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ABSTRACT: Soils are heterogeneous in nature and as such, their properties inherently exhibit a distinct spatial variation 

that reveals past information of their geological history. This spatial variability is an important source of geotechnical 

uncertainty and hence its proper characterisation is of importance to geotechnical design. Random field theory provides a 

consistent mathematical framework to account for this soil's heterogeneity and it is a powerful computational tool to perform 

reliability analyses of geotechnical structures when combined with the finite element method. A key parameter in these 

stochastic analyses is the correlation length (or sometimes also referred to as scale of fluctuation) because it controls 

variations of a soil property in a given spatial direction. This spatial statistic can be estimated from in-situ data (e.g., cone 

penetration test CPT) and the quality of such estimation is the main question tackled in this paper.  

 
RÉSUMÉ: Les sols sont de nature hétérogène et, en tant que tels, leurs propriétés présentent intrinsèquement une variation 

spatiale distincte qui révèle des informations passées sur leur histoire géologique. Cette variabilité spatiale est une source 

importante d'incertitude géotechnique et sa caractérisation appropriée est donc importante pour la conception géotechnique. 

La théorie des champs aléatoires fournit un cadre mathématique cohérent pour tenir compte de l'hétérogénéité de ce sol et 

constitue un outil informatique puissant pour effectuer des analyses de fiabilité des structures géotechniques lorsqu'il est 

combiné avec la méthode des éléments finis. Un paramètre clé dans ces analyses stochastiques est la longueur de corrélation 

(ou parfois également appelée échelle de fluctuation) car elle contrôle les variations d'une propriété du sol dans une direction 

spatiale donnée. Cette statistique spatiale peut être estimée à partir de données in situ (par exemple, test de pénétration du 

cône CPT) et la qualité d'une telle estimation est la principale question abordée dans cet article. 
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1 INTRODUCTION 

Due to the geological/engineering processes by which 

soil is formed/deposited, its property values vary with 

position, meaning that soil is not homogenous. More 

interestingly, if a given direction within a soil domain 

is considered, higher correlation values are likely to be 

found in the geotechnical property values (e.g., 

undrained shear strength, Su) measured at points that 

are closer to each other (small lag distance τ) because 

the soil conditions at these closer points are likely to 

be quite similar. In contrast, values of such property 

measured at points that are further away from each 

other (larger lags τ) will likely show bigger 

differences, because of a lower correlation. This decay 

of correlation in the property values at pairs of points 

along a given direction is described by the correlation 

function ρ(τ) and the sharpness of such decay is 

controlled by a key statistical parameter known as the 

correlation length, θ, (or also referred to as scale of 

fluctuation, SOF).  

Such representation of the spatial variation of a 

geotechnical property in a given direction is useful 

because it facilitates a consistent approach able to 

capture the spatial heterogeneous nature of a soil 

property. It is also useful because it allows to 

incorporate in a relatively easily way the spatial 

variability of a soil property in geotechnical design via 

the random finite element method (RFEM) (e.g., 

Fenton and Griffiths, 2003) which combines the finite 

element method with the random field generator LAS 

(Local Average Subdivision method proposed by 

Fenton & Vanmarcke, 1990).  

The RFEM has been used extensively in the 

literature to assess the structural response of a 

geotechnical system (Fenton and Griffiths, 2003; 

Hicks and Spencer, 2010; Griffiths et al., 2011). 

Interestingly, using the RFEM in any of these 

geotechnical problems facilitates a probabilistic 

assessment of their structural performance because, 

rather than solving the problem for a single realisation 

(considering an homogeneous soil), the same problem 
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can be solved for a finite number of realisations within 

a Monte Carlo approach, so that the response of the 

geotechnical system can be assessed in probabilistic 

terms, allowing for the description of failure in terms 

of a probability of failure (and not in terms of a single 

factor of safety, as historically done). In doing such 

probabilistic assessment, all these works above 

confirm the relevance of incorporating the spatial 

variation of soil properties in the geotechnical design 

of these structures and, more specifically, the 

relevance of the correlation length. Perhaps due to this 

importance, many studies in the literature have studied 

the concept of the correlation length (e.g., DeGroot 

and Baecher, 1993; Phoon and Kulhawy, 1999; 

Fenton, 1999ab; Jaksa, 1995; Uzielli et al., 2005; Cami 

et al., 2020; Lloret-Cabot et al., 2013, Ching et al. 

2023) estimated from available in situ or artificially 

generated information (most commonly cone 

penetration test data, CPT). These studies, however, do 

not all use the same estimation method (not even the 

same theoretical correlation model), they often treat 

the trend in the data in different ways and they do not 

all estimate θ using the same specific in situ test or, if 

they do, the sampling interval is not necessarily the 

same. These differences in the available literature 

make challenging the comparison between the 

different estimated θs. Against this background, the 

current paper aims to provide some further insight (in 

terms of accuracy) of the computational performance 

of the most common estimation method of θ which 

consists in minimising the error between an assumed 

theoretical correlation model ρ(τ) (see Table 1) and the 

estimated experimental correlation function �̂�(𝜏) 

(calculated from the in-situ or artificially generated 

data). Various theoretical correlation models ρ(τ) are 

available in the literature but due to space constraints 

only the most common two are considered in this 

research. Their definition is given in Table 1.   

 
Table 1. Most common theoretical correlation models. 

Name Expression 

Markovian 𝜌(𝜏) = exp {
−2|𝜏|

𝜃
} 

Gaussian 𝜌(𝜏) = exp {−𝜋 (
|𝜏|

𝜃
)

2

} 

Note: θ is the correlation length in a given direction and the τ lag distance 

 

According to the method of moments, the 

experimental correlation function takes the following 

form:  

�̂�(𝜏𝑗) = ∑
(𝑋𝑖−�̂�)(𝑋𝑖+𝑗−�̂�)

(𝑋𝑖−�̂�)2

𝑘−𝑗
𝑖=1 , 𝑓𝑜𝑟  𝑗 = 0, … 𝑘 − 1

 (1) 

 

where �̂�(𝜏𝑗) is the experimental correlation function 

between two points separated by a lag distance 𝜏𝑗, �̂� is 

the experimental mean, 𝑘 is the total number of 

measurement points and 𝑖 is the total number of pairs 

of points (separated by 𝜏𝑗).  

Equation 1 can be re-written in terms of the 

experimental variance �̂�2 in the following two forms 

depending on wether an unbiased (Equation 2) or 

biased (Equation 3) estimator of the experimental 

variance �̂�2 is considered: 

 

�̂�(𝜏𝑗) =
1

�̂�2(𝑘−𝑗)
∑ (𝑋𝑖 − �̂�)(𝑋𝑖+𝑗 − �̂�)

𝑘−𝑗
𝑖=1 , 

𝑓𝑜𝑟  𝑗 = 0, … 𝑘 − 1 (2) 

 

�̂�(𝜏𝑗) =
1

�̂�2𝑘
∑ (𝑋𝑖 − �̂�)(𝑋𝑖+𝑗 − �̂�)

𝑘−𝑗
𝑖=1 , 

𝑓𝑜𝑟  𝑗 = 0, … 𝑘 − 1 (3) 

 

Traditionally, Equation 2 has been most commonly 

used in the geotechnical literature. However, recent 

work by Cami et al. (2020) proposes using Equation 3 

instead to prevent negative eigenvalues in the 

correlation matrices. In the context of the work 

presented here (primarily focussed on the estimation 

of the correlation length in the vertical direction from 

artificially generated CPT data), any of the three 

equations is likely to give very similar estimates 

because a CPT typically has a large number of data 

points available in the vertical direction (and the value 

of the experimental mean should be close to zero, 

when using de-trended and normalised data, Lloret-

Cabot et al., 2014). This research has used Equation 3. 

2 ACCURACY ASSESSMENT 

The main goal of this investigation is to assess the 

accuracy of using two of the most common theoretical 

correlation models to estimate the vertical correlation 

length from CPT data (see Table 1). This section aims 

to address this issue by using an equivalent numerical 

strategy to that proposed in Lloret-Cabot et al. (2014). 

Rather a two-dimensional (2-D) random fields as used 

in Lloret-Cabot et al. (2014), this work uses LAS to 

generate 1-D random fields as a suitable representation 

of de-trended and normalised CPT tip resistances with 

known zero mean (µ = 0) and unit variance (σ2 = 1), 

and with a vertical correlation length of θv = 1.5m (e.g, 

Fenton, 1999b). The total length considered is D = 

20m and the sampling distance dy is 0.1m. A typical 

example is illustrated in Figure 1.  

From this random field data, the experimental 

correlation function �̂�(𝜏) can be estimated using 

Equation 3 as illustrated in Figure 2. The optimal value 

𝜃�̂� can be then estimated by best fitting �̂�(𝜏) to a 
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theoretical correlation structure ρ(τ). A number n of 

estimated 𝜃�̂� are obtained by repeating this process 

from j = 1 to n, (where n = 1,000 corresponds to the 

number of realisations considered here). In order to 

assess the accuracy of the correlation model used, the 

obtained value of 𝜃�̂� (averaged over the n estimated 

correlation lengths) is compared against the known 

value of θv used to generate each CPT.  

 

 
Figure 1. Typical CPT profile generated using LAS. 

 

 
Figure 2. Typical experimental correlation structure. 

 

The accuracy of estimating θv when using the 

approach discussed earlier with a Markovian or a 

Gaussian correlation structure is illustrated in Figures 

3 and 4 respectvely. Each figure includes results for n 

= 1,000  realisations. In the figures, the representation 

of ρ(τ) with the corresponding optimized θv is 

represented as a thick solid line whereas the averaged 

experimental correlation model is indicated by a 

dashed thick line. The thinner continuous lines 

represent each of the individual �̂�(𝜏) estimated for 

each CPT. It is perhaps worth noting here that 

practically the same result for the optimal 𝜃�̂� is 

obtained by best fitting the averaged experimental 

correlation structure and the theoretical one. 

Inspection of the figures shows that a very similar 

performance is achieved by the two correlation 

structures assumed, with an optimal 𝜃�̂� of 1.55m and 

1.54m for Markovian and Gaussian, respectively, 

corresponding to relative errors of 3.33% and 2.67%, 

which are values in line with similar analysis 

published in the literature (e.g., Lloret-Cabot et al., 

2014). This similarity suggests that both theoretical 

correlation functions are equally valid for tackling this 

problem. 

In addition to investigating the convergence of the 

estimation method to the true value of the vertical 

correlation length (Figures 3 and 4), it is also 

convenient to study the response of each individual 

estimated value of θv, as illustrated in Figure 5 in the 

form of a histogram. 

Figure 5 includes also the true and estimated values 

of the vertical correlation length which are indicated, 

respectively, by a solid and a dashed line. For 

completeness the 90% confidence interval of 

LogNormal probability distribution fit is also plotted 

in the figures showing a reasonably good 

representation of the estimated θv. Inspection of the 

figure confirms that both approaches provide very 

similar results and, in particular, both show a right-

skewed distribution which, interestingly, resembles 

well the histograms obtained from estimations of θv 

using real CPT data (e.g., Cami et al. 2020). Finally, it 

is worth noting that about two thirds of the estimated 

values of θv below the true value (1.5m) in agreement 

with the results from Nie et al. (2015) which illustrates 

well the challenge in estimating this parameter (as, 

clearly, the number of CPTs available in a specific site 

will be much less and hence the magnitude of the error 

might become quite important).  

 

 
Figure 3. Estimation of the vertical correlation length with 

Markovian correlation structure and n = 1,000 realisations.  

 

 
Figure 4. Estimation of the vertical correlation length with 

Gaussian correlation structure and n = 1,000 realisations.  

 



Risk analysis and safety evaluation 

4 Proceedings of the XVIII ECSMGE 2024 

 

 
Figure 5. Histogram of estimated correlation lengths 

Markovian (top) or Gaussian (bottom).  

3 CONCLUSIONS 

The importance of the correlation length has been 

discussed in the context of probabilistic geotechnical 

analyses and its estimation has been assessed through 

a numerical investigation using artificially generated 

CPT data. The analyses showed that a very good 

accuracy is generally achieved when using a 

substantial number of realisations (1,000) 

demonstrating the applicability of the methods. 

However, a more detailed analysis on the individual 

estimated values of θv showed great variability which 

highlights the challenge and the potential error 

involved in the estimation process.  
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