	1	Carboniferous–Permian	interglacial	warming	and
--	---	------------------------------	--------------	---------	-----

- 2 volcanism temporally linked to the world's oldest
- 3 alkaline lake deposit of the Fengcheng Formation, NW
- 4 China
- 5 Deyu Gong^{1*}, Zeyang Liu^{2*}, Chuanmin Zhou¹, Emma Ownsworth³, David Selby³,
- 6 Wenjun He⁴, Zhijun Qin⁴
- ⁷ ¹Research Institute of Petroleum Exploration & Development, PetroChina, Beijing
- 8 100083, China
- ⁹ ²State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu
- 10 University of Technology, Chengdu, Sichuan 610059, China
- ³Department of Earth Sciences, University of Durham, Durham DH1 3LE, UK
- ⁴Xinjiang Oil Company, PetroChina, Xinjiang, Karamay 834000, China
- 13 *Corresponding author:
- 14 D.G. (deyugong@petrochina.com.cn); Z.L. (geozy.liu@outlook.com)

15 Abstract

16 In addition to being an important lacustrine hydrocarbon source rock, the Fengcheng 17 Formation possesses well-preserved sodium-carbonate evaporite units and tuff beds. 18 Known ancient alkaline salt-lake deposits bearing sodium-carbonate evaporite minerals 19 like the Late Paleozoic Fengcheng Formation are limited beyond the modern day. 20 However, hitherto the absolute age of the alkaline lacustrine Fengcheng Formation of 21 the Junggar Basin (China) is debated (Late Carboniferous and/or Early Permian), and 22 therefore its temporal link to a specific stage of the Late Paleozoic Ice Age (LPIA) 23 remains unclear. Here, new Re–Os geochronology demonstrates that the Fengcheng Formation is predominately of Late Carboniferous-age (304.4 to 297.3 Ma), and 24 25 therefore its deposition coincides with the interglacial climate warming interval 26 between glaciation C4 and P1 of the LPIA and not the younger interglacial stages as 27 previously proposed. The Re-Os isotope systematics indicate that the lake water 28 column during the deposition of the Fengcheng Formation had a relatively unradiogenic Os (187 Os/ 188 Os, Os_i) isotope composition (0.32 to 0.36), which is in contrast to the 29 30 typical radiogenic Os_i recorded for lacustrine deposits throughout geological time. The 31 unradiogenic Os_i for the Fengcheng Formation ties the source of the Os in the lake to 32 the weathering of adjacent mafic volcanic rocks and/or hydrothermal input (~0.13). As 33 a result, the penecontemporaneous relationship to the Late Paleozoic interglacial 34 climate warming (causing enhanced evaporation) coupled with weathering of volcanic 35 rocks and/or hydrothermal fluid input into the lake is considered to have been

- 36 mechanistic in the formation of an alkaline salt lake dominated by sodium and37 carbonate.
- 38 Keywords: Re–Os, evaporite, lacustrine, volcanism, organic matter type

39 **1. Introduction**

Beyond the present-day alkaline lakes (e.g., Mono Lake and Walker Lake, USA; 40 41 Chahan Lake, China; Turkana Lake and Magadi Lake, Kenya; Timms, 2022), and the 42 Paleogene Hetaoyuan Formation (China, Yang et al., 2014) and Eocene Green River 43 Formation (USA; Lowenstein et al., 2017; Cummings et al., 2012), the Late Paleozoic 44 Fengcheng Formation of the Junggar Basin in northwestern China, represents one of 45 the oldest known records of deposition in a saline lacustrine basin (Cao et al., 2020). 46 The Fengcheng Formation has been assigned an Early Permian-age based on relative 47 dating techniques such as biostratigraphy, lithostratigraphy, chemostratigraphy and 48 structural relationships (Feng et al., 2018; Wang et al., 2022). The current absolute age 49 control of the lacustrine Fengcheng Formation (U-Pb zircon detrital and interbedded 50 tuff beds) exhibit considerable discrepancy (up to 25 Myrs; Wang et al., 2021; 2022). 51 Thus, any relationship to global/regional tectonic and deposition processes, in addition 52 to stratigraphic correlation is hitherto poorly constrained and debated. To date, the 53 depositional timing of the Fengcheng Formation is considered to broadly overlap with 54 the stages of the Late Paleozoic Ice Age (LPIA) – an extended ice house event that 55 spanned ~70 Myrs (Montañez and Poulsen, 2013) and is recorded by eight glacial and 56 nonglacial intervals (Fielding et al., 2023). Thus, the absolute age of the Fengcheng 57 Formation is key to directly link its formation with a specific glacial stage of the LPIA. 58 Moreover, interbedded tuffaceous sandstone, andesite and basalt of Fengcheng 59 Formation basal Member 1 suggests an association with active magmatism during

60 deposition that ultimately could have controlled the alkalinity of the lake and hence the

61 formation of the sodium-carbonate-evaporite beds (Tosca and Tutolo, 2023).

Here we apply Re–Os geochronology to directly date the three members of the Fengcheng Formation to temporally correlate its deposition to the specific interglacial period of the LPIA (Fielding et al., 2023). Further, we utilise the initial Os isotope compositions derived from the Re-Os geochronology, together with petrographic investigations to discuss the role of volcanism with the formation of the saline lacustrine basin and the associated sodium-carbonate evaporite beds of the Fengcheng Formation.

69 2. Geological background

70 The Junggar Basin, located in the northern part of Xinjiang Uygur Autonomous Region, 71 northwest China (Fig. 1), is a superimposed basin developed on a basement of 72 crystalline Precambrian and Carboniferous aged sedimentary strata (Cao et al., 2020). 73 The Mahu Sag is a secondary structural unit of the Central Depression located in the 74 northwest sector of the Junggar Basin (Fig. 1). Following the juxtaposition of the 75 Central Asian Orogenic Belt with the Junggar Basin during the Late Carboniferous, the 76 basin experienced multiple intraplate tectonic events (e.g., Carroll et al., 1995; Tang et 77 al., 2015; Yang et al., 2015). As a result, the Mahu Sag evolved from a syn-rift basin 78 during the Early Permian to a post-rift basin in the Middle Permian, ending with a 79 tectonic inversion between the Late Permian and Early Triassic (Tang et al., 2021; Yang 80 et al., 2023). The Lower (Jiamuhe and Fengcheng formations) and Middle (Xiazijie and 5/37

Lower Wuerhe formations) Permian strata were deposited during the syn-rift to postrift stages, respectively.

83 The Fengcheng Formation was primarily deposited in a fan-delta-lacustrine 84 environment under seasonally alternating humid and arid conditions that was associated 85 with high salinity. The formation is subdivided into three members. The basal Member 86 1 unconformably overlies the Jiamuhe Formation that consists primarily of volcanic 87 rocks. Member 1 is composed of volcanic rocks in its lower part and dolomitic 88 mudstone interbedded with siltstone in its upper part. Member 2 has limited exogenous 89 input and was deposited in a highly saline environment. It is characterized by thick 90 organic-rich dolomitic rocks and mudstones with widely developed sodium-carbonate 91 (e.g., wegscheiderite, trona, nahcolite) beds ranging from mm- to dm-scale. Member 92 3 is characterized by lithologies similar to the top part of Member 1, but also records a 93 decrease in salinity and an increase in exogenous input (e.g., Wang et al., 2021). An 94 upper Early Permian age, based on biostratigraphy, lithostratigraphy, and structural 95 relationships, has been assigned to the Fengcheng Formation (e.g., Feng et al., 2018). 96 A maximum depositional age of the Fengcheng Formation of late to middle Early 97 Permian is also proposed by detrital LA-ICP-MS zircon U-Pb dates (Lu, 2018; Tang 98 et al., 2022; Gao et al., 2020). Yet, in stark contrast, zircons from interbedded tuff beds 99 within Member 1 and 3 yielded LA-ICP-MS U-Pb dates up to 25 Myrs older (Wang 100 et al., 2022).

101 **3. Sample selection and methodology**

102	Samples from the Fengcheng Formation were collected from the Maye 1 core in the
103	Mahu Sag, Junggar Basin (Fig. 1; coordinates not available due to restrictions). Whole
104	core programmed pyrolysis data of the entire core were used to target intervals for Re-
105	Os geochronology. Specifically areas of high TOC (thus potentially enriched in Re and
106	Os), and variable HI values (thus potentially possessing variable organic matter type
107	that could yield variable ¹⁸⁷ Re/ ¹⁸⁸ Os ratios; Cumming et al., 2012; Liu et al., 2020a;
108	Pietras et al., 2022). Eight samples over an interval of 2–4 m were collected from each
109	of the three members (Fig. 2). Samples were firstly polished on a silicon carbide plate
110	to remove any surface and metal contact from the drilling process. Samples were then
111	broken into chips and crushed to a powder with an agate mill and puck in a shatterbox.

112 *3.1 Organic petrology and geochemistry*

Ten samples were analysed for organic petrology. Optical microscopy analyses were 113 114 conducted on thin rock sections. Samples were sectioned perpendicular to the bedding 115 before being embedded in a homogeneous mixture of Buehler's epoxy resin and hardener (ratio 5:1). The latter were then dried and polished (Taylor et al., 1998; 116 Amijaya and Littke, 2006). The thin rock sections were examined at different 117 magnifications and under different light conditions (incident white light and blue light 118 excitation) to characterize the organic matter using a Nikon LV 100 microscope. The 119 120 vitrinite reflectance was measured using a Zeiss Scope A1 incident light microscope at 121 a wavelength (λ) of 546 nm. The reflectance of samples rich in vitrinite particles was

measured from at least 50 points. Samples were point-counted (300–500 points per
sample) to determine relative abundances of mineral matter and macerals.

Twenty-four samples were analysed for total organic carbon (TOC) content using a LECO carbon analyser. On the same sample set to determine Tmax, oxygen and hydrogen index values, programmed pyrolysis was performed using a Rock-Eval 6 instrument.

128 3.2 Evaporite SEM evaluation

The chemical composition of the evaporite minerals was determined from a fresh surface (coated with gold) using a scanning electron microscope, a TESCAN VEGA/XMU SEM, fitted with a BRUKER Quantax xFlash 6/30 energy-dispersive Xray spectroscopy detector. X-ray powder diffraction (XRD) patterns of the evaporite minerals were obtained on a Rigaku D/Max 2500 VB2+/PC diffractometer with Cu Kα radiation. The extracted data were analyzed using Jade software (Version 6.5).

135 3.3 Re-Os geochemistry

136 The rhenium–osmium (Re–Os) isotope analysis was carried out at the Durham 137 Geochemistry Centre (Laboratory for Sulfide and Source Rock Geochronology and 138 Geochemistry, and Arthur Holmes Laboratory) at Durham University. The analytical 139 protocol uses the Cr^{VI} –H₂SO₄ digestion methodology to preferentially liberate 140 hydrogenous Re and Os, and to limit incorporation of any detrital Re and Os (Selby and 141 Creaser, 2003). About 1 g of sample powder with a known amount of mixed ¹⁹⁰Os and

¹⁸⁵Re tracer (spike) solution and 8 ml of 0.25 g/g Cr^{VI}–H₂SO₄ solution were placed and 142 sealed into a carius tube and heated at 220°C for 48 h. Osmium was purified by solvent 143 144 extraction (CHCl₃) and micro-distillation methods (Birck et al., 1997; Cohen and Waters, 1996). Rhenium was separated and purified from the Os-extracted Cr^{VI}–H₂SO₄ 145 146 solution using NaOH-C₃H₆O solvent extraction and anion chromatography. The 147 purified Re and Os fractions were loaded onto Ni and Pt filaments, respectively (Selby 148 et al., 2007). Isotopic measurements were determined using a ThermoScientific 149 TRITON mass spectrometer using static Faraday collection for Re and secondary 150 electron multiplier in peak-hopping mode for Os. Total procedural blanks during this 151 study were 15.6 \pm 0.45 pg and 0.035 \pm 0.007 pg (1 σ S.D., n = 3) for Re and Os, respectively, with an average 187 Os/ 188 Os value of 0.18 ± 0.01. 152 153 The initial 187 Os/ 188 Os composition (Os_i) were calculated from the Re-Os isotope compositions using the ¹⁸⁷Re decay constant 1.666×10^{-11} yr⁻¹ (Smoliar et al., 1996) and 154

156 SBC-1suggest ≤ 0.05 variation in calculated Os_i (Du Vivier et al., 2014; 2015; Sproson

the ages derived from the isochron. Repeat analyses of reference material SDO-1 and

157 et al., 2022).

155

158 **4. Results**

159 4.1 Organic petrology and geochemistry

160 The Fengcheng Formation Member 1 possesses lower TOC values (0.42 to 0.60 %,

161 average 0.50 %) than Member 2 (0.55–2.00 %, average 1.03 %) and Member 3 (0.40–

162 2.14 %, average 1.05 %). All samples are characterised by a Type II–III kerogen based 9/37

163 on Hydrogen-Oxygen Index plots (Fig. 3), with exceptionally good hydrocarbon potential. All samples exhibit a moderate thermal maturity (Tmax = 407 - 442 °C, Ro 164 = 1.05 - 1.30 %). Organic petrology reveals large variations in exinite, vitrinite and 165 inertinite contributions among the samples (Fig. 4). The samples have exinite amounts 166 167 ranging from 0 to 67.7 %, vitrinite ranging from 14.7 to 62.5 %, and inertinite from 9.1 168 to 53.3 %, respectively (Table S2). Members 1 and 3 have moderate to high exinite 169 content. In contrast, samples from Member 2 have no exinite. Member 2 has higher 170 vitrinite contents (29.6 - 62.5%) compared with the other two members (14.7 - 35.7%).

171 4.2 Evaporite mineral SEM observation

172 An x-ray diffractogram is used to determine the mineral composition of the bedded 173 evaporite minerals in the Fengcheng Formation. The analysis shows the presence of wegscheuderite, trona, natron, pirssonite, nahcolite, and reedmergnerite (Fig. 5b). A 174 175 thin evaporite bed observed in a core sample is primarily composed of trona needles 176 (Fig. 5c). Columnar trona crystals interspersed with rhombic reedmergnerite crystals is 177 observed under cross-polarized light (Fig. 5d). The back-scattered electron image of the evaporite reveals intercalated columnar trona crystals with pirssonite and 178 179 reedmergnerite. The evaporite bed also displays ordered to sub-ordered halite (NaCl) 180 crystals, prismatic nahcolite crystals, and disordered thenardite (Na₂SO₄) crystals. These crystals may have formed as secondary minerals during sample preparation, such 181 as during ion milling. The energy dispersive X-ray spectroscopy analysis of natron and 182

183 pirssonite shows the presence of a gold coating, as indicated by the element Au (Fig.184 5e and 5f).

185 *4.3 Re–Os geochemistry*

186	Rhenium and osmium concentrations range from $5.2 - 19.5$ ppb and $64.7 - 127.6$ ppt
187	for Member 1, $7.5 - 21.8$ ppb and $77.2 - 156.8$ ppt for Member 2, $11.9 - 37.4$ ppb and
188	136.3 – 422.7 ppt for Member 3, respectively. These intervals are generally
189	characterised by a large range in 187 Re/ 188 Os values (Member 1 = 433.0 to 1652.6,
190	Member $2 = 404.0$ to 1463.4, Member $3 = 558.5$ to 866.7). Using the inverse isochron
191	method in IsoplotR the Re-Os data yield Model 3 Re–Os dates of 304.4 \pm 1.7 [2.5
192	including decay constant] Ma (n = 4, 2σ ; MSWD = 2.9) for Member 1, 300.1 Ma ± 1.9
193	[2.6] Ma (n = 5, 2σ ; MSWD = 4.7) for Member 2, and 297.3 Ma ± 4.7 [5.0] Ma (n = 6,
194	2σ ; MSWD = 4.8) for Member 3 (Li and Vermeesch, 2021; Vermeesch, 2018). Initial
195	Os isotope compositions are 0.33 ± 0.02 for Member 1, 0.36 ± 0.02 for Member 2 and
196	0.32 ± 0.05 for Member 3, respectively. The uncertainty in the Re–Os dates can be
197	accounted for by the possible duration sampled for each member and the variation in
198	the initial 187 Os/ 188 Os (Member 1 = 0.024, Member 2 = 0.039, Member 3 = 0.026).
199	Monte Carlo simulations (Li et al., 2019) yielded identical results to those of the
200	inverse isochron method (Fig. 2). The Monte Carlo simulations suggest that analytical
201	uncertainties account for 30-61% of the total uncertainties of the final ages (Fig. 2). The
202	rest of the date uncertainty is a function of the model age uncertainties.

11/37

203 **5. Discussion**

204 5.1 Age reassignment for the Fengcheng Formation

205 Relative dating techniques (biostratigraphy, lithostratigraphy, chemostratigraphy and 206 structural relationships) have been used to suggest an Early Permian age for the 207 Fengcheng Formation (Feng et al., 2018; Wang et al., 2022). Detrital LA-ICP-MS 208 zircon U-Pb dates from Members 1 and 3 of the Fengcheng Formation from cores FN-209 4, JL-17 and DT-1, ~75 kms from the Maye 1 core (Fig. 1) have been used to propose 210 that the maximum depositional age of the Fengcheng Formation is middle to late Early 211 Permian ranging between 284 ± 4 (Member 1 – FN-4) to 278.9 ± 1.3 Ma (Member 1 – JL-17); 277.4 \pm 2.8 Ma (Member 3 – DT-1) (2 σ ; Lu, 2018; Tang et al., 2022; Fig. 2), 212 213 which would suggest that the Fengcheng Formation was deposited during the 214 interglacial interval associated with warm and arid climate conditions across the mid-215 latitude of the northern hemisphere between glaciation P2 and P3 (Fielding et al., 2023; 216 Montañez and Poulsen, 2013).

In contrast to detrital zircon U–Pb dates, magmatic zircons from volcanic tuff beds within the Fengcheng Formation of X76, X88, X201 cores ~30 km from the Maye 1 core yielded LA-ICP-MS $^{206}Pb/^{238}U$ dates up to 25 Myrs older (Wang et al., 2021; 2022). Zircons from a tuff in Member 3, 27 m above the Member 2-3 boundary yielded a date 296.8 ± 2.5 Ma (2 σ ; MSWD = 2 – unknown if the decay constant uncertainty is included, although its affect is only ~20 - 40 Kyrs). Five LA-ICP-MS $^{206}Pb/^{238}U$ dates have been obtained from interbedded tuff beds within Member 1 (including three from

224	cores X76, one from, X88 and one from X201). There is broad agreement between three
225	of the LA-ICP-MS 206 Pb/ 238 U dates (X76-3646.06 = 300.16 ± 0.61 Ma; X76-3646.50
226	= 300.7 ± 1.3 Ma; X201-4923.70 = 300.8 ± 1.3 Ma), however, another two LA-ICP-
227	MS 206 Pb/ 238 U dates are older (X76-3645.60 = 304.94 ± 0.68 Ma; X88-3827.50 = 305.1
228	\pm 1.2 Ma) and do not uphold the law of superposition (Wang et al., 2021; 2022).
229	Although, a weighted LA-ICP-MS 206 Pb/ 238 U date of 302.34 ± 0.73 Ma (MSWD = 2.0;
230	N = 122) for Member 1 has been presented, given that the dated tuff beds are below the
231	Kasimovian–Gzhelian Boundary Interval δ^{13} C negative excursion (ca. 304 Ma) the
232	older LA-ICP-MS 206 Pb/ 238 U dates (ca. 305 Ma) are proposed to be a more accurate
233	date of Member 1 (Wang et al., 2022).

234 Although the magmatic zircon U–Pb ages could be affected by a xenocrystic 235 component, pre-eruptive closure of the zircon U–Pb systematics, Pb loss, and/or detrital grains (as discussed by Wang et al., 2022), in contrast Re–Os dates of organic-rich 236 237 sedimentary rocks provide direct depositional age constraints. The Re-Os dates are 238 nominally young from Member 1 (304.4 \pm 1.7 [2.5] Ma) to 3 (297.3 \pm 4.7 [5.0] Ma), 239 although dates from Members 2 (300.1 Ma \pm 1.9 [2.6] Ma) and 3 (297.3 \pm 4.7 [5.0] 240 Ma), overlap when considering lower and upper age uncertainties (Figs. 2 and 6). Further there is nominal agreement of the Re-Os sedimentary rock and the LA-ICP-MS 241 206 Pb/ 238 U zircon dates (Fig. 6). 242

Eight distinct glacial and nonglacial periods have been identified in theCarboniferous and Permian systems of eastern Australia (Fielding et al., 2023). These

245	glacial intervals are interspersed with intervals where evidence of glacial episodes are
246	not preserved. The Carboniferous period has four relatively short-lived glacial intervals
247	(C1-C4), which were followed by four longer-lived glaciations (P1-P4) during the
248	Permian period. Between the Carboniferous and Permian glaciations, there was a
249	significant nonglacial period during the Late Carboniferous. Given that the age of the
250	Carboniferous–Permian boundary is defined to 298.9 ± 0.15 Ma (Schmitz, 2020), the
251	Re-Os dates of this study imply that the majority of the Fengcheng Formation
252	(specifically Members 1 and 2; Fig. 6) is uppermost Carboniferous in age and therefore
253	penecontemporaneous with an interglacial period between glaciation C4 and P1 of
254	LPIA (Wang et al., 2022; Fielding et al., 2023). The agreement of the U-Pb and Re-Os
255	dates for Member 3 (296.8 \pm 2.5 Ma; Wang et al., 2022; 297.3 \pm 4.7 [5.0] Ma; this
256	study, respectively), although they overlap within uncertainty with the age of the
257	Carboniferous–Permian boundary (298.9 \pm 0.15 Ma), does imply that Member 3 is
258	earliest Permian in age. The new Re-Os ages yield a nominal rate of sedimentation
259	estimate during the deposition the Fengcheng Formation of 13 to 72 m/Myr.

260 5.2 Initial Os isotope compositions record volcanic input into the Junggar basin

Lacustrine sediments of the geological record are generally characterised by radiogenic Os_i values, as most of the Os is derived from riverine input through continental weathering, due to the elevated Re/Os ratios compared with mantle materials (average continental mass 187 Os/ 188 Os = ~1.4; Peucker-Ehrenbrink and Ravizza, 2000). For example, lacustrine units of the Toarcian (Jurassic) Da'anzhai Formation of the Sichuan

266	Basin (China) have Os_i values of ~1.3 (Xu et al., 2017), which are much higher than
267	the Early Jurassic open marine Os_i values of $0.4 - 0.8$ recorded from Europe (Kemp et
268	al., 2020; Percival et al., 2016; Them et al., 2017). The Eocene Green River Formation
269	has Os_i values of $1.4 - 1.5$ (Cumming et al., 2012; Pietras et al., 2020) that are also
270	much higher than the coeval open marine Os isotope value of ~0.6 (Kato et al., 2011).
271	Likewise, radiogenic ¹⁸⁷ Os/ ¹⁸⁸ Os (up to 1.3 at ~36 Ma) compositions are reported for
272	the Arctic Ocean's 'lake stage' prior to connection of the lake with the global ocean
273	which is characterized by a decrease in the Os_i to the ~36 Ma marine Os signature of
274	~0.6 (Poirier and Hillaire-Marcel, 2011). The increase in the 187 Os/ 188 Os (from 0.39 to
275	0.55) of Arctic Ocean seawater preceding the onset of the Paleocene–Eocene thermal
276	maximum has been explained by a reduction in the flux of less radiogenic Os into the
277	Arctic Basin due to hydrological restriction in the basin (Dickson et al., 2015). A highly
278	radiogenic Os_i of 1.97 has been reported for the Ipubi Formation black shales of the
279	Araripe Basin, suggesting deposition in a highly restricted lacustrine setting (Lúcio et
280	al., 2020).

In contrast, the Os_i of the Fengcheng Formation is characterised by very low values of 0.32 - 0.36 (Fig. 2). An episodic connection with the open ocean has been proposed during the deposition of the Fengcheng Formation (Zhang et al., 2007). Marine incursion would encourage the exchange of local water mass with seawater that would drive the Os isotope values towards the marine Os isotope composition (Poirier and Hillaire-Marcel, 2011). Available data suggest that the Late Carboniferous ocean was characterised by an Os isotope composition of ~0.55 (Tripathy et al., 2015). A
similar Os-isotope composition is reported for the Early and Late Permian ~0.6 (Liu
and Selby, 2021). Although, the Late Permian Os-isotope record displays excursions to
non-radiogenic values associated with the volcanism of the Siberian traps and/or South
China (Liu and Selby, 2021; Liu et al., 2020b).

292 Assuming a gradual evolution of the marine Os_i profile without any major 293 perturbations, the marine Os_i values for the Late Carboniferous and Early Permian 294 likely fall between 0.55 and 0.61 (Fig. 7). Therefore, any marine incursion during the 295 deposition of the Fengcheng Formation could only drive the Os-isotope composition of the water column towards a minimum value of 0.55, assuming total exchange between 296 the lacustrine water mass with that of seawater, rather than the observed Os_i 297 298 compositions of 0.32 - 0.36 (Fig. 2). Moreover, any marine incursion during the 299 deposition of the Fengcheng Formation is suggested to have been only episodic, and 300 thus our samples could not have coincidentally included these incursions (Zhang et al., 301 2007). Furthermore, evidence from nitrogen isotopes, lithofacies, geochemistry of the 302 associated sediments, and the presence of alkali minerals suggest a lacustrine alkaline 303 depositional environment for the Fengcheng Formation (Cao et al., 2020). The latter 304 may indicate a hydrologically closed basin (Lowenstein et al., 2017), with the water column dominated by Na⁺, HCO₃⁻ and CO₃²⁻ ions (Boros and Kolpakova, 2018). Thus, 305 306 we consider any marine incursion unlikely to have caused the unradiogenic Os_i values 307 of the Fengcheng Formation. An alternative and plausible explanation for the

308 unradiogenic Os_i is the input of unradiogenic Os from the weathering of volcanic 309 juvenile mafic rocks within the hydrological catchment of the alkaline lake, which are 310 common to the western Junggar region (e.g., Late Paleozoic [~347 – 287 Ma] granitoids 311 and volcanic rocks; Tang et al., 2012).

312 5.3 Implications for soda lake formation

313 As the oldest known soda lake deposit (Cao et al., 2020), the Fengcheng Formation is 314 dominated by dolomitic and limy shales, intercalated with cm- to dm-scale sodium-315 carbonate beds in Member 2 and the basal section of Member 3 near the centre of the Mahu Sag. The sodium-carbonate beds consist of several evaporite minerals (Fig. 4), 316 317 such as wegscheiderite Na₅H₃(CO₃), trona (Na₂H(CO₃O₂·2H₂O), natron, nahcolite (NaHCO₃), natrite (Na₂CO₃), northupite (Na₃Mg(CO₃)₂Cl) 318 and pirssonite 319 $(Na_2Ca_2(CO_3)_3)$, most of which have been previously identified (Cao et al., 2020). 320 Interestingly, halite, which is common in the Green River Formation and indicates 321 higher salinity, is rarely observed in the Fengcheng Formation (Fig. 4e). Most of the 322 sodium-carbonate minerals of the Fengcheng Formation are typical of soda lake (or 323 alkaline saline lake) deposits, such as the Green River Formation (Milton and Fahey, 324 1960) and the Searles Lake deposit (Eugester and Hardie, 1978). Soda lake deposits, 325 which are unusual deposits that are almost entirely limited to the Cenozoic (Eocene, 326 Miocene, Pleistocene, Holocene) (Earman et al., 2005; Warren, 2010), typically precipitate from brines with elevated Na⁺ and $CO_3^{2-}TOT$ ([HCO₃⁻] + [CO₃²⁻] + H₂CO₃^{*}], 327 where bracketed symbols refer to concentration) relative to Ca^{2+} and Mg^{2+} (Earman et 328

al., 2005). The rarity of the soda lake deposit of the Permian Fengcheng Formationmakes it a valuable analogue for studying Cenozoic alkaline lake sediments.

331 5.3.1 Evaporative concentration of brines

332 The prevailing theory for the formation of trona deposits is the evaporative 333 concentration of brines whereby Na^+ and $HCO_3^- + CO_3^-$ ions dominate due to silicate 334 hydrolysis of volcanic rocks or volcaniclastic sediments (Boros and Kolpakova, 2018; 335 Earman et al., 2005; Jones et al., 1977). The climate associated with the deposition of 336 massive carbonates of Member 2 of the Fengcheng Formation is consistent with its new 337 temporal placement based on Re-Os ages to the Late Carboniferous interglacial between C4 and P1 of the LPIA (Fig. 2). During the warmer climate of the interglacial, 338 339 intense evaporation will consequently lead to the precipitation of alkaline earth 340 carbonates and sodium-carbonates that are common to the Fengcheng Formation. The 341 warm climate may be linked to elevated atmosphere CO₂ levels associated with 342 greenhouse gas emissions from volcanic degassing and/or sill bodies that intruded 343 organic-rich units (Svensen et al., 2009) around the Central Asian Orogenic Belt 344 (CAOB) (Sengör et al., 1993). The high atmospheric CO₂ levels may be indicated by 345 appearance of nahcolite in Member 2 and 3 of the Fengcheng Formation based on experimental data (Jagniecki et al., 2015). The decrease of the evaporates in Member 3 346 might be linked to a shift to a cooler climate during the Early Permian during the onset 347 348 of glacial episode P1 of the LPIA (Fielding et al., 2023).

349	The deposition of the Fengcheng Formation is accompanied by contemporaneous
350	mafic volcanism which is indicated by the unradiogenic Os isotope compositions (Fig.
351	2), and intercalated basalt and tuff beds (Wang et al., 2022) in the Lower-Mid
352	Fengcheng Formation. The sustained intense volcanism from the Late Carboniferous
353	to the Early Permian in the Mahu Sag region (or CAOB) (Li et al., 2015) may have
354	injected abundant volcanic CO2 into the atmosphere and paleo-Mahu Lake. During the
355	migration of CO ₂ -oversaturated hydrothermal fluids from active thrust faults which
356	developed in the foreland of the West Junggar Orogenic Belt, the reaction of magmatic-
357	derived CO ₂ (aq) with country rocks would result in the formation of waters with excess
358	alkalinity and Na ⁺ (Earman et al., 2005; Lowenstein et al., 2017). The aerobic decay of
359	organic matter may have also acted as an important source of CO ₂ for the Fengcheng
360	Formation because most of the sedimentary facies are grey massive mudstones
361	indicating deposition in a stratified lake frequently interrupted by storm-floods (Gong
362	et al., 2024). Microbial CH ₄ production is suggested to have occurred in the paleo-
363	Mahu lake, with an estimated $\sim 10 - 109$ Gt of biogenic CH ₄ suggested to have been
364	emitted, which could have been converted to CO ₂ (Xia et al., 2023). Although the
365	existence of nahcolite may indicate an elevated CO ₂ content of the gas phase (1475 to
366	20,300 ppm between 20-60 °C; Eugster, 1966), it has been proposed that the CO ₂
367	sourced from magmatism and aerobic organic decay are more common in the formation
368	of sodium-carbonate in the Fengcheng Formation. Further, the impact of atmospheric
369	CO_2 concentration is relatively minor to soils that typically have higher pCO_2 than the

atmosphere (~400 ppm) (Eugester and Hardie, 1978), and moreover the average pCO_2 of surface water of saline lakes is 5–8 times higher than that of the atmosphere (Duarte et al., 2008).

373 5.3.2 Weathering of volcanic rocks

374 Weathering reactions of volcanic rocks or volcaniclastic sediments are suggested to typically produce waters that are initially dominated by Na^+ and HCO_3^{2-} ions over 375 Ca²⁺ and Mg²⁺ (Boros and Kolpakova, 2018; Earman et al., 2005), especially via the 376 hydrolysis of sodium-rich minerals (e.g., albite). The West Junggar region has 377 378 extensive subaerial and subsurface intermediate-acidic volcanic rocks (or 379 volcaniclastics derived from them) of Carboniferous and Permian age (Li et al., 2015), which could have fed the paleo-Mahu Lake with waters dominated by Na⁺, HCO₃²⁻ and 380 Ca^{2+} ions. The average mole ratio of $Na^{+/}(Mg^{2+}+Ca^{2+})$ of basaltic andesite in the 381 382 Fengcheng Formation is ~ 1 (Table 1), which is greater than the global average value 383 (~ 0.7) for andesite (Taylor, 1968), and thus favours the formation of saline waters.

384 6. Conclusions

New Re–Os dates for the three members of the Fengcheng Formation are in agreement with zircon ages from volcanic tuffs. The new Re–Os ages place the majority of the Fengcheng Formation (Member 1 and 2) below the Carboniferous–Permian Boundary (298.9 \pm 0.15 Ma). As such, most of the deposition of the Fengcheng Formation occurred during the interglacial period C4–P1 of the Late Paleozoic Ice Age that was associated with high *p*CO₂ atmospheric levels. The nonradiogenic initial Os isotope $\frac{20}{37}$ 391 compositions of 0.32–0.36 of the Fengcheng Formation are distinct from the radiogenic initial Os isotope compositions that are typical to lacustrine units of the geological 392 record. The nonradiogenic Os_i compositions of the Fengcheng Formation are 393 394 interpreted to be caused by the input of unradiogenic Os through the weathering of 395 adjacent contemporaneous juvenile volcanic rocks (or volcaniclastics derived from 396 them). The formation of the sodium carbonates of the Fengcheng Formation may have 397 been related to intense evaporation induced by climate warming, excess alkalinity from bacterial sulfate reduction, and brines with high Na⁺/Ca²⁺+Mg²⁺ ratios due to 398 399 interaction with intermediate-acidic volcanic rocks (or sediments derived from them) and CO₂ derived from magma degassing and the decay of organic matter by both 400 aerobic and anaerobic processes. The decreasing abundance of evaporite minerals in 401 402 Member 3 is consistent with the shift to a cooler climate during the P1 glaciation of the 403 LPIA during the Early Permian.

404 **CRediT authorship contribution statement**

All the authors listed have made contributions to this work. Deyu Gong: Writing Original Draft, Conceptualization, Resources, Project administration, Funding
acquisition. Zeyang Liu: Writing - Original Draft; Conceptualization, Writing Review
& Editing, Supervision, Funding acquisition. Chuanmin Zhou: Writing - Original Draft,
Formal analysis. Emma Ownsworth: Formal analysis, Methodology, Review &
Editing. David Selby: Writing - Review & Editing, Supervision. Wenjun He: Writing -

411 Review & Editing, Formal analysis. Zhijun Qin: Writing - Review & Editing, Formal412 analysis.

413 **Declaration of competing interest**

- 414 The authors declare that they have no known competing financial interests or personal
- 415 relationships that could have appeared to influence the work reported in this paper.

416 Acknowledgements

- 417 We gratefully acknowledge the funding of National Natural Science Foundation of
- 418 China (No. 41802177; 42272188; 42303056) and Petrochina Technology Project (No.
- 419 2021DJ0206; 2022DJ0507; 2020D-5008-04). Z.L. acknowledges the funding from
- 420 Sichuan Natural Science Foundation (23NSFSC5461). We thank Geoff Nowell and
- 421 Chris Ottley of Durham University for laboratory support.

422 Data availability

423 All data analysed during this study are included in this published article (and its424 supplementary materials).

Figure 1. Location of the Junggar Basin, northwest China (a) that comprises both the
Western Uplift, Central Depression and Luliang Uplift tectonic zones (b), and location
of the Maye 1 drill core utilized in this study (c). Other core sites discussed in the main
text are also shown.

430 Figure 2. Lithological column of the Fengcheng Formation (Members 1, 2 and 3) of 431 the Maye 1 drill core together with total organic carbon (TOC; Table S3), hydrogen 432 index (HI; Table S4), and Re-Os dating (sampled intervals shown by stars) results. Inverse isochron plots were generated using IsoplotR using the ¹⁸⁷Re/¹⁸⁸Os and 433 434 ¹⁸⁷Os/¹⁸⁸Os data (Table S5; Li and Vermeech, 2021; Vermeech, 2018). Uncertainties 435 are at the 2σ level excluding/including the decay constant uncertainty. Monte Carlo simulations yield identical results to those from the inverse isochron method 436 437 (uncertainties are presented as analytical only/model uncertainty included). Hexagons 438 represent the equivalent locations of U-Pb ages from Wang et al. 2021 and 2022.

440 **Figure 3**. Hydrogen-Oxygen index plot showing the kerogen type of the analyzed

441 samples of the Fengcheng Formation (Table S4).

443 Figure 4. Microscopic petrography of macerals through oil immersion. Images A is
444 under blue light. Images B, C and D are under white light. LD: liptinite debit, CD:
445 vitrinite debit, F: fusinite, Cl: clay mineral matrix, Py: pyrite, MiS: microsporinite, V:
446 vitrinite, ID: inertodetrinite, I: Inertinite. See Table S2 for detail.

448	Figure 5 . Typical evaporite minerals of the Fengcheng Formation in the Mahu Sag. (a)
449	Typical X-ray diffractogram of the bedded evaporite, indicating mineral composition
450	of wegscheuderite, trona, natron, pirssonite, nahcolite and reedmergnerite; (b) A thin
451	bed evaporite observed in the core, composed mainly of trona needles; (c) Thin section
452	photomicrograph (cross-polarized light) of sample from (b), showing columnar trona
453	crystals intercalated with rhombic reedmergnerite crystals; (d) Back-scattered electron
454	image of evaporite from (b), showing columnar trona crystals intercalated with crystals
455	of pirssonite and reedmergnerite; (e) Back-scattered electron image of evaporite from
456	(b), characterized by euhedral-subhedral halite (NaCl) crystals, prismatic nahcolite
457	crystal, and anhedral thenardite (Na ₂ SO ₄) crystals, which may occurs as secondary
458	minerals during sample preparation (e.g. Ion milling); (f) Energy dispersive X-ray
459	spectroscopy of natron from(d), with element Au indicating gold coating; (f) Energy
460	dispersive X-ray spectroscopy of pirssonite from (d), with element Au indicating gold
461	coating.

Figure 6. Age model of the Fengcheng Formation based on different dating methods.
Stratigraphic column A) LA-ICP-MS U-Pb detrital zircon from Member 1 and the
Fengcheng Formation; B) LA-ICP-MS U-Pb zircon from interbedded tuff beds of
Members 1 and 3; C) Re-Os dates from Members 1, 2, and 3 of this study. Glaciation
intervals of C3, C4, P1-3 are from Fielding et al. (2008).

Figure 7. Published ¹⁸⁷Os/¹⁸⁸Os (Os_i) of the seawater throughout the Carboniferous and Permian (Liu et al., 2020b; Liu et al., 2019; Tripathy et al., 2015; Yano et al., 2022) and for the Fengcheng Formation of this study. Also shown are the paleo-lake values from the Jurassic Da'anzhai Formation (Sichuan Basin, Xu et al., 2017), and average riverine and mantle values (Peucker-Ehrenbrink and Ravizza, 2000). See text for discussion.

476	Table 1. Mole ratio of Na ⁺ /(Mg ²⁺ +Ca ²⁺) of andesites fron	the Fengcheng
-----	---	---------------

Major element (wt. %) Mole ratio of References Dataset Na/(Mg+Ca) CaO TiO₂ SiO_2 Al_2O_3 Fe₂O₃ FeO MgO Na₂O K₂O Taylor 1 59.500 17.20 0.00 6.10 3.42 7.03 3.68 1.60 0.70 0.56 (1968) This study, compiled 4.67 1.05 1.20 1.09 2 61.68 15.84 8.52 / 3.04 3.52 from Shao et al. (2022)

477 Formation and average andesites.

479 **References**

- Amijaya, H., and Littke, R., 2006, Properties of thermally metamorphosed coal from
 Tanjung Enim Area, South Sumatra Basin, Indonesia with special reference to
 the coalification path of macerals: International Journal of Coal Geology, v. 66,
 no. 4, p. 271–295.
- Birck, J.L., Barman, M.R., and Capmas, F., 1997, Re-Os Isotopic Measurements at the
 Femtomole Level in Natural Samples: Geostandards Newsletter, v. 21, p. 19–
 27.
- 487 Boehrer, B., and Schultze, M., 2008, Stratification of lakes: Reviews of Geophysics, v.
 488 46, no. 2.
- Boros, E., and Kolpakova, M., 2018, A review of the defining chemical properties of
 soda lakes and pans: An assessment on a large geographic scale of Eurasian
 inland saline surface waters: PLOS ONE 13,
 doi.org/10.1371/journal.pone.0202205.
- 493 Cao, J., Xia, L., Wang, T., Zhi, D., Tang, Y., and Li, W., 2020, An alkaline lake in the
 494 Late Paleozoic Ice Age (LPIA): A review and new insights into
 495 paleoenvironment and petroleum geology: Earth-Science Reviews, v. 202, p.
 496 103091.
- 497 Carroll, A.R., Graham, S.A., Hendrix, M.S., Ying, D., and Zhou, D., 1995, Late
 498 Paleozoic tectonic amalgamation of northwestern China: Sedimentary record of
 499 the northern Tarim, northwestern Turpan, and southern Junggar Basins: GSA
 500 Bulletin, v. 107, no. 5, p. 571–594.
- 501 Cohen, A.S., and Waters, F.G., 1996, Separation of osmium from geological materials
 502 by solvent extraction for analysis by thermal ionisation mass spectrometry:
 503 Analytica Chimica Acta, v. 332, no. 2–3, p. 269–275.
- Cumming, V.M., Selby, D., and Lillis, P.G., 2012, Re–Os geochronology of the
 lacustrine Green River Formation: Insights into direct depositional dating of
 lacustrine successions, Re–Os systematics and paleocontinental weathering:
 Earth and Planetary Science Letters, v. 359–360, p. 194–205.
- De Cort, G., Bessems, I., Keppens, E., Mees, F., Cumming, B., and Verschuren, D.,
 2013, Late-Holocene and recent hydroclimatic variability in the central Kenya
 Rift Valley: The sediment record of hypersaline lakes Bogoria, Nakuru and
 Elementeita: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 388, p.
 69–80.
- 513 Dickson, A.J., Cohen, A.S., Coe, A.L., Davies, M., Shcherbinina, E.A., Gavrilov, Y.O.,
 514 2015. Evidence for weathering and volcanism during the PETM from Arctic
 515 Ocean and Peri-Tethys osmium isotope records. Palaeogeography,
 516 Palaeoclimatology, Palaeoecology 438, 300-307.
- 517 Du Vivier, A.D.C., Selby, D., Condon, D.J., Takashima, R., and Nishi, H., 2015, Pacific
 518 ¹⁸⁷Os/¹⁸⁸Os isotope chemistry and U–Pb geochronology: Synchroneity of global

- 519 Os isotope change across OAE 2: Earth and Planetary Science Letters, v. 428,
 520 p. 204–216.
- 521 Du Vivier, A.D.C., Selby, D., Sageman, B.B., Jarvis, I., Gröcke, D.R., and Voigt, S.,
 522 2014, Marine ¹⁸⁷Os/¹⁸⁸Os isotope stratigraphy reveals the interaction of
 523 volcanism and ocean circulation during Oceanic Anoxic Event 2: Earth and
 524 Planetary Science Letters, v. 389, p. 23–33.
- Duarte, C.M., Prairie, Y.T., Montes, C., Cole, J.J., Striegl, R., Melack, J., and Downing,
 J.A., 2008, CO₂ emissions from saline lakes: A global estimate of a surprisingly
 large flux: Journal of Geophysical Research–Biogeosciences, v. 113, no. G4.
- Duckworth, A.W., Grant, W.D., Jones, B.E., and van Steenbergen, R., 1996,
 Phylogenetic diversity of soda lake alkaliphiles: FEMS Microbiology Ecology,
 v. 19, no. 3. p. 181–191.
- Earman, S., Phillips, F.M., and McPherson, B.J.O.L., 2005, The role of "excess" CO₂
 in the formation of trona deposits: Applied Geochemistry, v. 20, no. 12, p.
 2217–2232.
- Eugester, H.P., and Hardie, L., 1978, Saline lakes, Lakes: Chemistry, Geology and
 Physics. Springer-Verlag New York, pp. 237–293.
- Eugster, H.P., 1966, Sodium carbonate-bicarbonate minerals as indicators of PCO₂:
 Journal of Geophysical Research (1896-1977), v. 71, p. 3369–3377.
- Feng, J., Dai, J., Li, X., and Luo, P., 2018, Soft collision and polyphasic tectonic
 evolution of Wuxia foreland thrust belt: Evidence from geochemistry and
 geophysics at the northwestern margin of the Junggar Basin: Journal of
 Geodynamics, v. 118, p. 32–48.
- Fielding, C.R., Frank, T.D., Birgenheier, L.P., 2023. A revised, late Palaeozoic glacial
 time-space framework for eastern Australia, and comparisons with other
 regions and events. Earth-Science Reviews 236, 104263.
- Gao, Y., Huang, H., Tao, H., Carroll, A.R., Qin, J., Chen, J., Yuan, X., Wang, C., 2020.
 Paleoenvironmental setting, mechanism and consequence of massive organic
 carbon burial in the Permian Junggar Basin, NW China. Journal of Asian Earth
 Sciences 194, 104222.
- Gong, D., Liu, Z., He, W., Zhou, C., Qin, Z., Wei, Y., Yang, C., 2024. Multiple
 enrichment mechanisms of organic matter in the Fengcheng Formation of Mahu
 Sag, Junggar Basin, NW China. Petroleum Exploration and Development 51,
 292-306.
- Grant, W.D., Mwatha, W.E., and Jones, B.E., 1990, Alkaliphiles: Ecology, diversity
 and applications: FEMS Microbiology Letters, v. 75, no. 2–3, p. 255–269.
- Helfer, F., Lemckert, C., and Zhang, H., 2012, Impacts of climate change on
 temperature and evaporation from a large reservoir in Australia: Journal of
 Hydrology, v. 475, p. 365–378.
- Jagniecki, E.A., Lowenstein, T.K., Jenkins, D.M., and Demicco, R.V., 2015, Eocene
 atmospheric CO₂ from the nahcolite proxy: Geology, v. 43, no. 12, p. 1075–
 1078.

561 Jones, B.F., Eugster, H.P., and Rettig, S.L., 1977, Hydrochemistry of the Lake Magadi 562 basin, Kenya: Geochimica et Cosmochimica Acta, v. 41, no. 1, p. 53-72. 563 Kato, Y., Fujinaga, K., and Suzuki, K., 2011, Marine Os isotopic fluctuations in the early Eocene greenhouse interval as recorded by metalliferous umbers from a 564 Tertiary ophiolite in Japan: Gondwana Research, v. 20, no. 2–3, p. 594–607. 565 566 Kemp, D.B., Selby, D., and Izumi, K., 2020, Direct coupling between carbon release 567 and weathering during the Toarcian oceanic anoxic event: Geology, v. 48, no. 568 10, p. 976–980. 569 Kusakabe, M., Ohba, T., Issa, Yoshida, Y., Satake, H., Ohizumi, T., Evans, W.C., Tanvileke, G., and Kling, G.W., 2008, Evolution of CO₂ in Lakes Monoun and 570 571 Nyos, Cameroon, before and during controlled degassing: Geochemical Journal, 572 v. 42, no. 1, p. 93–118. Li, D., He, D., and Fan, C., 2015, Geochronology and Sr-Nd-Hf isotopic composition 573 of the granites, enclaves, and dikes in the Karamay area, NW China: Insights 574 575 into late Carboniferous crustal growth of West Junggar: Geoscience Frontiers, 576 v. 6, no. 2, p. 153–173. 577 Li, Y., and Vermeesch, P., 2021, Inverse isochron regression for Re-Os, K-Ca and other chronometers: Geochronology, v. 3, p. 415-420. doi.org/10.5194/gchron-578 579 2021-7. 580 Li, Y., Zhang, S., Hobbs, R., Caiado, C., Sproson, A.D., Selby, D., and Rooney, A.D., 581 2019, Monte Carlo sampling for error propagation in linear regression and 582 applications in isochron geochronology: Science Bulletin, v. 64, p. 189–197. 583 Liu, Z., and Selby, D., 2021, Deep-water osmium-isotope record of the Permian-584 Triassic interval from Niushan, China reveals potential delayed volcanic signal post the mass extinction: Global and Planetary Change, v. 200, p. 103473. 585 586 Liu, Z., Selby, D., Hackley, P.C., and Over, D.J., 2020a, Evidence of wildfires and 587 elevated atmospheric oxygen at the Frasnian–Famennian boundary in New 588 York (USA): Implications for the Late Devonian mass extinction: GSA Bulletin, 589 v. 132, no. 9–10, p. 2043–2054. 590 Liu, Z., Selby, D., Zhang, H., and Shen, S., 2020b, Evidence for volcanism and 591 weathering during the Permian-Triassic mass extinction from Meishan (South 592 China) osmium isotope record: Palaeogeography: Palaeoclimatology, 593 Palaeoecology, v. 553, p. 109790. 594 Liu, Z., Selby, D., Zhang, H., Zheng, Q., Shen, S., Sageman, B.B., Grasby, S.E., and Beauchamp, B., 2019, Osmium-isotope evidence for volcanism across the 595 596 Wuchiapingian-Changhsingian boundary interval: Chemical Geology, v. 529, 597 p. 119313. 598 Lowenstein, T.K., Jagniecki, E.A., Carroll, A.R., Smith, M.E., Renaut, R.W., and Owen, 599 R.B., 2017, The Green River salt mystery: What was the source of the 600 hyperalkaline lake waters?: Earth-Science Reviews, v. 173, p. 295–306.

- Lu, Y., 2018, Permian chronostratigraphic framework and sedimentary filling evolution
 in Mahu-Shawan and adjacent area, Junggar Basin [M.S. thesis]: Wuhan, China,
 China University of Geosciences.
- Lúcio, T., Souza Neto, J.A., and Selby, D., 2020, Late Barremian / Early Aptian Re–
 Os age of the Ipubi Formation black shales: Stratigraphic and
 paleoenvironmental implications for Araripe Basin, northeastern Brazil: Journal
 of South American Earth Sciences, v. 102, p. 102699.
- Milton, C., and Fahey, J.J., 1960, Classification and association of the carbonate
 minerals of the Green River Formation: American Journal of Science, v. 258, p.
 242–246.
- Montañez, I.P., and Poulsen, C.J., 2013, The Late Paleozoic Ice Age: An Evolving
 Paradigm: Annual Review of Earth and Planetary Sciences, v. 41, p. 629–656.
- Muyzer, G., and Stams, A.J.M., 2008, The ecology and biotechnology of sulphatereducing bacteria: Nature Reviews Microbiology, v. 6, p. 441–454.
- Percival, L.M.E., Cohen, A.S., Davies, M.K., Dickson, A.J., Hesselbo, S.P., Jenkyns,
 H.C., Leng, M.J., Mather, T.A., Storm, M.S., and Xu, W., 2016, Osmium
 isotope evidence for two pulses of increased continental weathering linked to
 Early Jurassic volcanism and climate change: Geology, v. 44, no. 9, p. 759–762.
- 619 Peucker-Ehrenbrink, and B., Ravizza, G., 2000, The marine osmium isotope record:
 620 Terra Nova, v. 12, no. 5, p. 205–219.
- Pietras, J.T., Dennett, A., Selby, D., and Birdwell, J.E., 2022, The role of organic matter
 diversity on the Re-Os systematics of organic-rich sedimentary units: Insights
 into the controls of isochron age determinations from the lacustrine Green River
 Formation: Chemical Geology, v. 604, p. 120939.
- Poirier, A., and Hillaire-Marcel, C., 2011, Improved Os-isotope stratigraphy of the
 Arctic Ocean: Geophysical Research Letters, v. 38.
- Schmitz, M.D., 2020, Appendix 2 Radioisotopic ages used in GTS2020, in: Gradstein,
 F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M. (Eds.), Geologic Time Scale 2020.
 Elsevier, pp. 1285–1349.
- 630 Selby, D., and Creaser, R.A., 2003, Re–Os geochronology of organic rich sediments:
 631 an evaluation of organic matter analysis methods: Chemical Geology, v. 200,
 632 no. 3–4, p. 225–240.
- Selby, D., Creaser, R.A., and Fowler, M.G., 2007, Re–Os elemental and isotopic
 systematics in crude oils: Geochimica et Cosmochimica Acta, v. 71, no. 2, p.
 378–386.
- 636 Şengör, A.M.C., Natal'in, B.A., and Burtman, V.S., 1993, Evolution of the Altaid
 637 tectonic collage and Palaeozoic crustal growth in Eurasia: Nature, v. 364, p.
 638 299–307.
- Shao, L.F., Yu, F.S., Wang D.D., Li C., 2022. Geochronology, geochemistry, and
 tectonic significance of Carboniferous Andesite in the Zhongguai Uplift,
 Northwestern Margin of the Junggar Basin. Geoscience 36(3), 812-823. (in
 Chinese with English abstract).

- Smoliar, M.I., Walker, R.J., and Morgan, J.W., 1996, Re-Os ages of group IIA, IIIA,
 IVA, and IVB iron meteorites: Science, v. 271, no. 5252, p. 1099–1102.
- Sproson, A.D., Pogge von Strandmann, P.A.E., Selby, D., Jarochowska, E., Frýda, J.,
 Hladil, J., Loydell, D.K., Slavík, L., Calner, M., Maier, G., Munnecke, A.,
 Lenton, T.M., 2022. Osmium and lithium isotope evidence for weathering
 feedbacks linked to orbitally paced organic carbon burial and Silurian
 glaciations. Earth and Planetary Science Letters 577, 117260.
- Svensen, H., Planke, S., Polozov, A.G., Schmidbauer, N., Corfu, F., Podladchikov,
 Y.Y., and Jamtveit, B., 2009, Siberian gas venting and the end-Permian
 environmental crisis: Earth and Planetary Science Letters, v. 277, no. 3–4, p.
 490–500.
- Tang, G.J., Wyman, D.A., Wang, Q., Li, J., Li, Z.X., Zhao, Z.H., and Sun, W.D., 2012,
 Asthenosphere–lithosphere interaction triggered by a slab window during ridge
 subduction: Trace element and Sr–Nd–Hf–Os isotopic evidence from Late
 Carboniferous tholeiites in the western Junggar area (NW China): Earth and
 Planetary Science Letters, v. 329–330, p. 84–96.
- Tang, W., Zhang, Y., Pe-Piper, G., Piper, D.J.W., Guo, Z., and Li, W., 2021, Permian
 rifting processes in the NW Junggar Basin, China: Implications for the postaccretionary successor basins: Gondwana Research, v. 98, p. 107–124.
- Tang, J., He, D., Li, D., Ma, D., 2015. Large-scale thrusting at the northern Junggar
 Basin since Cretaceous and its implications for the rejuvenation of the Central
 Asian Orogenic Belt. Geoscience Frontiers 6, 227-246.
- Taylor, G., Teichmüller, M., Davis, A., Diessel, C., Littke, R., and Robert, P., 1998,
 Organic Petrology.
- Taylor, S.R., 1968. Geochemistry of Andesites, in: Ahrens, L.H. (Ed.), Origin and
 Distribution of the Elements. Pergamon, pp. 559–583.
- Them, T.R., Gill, B.C., Selby, D., Gröcke, D.R., Friedman, R.M., and Owens, J.D.,
 2017, Evidence for rapid weathering response to climatic warming during the
 Toarcian Oceanic Anoxic Event: Scientific Reports, v. 7, p. 5003.
- Timms, B.V., 2022. Salt Lakes, in: Mehner, T., Tockner, K. (Eds.), Encyclopedia of
 Inland Waters (Second Edition). Elsevier, Oxford, pp. 141-156.
- Tosca, N.J., Tutolo, B.M., 2023. How to Make an Alkaline Lake: Fifty Years of
 Chemical Divides. Elements 19, 15-21.
- Tripathy, G.R., Hannah, J.L., Stein, H.J., Geboy, N.J., and Ruppert, L.F., 2015,
 Radiometric dating of marine-influenced coal using Re–Os geochronology:
 Earth and Planetary Science Letters, v. 432, p. 13–23.
- 679 Vermeesch, P., 2018, IsoplotR: A free and open toolbox for geochronology:
 680 Geoscience Frontiers, v. 9, no. 5, p. 1479–1493.
- Wang, T., Cao, J., Carroll, A.R., Zhi, D., Tang, Y., Wang, X., and Li, Y., 2021, Oldest
 preserved sodium carbonate evaporite: Late Paleozoic Fengcheng Formation,
 Junggar Basin, NW China: GSA Bulletin, v. 133, no. 7–8, p. 1465–1482.

Wang, T., Cao, J., Xia, L., Zhi, D., Tang, Y., and He, W., 2022, Revised age of the 684 685 Fengcheng Formation, Junggar Basin, China: Global implications for the late Paleozoic ice age: Global and Planetary Change, v. 208, p. 103725. 686 Wang, X., Gao, J., Zhong, L., He, W., Jin, Z., Zhu, R., Liang, X., Liu, K., Zhang, W., 687 2022, The Volcanic Impacts on the Formation of Organic-Rich Shales From the 688 689 Freshwater to Saline Lakes: Cases Study in the Ordos and the Junggar Basins: 690 Frontiers in Earth Science, v. 10. 691 Warren, J.K., 2010, Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits: Earth-Science Reviews, v. 98, no. 3-4, p. 692 693 217-268. 694 Whittig, L., and Janitzky, P., 1963, Mechanisms of formation of sodium carbonate in 695 soils: I. Manifestations of biological conversions: Journal of Soil Science, v. 14, 696 p. 322–333. Xia, L., Cao, J., Hu, W., Stüeken, E.E., Wang, X., Yao, S., Zhi, D., Tang, Y., Xiang, 697 698 B., He, W., 2023, Effects on global warming by microbial methanogenesis in 699 alkaline lakes during the Late Paleozoic Ice Age (LPIA): Geology, v. 51, p. 935-700 940. 701 Xu, W., Ruhl, M., Jenkyns, H.C., Hesselbo, S.P., Riding, James.B., Selby, D., Naafs, 702 B.D.A., Weijers, J.W.H., Pancost, Richard.D., Tegelaar, Erik.W., and Idiz, E.F., 703 2017, Carbon sequestration in an expanded lake system during the Toarcian 704 oceanic anoxic event: Nature Geoscience, v. 10, p. 129-134. 705 Yang, F., Li, J., Lu, S., Bian, B., Liu, H., Wei, Y., Qi, X., Yang, H., 2023. Carboniferous to Early Permian tectono-sedimentary evolution in the western Junggar Basin, 706 707 NW China: implication for the evolution of Junggar Ocean. Frontiers in Earth 708 Science 11. 709 Yang, J.H., Yi, C.L., Du, Y.S., Zheang, Z.H., Yan, J.X., 2014. Geochemical 710 significance of the Paleogene soda-deposits bearing strata in Biyang Depression, 711 Henan Province. Sci. Sci. 44. 2172-2181. China: Earth 712 https://doi.org/10.1360/zd-2014-44-10-2172. 713 Yang, Y.-T., Song, C.-C., He, S., 2015. Jurassic tectonostratigraphic evolution of the 714 Junggar basin, NW China: A record of Mesozoic intraplate deformation in 715 Central Asia. Tectonics 34, 86-115. 716 Yano, M., Yasukawa, K., Nozaki, T., Fujinaga, K., Ohta, J., Nakamura, K., and Kato, 717 Y., 2022, Marine osmium isotopic composition reconstructed from the early 718 Permian umber deposit in the Japanese accretionary complex: Journal of Asian Earth Sciences, v. 241, p. 105480. 719 720 Zhang, Y., Qi, X., Cheng, X., and Luo Z., 2007, Approach to sedimentary environment 721 of Late Carboniferous-Permian in Junggar basin: Xinjiang Petroleum Geology, v. 28, no. 6, p. 673-675 (in Chinese with English abstract). 722

Citation on deposit:

Gong, D., Liu, Z., Zhou, C., Ownsworth, E., Selby, D., He, W., & Qin, Z. (2024). Carboniferous–Permian interglacial warming and volcanism temporally linked to the world's oldest alkaline lake deposit of

the Fengcheng Formation, NW China. Palaeogeography, Palaeoclimatology, Palaeoecology, 654, Article 112441. https://doi.org/10.1016/j.palaeo.2024.112441

For final citation and metadata, visit Durham Research Online URL: https://durham-repository.worktribe.com/output/2943720

Copyright Statement: This accepted manuscript is licensed under the Creative Commons Attribution 4.0 licence.

https://creativecommons.org/licenses/by/4.0/