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Abstract

With their high angular resolutions of 30–100 mas, large fields of view, and complex optical systems, imagers on
next-generation optical/near-infrared space observatories, such as the Near-Infrared Camera (NIRCam) on the
James Webb Space Telescope, present new opportunities for science and also new challenges for empirical point-
spread function (PSF) characterization. In this context, we introduce ShOpt, a new PSF fitting tool developed in
Julia and designed to bridge the advanced features of PSFs in the full field of view (PIFF) with the computational
efficiency of PSF Extractor (PSFEx). Along with ShOpt, we propose a suite of nonparametric statistics suitable
for evaluating PSF fit quality in space-based imaging. Our study benchmarks ShOpt against the established PSF
fitters PSFEx and PIFF using real and simulated COSMOS-Web Survey imaging. We assess their respective PSF
model fidelity with our proposed diagnostic statistics and investigate their computational efficiencies, focusing on
their processing speed relative to the complexity and size of the PSF models. We find that ShOpt can already
achieve PSF model fidelity comparable to PSFEx and PIFF while maintaining competitive processing speeds,
constructing PSF models for large NIRCam mosaics within minutes.

Unified Astronomy Thesaurus concepts: Computational methods (1965); Astronomy image processing (2306);
Astronomy data analysis (1858); James Webb Space Telescope (2291)

1. Introduction

The inherent limitations of optical systems introduce artifacts
into telescope imaging. Effects like diffraction, optical
aberrations, atmospheric turbulence (if applicable), and telescope
jitter are summarized in the telescopeʼs point-spread function
(PSF): the response of the optical system to an idealized point of
light. Good PSF modeling during image processing reduces the
impact of things like atmospheric turbulence and optical
aberrations during scientific analysis. Failure to model the PSF
correctly can lead to inaccurately measured positions, sizes, and
shapes of small targets like galaxies.

The central importance of PSF characterization to astrophysics
means that there is a wealth of PSF fitters available. These
generally fall into two classes: forward-modeling approaches,
which use physical optics propagation based on models of optical

elements, and empirical approaches, which use observed stars as
fixed points to model and interpolate the PSF across the rest of the
image. In both cases, the PSF model may be validated by
comparing a set of reserved stars to the PSF model’s prediction.
Empirical characterization tools like PSF Extractor (PSFEx;

Bertin 2011) and PSFs in the full field of view (PIFF; Jarvis
et al. 2020)15 are widely popular in astrophysics. However, the
quality of PIFF and PSFEx models tends to be quite sensitive to
the values of hyperparameters used to run the software, with
optimal parameter selection sometimes relying on brute-force
guess-and-check runs. PIFF, using the modeling and interpola-
tion scheme used for the Dark Energy Survey Year 3
observations, is also notably inefficient for large, well-sampled
images, taking hours in the worst cases.
Because space telescopes are unimpeded by the atmosphere,

their PSFs are also often characterized by forward-modeling
approaches like Tiny Tim (Krist et al. 2011) and WebbPSF
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15 https://github.com/astromatic/psfex and https://github.com/
rmjarvis/Piff.
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(Perrin et al. 2012, 2014; Ji et al. 2023). WebbPSF models are
continually updated based on telescope telemetry, ensuring high
accuracy in all bandpasses and for all instruments regardless of
image noise. While robust, forward modeling is not infallible
and may occasionally miss short-timescale variations and other
“unknown unknowns” that can be captured with empirical PSF
models, albeit at the cost of much higher noise.

The James Webb Space Telescope (JWST) represents a giant
leap forward in our ability to explore the cosmos. Equipped
with groundbreaking instruments like the Near Infrared Camera
(NIRCam) and the Mid-Infrared Imager (MIRI), the telescope
is poised to unlock unprecedented insights into the early
universe (Robertson 2022). At the same time, these advances
usher in a new set of complexities for PSF characterization:

1. Modeling the PSFs of space observatories like JWST is
nontrivial since they generally operate near their
diffraction limits and exhibit intricate optical patterns
that defy the analytic approximations acceptable for PSFs
of ground-based imaging. In particular, the PSFs exhibit
steep spatial gradients, making them highly sensitive to
the hyperparameters of commonly used analytic profiles,
where slight variations can lead to substantial inaccura-
cies. The assessment of PSF models for space-like
imaging presents an additional challenge, as most metrics
of fit quality, e.g., FWHM or second moments of
intensity, treat the PSF as an elliptical Gaussian—a poor
approximation for the “spiky” NIRCam and MIRI PSFs.
While there are some useful moment-based metrics for
assessing fit quality (e.g., Zhang et al. 2023), there are no
universally adopted nonparametric diagnostics for asses-
sing pixel-level model biases.

2. The NIRCam detector pixel scales are 0 031 pixel−1 and
0 063 pixel−1 for the short- and long-wavelength channels,
respectively (Rieke et al. 2003, 2005; Beichman et al.
2012). At these fine scales, fully capturing the intensity
profile of the NIRCam PSF requires a much larger number
of pixels than is needed for typical surveys, whose detectors
have pixel scales 3–10 times larger than NIRCam (York
et al. 2000; Jarvis et al. 2020; Fu et al. 2022; McCleary
et al. 2023). As a consequence, the number of pixels needed
to model the full size of the PSF is much greater. This new
regime prompts a necessary evaluation of how current PSF
fitters perform at this new scale. That is, can the PSF fitters
still capture the full dynamic range of the distortion and do
so in a reasonable time.

To meet these challenges, we introduce ShOpt,16 a new PSF
modeling tool that strives to retain the best of existing PSF
modeling software while advancing their mathematical
formulation and increasing their computational efficiency.
Written in the high-level Julia language using a functional
programming style,17 ShOpt offers both accessibility and
speed, positioning it as a valuable tool for the astrophysical
community. ShOpt introduces manifold-based algorithms for

enhanced efficiency in analytic profile fitting. ShOpt also
employs three distinct techniques for pixel-basis fitting:
principal component analysis (PCA), an autoencoder, and
kernel smoothing.
Along with ShOpt, we introduce a suite of nonparametric

PSF fit statistics appropriate for space-based imaging, namely
reduced χ2, mean relative error, and mean absolute error. Our
proposed PSF characterization statistics are inspired by strong
gravitational lensing analyses and move beyond the conven-
tional metrics based on elliptical Gaussians. In this study, we
evaluate the performance of ShOpt, PSFEx, and PIFF using
data from the COSMOS-Web survey (Casey et al. 2023), using
our proposed PSF fit statistics to gauge their relative
performance. In addition, we time the PSF fitters to measure
the computational efficiency of each tool.
To summarize, our contributions are the following:

1. We introduce ShOpt, and with it, a number of methods
for efficient empirical PSF characterization.

2. We benchmark the model fidelity of different PSF fitters
using nonparametric approaches. We use real and
simulated catalogs from the COSMOS-Web Survey and
measure χ2, mean relative error, and mean absolute error.
We supplement these statistics with conventional second-
moment Hirata-Seljiak-Mandelbaum (HSM) fits (Hirata
& Seljak 2003; Mandelbaum et al. 2005).

3. We benchmark the computational efficiency of different
PSF fitters.

The remainder of this paper is structured as follows. In
Section 2, we establish the workflow of ShOpt and the
notation used in this paper. In Section 3, we develop our
methods for Gaussian and pixel-basis PSF fits, and in Section 4
our methods for fitting their variation across the field of view.
In Section 5, we describe our benchmarking methods and data
sets. Our algorithmic choices for ShOpt are justified using big-
 time complexity analysis in Section 6, specifically detailing
ShOptʼs speed variation with different input parameters. In
Section 7, we describe our benchmarking methods and data
sets. We present our results in Section 8, and discussion and
conclusions in Section 9.

2. ShOpt Notation, Workflow, and Overview

2.1. Notation and Preliminaries

We represent star locations in pixel coordinates as (x, y) and
in celestial coordinates (expressed in degrees) as (u, v). In terms
of a nominal position source, positive u is west, and positive v
is to the north. “Vignette” refers to small, localized images,
centered around individual stars or celestial objects, that are
extracted from larger astronomical images.
We use the following notation for working with manifolds.

For two sets A, B,

{[ ] } ( )º + < Ì B x y x y, : 1 , 12
2 2 2

{ } ( )º > Ì+ x x: 0 , 2

{( ) } ( )´ º Î ÎA B a b a A b B, : , . 3

Throughout this paper, we describe the shape of a smoothly
varying (analytic) PSF profile in terms of the variables
[ ]s g g, ,1 2 , where (g1, g2) are the polarization states of an
elliptical source with reduced shear g= g1+ ig2= ge i2 θ,
where θ is the angle of the major axis from [west/some

16 The name ShOpt is a contraction of “shear optimization.” That is, we are
finding the best-matching PSF by formulating optimization problems over the
space of all possible shears. The name was inspired by the manopt library, a
contraction of manifold optimization. It is an apt comparison given the
manifold learning we describe in Section 3.1.
17 By functional, we mean the functional programming paradigm. While Julia
provides support for object-oriented design patterns with structs, the Julia
code is generally written with design patterns that put an emphasis on reusable
functions.
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fiducial orientation] and

( )º
-
+

g
q

q

1

1
, 4

for an ellipse with (major/minor) axis ratio q, such that
0� g< 1 (Bernstein & Jarvis 2002). While shear is typically
treated as a number in the complex plane , we make an
equivalent characterization that shear is a vector [ ] Î g g,1 2

2.
This vector representation corresponds to the real and
imaginary parts of the complex shear. The free parameter s
represents the size of the ellipse (the geometric mean of the
major and minor axis lengths). We introduce free parameters
[ ]s e e, ,1 2 that reparameterize [ ]s g g, ,1 2 , noting that we adopt a
slightly different relationship between ellipticity e and shear g
than may be seen elsewhere in the literature, dropping by a
factor of 2 in Equation (13) for the purposes of an easier
calculation of the inverse map (details in Section 3).

Additionally, we are often concerned with a more realistic
pixel basis, where each pixel in an n× n star image is a basis
element.

For our nonparametric summary statistics defined in
Equations (5)–(8), we use vi,j,k to represent the i× j pixels in
vignette k, and pi,j,k to represent the i× j pixels in PSF model k.
σi,j,k represents the uncertainty in the model at pixel (i, j) and
vignette k. The total number of vignettes is K. The number of
pixels in a vignette is denoted Npix
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, 7
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N

k
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i j kpix ,
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, ,
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∣ ∣
∣ ∣

( )
( )
å å=

-

N K

v p

v
Mean Absolute Error

1 1
. 8

i j

N

k

i j k i j k

i j kpix ,

, , , ,

, ,

pix

We shall henceforth refer to the mean relative error as MRE
and the mean absolute error as MAE. To enable flux-based
comparisons between PSF vignettes, which most fitters
normalize to unity, and star vignettes, we add the appropriate
star flux to the PSF vignettes and then add Gaussian noise with
mean and variance taken from the sky background in the
vicinity of the star.

2.2. Code Overview

ShOpt takes inspiration from robotics algorithms, such as
SE-Sync (Rosen et al. 2019), that run on manifold-valued data.
The manifold properties of shears are described in Bernstein &
Jarvis (2002); we expand on their work to provide more robust
multivariate analytic fits to PSF intensity profiles. We
specifically use multivariate Gaussians, as they are cheap to
compute, but for a more rigorous treatment of optimization
methods on manifold-valued data, see Absil & Mahony (2008)
and Boumal (2023). ShOpt also provides three modes for
fitting PSFs on a pixel basis: PCA mode, autoencoder
mode, and smoothing mode detailed in Section 3. PCA mode
approximates the original image by summing the first n
principal components, where n is supplied by the user. We also

introduce autoencoder mode, which uses a neural network
with an autoencoder architecture to learn the PSF. A square
image of side length n can be thought of as vectors in n2

,
where each pixel is a basis element. The architecture is built so
that the image is encoded into a vector space represented by a
basis with dim (V )< n2 before being decoded back into the
dimension of our original image. The nonlinearity of the
network ensures that the key features are learned instead of
some linear combination of the sky background. Both PCA and
autoencoder modes provide the end user with tunable
parameters that allow for accurate reconstruction of the model
vignettes without overfitting to noise. The smoothing mode
applies a Lanczos kernel to the input vignettes and uses the
smoothed output for the pixel-basis fit.
Why Julia?
ShOpt is written in Julia. The Julia programming language

is a high-level and functional language like Python, which
makes it accessible to a community of open-source developers.
At the same time, Julia is equipped with a just-in-time
compiler, which helps Julia code execute quickly by recycling
compiled code. This offers a speed advantage over Python,
which is first transpiled to C before being translated into
machine code. Julia also offers some of the most sophisticated
tools for problems at the intersection of numerical linear
algebra and optimization, such as the ForwardDiff.jl and
Optim.jl (Revels et al. 2016; Mogensen & Riseth 2018)
libraries. Julia also has an abundance of support for working
with manifolds such as manopt, which may be pertinent in
future releases of ShOpt (Bergmann 2022). Finally, much of
today’s production code is written with the help of program
synthesis tools such as GitHub Copilot. It is clear that these
tools will soon make Julia more accessible than ever before to
astrophysicists and other potential future ShOpt contributors.
Work is being done to strengthen these tools for programming
languages with much less training data available, such as
Julia. Cassano et al. (2023) successfully demonstrated how
to transfer knowledge from programming languages with lots
of publicly available training data (e.g., Python) to program-
ming languages with much less training data available (e.g.,
Racket, OCaml, Lua, R, and most importantly, Julia).
The source code for ShOpt can be found on GitHub18 and is

detailed in our companion paper (Berman & McCleary 2024).
ShOpt accepts as input a FITS-format catalog containing

star vignettes, positions, and signal-to-noise ratios (SNRs). One
concession ShOpt makes is that it makes more sense to build
on the Astropy infrastructure than to rebuild everything from
scratch. As such, PyCall.jl is used to handle FITS input
and output. Since this is only done once and not iterated over in
any main loop, this does not significantly affect performance.
After an initial quality check based on SNR, the star

vignettes are fit with a multivariate Gaussian to remove outlier
stars. While these Gaussian fits are not used to create a PSF
model, they are helpful in screening out stars that are saturated,
too bright, or too faint. In situations where the image noise is
high, the SNR threshold must be kept low to include enough
stars for fitting. After these preprocessing steps, stars are fit in
the pixel basis using either the PCA or autoencoder modes. The
output learned stars are then fit with a multivariate Gaussian,
which serves both to reject bad pixel-basis fits and to record the
rough size and shape of the PSF. Surviving stars act as fixed

18 https://github.com/EdwardBerman/shopt and https://edwardberman.github.
io/shopt/.
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points for polynomial interpolation of the PSF’s spatial
variation across the field of view. Finally, the learned data
are saved to a summary FITS file, along with diagnostic plots
and logging statements. This is summarized in Algorithm 1.

Algorithm 1. ShOpt Workflow

1: ()¬starCatalog loadStarCatalog
2: ( )¬filteredCatalog starCatalogfilterBySignalToNoise
3: for each vignette in filteredCatalog do
4: ( )¬gaussianFit vignettefitMultivariateGaussian
5: if not ( )gaussianFitisGoodFit then
6: ( )vignetteremove
7: end if
8: end for
9: ( )¬pixelGrid filteredCatalogcreatePixelGrid
10: ( )¬reducedData pixelGriddimensionalityReduction
11: for each grid in reducedData do
12: ( )¬gaussianFit gridfitMultivariateGaussian
13: if not ( )gaussianFitisGoodFit then
14: ( )gridremove
15: end if
16: end for
17: for num iterations do
18: for each point in FieldOfView do
19: ( )¬interpolatedStar point reducedDatainterpolate ,
20: if ( )interpolatedStarisOutlier then
21: ( )Starremove
22: end if
23: end for
24: end for
25: ()plotAndSaveData

3. Parameter Estimation for PSF Modeling

3.1. Analytic Profile Fitting

ShOptʼs analytic model has two components, a shear
transformation and a radial function. We elect to fit an elliptical
Gaussian fGaussian(r) for our radial function:

( ) ( )= -f r Ae , 9r
Gaussian

22

where A makes the image sum to unity. There are other radial
profiles that we could choose from, however, any radial profile
parameterized by [ ]s g g, ,1 2 contains some azimuthal symmetry
that makes the “wings” of the PSF difficult to model. Thus, it is
not worth the computational cost to fix a radial profile that is
any more elaborate than an elliptical Gaussian as there are
diminishing returns for accuracy.

For any analytic model, the shear is always the same,

⎡
⎣

⎤
⎦

⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦( ) ( )
( )¢

¢
=

- -

+
-

u
v

s

g g

g g

g g
u
v1

1

1
10

1
2

2
2

1 2

2 1

and

( ) ( ) ( )= ¢ + ¢r u v . 112 2

The shear matrix in Equation (10) is known to be positive
definite, and s is strictly positive. Therefore, our parameters are
constrained to ´+ B2. The parameter space can be visualized
as a solid cylinder extending infinitely far from the origin in
one direction, as seen in Figure 1.

The finite domain of g poses a problem for fitting. As such,
we adopt a fitting parameter e that allows us to map any value

in 2 onto g:

∣∣ ∣∣
( )=

-
e

g

g1
. 12i

i
2

This map19 from  B2
2 is relatively smooth so that any

automatic differentiation software can handle it during the
fitting process. We can construct an inverse map via

∣∣ ∣∣ ∣∣ ∣∣
∣∣ ∣∣ ∣∣ ∣∣

( )=
+ + +

g
e

e e

2

1 2 1 4
. 132

2

2 2

The inverse map allows us to constrain our update steps inside of
our parameter space, which leads to quicker convergence and the
ability to handle noisier data more effectively. Equation (13) also
keeps the nice properties of smoothness and monotonicity
desirable for activation functions; see Figure 2. Equation (13) is
not the canonical map from 2 to B2(r); two sigmoid functions
could also have been used. We chose this particular function
because it avoids the finite domain problem, is easily
differentiable by the tools we use, and has a loose geometric
interpretation described in Bonnet & Mellier (1995).
Note that this inverse only specifies what the new norm

should be; the components still need to be adjusted
accordingly. We reparameterize20 as follows:

( )sºs , 142

∣∣ ∣∣
∣∣ ∣∣

( )ºg e
g

e
. 15i i

Figure 1. Parameter space for fitting an analytic profile, with sample iterations
of the algorithm converging toward a learned [ ]s g g, ,1 2 . Note that the cylinder
extends upward toward infinity but is bounded from below by 0.

19 We could look at this as a map from  Bn
n but in this case, we are only

concerned about vectors [ ]=g g g,1 2 and [ ]=e e e,1 2 .
20 Technically, for s to be strictly positive we would set s ≔ σ2 + ε, where ε is
some small positive perturbation. Numerically, it makes little difference: stars
with very small s are removed during preprocessing.
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The values of σ, e1, e2 are obtained from each update step
and ∥e∥ is then determined from the usual L2 norm. The
parameter s is obtained from Equation (14) and ∥g∥ from
Equation (13). Finally, ∥g∥ is used with ∥e∥ to calculate g1
and g2.

We have that r is a function of [ ]u v s g g, , , ,1 2 and f is a
function of r such that

( ) ( ) ( )ºf r I u v s g g, , , , . 16p 1 2

Even though we solve for parameters [ ]s e e, ,1 2 , the loss is still
dictated by [ ]s g g, ,1 2

( ) ( ( )

( )) ( )

åå=

-

*s g g I u v

I u v s g g

cost , ,
1

2
,

, , , , . 17

t
u v

p

p t

1 2

1 2
2

t t

t t

pix pix

Here ∗ denotes the ground truth (i.e., star) in the star vignette
and the subscript t denotes iteration t in an LBFGS run.
Parameters are found using Julia’s Optim.jl library
(Mogensen & Riseth 2018) and the gradient is computed using
Julia’s ForwardDiff.jl library (Revels et al. 2016).

3.2. Pixel-grid Fits

PCA mode, autoencoder mode, and smoothing mode
all provide “pixel-grid” mechanisms for reconstructing the PSF
on the image pixel basis. We outline each of these modes below.

3.2.1. PCA Mode

PCA mode approximates a star image with a rank-n
approximation of the original image using PCA, where n is
supplied by the user. Modeling the vignette in this way gives the
user a method of determining how much they want their pixel-
grid model to represent the original star vignette. Choosing a
lower rank approximation will yield less detail on the shape of
the PSF, but will do so quickly and without much noise
contamination. On the other hand, a higher rank approximation
will capture more of the fine details, but at the risk of capturing
some of the noise. It should be noted that the choice of n has
little overhead cost on the ShOpt computation time.

To minimize aliasing effects that might appear in low-rank
approximations, the output image is convolved with a

smoothing Lanczos kernel :
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where a is a tunable parameter for the size of the kernel and x is
the distance from the center of the kernel.

3.2.2. Autoencoder Mode

Autoencoder mode uses deep learning to reconstruct PSF
vignettes pixel by pixel. We adopt an autoencoder architecture
because the projection into a latent space forces the machine
learning algorithm to learn the key features of the image
regardless of the noise present. The operations are carried out
by Julia’s Flux.jl machine learning library (Innes 2018).
In our specific architecture, the input star vignette is first

flattened and then passed through the network, which has an
encoder with one layer containing 128 nodes and a second
layer containing 64 nodes. The encoder feeds into a latent space
with 32 nodes, which is then decoded back into a layer of 64
nodes, 128 nodes, and finally back into an image (vignette) of
the same dimension as the input vignette. We enforce both the
input and output vignettes to sum to unity so that the relative
distributions of intensities can be compared. The loss function
is a mean squared error:

( ) ( ˆ ) ( )å= -x
N

x xcost
1

, 19
N

p p
pix

2

pix

where x̂ denotes the image after it has been put through the
autoencoder.
The network consists of two activation functions. A

leakyrelu (Maas 2013) function is used for all layers
except for the last one. This choice reflects that most of the
vignette pixel values are positive, and the ones that are not are
usually close to zero or eliminated in data preprocessing. The
final layer uses a tanh activation function to ensure that output
values stay bounded between (−1, 1). The network trains until
it either hits a specified number of epochs or until it hits a
stopping gradient. We encourage exploration of the number of
epochs and the minimum stopping gradient to find an
appropriate middle ground between accuracy and time of
completion. Stopping gradients between 10−5 and 10−6 are
usually sufficient to get a good approximation in a reasonable
time and in 100 epochs or less. This was revealed through the
use of diagnostic plots that are introduced in Section 8. The
activation functions and number of nodes are not tunable by
default; changing those is not recommended.

3.2.3. Smoothing Mode

In the case of well-sampled images like the NIRCam data
considered in this analysis, we find that basic smoothing is
sufficient before interpolation. This is implemented in ShOpt as
the smoothing mode, which uses only the Lanczos kernel
introduced in Equation (18) before producing the pixel-grid fit.
While PCA and Autoencoder can yield denoised PSF
models from low-dimensional reconstructions, the smooth-
ing mode is a simpler technique that avoids some of their
limitations, albeit at the expense of noisier models.

Figure 2. Reparameterization function. For any ellipticity vector [ ]e e,1 2 the
associated shear vector [ ]g g,1 2 has a norm in [0, 1).

5

The Astronomical Journal, 168:174 (29pp), 2024 October Berman et al.



4. Interpolation Across the Full Field of View

To fit for the spatial variation of the size and shape of the PSF,
ShOpt first produces a rough estimate by interpolating the
analytic fit parameters [ ]s g g, ,1 2 across the field of view using a
polynomial of order n, where n is supplied by the user. For an
order-n polynomial p(u, v)), the cost function takes the form
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where ∗ denotes the ground truth obtained by pixel-basis fits.
This gives us different polynomials in u and v for [ ]s g g, ,1 2 .
There is a tunable parameter for the stopping gradient that
leaves the tradeoff between speed and accuracy of the
polynomial interpolation to the end user. As elsewhere, the
minimum of the cost function is found with LBFGS and the
Optim.jl library.

Subsequently, the pixel-grid model is interpolated across the
field of view. By definition, each pixel in pixel-grid models is a
basis element, so the natural thing to do is to give each pixel in
an n× n vignette its own polynomial. However, we found that
this approach for solving for the polynomial coefficients
produced systematically biased models, possibly due to the
conditioning of the pixel intensity values. Thus, we opt for an
alternative approach. To solve for the coefficients of the
polynomial in the pixel-basis fit, we may specify a matrix
m× n matrix, where m is the number of stars we are
interpolating over and n is still the order of the polynomial.
We denote this design matrix by A. If vector x represents the
coefficients of the polynomials and vector b represents the
intensity values, then we may use the known least squares
solution to the matrix equation

( )=Ax b. 21

Not all stars are good exemplars of the PSF due to things like
saturation, color effects, and noise. To combat this, ShOpt
does its polynomial interpolation over several iterations
according to Algorithm 2.

Algorithm 2. Iterative Polynomial Interpolation and Star
Filtering Process

NumIterations ¬ [define number of iterations]
2: for ¬i 1 to NumIterations do

PSFModel ¬ PolynomialInterpolate(TrainingStars)
4: RenderedStars ¬ RenderPSF(PSFModel)

MSE ¬ ComputeMSE(TrainingStars, RenderedStars) ▹ MSE: Mean
Squared Error

6: WorstStars ¬ GetWorstPerformingStars(MSE, 10% or N sigma)
TrainingStars ¬ TrainingStars—WorstStars

8: end for
FinalPSFModel ¬ PolynomialInterpolate(TrainingStars)

10: return TrainingStars, FinalPSFModel

The number of iterations to refine the polynomial
interpolation is specified by the user. After each iteration, the
predicted PSF is rendered at each star location and the mean
squared error (Equation (22)) is computed using the training

stars. The worst 10% of training stars are filtered out

( ) ( )
( )
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N
v pMean Squared Error

1
. 22
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pix ,
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Alternatively, we provide a mode that removes N× σ
outliers from the interpolation. Polynomial interpolation for
high-degree polynomials can be the most expensive part of the
whole PSF fitting procedure. For this reason, ShOpt is strict
about filtering outliers in polynomial interpretation. Training
stars are excluded based on the value of s that was found during
the analytic profile interpolation step, which eliminates the
need for additional iterations to clean the training data.
Additionally, we make the conscious decision not to continue
filtering our training stars until we reach a given nσ confidence.
The JWST PSFs contain lots of background noise between the
wings of the stars we are trying to model. Consequently, an
excessive number of iterations may be required to reach the
desired level of confidence.

5. Data Preprocessing and Outlier Rejection

In ShOptʼs outlier rejection process, three distinct phases
are employed: (1) SNR-based filtering on input stars; (2) a
Gaussian fit size filter on the input stars; and (3) a separate
Gaussian fit size filter on pixel-grid models. Following these
phases, the process advances to the iterative refinement for
polynomial fitting, as detailed in Section 4.
Before doing anything else, ShOpt filters out bad stars on the

basis of SNR; the default SNR metric is the SExtractor
SNR_WIN parameter. By default, ShOpt filters out the noisiest
33% of entries, a percentage determined through experimenta-
tion. Users can adjust this threshold to fit their specific data sets.
The remaining vignettes are then fit with a multivariate

Gaussian, as described in Section 3. We filter again based on
the object size s. A very small or very large s probably
corresponds to objects that are not point sources. By default,
vignettes with s< 0.075 or s> 1 are filtered out. This ensures
further computation time is not wasted on bad data. We apply
the same size filtering after fitting Gaussians to the pixel-grid
models. This prevents poor pixel-grid models from being used
in our polynomial interpolation, as mentioned in Section 4.
ShOpt also offers several methods for efficiently cleaning

useful data without discarding them. Given that SExtractor sets
the flux of interloping sources to a sentinel value of −1032,
ShOpt sets pixels less than −1000 to NaN. Before doing any
analytic or pixel-grid fits, we also smooth the image according
to the kernel introduced in Equation (18) to avoid any hot
pixels in the vignettes. Finally, we recommend that users select
true in the YAML configuration for the setting sum_pix-
el_grid_and_inputs_to_unity. This enforces intensity
to sum to unity in each of our model vignettes and their pixel-
grid fits.

6. Runtime Analysis

In this section, we compare the algorithmic complexity and
convergence properties of ShOpt, PIFF, and PSFEx,
examining the analytic profile fits, pixel-grid fits, and
polynomial interpolation steps separately. Runtime analysis
of the three PSF fitters allows us to argue for the algorithmic
choices implemented in ShOpt without needing to factor in a
programming language or computing power. The results will
serve as predictions for the speed tests of Section 8.3.
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6.1. Analytic Profile Fit Runtime

Let n denote the number of pixels on one side of a square
vignette so that there are n2 total pixels. In our optimization
scheme, we compute the loss between every pixel in the
vignette and the analytic profile prediction an average of I
times. Our nominal runtime is thus ( )´ n I2 .

The PIFF configuration used in this work does not solve for
[ ]s g g, ,1 2 using a nonlinear process. Instead, this configuration
uses iterative linear least squares with slight updates to the
centroid and total flux over a grid of pixels. However, there are
other PIFF configurations that use nonlinear processes to find
[ ]s g g, ,1 2 based on first-order approximation methods. On the
other hand, ShOpt uses LBFGS, which uses superlinear
approximations to calculate the direction of improvement to
find [ ]s g g, ,1 2 . The LBFGS algorithm and the reparameteriza-
tion step introduced in Section 3.1 allow us to argue that
IShOpt< IPIFF. While we refrain from claiming that ShOpt will
always converge to the correct [ ]s g g, ,1 2 faster than PIFF, we
have designed ShOpt with the hopes that using a more
memory-expensive technique to compute its update steps while
keeping the solution within a constraint gives us better
convergence.

6.2. Pixel-grid Fit Runtime

6.2.1. PCA Runtime

PCA relies on computing the singular value decomposition
of the covariance matrix of a given data set. Singular value
decomposition is ( ) n3 for an n× n matrix, but the fit is
typically much cheaper to compute for an approximation using
the first k principal components. While this does not lower the
big-O complexity to the χ2 minimization pixel-grid fitting
implemented in PIFF and PSFEx (Bertin 2011; Jarvis et al.
2020), we do not encounter any noticeable speed bottlenecks at
this step.21 We will explore this more in Section 8.3.

6.2.2. Autoencoder Runtime

As in Section 6.1, we may observe that the complexity is
( )´ n I2 because the loss is computed an average of I times

over n2 pixels. The number of parameters between layers as a
function of neurons m in layer i in our network is given by

( ) ( )= ´ +-N m m m , 23i i iparams 1

where the first term corresponds to the number of weights and
the second term corresponds to the biases. In our network, the
number of nodes for the input and output is set by a flattened
version of the input image. Therefore, the number of parameters
to learn grows as [( ) ] [( ) ]´ + + ´ +n n n128 128 1282 2 2 .
On the other hand, PIFF and PSFEx employ a form of χ2

minimization, wherein each pixel in the image is a learnable
parameter; for an (n, n) image there are only n2 learnable
parameters and n2 pixels computed in the loss function. Even
though the loss function in ShOpt is also computed over n2

pixels, there are many more than n2 learnable parameters, so we
expect the autoencoder to take more iterations to converge on
average than PIFF and PSFEx. For this reason, autoencoder
is not the default mode for pixel-grid fits in ShOpt. It should be

reserved for cases that demand precision and where the images
are small enough to be learned efficiently so the transfer learning
effect is more pronounced.

6.3. Polynomial Interpolation Runtime

Almost all PSF fitting software makes use of polynomial
interpolation to model the variation of the PSF across the
camera’s field of view. Any performance gains in this area are
primarily derived from the efficiency of the polynomial fitting
process to the data. In PSFEx, these fits are implemented using
PCA, which Bertin (2011) argues requires the lowest number
of basis vectors to approximate an image if the data are
sufficiently well-behaved.
In ShOpt, we use the design matrix and the known least

squares solution to the matrix equation Ax= b to fit each pixel
with an independent polynomial. This process is inherently
parallelizable because the polynomial found for one pixel is
independent of the polynomial found for any other pixel (see

Figure 4. April data tiling scheme.

Figure 3. Pictoral representation of multithreading in ShOpt. In this example,
all of the pixels in the upper left of the pixel-grid renderings are interpolated
across the field of view in thread 1, and all of the pixels in the upper right of the
pixel-grid renderings are interpolated across the field of view in thread 2, and
so on.

21 A χ2 minimization pixel-grid fit will be incorporated in a future ShOpt
release.
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Figure 3). ShOpt will automatically use as many threads are
made available to it. The idea to break these operations into
computation blocks is inspired by Tiny Machine Learning
problems described in Sabot et al. (2023) and the CAKE
algorithm outlined in Kung et al. (2021). Currently, the
number of threads is not configurable because it has to be
specified before the program is run. On UNIX, we ran
export JULIA_NUM_THREADS = auto before running the
program, on Windows you can similarly run set
JULIA_NUM_THREADS = auto.

6.4. Order of Operations

We are also deliberate about the order of operations in
ShOpt. The initial analytic profile fitting serves as a data
cleaning method, which allows us to not waste compute time
fitting pixel-grid models to outlier stars. A second round of
analytic profile fits to the resulting PSF models further refines
the data set, ensuring that the (computationally expensive)
polynomial interpolation is applied only to the highest quality
PSF models. By contrast, PIFF adopts an integrated approach
where analytic and pixel-grid fits are interwoven with iterations
of polynomial interpolation. While this method is thorough, our
approach is designed to prioritize computational expediency.

7. Benchmarking, Data, and Analysis

Our PSF analysis utilizes NIRCam imaging from the
COSMOS-Web survey (Casey et al. 2023), which we have
chosen for its expansive coverage (more than three times the
area of all other JWST surveys combined) in four bandpasses
as well as the fact that many of its science cases require careful
PSF characterization. This section presents an overview of the
three COSMOS-Web data sets employed in our PSF
benchmarking analysis—simulated single exposures, simulated

observation mosaics, and real observation mosaics—followed
by a description of the benchmarking methods we apply
to each.
We employ simulated observations for PSF code unit testing

because they provide a controlled environment with fully
known input parameters. Unlike real observations, simulations
allow us to control for observational imperfections such as
saturation, noise, or defective pixels; this allows for the
establishment of a ground truth against which the accuracy of
PSF model fits can be measured directly. Although real
observations feature the true PSF and are integral to our study,
their inherent uncertainties and the absence of a definitive PSF
ground truth make them less suitable for initial code validation.
Instead, the real data serve as a stress test for the PSF fitting
codes, ensuring they remain effective when confronted with the
vagaries of real observations.

1. Simulated Data: These simulations are based on the
COSMOS 2020 data (Weaver et al. 2022), and contain all
the known galaxies and stars in this field. Galaxy fluxes
in JWST filters were calculated from StardustSEDs if
they existed (Kokorev et al. 2021); otherwise, fluxes were
found by interpolating across existing photometry in
other filters. Star fluxes were similarly modeled by
interpolating available photometry. Galaxies with coun-
terparts in the Zurich Structure & Morphology catalog
(Sargent et al. 2007; Scarlata et al. 2007) were assigned
the according morphological parameters (Sérsic indices,
ellipticity, position angle, size), or from observed
distributions if they did not.

COSMOS-Web-like NIRCam images were gener-
ated using the Multi-Instrument Ramp Generator
(MIRAGE; Hilbert et al. 2019), which includes PSF
modeling with WebbPSF (Perrin et al. 2014), sky
background, detector noise, dark current, and Poisson

Figure 5. Size–magnitude diagram for objects detected in the A6 mosaic in F444W A6. Blue points represent all sources; orange points show stars selected by stellar
locus parameter cuts.
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noise. After the images were generated, the JWST
calibration pipeline (Bushouse et al. 2023) was used to
reduce the raw NIRCam data and create mosaics, with
some modifications, like 1/f noise and subtraction of low-
level background (e.g., Bagley et al. 2022; Finkelstein
et al. 2022). We employ two sets of simulated images:
(a) Simulated Single Exposures: Stars are generated by

convolving a MIRAGE WebbPSF model with
idealized point sources, so these images allow us to
measure success directly by comparing the learned
PSF to the input PSF. We employ images from stage 2
of the JWST calibration pipeline, so there are no
effects from dithering or distortion (i.e., tweakreg).
The main challenge in using these data is the low star
density, particularly for the short-wavelength channel.
With a training/validation split of 90%, this led to an
average of 1 validation star for each subarray in the
F115W filter, 1 validation star for the F150W filter,
2.2 stars for the F277W filter, and 2.3 stars for the
F444W filter. To gather enough data for meaningful
summary statistics, we combine exposures from 156
different visits.

(b) Simulated Mosaics: Image mosaics are i2d-format
data cubes built from single exposures that have
passed through stage 3 of the JWST science
calibration pipeline.

As such, the mosaics do reflect normal dithering
and distortion effects. The simulated mosaics used in
our study cover a contiguous area of 76 arcmin2 at the
full COSMOS-Web depth (∼27th magnitude) and
provide a reasonable 0.5 star per square arcminute.

For an in-depth discussion of the simulation process, refer to
N. Drakos (2024, in preparation).

2. Real Mosaics: The real data used in our analysis were
taken in 2023 April and include visits 77–152, covering
0.28 deg2 in the bottom right of our allocated area of
the COSMOS field (Casey et al. 2023), JWST program ID
1727.22 Three of the planned visits were skipped, so the
data include a total of 72 visits. As with the simulated
mosaics, we use the i2d-format data cubes produced in
stage 3 of the JWST science calibration pipeline. We
restrict ourselves to an approximately 0.11 deg2 area of

the full field of view, corresponding to tiles {A1, A5, A6,
A10} in Figure 4; we chose these particular tiles to test
the relative performance of the PSF fitters where we
expect astrometric distortions to be the most severe.

Our benchmarking procedure has four steps:

1. Run Source Extractor (SExtractor) on our images to
generate star catalogs (Bertin & Arnouts 1996). For the
simulated data, stars are identified by matching the
SExtractor catalogs with the input point source catalogs.
For real data, star catalogs are created using cuts on the
stellar locus, an example of which is shown in Figure 5.
The config file for SExtractor is given in the Appendix.
Note that we run the source extractor on the individual
tiles and aggregate our results over all of them.

2. The resulting star catalogs are segregated into training
(90%) and validation (10%) catalogs. We are careful to
filter out saturated stars in our catalogs by searching for
sentinel values of 0 in the ERR extension (for i2d-format
mosaics) or 1, 2 in the DQ extension (for single
exposures). Vignettes that contain any pixels set to a
sentinel value are removed from the catalogs.

3. We use the training catalogs to get empirical PSF models
for each fitter. We run ShOpt (Berman & McCleary
2024), PIFF (Jarvis et al. 2020), and PSFEx (Bertin 2011).

Figure 6. Schema illustrating the computation of summary statistics for PSF model assessment. Individual star-PSF model pairs are compared to produce residual
images, which are then averaged into a mean residual image for the ensemble.

Table 1
Number of Reserved Validation Stars for the Three Imaging Data Sets Under

Consideration in Each of the Four COSMOS-Web NIRCam Bandpasses

Data Type Filter Validation Stars

Simulated single exposures F115W 3373
F150W 7186
F277W 2573
F444W 740

Simulated mosaics F115W 37
F150W 79
F277W 35
F444W 35

Real mosaics F115W 155
F150W 156
F277W 148
F444W 136

22 Available from MAST at STScI, http://mast.stsci.edu.
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4. We then use the reserved validation star catalogs to
calculate the summary statistics of Equations (5)–(8).
Figure 6 illustrates this process: we calculate the residuals
between the star vignettes (or MIRAGE cutouts for

simulations) and renderings of the PSF models, then take
the mean. To obtain single residual scores, we compute the
mean and standard error of all pixels in residual images.

The code for creating star catalogs, calculating statistics, and
creating the associated PSF diagnostic figures can be found on
GitHub.23

8. Results

In this section, we report the outcomes of the PSF
benchmarking analysis detailed in Section 7. The comprehen-
sive PSF model fidelity analysis is presented in Section 8.1, and
the assessment of the computational efficiency of the different
PSF fitters is presented in Section 8.3.
We note that ShOpt was run in smoothing mode

throughout. We found that PCA mode and Autoencoder
mode added additional complexity to the PSF fitting process
that resulted in poorer fits. Appendix C contains representative
configuration files supplied to each PSF fitter.

8.1. Nonparametric Model Fidelity

As described above, we evaluate the relative performance
of PSF models produced by PIFF, PSFEx, and ShOpt
using mean and median reduced χ2 residuals, the MRE, and
the MAE (see Equations (5)–(8)). These statistics are

Figure 7. Mean relative error between MIRAGE input point source images and PSF models for the F277W filter. The left panels show the median MIRAGE cutout;
the center panels show the median PSF cutout. The right panels show the average relative error between the MIRAGE and PSF cutouts. The top two rows are ShOpt,
and the bottom two rows are PSFEx. Color bars for left and center panels show pixel intensity values in units of MJy sr−1. The color bars in the right panels show the
(dimensionless) relative error. The MREs defined in Equation (7) are displayed in the titles of the mean residual images.

Figure 8. Distribution of cn
2 for simulated single exposure images. Not shown

are 42 PSFEx cn
2 values greater than 100 and 100 ShOpt cn

2 values greater
than 100.

23 https://github.com/mcclearyj/cweb_psf
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computed using the reserved validation stars, which
number from 35 for the simulated F277W and mosaics to
156 for the F150W real mosaics (Table 1). Statistics and
diagnostic plots are based on PSF vignette sizes of (75, 75)
pixels, which encloses the majority of the relevant star and
PSF light profiles without including excessive sky background
or a large number of interloping objects.

8.1.1. Simulated Single Exposures

While the simulated single exposures yield ample
training data in aggregate, training data on individual
detectors from individual visits are sparse. Despite this

sparsity of training data, Figures 7, 16, and 17 show that
both PSFEx and ShOpt produce reasonable models of the
PSF. While both PSF fitters seem to slightly underfit the
center of the PSF, they are otherwise able to model the finer
details of the PSF.
The distribution of reduced χ2 shown in Figure 8 illustrates

that ShOpt produces a fit that is just as strong, if not stronger
than PSFex.

8.1.2. Simulated Mosaics

The simulated data mosaics have a higher density of training
stars, as evinced by significantly better fits for PSFEx and

Figure 9. Evaluation of mean relative error between stars and PSF models for simulated mosaics in the F150W bandpass. The left panels show the median of the
vignettes. Center panels show the median PSF cutout. The right panels show the average relative error between the vignette cutouts and the PSF cutouts. The top is
PSFEx, the middle is ShOpt, and the bottom is PIFF.
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ShOpt than the simulated single exposures. We also supply
PIFF fits for these images. Figures 9 and 18–20 do not show
the same overconcentration visible in Figures 7, 16, and 17.

Figure 10 suggests minimal statistical difference in
performance among the PSF fitters, with the same heavy-tailed
distribution of cn

2 for each.
Table 2 shows MRE and MAE values are consistent with

zero for all ShOpt and PSFEx models, suggesting minimal
bias. While the PIFF model residuals are also consistent with
zero, the 90% bounds tend to be larger than ShOpt and
PSFEx, indicating an increased incidence of catastrophic fits.
We also point out that the 10% errors tend to be close to the
median error among each of the PSF fitters.

In general, the presence of outlier fits obscures a clear
ranking based on MAE, MRE, and c2 alone. The median χ2

and its distribution, as shown in Figure 10 and Table 2, seem to
be more indicative of performance, demonstrating no
significant difference in the reliability of the PSF fitters for
the simulated mosaics.

8.1.3. Real Mosaics

We find similar results for the real data mosaics as for
the simulated mosaics exposures, namely that each PSF
fitter produces similarly high-quality models. Figures 11 and
21–22 suggest that in the main, both ShOpt and PSFEx are
able to model the finer details of the PSF at all bandpasses
analyzed.

The high model fidelity for each fitter is further supported by
the values of median and mean reduced χ2 in Table 3, as well
as the distributions of reduced χ2 in Figure 12. We do not run
PIFF on the real mosaics due to timing costs; the real data
mosaics cover tens of thousands of pixels, and PIFF fits did not
reliably converge.

8.2. Size and Shape Analysis

Although the NIRCam PSFs are obviously not elliptical
Gaussians, adaptive second moments are a common way of
evaluating the quality of PSF fits (Hirata & Seljak 2003;
Mandelbaum et al. 2005), and so in this section, we explore
residuals in the second-moment fits of stars and PSF models.
Specifically, we use the the GalSim software’s (Rowe et al.
2015) FindAdaptiveMom function to measure the size (σHSM)
and shape ((g1, g2)) of the best-fit elliptical Gaussians of all
validation stars and PSF models, and then compute the average
of the differences between the two. As demonstrated by Table 4,
ShOpt is able to produce fits that are just as good if not better
than PSFEx and PIFF across the different data sets and
wavelengths. The only area where the ShOpt models struggled
was with the shape adaptive moments on some of the simulated
single exposures. Otherwise, ShOpt produced just as good if not
better size and shape statistics compared to the other PSF fitters.

8.3. Program Speed and Scalability

We investigate how the different PSF fitters handle the
simulated mosaic data as the number of pixels in the star
vignettes and the degree of the polynomial used to model
spatial variations increase. Each PSF fitter is run multiple
times to get an average time in seconds for pixel-based fits.
For ShOpt, we set the size of the side length n of the analytic
fit stamp to be 30. That is, we use 30× 30 pixels to fit the
multivariate Gaussian. This is separate from the number of
pixels we use for the pixel basis. We do not use any GPU
compute power to accelerate the PSF fitters even though the
ShOpt autoencoder mode can be GPU-accelerated. All of
these tests are run on the same hardware using Northeastern’s
Discovery Cluster on the zen2 CPUs (Northeastern University
Research Computing 2024). These tests aim to test our
calculations in Section 6.

8.3.1. Variation with the Vignette Size

While the runtime for both ShOpt and PSFEx scales
modestly as the output PSF size increases, the PIFF runtime
does not. For larger PSF sizes, PIFF’s average BasisInterp
execution time is an order of magnitude longer than ShOpt
and PSFEx. While ShOpt and PSFEx required approximately
5–10 minutes to process PSF sizes of (137, 137) pixels for each
of the four wavelengths, PIFF consistently took between 1 and
3 hr for PSF sizes of (64, 64) (Figure 13). In the worst case,
PIFF can take as much as an entire day to finish. While most
PSF fitters had consistent completion times, PIFF exhibits
greater variability for (64, 64)-pixel PSF output sizes,
particularly with shorter wavelengths. It is worth noting that
PIFF was developed using DECam imaging, for which PSF
sizes of (17, 17) are sufficient. For those vignette sizes, PIFF is
actually faster than the other PSF fitters, see Figure 13. It is also
worth noting that PIFF contains alternatives to the Basi-
sInterp algorithm benchmarked here and that these
algorithms may be faster.

8.3.2. Polynomial Degree

As in the case of vignette size, while both ShOpt and
PSFEx scale as the degree of the spatial interpolation
polynomial increases, PIFF does not. For a degree-one
interpolation, all three PSF fitters have similar performance

Figure 10. Distribution of cn
2 for simulated data mosaics. PSFEx values are

shown in blue, ShOpt values are shown in orange, and PIFF values are shown
in green. For clarity, the plot excludes two PSFEx cn

2 values greater than 100,
one ShOpt cn

2 value greater than 100, and two PIFF χ2 values greater
than 100.
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for (33, 33) PSF sizes. However, as we increase the degree to
two and three, PIFF takes an order of magnitude longer on
average to execution, see Figure 14. For larger degree sizes,
PIFF often did not converge to a PSF model with 4σ
confidence after its maximum of 30 iterations. ShOpt and

PSFEx maintain a consistent runtime of about 5 minutes,
whereas PIFF experiences a dramatic increase in runtime,
going up to hours for short wavelengths with higher degrees of
the interpolating polynomial, and by around 30 minutes for
longer wavelengths.

Table 2
Simulated Mosaic Summary Statistics

Filter PSF Fitter MAE MRE cn
2 Median cn

2

F115W ShOpt -
+3.41 1.79

5.17 0.80 ± 1.18 -
+8.89 1.16

25.85 1.78

PIFF -
+3.11 1.72

4.78 0.87 ± 1.20 12.76 -
+

1.26
49.40 1.82

PSFEx -
+2.67 1.54

3.90 0.81 ± 0.94 -
+3.81 1.26

10.90 1.88

F150W ShOpt -
+3.22 2.08

4.39 0.88 ± 0.79 -
+5.82 0.93

3.73 1.42

PIFF -
+2.87 2.01

3.83 0.88 ± 0.72 -
+5.93 0.94

4.90 1.39

PSFEx -
+2.70 1.90

3.54 0.87 ± 0.64 -
+5.40 0.92

2.07 1.30

F277W ShOpt -
+3.60 1.83

5.49 0.77 ± 1.26 -
+15.21 1.25

20.29 1.98

PIFF -
+2.75 1.68

4.01 0.85 ± 1.06 -
+36.97 1.38

48.55 2.09

PSFEx -
+2.67 1.58

3.92 0.83 ± 0.96 -
+16.99 1.12

37.48 1.88

F444W ShOpt -
+3.08 1.86

4.43 0.80 ± 1.07 -
+6.11 1.03

6.14 1.70

PIFF -
+2.84 1.76

4.10 0.89 ± 1.05 -
+13.49 1.12

15.76 1.71

PSFEx -
+2.76 1.70

3.99 0.86 ± 1.00 -
+2.01 1.03

3.31 1.46

Note. The MAE and cn
2 statistics are reported with 10% and 90% errors.

Figure 11. Evaluation of mean relative error between stars and PSF models for real data mosaics in the F444W bandpass. The left panels show the median star
vignette; the center panels show the median PSF model; and the right panels show the mean residuals of individual star-PSF vignettes. The top row is PSFEx, and the
bottom row is ShOpt.
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9. Discussion and Conclusions

We have presented ShOpt, a new empirical PSF character-
ization tool, and with it, a methodology for benchmarking the
accuracy and computational efficiency of PSF fitting software.

In our assessment of PSF model quality, we produced a
series of mean residual images, including normalized mean
error, mean absolute error, and χ2 error. We further condense
this information into aggregate statistics that quantify the pixel-
level discrepancies between the modeled and actual PSFs
across the ensemble of stars being modeled. We supplement
these statistics with second-moment HSM fit statistics because
of their wide use in the literature.

Though convenient, single-number figures of merit can mask
discrepancies between a PSF model and the true PSF.
Accordingly, we recommend a holistic approach to evaluating
the quality of a particular PSF model, using both aggregate
statistics and mean residual images. Among the various single-

number figures of merit we examined, the average and median
χ2 values were the most illustrative of mismatched PSF
models. Additionally, the distributions of these statistics are
usually indicative of the performance of the PSF modeling.
In Section 6, we predicted that ShOptʼs algorithmic design

would allow it to scale as the PSF model size and the degree of
the interpolating polynomial increased; this assertion was borne
out in our speed testing. Our analysis does not distinguish
between the contributions of architectural choices and the Julia
language itself to ShOptʼs fast execution time. Regardless, we
find that ShOpt delivers speed performance on par with
PSFEx, with only marginal differences in processing times for
PSF models (137, 137) pixels in size (large enough to enclose
most of the NIRCam PSF). ShOptʼs competitive speed comes
from a combination of multithreading, imposed geometric
constraints, the implementation of the LBFGS algorithm, and a
thorough data cleaning pipeline. Conversely, PIFF—optimized

Figure 12. Distribution of cn
2 for real data mosaics. Not shown are two PSFEx cn

2 values greater than 100 and four ShOpt cn
2 values greater than 100.

Table 3
Real Mosaic Summary Statistics

Filter PSF Fitter MAE MRE c n
2 Median cn

2

F115W ShOpt -
+2.96 2.25

3.65 0.88 ± 0.50 -
+3.12 0.99

3.96 1.49

PSFEx -
+2.76 2.15

3.38 0.90 ± 0.49 -
+4.49 0.96

5.30 1.45

F150W ShOpt -
+2.96 2.24

3.69 0.86 ± 0.51 -
+2.05 1.02

3.00 1.43

PSFEx -
+2.76 2.15

3.42 0.87 ± 0.48 -
+1.65 0.93

2.09 1.27

F277W ShOpt -
+2.96 1.87

3.92 0.63 ± 0.55 -
+29.28 2.59

92.44 4.15

PSFEx -
+2.56 1.81

3.27 0.75 ± 0.50 -
+13.55 2.46

34.46 3.60

F444W ShOpt -
+2.89 1.91

3.83 0.70 ± 0.60 -
+10.28 1.67

32.84 2.86

PSFEx -
+2.58 1.84

3.30 0.78 ± 0.52 -
+7.34 1.71

15.22 2.49
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Figure 13. Average execution time as a function of the output size of the PSF side length plotted on a log scale.

Table 4
Residuals in the Adaptive Second Moments of Stars and PSF Models Across all Data Sets Used in This Work

MSE

Data Fitter Wavelength σHSM × 10−2 g1 × 10−2 g2 × 10−2

Simulated Single Exposure PSFEx F115W 0.134 ± 0.138 0.06 ± 0.01 0.17 ± 0.05
Simulated Single Exposure ShOpt F115W 0.248 ± 0.032 0.37 ± 0.01 0.23 ± 0.01

Simulated Single Exposure PSFEx F150W 0.46 ± 0.12 0.17 ± 0.01 0.24 ± 0.01
Simulated Single Exposure ShOpt F150W 0.56 ± 0.13 0.35 ± 0.01 0.23 ± 0.01

Simulated Single Exposure PSFEx F277W 2.48 ± 4.30 0.12 ± 0.02 0.10 ± 0.02
Simulated Single Exposure ShOpt F277W 15.3 ± 10.90 0.61 ± 0.03 1.68 ± 0.06

Simulated Single Exposure PSFEx F444W 1.75 ± 0.67 0.16 ± 0.02 0.29 ± 0.04
Simulated Single Exposure ShOpt F444W 3.46 ± 0.89 0.67 ± 0.05 1.12 ± 0.09

Simulated Mosaics PSFEx F115W 17.70 ± 9.65 1.63 ± 0.63 0.86 ± 0.28
Simulated Mosaics ShOpt F115W 18.44 ± 10.60 1.57 ± 0.62 0.83 ± 0.26
Simulated Mosaics PIFF F115W 18.80 ± 10.90 1.52 ± 0.60 0.93 ± 0.31

Simulated Mosaics PSFEx F150W 7.96 ± 5.58 0.72 ± 0.51 0.07 ± 0.02
Simulated Mosaics ShOpt F150W 7.35 ± 5.00 0.70 ± 0.50 0.07 ± 0.02
Simulated Mosaics PIFF F150W 7.53 ± 5.35 0.76 ± 0.53 0.07 ± 0.02

Simulated Mosaics PSFEx F277W 2.29 ± 0.58 0.42 ± 0.13 0.17 ± 0.05
Simulated Mosaics ShOpt F277W 2.83 ± 0.83 0.44 ± 0.13 0.16 ± 0.04
Simulated Mosaics PIFF F277W 5.19 ± 0.81 0.43 ± 0.17 0.13 ± 0.04

Simulated Mosaics PSFEx F444W 1.08 ± 0.33 0.17 ± 0.05 0.30 ± 0.17
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for the larger pixel scale of the Dark Energy Camera—does not
execute in a reasonable timeframe even for PSF sizes that are
(64, 64) pixels in size.

In its current state, ShOpt produces an excellent model of
the NIRCam PSF for all three data sets and is able to produce
these models extremely fast.

Several enhancements are planned for ShOpt that may
improve the quality of its PSF models. For example, ShOpt
builds models strictly in the native pixel scale of the image;
implementing super- or subsampling of the image pixel scale
would align ShOpt with the standards of other PSF software.
A more advanced PCA method for PSF reconstruction,
proposed in Nie et al. (2023), is slated for future integration
in our PCA mode. There is also a method of nonnegative PCA
outlined in Bro & De Jong (1997) that may be useful to
incorporate. These upgrades, among others, will be featured in
future ShOpt releases.
ShOpt incorporates several innovative techniques that could

benefit other PSF modeling efforts. These include leveraging
manifold properties when fitting analytic profiles; using low-
dimensional reconstructions for pixel-basis fits; and pixel-by-
pixel parallelization during fitting of spatial variation. It has
demonstrated the ability to bridge the speed of PSFEx with the
advances of PIFF, making it a viable PSF fitter for next-
generation astronomical observatories.
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Table 4
(Continued)

MSE

Data Fitter Wavelength σHSM × 10−2 g1 × 10−2 g2 × 10−2

Simulated Mosaics ShOpt F444W 0.98 ± 0.27 0.16 ± 0.05 0.32 ± 0.18
Simulated Mosaics PIFF F444W 2.28 ± 0.31 0.30 ± 0.08 0.30 ± 0.17

April Mosaics PSFEx F115W 0.67 ± 0.10 0.33 ± 0.05 0.19 ± 0.05
April Mosaics ShOpt F115W 0.78 ± 0.10 0.31 ± 0.05 0.20 ± 0.05

April Mosaics PSFEx F150W 0.38 ± 0.06 0.12 ± 0.02 0.04 ± 0.01
April Mosaics ShOpt F150W 0.56 ± 0.06 0.11 ± 0.02 0.03 ± 0.00

April Mosaics PSFEx F277W 1.19 ± 0.23 0.05 ± 0.01 0.04 ± 0.01
April Mosaics ShOpt F277W 0.90 ± 0.13 0.04 ± 0.01 0.03 ± 0.01

April Mosaics PSFEx F444W 2.02 ± 1.49 0.02 ± 0.01 0.01 ± 0.00
April Mosaics ShOpt F444W 2.00 ± 1.63 0.03 ± 0.01 0.01 ± 0.00

Figure 14. Average execution time as a function of the degree of the
interpolating polynomial on (33, 33) PSF models plotted on a log scale.
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Appendix A
Additional PSF Diagnostic Figures

Figures 15–22 show additional PSF diagnostics. Figure 15
shows MAE and cn

2 errors for PSFex and Figures 16–22 show
MRE plots for ShOpt and PSFex in the wavelengths not shown
in the main text.

Figure 15. Examples of mean average error (top panel) and χ2 residual figures (bottom panel), shown here for the simulated mosaics in F115W.
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Figure 16. Mean relative error between MIRAGE input point source images and PSF models for the F115W and F150W bandpasses. Panels and color bars are the
same as in Figure 7.
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Figure 17. Mean relative error between MIRAGE input point source images and PSF models for the F444W filter. Panels and color bars are the same as in Figure 7.
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Figure 18. Mean relative error between stars and PSF models for simulated mosaics in the F115W bandpass. The left panels show the median of the vignettes. The
panels and color bars are the same as in Figure 9.
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Figure 19. Evaluation of mean relative error between stars and PSF models for simulated mosaics in the F277W bandpass. The left panels show the median of the
vignettes. The panels and color bars are the same as in Figure 9.
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Figure 20. Evaluation of mean relative error between stars and PSF models for simulated mosaics in the F444W bandpass. The left panels show the median of the
vignettes. The panels and color bars are the same as in Figure 9.
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Figure 21.Mean relative error between stars and PSF models for real data mosaics in the F115W and F150W bandpasses. The color bars are the same as in Figure 11.
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Appendix B
Running ShOpt

export JULIA_NUM_THREADS=auto # On Windows
set JULIA_NUM_THREADS=auto julia shopt.jl
[configdir] [outdir] [catalog.fits]

See our TutorialNotebook.ipynb or our README.
md for more detailed setup instructions on our GitHub.

Appendix C
Testing Configs

C.1. Source Extractor Config

# Default configuration file for SExtractor 2.25.0
# #——————————–Catalog ————————————

CATALOG_NAME catalog.fits # name of the output catalog
CATALOG_TYPE FITS_LDAC
PARAMETERS_NAME sextractor.param # name of the file containing

catalog contents

#——————————- Extraction ———————————-

DETECT_TYPE CCD # CCD (linear) or PHOTO (with gamma correction)
DETECT_MINAREA 8 # min. # of pixels above threshold
DETECT_MAXAREA 0 # max. # of pixels above threshold (0=unlimited)
THRESH_TYPE RELATIVE # threshold type: RELATIVE (in sigmas)
# or ABSOLUTE (in ADUs)
DETECT_THRESH 2 # <sigmas> or <threshold>,<ZP> in mag.arcsec-2
ANALYSIS_THRESH 2 # <sigmas> or <threshold>,<ZP> in mag.

arcsec-2

(Continued)

FILTER Y # apply filter for detection (Y or N)?
FILTER_NAME Gauss_2.5_5x5.conv # name of the file containing the filter
FILTER_THRESH # Threshold[s] for retina filtering

DEBLEND_NTHRESH 32 # Number of deblending subthresholds
DEBLEND_MINCONT 0.005 # Minimum contrast parameter for deblending
CLEAN Y # Clean spurious detections? (Y or N)?
CLEAN_PARAM 1.0 # Cleaning efficiency

MASK_TYPE CORRECT # type of detection MASKing: can be one of
# NONE, BLANK or CORRECT

#——————————–WEIGHTing ———————————-

WEIGHT_TYPE MAP_WEIGHT # type of WEIGHTing: NONE,
BACKGROUND,

# MAP_RMS, MAP_VAR or MAP_WEIGHT
RESCALE_WEIGHTS Y # Rescale input weights/variances (Y/N)?
WEIGHT_IMAGE weight.fits # weight-map filename
WEIGHT_GAIN Y # modulate gain (E/ADU) with weights? (Y/N)
WEIGHT_THRESH 0 # weight threshold[s] for bad pixels

#——————————–FLAGging ———————————–

FLAG_IMAGE flag.fits # filename for an input FLAG-image
FLAG_TYPE OR # flag pixel combination: OR, AND, MIN, MAX
# or MOST

#———————–Differential Geometry Map —————————

DGEO_TYPE NONE # Differential geometry map type: NONE or PIXEL

Figure 22. Evaluation of mean relative error between stars and PSF models for real data mosaics in the F277W bandpass. The panels and color bars are the same as in
Figure 11.
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(Continued)

DGEO_IMAGE dgeo.fits # Filename for input differential geometry image

#—————————— Photometry ———————————–

PHOT_APERTURES 31 # MAG_APER aperture diameter(s) in pixels
PHOT_AUTOPARAMS 2, 2.5 # MAG_AUTO parameters: <Kron_fact>,

<min_radius>
PHOT_PETROPARAMS 2.0, 3.5 # MAG_PETRO parameters:

<Petrosian_fact>,
# <min_radius>
PHOT_AUTOAPERS 0.0,0.0 # <estimation>,<measurement> minimum

apertures
# for MAG_AUTO and MAG_PETRO
PHOT_FLUXFRAC 0.5 # flux fraction[s] used for FLUX_RADIUS

SATUR_LEVEL 37000.0 # level (in ADUs) at which arises saturation
SATUR_KEY SATURATE # keyword for saturation level (in ADUs)

MAG_ZEROPOINT 28.086519392 # magnitude zero-point
MAG_GAMMA 4.0 # gamma of emulsion (for photographic scans)
GAIN 0.0 # detector gain in e-/ADU
GAIN_KEY GAIN # keyword for detector gain in e-/ADU
PIXEL_SCALE 0 # size of pixel in arcsec (0=use FITS WCS info)

#————————- Star/Galaxy Separation —————————-

SEEING_FWHM 0.07 # stellar FWHM in arcsec
STARNNW_NAME default.nnw # Neural-Network_Weight table filename

#—————————— Background ———————————–

BACK_TYPE AUTO # AUTO or MANUAL
BACK_VALUE 0.0 # Default background value in MANUAL mode
BACK_SIZE 128 # Background mesh: <size> or <width>,<height>
BACK_FILTERSIZE 3 # Background filter: <size> or <width>,<height>

BACKPHOTO_TYPE LOCAL # can be GLOBAL or LOCAL
BACKPHOTO_THICK 24 # thickness of the background LOCAL annulus
BACK_FILTTHRESH 0.0 # Threshold above which the background-
# map filter operates

#—————————— Check Image ———————————-

CHECKIMAGE_TYPE -BACKGROUND, APERTURES # Check-image
type(s)

CHECKIMAGE_NAME im.sub.fits, im.aper.fits # Filename for the check-
image(s)

C.2. ShOpt Config

saveYaml: true #save this file with each run

# Options: auotoencoder, PCA, smoothing.
# Make sure mode is a string with double quotes
mode: “smoothing”

# If PCA mode is enabled, how many moments do you
# want to use for your pixel-grid fit
PCAterms: 50

# The size of the smoothing kernel
lanczos: 5

# For Autoencoder mode, when enabled

(Continued)

NNparams:
# max number of training epochs for each pixel-grid fit
epochs: 100
# The stopping gradient of the loss function for the pixel-grid fit
minGradientPixel: 1e-5

# For fitting analytic profile
AnalyticFitParams:
# Stopping gradient for LBFGS on vignettes
minGradientAnalyticModel: 1e-6
# Stopping gradient for LBFGS on pixel-grid models
minGradientAnalyticLearned: 1e-6
# The subset of pixels you wish to fit the analytic profile to
analyticFitStampSize: 64

dataProcessing:
# Filter this SnRPercentile: 0.33
# Filter stars with analytic profile fit size s exceeding this value
sUpperBound: 1
# Filter stars with analytic profile fit size s below this value
sLowerBound: 0.075

# What plots do you want?
plots:
unicodePlots: true
normalPlots:
parametersHistogram: true
parametersScatterplot: true
cairomakiePlots:
streamplots: false
pythonPlots: false

# Degree of polynomial for spatial interpolation of PSF model
polynomialDegree: 1
# Size of pixel-grid PSF model
stampSize: 130

# How many stars are you using the train versus to validate the PSF fit
training_ratio: 0.9
# Sum flux to unity true or false
sum_pixel_grid_and_inputs_to_unity: false

# stopping gradient for LFBGS used for polynomial interpolation
polynomial_interpolation_stopping_gradient: 1e-12

# Name to prefix summary.shopt
summary_name: ”
# Do you want to save storage by only storing essential information, how to
reconstruct the PSF and analytic models

truncate_summary_file: true

CommentsOnRun: “** This is where you can leave comments or notes to self
on the run! **

”

C.3. PIFF Config

# modules and input.wcs fields, in which case, the code will use the (less
# accurate) WCS that ships with the image in the fits file.

input:

# Input file directory
dir: “./”

# Input filename(s) and HDU extensions
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(Continued)

image_file_name: “mosaic_nircam_f277w_COSMOS-Web_i2d.fits”
image_hdu: 1
weight_hdu: 4

# Input catalog and HDU extension
cat_file_name: “mosaic_nircam_f277w_COSMOS-Web_i2d_starcat.fits”
cat_hdu: 2

# What columns in the catalog have things we need?
x_col: XWIN_IMAGE
y_col: YWIN_IMAGE
ra_col: ALPHAWIN_J2000
dec_col: DELTAWIN_J2000

# The telescope pointing
ra: 149.9303551903936
dec: 2.380272767453749

# Leave blank if you don’t know what it is!
# gain: 1

# How large should the postage stamp cutouts of the stars be?
stamp_size: 100

# Use all cores for reading the input files
nproc: -1

select:

# For bright stars, weight them equivalent to snr=100 stars, not higher.
max_snr: 100

# Remove stars with snr < 10
min_snr: 10

# Reserve 15reserve_frac: 0.15

# Reject size outliers
hsm_size_reject: True

psf:

# This type of PSF will use a separate model/interp solution for each chip.
# But all the solutions will be given in a single output file.
type: SingleChip

# Also use all cores when finding psf
nproc: -1

outliers:

type: Chisq

# The threshold is given in terms of nsigma equivalent
nsigma: 4

# Only remove at most 3max_remove: 0.03

model:
# This model uses a grid of pixels to model the surface brightness distribution.
type: PixelGrid
scale: 0.03 # NIRCam ative pixel scale
size: 75

interp:

# This interpolator does some of the model solving when interpolating

(Continued)

# to handle degenerate information from masking
# and the fact that the pixels are smaller than native.
type: BasisPolynomial
order: 1

C.4. PSFEx Config

# Default configuration file for PSFEx 3.17.1
# EB 2016-06-28
#

#——————————–PSF model ———————————-

BASIS_TYPE PIXEL # NONE, PIXEL, GAUSS-LAGUERRE or FILE
#BASIS_NUMBER 30 # Basis number or parameter
PSF_SAMPLING 0 # Sampling step in pixel units (0.0=auto)
PSF_SIZE 261 # Image size of the PSF model
PSF_RECENTER Y
#————————- Point source measurements ————————-

CENTER_KEYS XWIN_IMAGE,YWIN_IMAGE # Catalogue parameters
for source pre-centering

PHOTFLUX_KEY FLUX_APER(1) # Catalogue parameter for photo-
metric norm.

PHOTFLUXERR_KEY FLUXERR_APER(1) # Catalogue parameter for
photometric error

#—————————–PSF variability ——————————-

PSFVAR_KEYS XWIN_IMAGE,YWIN_IMAGE # Catalogue or FITS
(preceded by:) params

PSFVAR_GROUPS 1,1 # Group tag for each context key
PSFVAR_DEGREES 1 # Polynom degree for each group

#—————————–Sample selection ——————————

SAMPLE_AUTOSELECT Y # Automatically select the FWHM (Y/N)?
SAMPLEVAR_TYPE NONE # File-to-file PSF variability: NONE or
SEEING

SAMPLE_FWHMRANGE 1,20 # Allowed FWHM range (2.7,3.2)
SAMPLE_VARIABILITY 0.3 # Allowed FWHM variability
(1.0=100SAMPLE_MINSN 50 # Minimum S/N for a source to be used

SAMPLE_MAXELLIP 0.3 # Maximum (A-B)/(A+B) for a source to be used

#—————————–Output catalogs ——————————-

OUTCAT_TYPE FITS_LDAC # NONE, ASCII_HEAD, ASCII,
FITS_LDAC

OUTCAT_NAME psfex_out.cat # Output catalog filename

#——————————- Check-plots ———————————-

CHECKPLOT_DEV PDF # NULL, XWIN, TK, PS, PSC, XFIG, PNG,
# JPEG, AQT, PDF or SVG
CHECKPLOT_RES 0 # Check-plot resolution (0=default)
CHECKPLOT_ANTIALIAS Y # Anti-aliasing using convert (Y/N)?
CHECKPLOT_TYPE NONE
CHECKPLOT_NAME

#—————————— Check-Images ———————————

CHECKIMAGE_TYPE CHI,SAMPLES,RESIDUALS,SNAPSHOTS,
-SYMMETRICAL

# or MOFFAT,-MOFFAT,-SYMMETRICAL
CHECKIMAGE_NAME chi.fits,samp.fits,resi.fits,snap.fits, minus_symm.fits
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(Continued)

# Check-image filenames
CHECKIMAGE_CUBE Y

C.5. Shell Script

This is given to inform how much memory we requested
from Discovery for purposes of speed testing.

#!/bin/bash
#SBATCH –nodes=1
#SBATCH –mem=16G
#SBATCH –cpus-per-task=4
#SBATCH –time=24:00:00
#SBATCH –partition=short
#SBATCH –job-name=150_A6
#SBATCH –ntasks=1
#SBATCH –constraint=zen2 # Requesting specific CPU architecture
pwd
source /work/mccleary_group/berman.ed/minicondaInstall/bin/activate
python get_galaxy_cutouts.py -config configs/box_cutter.yaml file #file is a

placeholder for a fits file

Appendix D
Additional ShOpt Checkplots and Outputs

D.1. Diagnostic Material

ShOpt provides the following stream plots (Figure 23) to
give the user an inclination toward how the PSF is changing
across the field of view. We also have a Julia script, reader.
jl that reads in the summary.shopt file and provides easy
PSF reconstruction. If you want to do your analysis in Python,
we also have Python code available for reading in summary.
shopt files here: https://github.com/EdwardBerman/sigma-
Eta-Shopt-Reader.

D.2. Summary.shopt

summary.shopt contains six relevant extensions. The
first extension is named polynomial matrix, and it contains a
three-dimension matrix. Two dimensions correspond to the
dimensions of the input vignettes and the third dimension
corresponds to the coefficients of the polynomial at that pixel.
The second extension contains all data relevant to learned
parameters [ ]s g g, ,1 2 as well as the (u, v) coordinates at each
star. We also measure the mean relative error between stars and
their pixel-grid fits before the polynomial interpolation step.
Note that only stars that make it through all filters are
contained. The third, and fourth extensions contain three-
dimensional arrays corresponding to the input vignettes and the
pixel-grid fits of the vignettes. The fifth extension provides
flags that tell you the indices of stars that were filtered out of
the final interpolation step. The sixth extension tells you how to
find [ ]s g g, ,1 2 at an arbitrary (u, v). There is also a mode that
only outputs the first, second, and sixth extensions for reasons
related to storage concerns. This is enabled by default.

D.3. Command Line Outputs

As an extra convenience, we give users the option to display
some of the diagnostic material to the terminal using
UnicodePlots.jl. This may be useful for less scrupulous
more exploratory runs of our software or for users looking for a
quick sanity check that everything ran correctly without having

to navigate to an output directory and open all of the saved
checkplots.
We also print out to the terminal some key information about

what is happening as the program runs, including what the
program is doing, how many and which stars are failing or
being filtered, progress on fitting, and how long particular
portions of the code took to run.

Appendix E
Petal Diagrams

We speculate that petal diagrams may be able to approximate
the spiky natures of JWST PSFS. Consider ( )q g= +r A kcos ,
shown below in Figure 24 for different [ ]A k, values where
γ= 0. In practice, [ ]gA k, , could be learnable parameters. We

Figure 23. Stream plots demonstrating how variables [ ]s g g, ,1 2 vary across the
field of view (in astrometric coordinates (u, v)) for the F115W simulated
mosaic image. Recall that s corresponds to size, and g1, g2 correspond to shear.
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could then choose some ( ) µf r
r

1 such that the gray fades
from black to white. We would define f (r) piecewise such that
it is 0 outside of the petal and decreases radially with r inside
the petal. The upshot of this approach is that we can just look at
the learned k and immediately know if our PSF captures the
correct number of wings. Alternatively, Bergé et al. (2019)
introduced exponential shapelets with an orthogonal separation
of r and θ, which may also be useful.
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