.3
WET 48.4 42 23.1 250.3± 0.3

scale factor
SM 67.4 51 6.2 232.8± 0.3

CKM 48.2 50 54.5 249.1± 0.3
WET 46.6 42 29.0 248.7± 0.3

Table 1. Goodness-of-fit values for the three main fits conducted as part of this analysis. We provide
χ2 = −2 lnP (experimental data | ϑ⃗∗, ν⃗∗) at the posterior’s best-fit point (ϑ⃗∗, ν⃗∗) next to the p value
and the natural logarithm of the evidence lnP (D, M).

(b) Is a BSM/WET interpretation of the data favoured or disfavoured with respect to the
SM hypothesis?

(c) How strongly does the available data restrict the parameter space of the scνℓ sector of
the WET?

To achieve objective (a), we maximise the posterior PDFs P (ϑ⃗, ν⃗ |D, Mi) with respect to
both the parameters of interest ϑ⃗ and the nuisance parameters ν⃗. We do this for each of the
fit models Mi ∈ {SM, CKM, WET} described in section 2.4. We compile the global χ2 values
and their corresponding p values for each of the best-fit points, (ϑ⃗∗, ν⃗∗), in table 1.

To achieve objective (b), we sample from the three posterior PDFs and calculate the
marginal posteriors (or evidences) P (D |Mi). We compile the latter in table 1. Calculating
the marginal posteriors enables us to carry out a Bayesian model comparison as discussed
in section 2.

To achieve objective (c), we investigate the marginal posteriors for the WET parameters.
The marginal posteriors are discussed in detail in section 3.4.

The above steps are completed using EOS [63], a public software for flavour physics
phenomenology. This software provides numerical implementations for the theory predictions
of observables arising in leptonic D

(∗)+
s → ℓ+ν decays and semileptonic D → Kℓ+ν and

Λ+
c → Λ0(→ pπ−)ℓ+ν decays. The predictions for D+

s → ℓ+ν and D → Kℓ+ν are adapted
from the expressions provided in ref. [64]. The predictions for D∗+

s → ℓ+ν are adapted from
the expressions provided in ref. [65] for V → ℓ1ℓ2. The predictions for Λ+

c → Λ0(→ pπ−)ℓ+ν

are adapted from the expressions provided in ref. [45]. Predictions for all of these decays are
possible with EOS version 1.0.12 or newer [66]. To sample from the posterior density, EOS uses
dynamical nested sampling [67]. To this end, EOS interfaces with the dynesty software [68, 69].

3.1 SM prior predictions and fit

Using the PDG reference value |Vcs| = 0.975 [1], we produce prior samples and prior-predictive
distribution for the (pseudo)observables relevant to our analysis. These prior samples, plots
of the resulting hadronic form factors, and further plots are publicly available [62].
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B/Bmeasured

B(Λ+
c → Λe+ν)

B(D+ → K
0
µ+ν)

B(D+ → K
0
e+ν)

B(D0 → K−µ+ν)

B(D0 → K−e+ν)

B(D+
s → τ+ν)

B(D+
s → µ+ν)

measurement
theory only

SM posterior prediction
CKM posterior prediction

1Figure 2. Comparison of the predictions in our “nominal” scenario for the various branching ratios for
D+

s → ℓ+ν, D+(0) → K0
S(K−)ℓ+ν, and Λc → Λℓ+ν. The decay D∗+

s → ℓ+ν is omitted since the large
theory uncertainties make a meaningful visual comparison off the predictions with the measurement
impossible. Measurements are shown as black diamonds. Prior predictions labelled as “theory only”
are shown as purple coloured circles. Posterior predictions for the two fit models are shown as magenta
triangles (SM) and cyan squares (CKM).

We find that our prior predictions for the integrated branching ratios systematically
overshoot the measurements; the single exception is B(D+

s → τ+ν). This can be seen in
figure 2, where these predictions are labelled “theory only” and compared to the experimental
data.4 To quantify this observation, we perform a χ2 test in our “nominal” fit scenario.
The agreement between our prior predictions and the measurements corresponds to a total
χ2 ≃ 133 for 51 degrees of freedom, corresponding to a tension of 5.9σ; we refrain from
producing a p value. This substantial tension is driven by the very precise measurements of

4For the production of figure 2, we use the “nominal” fit scenario. We do not show the outcome of the “scale
factor” scenario since the qualitative picture (overshooting the measurements) remains the same, although the
tensions are somewhat reduced due to the inflated theory uncertainties.

– 11 –



J
H
E
P
0
9
(
2
0
2
4
)
0
9
9

the D+(0) → K̄0(−)ℓ+ν branching ratios, with individual tensions of 3.8σ for D0 → K−µ+νµ,
5.4σ for D0 → K−e+νe and 6σ for D+ → K̄0e+νe and one degree of freedom each. In
contrast, the agreement between the prior predictions and measurements for the kinematic
distribution dΓ/dq2 in these semileptonic decays is very good, with χ2/d.o.f. = 4.5/8 for
D+ → K̄0e+ν, 21.4/17 for D0 → K̄−e+ν, and 17.9/17 for D0 → K−µ+ν.

The situation improves slightly in the “scale factor” model. The global χ2 reduces to 108
for the same 51 degrees of freedom, i.e. a 4.6σ tension. However, the reduction in the tension
of the individual branching ratios (now 2.8σ, 3.6σ and 4.9σ respectively) is compensated by
larger tensions in the kinematic distributions, as anticipated by the discussion in footnote 3.

These observations suggest a possible problem in the normalisation of D → K̄ℓ+ν decays.
This problem could stem either from issues in the normalisation of the lattice QCD results for
the D → K̄ form factors (discussed below); from using an incorrect value of |Vcs| (discussed
in section 3.2); or from experimental issues in measuring the absolute branching fractions
(beyond the scope of this work).

To test a possible issue with the normalisation of the lattice QCD results, we float
all hadronic nuisance parameters within the SM fit model (“nominal” scenario) and fit to
the full experimental likelihood. We find that we can reduce the experimental χ2 to 60.9
with a p value of 16.1%. This happens at the expense of moving away from the a-priori
parameter values by 4.0σ. We produce posterior-predictive distributions for the relevant
absolute branching fractions, which are shown in figure 2 as magenta triangles. We can still
observe that the posterior predictions systematically overshoot the measurements. However,
the tensions with respect to the experimental measurements are visibly reduced. At the level
of the variety, number, and accuracy of the hadronic matrix elements used in this analysis,
we find compatibility between the hadronic matrix elements and the dispersive bounds.

The same qualitative behaviour is observed within the “scale factor” scenario, albeit
with reduced tensions due to the inflated theory uncertainties.

Our findings strongly support the notion that the extraction of |Vcs| should only be
undertaken within a global fit of the available data.

3.2 CKM fit

We now determine |Vcs| from individual fits to D
(∗)+
s → ℓ+ν, D → K̄ℓ+ν, Λc → Λℓ+ν and

the combination of all these decays. The resulting distributions of the extracted values for
|Vcs| are shown on the left-hand side of figure 3. A summary of the obtained |Vcs| values
and the individual goodness-of-fit diagnostics are shown in table 2.

The result of our joint fit in the “nominal” scenario is

|Vcs| = 0.957± 0.003 , (3.1)

which agrees with the weighted average of the individual fit results. The central value for
the “scale factor” result is higher than the above but compatible at the 1σ level, as shown
on the right-hand side of figure 3. As illustrated in figure 2, floating the CKM parameter
|Vcs| results in overall better agreement with the data. Contrary to the SM prior predictions
and the SM fit posterior predictions, no systematic shift to larger or smaller values for the
branching ratios is visible. This is also reflected in table 1. For the “nominal” scenario, we
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1Figure 3. Marginalised one-dimensional posterior densities for |Vcs| within the CKM fit model. We
show our nominal result for the full data set as described in section 2.3 in blue. Additional results for
datasets only containing either D

(∗)+
s → ℓ+ν, D0(+) → K̄−(0)ℓ+ν, or Λc → Λℓ+ν data are shown in

the figure on the left in green, orange and red, respectively. The shaded areas indicate the central
intervals at 68% probability. The figure on the right presents the result for the full data set in the
“nominal” and “scale factor” scenarios.

Scenario Data set χ2 d.o.f. p value [%] |Vcs|

D
(∗)+
s → ℓ+ν 2.5 2 28.0 0.969± 0.007
Λc → Λℓν 0.1 1 81.2 0.947+0.027

−0.026

nominal
D → K̄ℓν 44.1 45 50.9 0.953± 0.004
joint fit 51.7 50 40.9 0.957± 0.003

scale factor
D → K̄ℓν 42.7 45 57.0 0.957± 0.007
joint fit 48.2 50 54.5 0.963± 0.005

Table 2. Goodness-of-fit values and results for the individual CKM fits discussed in section 3.2. The
results for |Vcs| represent the median values and central 68% probability intervals of the marginal 1D
posterior probability densities, which we find to be symmetric.

show that our CKM fit yields a reduction of the χ2 in the best-fit point by 9 at the expense of
one degree of freedom. Using Wilks’ theorem, we therefore obtain a preference for the CKM
fit over the SM fit at the 2.7σ level. A Bayesian model comparison yields a Bayes factor
of ≃ 8.9 · 104, decisively in favour of the CKM fit model. For the “scale factor” scenario,
we find a similar preference for the CKM fit model.

We find that the dispersive bounds only mildly affect the extraction of |Vcs|. Their
main effect is a reduction of the uncertainties of the Λc → Λ form factors, which play only
a secondary role in the global fit due to the large experimental and theory uncertainties.
The posterior-predictive distributions of the saturations in all our models are available as
supplementary material [62].
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Our nominal result is compatible with the PDG reference value [1]

|Vcs|PDG = 0.975± 0.006 , (3.2)

at the level of 2.7σ (nominal) and 1.5σ (scale factor). The shift away from the PDG reference
value can be understood as follows:

• We account for universal electroweak corrections as part of the Wilson coefficients in
our theory predictions. The correction is commonly known as the Sirlin factor [16] and
defined in (2.3).
The PDG result [1] extracted from both B(D+

s → µ+ν) and B(D+
s → τ+ν) reads

|Vcs|PDG,Ds → ℓ+ν = 0.984± 0.012 . (3.3)

However, we can only reproduce this partial result if we do not account for the Sirlin
factor. Including this factor would lower the PDG partial result to 0.974, much closer
to our result for these leptonic modes quoted in table 2.

• The PDG result [1] for D → K̄ℓ+ν

|Vcs|PDG,D → K̄ℓ+ν = 0.972± 0.007 (3.4)

is based on the hadronic form factor evaluated at q2 = 0, f+(0) = 0.7385 ± 0.0044.
This form factor value is obtained by FLAG [50] from ETM [57] and since superseded
HPQCD [61] results. We obtain f+(0) = 0.747 ± 0.002 in our nominal model and
f+(0) = 0.744 ± 0.005 in the scale factor scenario. Both values are larger than the
FLAG value by about 1%. Adjusting for our results and applying the Sirlin factor, the
PDG value would shift downward by about 2% to |Vcs| = 0.952, bringing the PDG
value in good alignment with our partial results in table 2.

We therefore conclude that a substantial fraction of the observed shift in |Vcs| is due to
our inclusion of the Sirlin factor.

3.3 CKM unitarity

The violation of CKM unitarity of around 3σ by the first-row elements of the CKM matrix
has received quite some attention [70–79]. Here, we perform an alternative test of CKM
unitarity by probing the normalisation of both the second row and column;

2nd row :
∑

D=d,s,b

|VcD|2 2nd column :
∑

U=u,c,t

|VUs|2 (3.5)

We test this using the PDG reference value for |Vcs| in (3.2), our determination in (3.1)
and the “scale factor” determination. For the other CKM elements, we use the present
PDG reference values [1]

|Vcd|PDG = 0.221± 0.004 , |Vcb|PDG = (40.8± 1.4)× 10−3 , (3.6)

and
|Vus|PDG = 0.2243± 0.0008 , |Vts|PDG = (41.5± 0.9)× 10−3 . (3.7)
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PDG nominal scale factor

|Vcs| 0.975± 0.006 0.957± 0.003 0.963± 0.005
2nd row 1.00± 0.014 (0.08σ) 0.966± 0.008 (4.3σ) 0.978± 0.012 (1.9σ)
2nd column 1.00± 0.012 (0.22σ) 0.968± 0.006 (5.2σ) 0.979± 0.010 (2.0σ)

Table 3. Results of the CKM unitarity tests. The last two lines contain the squared sum of the CKM
elements of the second row or column, as well as the pull to unity assuming Gaussian uncertainties.
The uncertainties on the CKM entries are assumed to be 100% positively correlated, which corresponds
to the most conservative scenario (proper estimations would give larger pulls).

Our results are given in table 3. Under the assumption of 100% positively correlated
uncertainties, we find a deficit toward the expectation of CKM second-row and second-column
unitarity at the 4.3σ level and 5.2σ level using the nominal results.

This large tension with unitarity again strengthens the case to investigate the normali-
sation issue that we already pointed out in section 3.1.

3.4 BSM interpretation

Our findings so far motivate us to investigate further the allowed parameter space for BSM
contribution to c → sℓ+ν processes. Lifting the assumption of SM dynamics, we fit the 9
parameters discussed in section 2.4. We find the resulting posterior PDF to be multi-modal
and each mode to be distinctly non-Gaussian. The individual modes are related through
symmetries of our likelihood and therefore feature the same maximum a-posteriori. Here and
in our supplementary material, we provide information on one chosen mode of the posterior,
which is defined by arg Cℓ

V,L = 0 and Cℓ
V,L ≃ 1. In our nominal scenario, we obtain the

following 68% probability intervals

Re Cℓ
V,L = [ 0.957, 1.002] ,

Re Cℓ
V,R = [−0.026,−0.012] , Im Cℓ

V,R = [−0.225, 0.225] ,
Re Cℓ

S,L = [−0.019, 0.014] , Im Cℓ
S,L = [−0.030, 0.030] ,

Re Cℓ
S,R = [−0.026, 0.006] , Im Cℓ

S,R = [−0.028, 0.028] ,
Re Cℓ

T = [−0.021, 0.046] , Im Cℓ
T = [−0.068, 0.068] .

(3.8)

This mode and its 68, 95 and 99% central probability intervals are shown in figure 4, together
with the SM and best-fit points. The “scale factor” scenario yields qualitatively the same
results. While our results indicate very strong constraints on potential (pseudo)scalar and
tensor effects in scνℓ sector of the Weak Effective Theory, they do allow for surprisingly large
CP-violating effects in right-handed currents, at the level of 23% of the SM value for the
left-handed current. Such a new source of CP violation in the second quark generation would,
of course, be interesting in the context of the observed CP asymmetry in non-leptonic D

decays [80]. However, recent analyses of the high pT lepton tails in Drell-Yan processes [81]
seem to exclude this type of explanation.
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Figure 4. Marginalised 1D- and 2D-posterior distributions for the 9 parameters of interest of our
WET model in the nominal scenario. As discussed in the text, the imaginary part of CVL

is set to
zero using the global unconstrained phase. The “+” and the solid black lines show the SM point
CV,L = 1.01 and Ci = 0 for all other operators. The “×” and the dashed black lines show the position
of our best-fit point. The imaginary parts of the Wilson Coefficients have symmetric distributions and
therefore provide two best-fit points. The blue areas are the central 68%, 95%, and 99% integrated
probability contours of the posterior distribution obtained from a kernel density estimation.
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4 Conclusion

We have performed a comprehensive global analysis of c → sℓ+ν decays within the Standard
Model (SM) of particle physics and within the Weak Effective Theory (WET). Our analysis
is the first to account for dispersive bounds that connect many of the hadronic parameters
needed in the description of the various decays. We study the impact of the tension between
the ETM and FNAL+MILC & HPQCD lattice QCD results for the D → K form factors.
We found that enlarging the theory uncertainties of these quantities does not change our
results qualitatively. Moreover, our analysis includes for the first time data on leptonic
D∗+

s and semileptonic Λc decays.
Assuming SM dynamics, our nominal fit yields

|Vcs| = 0.957± 0.003 . (4.1)

Our result deviates from the reference values by the Particle Data Group by more than
2.7σ. A large part of the observed discrepancy is traced back to a different treatment of
the electroweak corrections. Our findings lead to a 4.3σ and 5.2σ deviation from unitarity
in the second row and second column of the CKM quark-mixing matrix. In light of the
observed tension between the lattice QCD results for the D → K̄ form factors, our results
should be revised once this tension is clarified.

We set stringent constraints on potential BSM effects in the scνℓ sector of the WET, which
limit hypothetical (pseudo)scalar or tensor effects to be below 7% of CSM

V,L ≃ 1.01, the SM value
for the Wilson coefficient of the left-handed operator. Nevertheless, we find that right-handed
currents can still be sizeable. In particular, we find that CP-violating effects in right-handed
currents at the level of ≃ 23% of the SM contribution are not yet excluded. Complementary
experimental data, such as the angular distribution of Λc → Λ(→ pπ)ℓ+ν decays would
provide the statistical power to exclude such large CP-violating right-handed contributions.
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A Treatment of the hadronic matrix elements

To access quark-level properties of leptonic or semileptonic decays as we do in this analysis,
knowledge of the relevant hadronic matrix elements is essential. The latter parametrise the
mismatch between quark-level processes such as c → sℓ+ν and the hadronic processes such as
D

(∗)
s → ℓ+ν, D+(0) → K̄0(−)ℓ+ν, and Λ+

c → Λ0ℓ+ν. As such, the hadronic matrix elements
are genuinely nonperturbative objects that need to be inferred, ideally, from first-principle
methods such as lattice QCD. Where lattice QCD results are unavailable, we fall back to
QCD sum rule estimates.

For convenience, the hadronic matrix elements are typically expressed in terms of scalar-
valued hadronic decay constants or hadronic form factors. The latter distinguish themselves
from the decay constant by virtue of being scalar-valued functions of the momentum transfer.
Throughout this work, we denote the squared momentum transfer q2 = m2

ℓν .

A.1 Definitions

The simplest hadronic matrix element arises in the decay of a pseudoscalar D+
s state to

a lepton-neutrino pair. We use a common, if not the standard, definition of the decay
constant [50].

⟨0| s̄γµγ5c |D+
s (p)⟩ = ifDspµ , ⟨0| s̄γ5c |D+

s (p)⟩ = −i
M2

Ds

mc(µc) + ms(µc)
fDs , (A.1)

where the axial decay constant also describes the scale-dependent hadronic matrix element
of the pseudoscalar current.

The next-to-simplest case arises in the leptonic decay of a vector D∗+
s meson. We follow

the convention of refs. [65, 82] and use the definition

⟨0| s̄γµc |D∗+
s (p, ε)⟩ = fD∗

s
MDsεµ , ⟨0| s̄σµνc |D∗+

s (p, ε)⟩ = ifT
D∗

s
(εµpν − pµεν) . (A.2)

Note that in this case, the two non-vanishing matrix elements are not related by equations
of motion and, therefore, do not share a common decay constant.

The simplest set of three form factors arises in D → Kℓ+ν decays from vector, scalar,
and tensor currents. A common definition of the form factors reads

⟨K(k)| s̄γµc |D(p)⟩ = fD→K
+ (q2)

[
(p + k)µ − qµ M2

D − M2
K

q2

]
+ fD→K

0 (q2)qµ M2
D − M2

K

q2
,

(A.3)

⟨K(k)| s̄c |D(p)⟩ = fD→K
0 (q2) M2

D − M2
K

mc(µc)− ms(µc)
, (A.4)

⟨K(k)| s̄σµνqνc |D(p)⟩ = ifD→K
T (q2)

MD + MK

[
q2(p + k)µ − (M2

D − M2
K)qµ

]
. (A.5)

In the above, q ≡ p − k. The dependence of the form factors as functions of q2 is discussed
in appendix A.2.
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The most complicated case, in our analysis, arises in Λc → Λℓ+ν decays. A common
definition of the ten form factors reads, following the notation of ref. [83],

⟨Λ| s γµ c |Λc⟩ = uΛ(k, sΛ)
[
fΛc→Λ

V,t (q2) (mΛc − mΛ)
qµ

q2
(A.6)

+ fΛc→Λ
V,0 (q2)mΛc + mΛ

s+

(
pµ + kµ − (m2

Λc
− m2

Λ)
qµ

q2

)
+ fΛc→Λ

V,⊥ (q2)
(

γµ − 2mΛ
s+

pµ − 2mΛc

s+
kµ

) ]
uΛc(p, sΛc) ,

⟨Λ| s γµγ5 c |Λc⟩ = −uΛ(k, sΛ) γ5

[
fΛc→Λ

A,t (q2) (mΛc + mΛ)
qµ

q2
(A.7)

+ fΛc→Λ
A,0 (q2)mΛc − mΛ

s−

(
pµ + kµ − (m2

Λc
− m2

Λ)
qµ

q2

)
+ fΛc→Λ

A,⊥ (q2)
(

γµ + 2mΛ
s−

pµ − 2mΛc

s−
kµ

) ]
uΛc(pΛc , sΛc),

⟨Λ| s iσµνqν b |Λc⟩ = −uΛ(k, sΛ)
[
fΛc→Λ

T,0 (q2) q2

s+

(
pµ + kµ − (m2

Λc
− m2

Λ)
qµ

q2

)
(A.8)

+ fΛc→Λ
T,⊥ (q2) (mΛc + mΛ)

(
γµ − 2mΛ

s+
pµ − 2mΛc

s+
kµ

) ]
uΛc(p, sΛc) ,

⟨Λ| s iσµνqνγ5 c |Λc⟩ = −uΛ(k, sΛ) γ5

[
fΛc→Λ

T5,0 (q2) q2

s−

(
pµ + kµ − (m2

Λc
− m2

Λ)
qµ

q2

)
(A.9)

+ fΛc→Λ
T5,⊥ (q2) (mΛc − mΛ)

(
γµ + 2mΛ

s−
pµ − 2mΛc

s−
kµ

) ]
uΛc(p, sΛc) ,

where sΛ(c) denotes the spin of the Λ(c), p is the momentum of the Λc, k is the momentum
of the Λ, and we abbreviate s± = (mΛb

± mΛ)2 − q2.

A.2 Dispersive bounds

The various hadronic decay constants and form factors discussed in appendix A.1 are genuine
nonperturbative quantities. Nevertheless, perturbation theory can assist in elucidating at
least some information about them. This is achieved with the framework of dispersive bounds;
see ref. [86] for a textbook introduction. Here, we use a modified formulation of the dispersive
bounds [11], compared to common formulations [2–4]. Following ref. [11], we begin with
defining a suitable two-point correlation function ΠJ

Γ(Q2),

Πµν
Γ (q) ≡ i

∫
d4x eiq·x ⟨0|T Jµ

Γ (x)J
†,ν
Γ (0)|0⟩ , (A.10)

with a decomposition into scalar-valued functions Π(i)

Πµν
Γ (q) ≡

∑
i

Sµν
i Π(i)

Γ (q2) . (A.11)

Here, Sµν
i represents one of two structures with definite angular momentum J :

Sµν
(J=1) =

(
qµqν

q2
− gµν

)
, Sµν

(J=0) =
qµqν

q2
(A.12)
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χ
(λ)
Γ n χ

(λ)
Γ

∣∣
OPE × 102 Form factor Pole RF (mass, decay constant) [GeV]

χ
(J=0)
V 1 1.38 fD→K̄

0 , fΛc→Λ
t,V —

χ
(J=1)
V 2 1.52/m2

c fD→K̄
+ , fΛc→Λ

0,V , fΛc→Λ
⊥,V D̄∗

s (2.112, 0.274(6))

χ
(J=0)
A 1 2.51 fΛc→Λ

t,A D̄s (1.968, 0.2499(5))

χ
(J=1)
A 2 0.98/m2

c fΛc→Λ
0,A , fΛc→Λ

⊥,A —

χ
(J=1)
T 3 1.12/m2

c fD→K
T , fΛc→Λ

0,T , fΛc→Λ
⊥,T D̄∗

s (2.112, 0.28(2))

χ
(J=1)
AT 3 0.88/m2

c fΛc→Λ
0,T5 , fΛc→Λ

⊥,T5 —

Table 4. List of the minimally-subtracted correlators χ
(λ)
Γ relevant to the hadronic matrix elements

used in this analysis. We calculate the numerical values based on formulas up to next-to-leading order
in αs and power corrections up order 1/m5

c (from ref. [84]) and next-to-next-to-leading order (NNLO)
in αs (from ref. [85]). The reference values in the MS scheme for the masses of the c-quark and s-quark
and the strong coupling are mc(mc) = 1.275GeV, ms(mc) = 112GeV, and αs(mc) = 0.3996. For
scale-dependent quantities, we use µ = mc(mc).

For our analysis, the relevant currents JΓ are

Jµ
V (x) = s̄(x) γµc(x) , Jµ

A(x) = s̄(x) γµγ5c(x) ,

Jµ
T (x) = s̄(x)σµαqαc(x) , Jµ

AT (x) = s̄(x)σµαqαγ5c(x) .
(A.13)

The same currents are also used in the definition of the hadronic decay constants and form
factors. For Q2 ≲ 0, one finds for the virtuality Q2 − (mc + ms)2 ≫ Λ2

had, ensuring that
Π(J)

Γ (Q2) can be computed in a local operator product expansion (OPE). A number n = nΓ
of subtractions,

χ
(i)
Γ (Q2) = 1

n!

[
∂

∂q2

]n

Π(i)
Γ (q2)

∣∣∣∣
q2=Q2

= 1
π

∞∫
0

ds
ImΠ(i)

Γ (s)
(s − Q2)n+1 , (A.14)

is essential to render OPE results for the correlation function finite. For the vector and axial
currents, we use analytic results obtained from a calculation to NNLO in αs [85] together
with analytic results for the contributions by qq̄, GG, and q̄Gq vacuum condensates [84]. For
the tensor currents, no NNLO calculation is available. We use the NLO and condensate
results obtained in ref. [84]. The values of χ

(i)
Γ and the minimal number of subtractions n

are compiled in table 4. We find that, although the individual condensate contributions are
sizable, they largely cancel when taking their sum.

A hadronic representation of the same correlation functions arises from the computation
of the imaginary part of Π(i) in terms of hadronic matrix elements

Im Π(i)
Γ (s + iε) = 1

2
∑∫
H

dρH(2π)4δ(4)(pH − q)P(i)
µν ⟨0|Jµ

Γ |H(q)⟩ ⟨H̄(q)|J†,ν
Γ |0⟩

∣∣∣
q2=s

, (A.15)
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where P(J=0) = S(J=0) and P(J=1) = S(J=1)/3. For one-particle bound states H = D̄
(∗)
s ,

the contributions read

χ
(J=1)
V

∣∣
1pt =

M2
D∗

s
f2

D∗
s

(M2
D∗

s
− Q2)3 , χ

(J=0)
A

∣∣
1pt =

M2
Ds

f2
Ds

(M2
Ds

− Q2)2 , χ
(J=1)
T

∣∣
1pt =

M4
D∗

s
(fT

D∗
s
)2

(M2
D∗

s
− Q2)4 .

(A.16)
For H = DK̄, the contributions by the hadronic form factors read e.g. [11]

χ
(J=1)
V

∣∣
DK̄

= ηD→K

16π2

∞∫
(MD+MK)2

ds
λ3/2(s)

s2(s − Q2)3 |f
D→K
+ (s)|2 , (A.17)

where λ(s) ≡ λ(M2
D, M2

K , s) denotes the Källen function. Similar relations exist for all D → K̄

and Λc → Λ form factors. The assignment of individual form factors to the quantities χ
(i)
Γ is

provided in table 4. These relations inspire dispersively-bounded parametrisations [2–4] of
the hadronic form factors. We apply this framework in the form discussed in refs. [11, 19, 60],
which improves upon previous works by accounting for the integration domain for the
dispersive bound and by splitting the bounds by the helicity as discussed above. The final
parametrisation for a form factor f takes the form

f(q2) = 1
ϕf (z)B(z)

K∑
k=0

a
(f)
k p

(f)
k (z)

∣∣∣∣
z=z(q2)

, (A.18)

where we use the usual conformal map from q2 to z, outer functions ϕf , and Blaschke
factors B(z). The functions p

(f)
k are a suitable choice of polynomials of order k that are

orthonormal on an f -specific arc of the unit circle in z [11]. The manifest benefit of using
this parametrisation is the bounded parameter space |a(f)

k | < 1 for all orders in k and all
form factors f . Moreover, in a global fit, we impose a strong dispersive bound of the form

∑
f

K∑
k=0

|a(f)
k |2 < 1 , (A.19)

where the sum over f iterates over all form factors across processes for a fixed current Γ and
angular momentum J , i.e., over all such form factors emerging in either D → K̄ and Λc → Λ.

A.3 Effective theory relations for baryon form factors

The Λc → Λ tensor form factors are available from a single lattice QCD analysis [59] that
provides the (axial)vector and (pseudo)scalar form factors, i.e., all form factors needed to
produce theory predictions within the SM. For the purpose of our analysis, as discussed
in section 2.4, knowledge of the tensor form factors is also required. Information on the
latter is presently not available from lattice QCD analyses. In the absence of such lattice
QCD information, we rely on other constraints.

Heavy-to-light transition form factors of baryons exhibit some interesting and useful
symmetry properties in the heavy-quark limit (HQL) and in the large-energy limit (LEL),
respectively. These symmetry properties emerge to leading order in the double expansion in
αs/π and ΛQCD/mc and a triple expansion αs/π, Λhad/mc, Λhad/EΛ (with EΛ the energy
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of the Λ in the Λc rest frame), respectively. At leading order in these expansions, all the
Λc → Λ form factors reduce to the following simple set of functions [87, 88]

ξ

mΛc

= fV,t(0) = fV,⊥(0) = fV,0(0) = fA,t(0) = fA,⊥(0) = fA,0(0)

= fT,⊥(0) = fT,0(0) = fT5,⊥(0) = fT5,0(0) , (A.20)
ξ1 − ξ2

mΛc

= fV,⊥(q2max) = fV,0(q2max) = fA,t(q2max) = fT,⊥(q2max) = fT,0(q2max) , (A.21)

ξ1 + ξ2
mΛc

= fA,⊥(q2max) = fA,0(q2max) = fV,t(q2max) = fT5,⊥(q2max) = fT5,0(q2max) . (A.22)

Although the values of ξ, ξ1 and ξ2 can be approximated, a proper estimation of the correlation
between the different form factors would require dedicated analyses. Here, we instead follow
the recipe proposed in ref. [19] and restrict ourselves to the following set of relations, valid
both at q2 = q2max (HQL) and q2 = 0 (LEL):

fT,⊥/fV,⊥ = 1± 0.35 , fT,0/fV,0 = 1± 0.35 ,

fT5,⊥/fA,⊥ = 1± 0.35 , fT5,0/fA,0 = 1± 0.35 ,
(A.23)

where the uncertainties are treated as uncorrelated. We find that imposing these relations
suffices to determine the tensor form factor parameters in the presence of the dispersive bound.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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