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Abstract

We study a new algorithmic process of graph growth which starts from a single initial vertex and
operates in discrete time-steps, called slots. In every slot, the graph grows via two operations (i)
vertex generation and (ii) edge activation. The process completes at the last slot where a (possibly
empty) subset of the edges of the graph are removed. Removed edges are called excess edges. The
main problem investigated in this paper is: Given a target graph G, design an algorithm that
outputs a process that grows G, called a growth schedule. Additionally, we aim to minimize the
total number of slots k and of excess edges ` used by the process. We provide both positive and
negative results, with our main focus being either schedules with sub-linear number of slots or with
no excess edges.

Keywords: Dynamic graph, temporal graph, cop-win graph, graph process, polynomial-time
algorithm, lower bound, NP-complete, hardness result

1. Introduction

1.1. Motivation
Growth processes are found in a variety of networked systems. In nature, crystals grow from

an initial nucleation or from a “seed” crystal and a process known as embryogenesis develops so-
phisticated multicellular organisms, by having the genetic code control tissue growth [13, 32]. In
human-made systems, sensor networks are being deployed incrementally to monitor a given geo-
graphic area [22, 14], social-network groups expand by connecting with new individuals [16], DNA
self-assembly automatically grows molecular shapes and patterns starting from a seed assembly
[36, 17, 38], and high churn or mobility can cause substantial changes in the size and structure
of computer networks [7, 4]. Graph growth processes are central in some theories of relativistic
physics. For example, in dynamical schemes of causal set theory, causets develop from an initial
emptiness via a tree-like birth process, represented by dynamic Hasse diagrams [10, 34].
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Though diverse in nature, all these are examples of systems sharing the notion of an underlying
graph growth process. In some, like crystal formation, tissue growth, and sensor deployment, the
implicit graph representation is geometric and bounded-degree. In others, like social networks and
causal set theory, the underlying graph might be free from strong geometric constraints but still
be subject to other structural properties, as is the special structure of causal relationships between
events in causal set theory.

Further classification comes in terms of the source and control of the network dynamics. Some-
times, the dynamics is solely due to the environment in which a system is operating, as is the case in
DNA self-assembly, where a pattern grows via random encounters with free molecules in a solution.
In other applications, the network dynamics are, instead, governed by the system. Such dynamics
might be determined and controlled by a centralized program or schedule, as is typically done in
sensor deployment, or be the result of local independent decisions of the individual entities of the
system, often running the same global program, as do the cells of an organism by possessing and
translating the same genetic code.

Inspired by such systems, we study a graph-theoretic abstraction of network-growth processes.
We do not impose any strong a priori constraints, like geometry, on the graph structure. We restrict
our attention to centralized control and include weak conditions on the graph dynamics, such as
“locality”, according to which a newly introduced vertex u′ in the neighborhood of a vertex u, can
only be connected to vertices within distance d− 1 from u. We consider two measures of efficiency,
to be formally defined later, the time to grow a given target graph and the number of auxiliary
connections, called excess edges, employed to assist the growth process. For example, in cellular
growth, one can measure the number of times cells have divided, which is usually polylogarithmic in
the size of the target tissue or organism. In social networks, it is quite typical that new connections
can only be revealed to an individual u′ through its connection to another individual u who is
already a member of a group. Later, u′ can drop its connection to u but still maintain some of
its connections to u’s group. The dropped connection uu′ can be viewed as an excess edge, whose
creation and removal has an associated cost, but was nevertheless necessary for the formation of
the eventual neighborhood of u′.

The present study is also motivated by recent work in the theory of dynamic networks [31, 28, 12].
Research on dynamic graphs studies the algorithmic and structural properties of graphs Gt =
(Vt, Et), in which Vt are sets of time-vertices and Et are sets of time-edges of the form (u, t) and
(e, t), respectively, t indicating the discrete time at which an instance of vertex u or edge e is avail-
able. A substantial part of work in this area has focused on the special case of dynamic graphs in
which Vt is static, i.e., time-invariant [23, 8, 27, 18, 39, 1]. In overlay networks [2, 3, 20, 19, 21]
and distributed network reconfiguration [30], Vt is a static set of processors that control in a de-
centralized way the edge dynamics. Even though we do not study distributed processes, our model
also has active, i.e., algorithmically controlled, dynamics and a locality constraint on the creation
of new connections. Nevertheless, our main motivation is theoretical interest. As will become evi-
dent, the algorithmic and structural properties of the considered graph growth process give rise to
some intriguing theoretical questions and computationally hard combinatorial optimization prob-
lems. Apart from the aforementioned connections to dynamic network models, we reveal interesting
similarities to cop-win graphs [25, 5, 33, 15]. There are other well-studied models and processes
of graph growth, somewhat related to our model, such as the preferential attachment model by
Barabasi and Albert [6], as well as other random graph generators [9, 24]. While initiating this
study from a non-geometric centralized viewpoint, we anticipate that it can inspire work on geo-
metric models and models in which the growth process is controlled in a distributed way. Note that
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centralized upper bounds can be translated into (possibly inefficient) distributed solutions, while
lower bounds readily apply to the distributed case. There are other recent studies considering the
centralized complexity of problems with natural distributed analogues, as is the work of Scheideler
and Setzer on the centralized complexity of transformations for overlay networks [37] and of some
of the authors of this paper on geometric transformations for programmable matter [29].

1.2. Our Approach
We study the following centralized graph growth process. The process, starting from a single

initial vertex u0 and applying vertex-generation and edge-modification operations, grows a given
target graph G. It operates in discrete time-steps, called slots. In every slot, it generates at most
one new vertex u′ for each existing vertex u and connects it to u. This is an operation abstractly
representing entities that can replicate themselves or that can attract new entities in their local
neighborhood or group. Then, for each new vertex u′, it connects u′ to any (possibly empty) subset
of the vertices within a “local” radius around u, described by a distance parameter d as measured
from u′. Finally, it removes a (possibly empty) subset of edges whose removal does not disconnect
the graph, before moving on to the next slot. These edge-modification operations are capturing, at
a high level, the local dynamics present in most of the applications discussed previously.

Despite locality of new connections, a more global effect is still possible. One is for the degree
of a vertex u to be unbounded (e.g., grow with the number of vertices). In this case, upon being
generated, u′ can connect to an unbounded number of vertices within the “local” radius of u.
Another would be to allow the creation of connections between vertices generated in the past,
which would enable local neighborhoods to gradually grow unbounded through transitivity. In this
work, we allow the former but not the latter. That is, for any edge (u, u′) generated in slot t, it
must hold that u was generated in some slot tpast < t while u′ was generated in slot t. Other types
of edge dynamics are left for future work.

The rest of this paper exclusively focuses on d = 2. Without additional considerations, any
target graph can be grown by the following straightforward process. In every slot t, the process
generates a new vertex ut, which it connects to u0 and to all neighbors of u0. The graph grown by
this process by the end of slot t, is the clique Kt+1, thus, the process grows Kn in n− 1 slots. As a
consequence, any target graph G on n vertices can be grown by extending the above process to first
grow Kn and delete all edges in E(Kn) \ E(G) at the last slot. However, this process maximizes
both complexity measures that we wanted to minimize; it uses n− 1 slots and deletes up to Θ(n2)
edges for sparse graphs, such as a path graph or a planar graph.

There is an improvement of the clique process, which connects every new vertex ut to u0 and
to exactly those neighbors v of u0 for which vut is an edge of the target graph G. At the end, the
process deletes those edges incident to u0 that do not correspond to edges in G, in order to obtain
G. If u0 is a maximum degree vertex of G, and ∆ denotes its degree, then it is not hard to see
that this process uses n − 1 − ∆ excess edges, while the number of slots remains n − 1 as in the
clique process. However, we shall show that there are (poly)logarithmic-time processes using close
to linear excess edges for some of those graphs. In general, processes considered efficient in this
work will be those using (poly)logarithmic slots and linear (or close to linear) excess edges.

The goal of this paper is to investigate the algorithmic and structural properties of such processes
of graph growth, with the main focus being on studying the following combinatorial optimization
problem, which we call the Graph Growth Problem. In this problem, a centralized algorithm is
provided with a target graph G, usually from a graph family F , and non-negative integers k and `
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as its input. The goal is for the algorithm to compute a growth schedule for G of at most k slots
and using at most ` excess edges, if one exists. All algorithms we consider are polynomial-time.3

For an illustration of the discussion so far, consider the graph family Fstar = {G | G is a star
graph on n = 2δ vertices} and assume that edges are activated within local distance d = 2. We
describe a simple algorithm returning a time-optimal and linear excess-edges growth process, for
any target graph G ∈ Fstar given as input. To keep this exposition simple, we do not give k and `
as input-parameters to the algorithm. The process computed by the algorithm, shall always start
from G0 = ({u0}, ∅). In every slot t = 1, 2, . . . , δ and every vertex u ∈ V (Gt) the process generates
a new vertex u′, which it connects to u. If t > 1 and u 6= u0, it then activates the edge u0u′,
which is at distance 2, and removes the edge uu′. It is easy to see that by the end of slot t, the
graph grown by this process is a star on 2t vertices centered at u0, see Figure 1. Thus, the process
grows the target star graph G in δ = log n slots. By observing that 2t/2 − 1 edges are removed
in every slot t, it follows that a total of

∑
1≤t≤logn 2t−1 − 1 <

∑
1≤t≤logn 2t = O(n) excess edges

are used by the process. Note that this algorithm can be easily designed to compute and return
the above growth schedule for any G ∈ Fstar in time polynomial in the size |〈G〉| of any reasonable
representation of G.

Note that there is a natural trade-off between the number of slots and the number of excess
edges that are required to grow a target graph. That is, if we aim to minimize the number of
slots (respectively of excess edges) then the number of excess edges (respectively slots) increases.
To gain some insight into this trade-off, consider the example of a path graph G on n vertices
u0, u1, ..., un−1, where n is even for simplicity. If we are not allowed to activate any excess edges,
then the only way to grow G is to always extend the current path from its endpoints, which implies
that a schedule that grows G must have at least n

2 slots. Conversely, if the growth schedule has to
finish after log n slots, then G can only be grown by activating Ω(n) excess edges.

In this paper, we mainly focus on this trade-off between the number of slots and the number
of excess edges that are needed to grow a specific target graph G. In general, given a growth
schedule σ, any excess edge can be removed just after the last time it is used as a “relay” for the
activation of another edge. In light of this, an algorithm computing a growth schedule can spend
linear additional time to optimize the slots at which excess edges are being removed. A complexity
measure capturing this is the maximum excess edges lifetime, defined as the maximum number of
slots for which an excess edge remains active. Our algorithms will generally be aiming to minimize
this measure. When the focus is more on the trade-off between the slots and the number of excess
edges, we might be assuming that all excess edges are being removed in the last slot of the schedule,
as the exact timing of deletion makes no difference with respect to these two measures.

1.3. Contribution
Section 2 begins by presenting the model and problem statement for edge-activation distance

d = 2. In Section 2.2, we provide some basic propositions that are crucial to understanding the
limitations on the number of slots and the number of excess edges required for a growth schedule of
a graph G. We then use these propositions to provide some lower bounds on the number of slots.

3Note that this reference to time is about the running time of an algorithm computing a growth schedule. However,
the length of the growth schedule is another representation of time: the time required by the respective process to
grow a graph. To distinguish between the two notions of time, in our results we use the term number of slots to refer
to the length of the growth schedule and time to refer to the running time of an algorithm generating the schedule.
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Figure 1: The operations of the star graph process in slot t = 4. (a) A star with 23 vertices grown by the end of slot
3. (b) For every ui, a vertex u′i is generated by the process and is connected to ui. (c) New vertices u′i are connected
to u0. (d) Edges between peripheral-vertices are being removed to obtain the star with 24 vertices grown by the end
of slot 4. We rename the vertices for clarity.
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In Section 3, we study the zero-excess growth schedule problem, where the goal is to decide
whether a graph G has a growth schedule of k slots and with no excess edges. We define an order-
ing of the vertices of a graph G, called candidate elimination ordering and show that a graph has a
growth schedule of k = n− 1 slots and ` = 0 excess edges if and only if it is has a candidate elim-
ination ordering. Our main positive result is a polynomial-time algorithm that computes whether
a graph has a growth schedule of k = log n slots and ` = 0 excess edges. If it does, the algorithm
also outputs such a growth schedule. On the negative side, we give two strong hardness results.
We first show that the decision version of the zero-excess growth schedule problem is NP-complete.
Then, we prove that, for every ε > 0, there is no polynomial-time algorithm which computes a
n

1
3−ε-approximate zero-excess growth schedule, unless P = NP.
In Section 4, we study growth schedules of (poly)logarithmic slots. We provide two polynomial-

time algorithms. One outputs, for any tree graph, a growth schedule of O(log2 n) slots and only
O(n) excess edges, and the other outputs, for any planar graph, a growth schedule of O(log n) slots
and O(n log n) excess edges. Finally, we give lower bounds on the number of excess edges required
to grow a graph, when the number of slots is fixed to log n.

In Section 5, we investigate cases for edge-activation distance d = 1 and d ≥ 3.
In Section 6, we conclude and discuss some interesting open problems.

2. Preliminaries

2.1. Model and Problem Statement
A growing graph is modeled as an undirected dynamic graph Gt = (Vt, Et), where t = 1, 2, . . . , k

is a discrete time-step, called slot. The dynamics of Gt is determined by a centralized growth process
(or growth schedule) σ, defined as follows. The process always starts from the initial graph instance
G0 = ({u0}, ∅), containing a single initial vertex u0, called the initiator. In every slot t, the process
updates the current graph instance Gt−1 to generate the next, Gt, according to the following vertex
and edge update rules. The process first sets Gt = Gt−1. Then, for every u ∈ Vt−1, it adds at most
one new vertex u′ to Vt (vertex generation operation) and adds the edge uu′ to Et along with any
subset of the edges {vu′ | v ∈ Vt−1 is at distance at most d − 1 from u in Gt−1} (edge-activation
operation), where d ≥ 1 is an integer edge-activation distance fixed in advance. We call u′ the
vertex generated by the process for vertex u in slot t. We say that u is the parent of u′ and that u′

is the child of u at slot t and write u t→ u′. The process completes slot t after deleting any (possibly
empty) subset of edges from Et that does not disconnect the graph (edge deletion operation). We
denote by V +

t , E+
t , and E

−
t the set of vertices generated, edges activated, and edges deleted in slot

t, respectively. Then, Gt = (Vt, Et) is given by Vt = Vt−1 ∪ V +
t and Et = (Et−1 ∪ E+

t ) \ E−t . We
call Gt the graph grown by process σ after t slots and call the final instance, Gk, the target graph
grown by σ. We also say that σ is a growth schedule for Gk, using k slots and ` excess edges, where
`=

∑k
t=1 |E

−
t |, i.e., ` is equal to the total number of deleted edges. The main problem studied in

this paper is the following.

Graph Growth Problem: Given a target graph G and non-negative integers k and `, compute
a growth schedule for G of at most k slots and at most ` excess edges, if one exists.

The target graph G, which is part of the input, will often be drawn from a given graph family
F . Throughout, the number of vertices of the target graph G is denoted by n. In this paper,
computation is always to be performed by a centralized polynomial-time algorithm.
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Let w be a vertex generated in a slot t, for 1 ≤ t ≤ k. The birth path of vertex w is the unique
sequence Bw = (u0, u1, . . . , ut−1, ut = w) of vertices, where ui

i+1→ ui+1, for every i = 0, 1, . . . , t− 1.
That is, Bw is the causal order of vertex generations that led to the generation of vertex w.
Furthermore, the progeny of a vertex u is the set Pu of descendants of u, i.e., Pu contains those
vertices v for which u ∈ Bv holds. We also define the sets N(u) and N [u] to be the neighborhood
of u and closed neighborhood of u, respectively.

We now give a formal definition of a graph growth schedule. The definition is given for d = 2
which is the main focus of this paper. For completeness, the cases d 6= 2 are studied in Section 5.
We will be using this description for the pseudocode of our algorithms.

Definition 1 (Growth schedule for d = 2). Let σ = (S1,S2, . . . ,Sk, E) be a sequence of sets, where
E is a set of edges, and each St = {(u1, v1, E1), (u2, v2, E2), . . . , (uq, vq, Eq)} is a set of tuples such
that, for every j, where 1 ≤ j ≤ q, uj and vj are vertices, where uj gives birth to vj, and Ej is a
set of edges incident to vj such that ujvj ∈ Ej. Suppose that, for every slot i, where 2 ≤ t ≤ k, the
following conditions are all satisfied:

• the sets {v1, v2, . . . , vq} and {u1, u2, . . . , uq} are disjoint,

• each vertex vj ∈ {v1, v2, . . . , vq} does not appear in any set among S1, . . . ,St−1 (i.e., vj is
“born” at slot t),

• for each vertex uj ∈ {u1, u2, . . . , uq}, there exists exactly one set among S1, . . . ,St−1 which
contains a tuple (u′, uj , E

′) (i.e., uj was “born” at a slot before slot t).

Let t be a slot, 2 ≤ t ≤ k, and let u be a vertex that has been generated at some slot t′ ≤ t,
that is, u appears in at least one tuple of a set among S1, . . . ,St. We denote by Et the union of all
edge sets that appear in the tuples of the sets S1, . . . ,St; Et is the set of all edges activated until
slot t. We denote by Nt(u) the set of neighbors of u in Et. If, in addition, E ⊆ Ek and, for every
2 ≤ t ≤ k and every (uj , vj , Ej) ∈ St, we have that Nt[vj ] ⊆ Nt[uj ], then σ is a growth schedule
for the graph G = (V,Ek \ E), where V is the set of all vertices which appear in at least one tuple
in σ, Ek is the set of activated edges of the graph, and E is the set of deleted edges of the graph.
We say that G has a growth schedule σ of k slots and ` = |E| excess edges.4

2.2. Basic Properties and Sub-processes
We now give some basic properties for growing a graph G which restrict the possible growth

schedules and also provide some lower bounds on the number of slots. We also provide some basic
algorithms which will be used as sub-processes in the rest of the paper.

Proposition 1. The vertices generated in a slot form an independent set in the target graph G.

Proof. Let Gt−1 be the graph at the beginning of slot t. Consider any pair of neighboring vertices
u1, u2, i.e., d(u1, u2) = 1, where d(u, v) denotes the distance between u and v. Assume that vertices
u1, u2 generate vertices v1, v2, respectively, in slot t. The distance between vertices v1, v2 in slot
t just after they are generated is d(u1, u2) = 3 and therefore, the process cannot activate an edge

4Note that our definition does not specify when the edges are removed from the graph. Since we do not consider
the optimization criterion of minimizing excess edges that are present throughout the transformation, removing the
excess edges at the end of the growth schedule is equivalent to removing them gradually throughout the schedule.
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between them. The same holds true for any other pair of non-neighboring vertices, because the
distance between their children is d(u1, u2) > 3.

Proposition 2. Consider a growth schedule σ for a graph G. Let t1, t2, where t1 ≤ t2, be the slots
in which two vertices u,w are generated, respectively. Let d(u,w)t2 be the distance between u and
w at the end of slot t2. Then, at the end of any slot t ≥ t2, d(u,w)t ≥ d(u,w)t2 .

Proof. Given that d = 2, for any vertex that is generated at slot t, edges can only be activated with
its parent and with the neighbors of its parent. This implies that the edge activation operations at
slot t, cannot reduce the distance between two vertices u, v that have been generated in slots t1, t2,
where t1, t2 < t, respectively.

Proposition 3. Let t1, t2, where t1 ≤ t2, be the slots in which two vertices u,w are generated by a
growth schedule σ for a graph G, respectively, and edge uw is not activated at t2. Then, any pair of
vertices v, z cannot be neighbors in G if u belongs to the birth path of v and w belongs to the birth
path of z.

Proof. Given that the edge between vertices u and w is not activated, and by Proposition 2, the
children of u will always have distance at least 2 from w (i.e., edges of these children can only be
activated with the vertices that belong to the neighborhood of their parent vertex, and no edge
activations can reduce their distance). The same holds for the children of w. All vertices that
belong to the progeny Pu of u (i.e., each vertex z such that u ∈ Bz) must be at distance at least 2
from w, therefore they cannot be neighbors with any vertex in Pw.

We will now provide some lower bounds on the number of slots of any growth schedule σ for
graph G. First, we also define the chromatic number and the clique number of a graph. The
chromatic number of a graph G, denoted by χ(G), is the minimum number of colors needed to
color the vertices of G in such a way that no two adjacent vertices receive the same color. The
clique number of a graph G, denoted by ω(G), is the number of vertices in the largest clique of G.

Lemma 1. Any growth schedule σ for a graph G requires at least χ(G) slots.

Proof. Assume that there exists a growth schedule σ that can grow graph G in k < χ(G) slots. By
Proposition 1, the vertices generated in each slot ti for i = 1, 2, ..., k must form an independent set
in G. Therefore, we could color graph G using k colors which contradicts the original statement
that χ(G) > k.

Lemma 2. Any growth schedule σ for a graph G requires at least ω(G) slots.

Proof. By Proposition 1, we know that every slot must contain an independent set of the graph and
thus, it cannot contain more than one vertex from each clique. Assume that the largest clique of
graph G has q vertices. By the pigeonhole principle, it follows that σ must have at least q slots.

We present simple algorithms for growing path graphs and star graphs. We use these as sub-
processes in both our positive and negative results. The growth schedules returned by these algo-
rithms use a number of slots which is logarithmic and a number of excess edges which is linear in
the number of vertices of the target graph. Logarithmic being a trivial lower bound on the number
of slots required to grow graphs of n vertices, both schedules are optimal with respect to their
number of slots. It will later follow (by Corollary 2, Section 4.3) that they are also optimal with
respect to the number of excess edges used for this time-bound.
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u0 u1 u2 u3

(a) The path graph at the beginning of slot 3.

u0 u1 u2 u3u′0 u′1 u′2 u′3

(b) Vertex generation and edge activation step (steps 1 and 2). The arrows represent vertex generations, while dotted lines
represent the edges added to vertices of distance 2.

u0 u2 u4 u6u1 u3 u5 u7

(c) Edge deletion step (step 3) and renaming of vertices.

Figure 2: Third slot of the path algorithm.

Path algorithm: Let u0 be the “left” endpoint of the path graph being grown. For any target path
graph G on n vertices, the algorithm computes a growth schedule for G as follows. For every slot
1 ≤ t ≤ dlog ne and every vertex ui ∈ Vt−1, it generates a new vertex u′i and activates edge u′iui.
Then, for all 0 ≤ i ≤ |Vt−1|−2, it activates edge u′iui+1 and deletes edge uiui+1. Finally, it renames
the vertices to u0, u1, . . . , u2|Vt−1|−1, u2|Vt−1| from left to right, before moving on to the next slot.
Figure 2 shows an example slot produced by the path algorithm.

Lemma 3. For any path graph G on n vertices, the path algorithm computes in polynomial time
a growth schedule for G of dlog ne slots and of n− 1 excess edges.

Proof. In every slot, apart from the last one, for every vertex ui the schedule returned by the
algorithm generates a new vertex u′i, thus doubling the length of the path. It follows that the
schedule grows a path of length n in dlog ne slots.

For the excess edges, consider that at the end of each slot t, every edge activated in slot t− 1 is
deleted. Every edge activated in the process apart from those in the last slot is an excess edge. For
every vertex generation there are at most 2 edge activations that occur in the same slot and there
are n− 1 total vertex generations, which means that the edge activations are 2(n− 1). Therefore,
the excess edges are exactly 2(n−1)−(n−1) = n−1 since the final path graph has n−1 edges.

Star algorithm: The description of the algorithm can be found in Section 1.2.

Lemma 4. For any star graph G on n vertices, the star algorithm computes in polynomial time
a growth schedule for G of dlog ne slots and n− 1− dlog ne of excess edges.

Proof. By construction, by the end of slot t the schedule returned by the algorithm has grown a
star graph of 2t vertices. It follows that the schedule grows a star of n vertices in dlog ne slots.

For the excess edges, in every slot and every vertex generated by a leaf, the edge between
them will later be deleted. As n − 1 − dlog ne vertices are generated by a leaf, there is a total of
n− 1− dlog ne excess edges.
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3. Growth Schedules of Zero Excess Edges

In this section, we study which target graphs can be grown using 0 excess edges for edge-
activation distance d = 2. We begin by providing an algorithm that decides whether there exists a
growth schedule for a graph G. We then give an algorithm that computes a schedule of k = log n
slots for a target graph G, if one exists. Our main technical result shows that computing the
shortest schedule for a graph G is NP-complete and any approximation of the shortest schedule
cannot be within a factor of n

1
3−ε of the optimal solution, for any ε > 0, unless P = NP . First, we

check whether a graph G has a growth schedule of 0 excess edges. Observe that a graph G has a
growth schedule if and only if it has a schedule of k = n− 1 slots.

Definition 2. Let G = (V,E) be a connected graph. A vertex v ∈ V can be the last generated
vertex in a growth schedule σ for G of no excess edges if there exists a vertex w ∈ V \ {v} such that
N [v] ⊆ N [w]. In this case, v is called a candidate vertex and w is called the candidate parent of v.
The set of candidate vertices in G is denoted by SG (see Figure 3).

Definition 3. A candidate elimination ordering of a connected graph G is an ordering v1, v2, . . . , vn
of V (G) such that vi is a candidate vertex in the subgraph induced by {vi, v2, . . . , vn}, for 1 ≤ i ≤ n.

w1 w2 w3

w4

u1 u2

Figure 3: Let graph Gt to be the graph grown after slot t. Vertices u1 and u2 are candidate vertices. The arrows
represent all possible vertex generations in slot t. Vertex w1 is a candidate parent of u1, while w3 and w4 are
candidate parents of u2.

Lemma 5. A connected graph G has a growth schedule of n − 1 slots and no excess edges if and
only if G has a candidate elimination ordering.

Proof. By definition of the model, whenever a vertex u is generated for a vertex w in a slot t, only
edges between u and vertices in N [w] can be activated, which means that N [u] ⊆ N [w]. Since there
are not excess edges, this property remains true in Gt+1. Therefore, any vertex u generated in slot
t, is a candidate vertex in graph Gt+1. For the reverse direction, if a graph G has a candidate
elimination ordering, we can compute a growth schedule σ of n− 1 slots for that graph as follows:
add the last vertex u in the ordering to the last slot empty slot of σ, along with the incident edges
of u in G. Then remove vertex u along with its incident edges from G, and remove it from the
ordering as well. Repeat the above process until graph G has a single vertex which is the initiator.
The growth schedule has no excess edges since in every iteration we remove a vertex u, where
N [u] ⊆ N [w] for some vertex w in G.

The following algorithm decides whether a graph has a candidate elimination ordering, and
therefore, whether it can be grown with a schedule of n − 1 slots and of no excess edges. The
algorithm computes the slots of the schedule in reverse order.

10



Algorithm 1 Candidate elimination ordering algorithm.

Input: A graph G = (V,E) on n vertices.
Output: A growth schedule for G, if one exists.
1: for t = n− 1 downto 1 do
2: St = ∅
3: if there exists a candidate vertex u then
4: St ← {(u, v, {vw : w ∈ N(v)})}
5: V ← V \ {v}
6: if St = ∅ then
7: return “no”
8: return σ = (S1,S2, . . . ,Sn−1, ∅)

Candidate elimination ordering algorithm: Informally, given a connected graph G = (V,E),
in each iteration t, the algorithm finds and deletes a candidate vertex and its incident edges. The
deleted vertex is added in the last empty slot of the schedule σ. The algorithm repeats the above
process until there is a single vertex left at which point the algorithm outputs a growth schedule.
If the algorithm cannot find any candidate vertex for removal, it outputs “no”, meaning that the
graph cannot be grown. See Algorithm 1 for the formal description.

Lemma 6. Let v ∈ SG. G has a candidate elimination ordering if and only if G−v has a candidate
elimination ordering.

Proof. Formally, we say that c is a candidate elimination ordering of G, if c is a permutation of the
vertices of G. We define c′ = (c, v) to be the operation of appending v at the end of permutation
c. Conversely, we define c− v to be the operation of removing v from permutation c.

Let c be a candidate elimination ordering of G − v. Then, by definition of the set SG, (c, v) is
a candidate elimination ordering of G.

For the opposite direction, let c be a candidate elimination ordering of G. If v is the last vertex
in c, then c− v is trivially a candidate elimination ordering of G− v. Suppose that the last vertex
of c is a vertex u 6= v. As v ∈ SG, there exists a candidate parent w of v. If v does not give birth
to any vertex in c then v is moved to the end of c, i.e., right after vertex u. Let c′ be the resulting
candidate elimination ordering of G; then c′− v is a candidate elimination ordering of G− v, as the
parent-child relations of G− v are the same in both c′ − v and c.

Let v give birth to at least one vertex, and Z be the set of vertices which are born by v or by
some descendant of v. If w appears before v in c, then for any vertex in Z we assign its parent to
be w (instead of v). This is always possible as N [v] ⊆ N [w]. Let now w appear after v in c, and
Z0 = {z ∈ Z : v <c z <c w} be the vertices of Z which lie between v and w in c. Then we move all
vertices of Z0 immediately after w (without changing their relative order). Again, for any vertex
in Z we assign its parent to be w (instead of v). In either case (i.e., when w is before or after v
in c), we obtain a candidate elimination ordering c′′ of G, in which v does not give birth to any
other vertex. Thus, we can obtain from c′′ a new candidate elimination ordering c′′′ of G where v
is moved to the end of the ordering. Then c′′′ − v is a candidate elimination ordering of G− v, as
the parent-child relations of G− v are the same in both c′′′ − v and c′′.

Theorem 1. The candidate elimination ordering algorithm decides in polynomial time whether
a connected graph G has a growth schedule of n − 1 slots and no excess edges, and outputs such a
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schedule if one exists.

Proof. It is easy to see by the description of the algorithm, that as long as there exists a candidate
vertex in graph G in every iteration, the algorithm will output a growth schedule for G. What is
left to show, is that we can greedily pick any candidate vertex and still output a growth schedule
if one exists. This property is guaranteed by Lemma 6. Finally, for a connected graph G, we can
find the candidate vertices in polynomial time, and thus, the algorithm terminates in polynomial
time.

The notion of candidate elimination orderings turns out to coincide with the notion of cop-
win orderings, discovered in the past in graph theory for a class of graphs, called cop-win graphs
[25, 5, 33]. A cop-win graph is an undirected graph on which the pursuer (cop) can always win a
pursuit–evasion game against a robber, with the players taking alternating turns in which they can
choose to move along an edge of a graph or stay put, until the cop lands on the robber’s vertex [11].

In fact, it is not hard to show that a graph has a candidate elimination ordering if and only
if it is a cop-win graph. Due to this, our candidate elimination ordering algorithm might be
similar to some folklore algorithms in the literature of cop-win graphs.

Lemma 7. There is a modified version of the candidate elimination ordering algorithm that decides
in polynomial time whether a connected graph G has a growth schedule of n− 1 slots and ` excess
edges, where ` is a constant, and outputs such a schedule if one exists.

Proof. The candidate elimination ordering algorithm can be slightly modified to check whether a
graph G = (V,E) has a growth schedule of n−1 slots and ` excess edges. The modification is quite
simple. For ` = 1, we create multiple graphs G′x for x = 1, 2, . . . , n(n−1)2 − |E| where each graph G′x
is a copy of G with the addition of one edge e /∈ E, and we do this for all possible edge additions.
In particular, we create G′x = (V ′x, E

′
x), where V ′x = V and E′x = E ∪ {uv} such that uv 6∈ E and

(E′j 6= E′i), for all i 6= j. Since the complement of G has at most n(n−1)
2 edges, we will create up

to n(n−1)
2 graphs G′x. We then run the candidate elimination ordering algorithm on all G′x. If the

algorithm returns “no” for all of them, then there exists no growth schedule for G of n− 1 slots and
1 excess edge. Otherwise, the algorithm outputs a schedule of n− 1 slots and 1 excess edge for G.
This process can be modified to work for any `. As the number of graphs tested is at most n`(n−1)

2 ,
for constant ` the algorithm terminates in polynomial time.

The following algorithm decides whether a graph G = (V,E) on n vertices has a growth schedule
σ of log n slots and no excess edges, when n = 2δ, for some δ ≥ 0.

Fast growth algorithm: In every iteration t, the algorithm computes the set SGt
of candidate

vertices in Gt. It then tries to find a subset Lt ⊆ SGt
of candidate vertices that satisfy both of the

following properties:

1. Lt is an independent set of n/2 vertices in graph Gt.

2. Lt contains candidate vertices of graph Gt

3. There is a perfect matching between the candidate vertices in Lt and the other vertices of
graph Gt.

12



Any set Lt that satisfies the above constraints is called valid. The algorithm tries to find such a
set by creating a 2-SAT formula φ whose solution is Lt. If the algorithm finds such a set Lt, it adds
the vertices in Lt to the last slot of the schedule. It then removes the vertices in Lt from graph
Gt along with their incident edges and repeats the above process. If at any point, the graph has
a single vertex, the algorithm terminates and outputs the schedule. If at any point, the algorithm
cannot find a valid set, it outputs “no”.

Assuming that we have a perfect matching M , for each edge uivi ∈M , the algorithm creates a
variable xi. The truthful assignment of xi means that we pick vi for Lt and the negative assignment
means that we pick ui for V2. We add clauses to the 2-SAT formula φ as follows:

• If vi is a candidate vertex and ui is not, then has to be in vi ∈ Lt, and so we add clause (xi)
to φ. If ui is a candidate vertex and vi is not, then ui ∈ V2, in which case we add clause (xi)
to φ. If both ui and vi are candidate vertices, either one could be in Lt so we add clause
(xi ∨ xi).

• We want Lt to be an independent set, so for each edge uiuj ∈ E, we add clause (xi ∨ xj) to
φ. This means that in order to satisfy that clause, ui and uj cannot be both picked for Lt.
Similarly, for every edge vivj ∈ E, we add clause (xi)∨ (xj) to φ and for every edge uivj ∈ E,
we add clause (xi) ∨ (xj) to φ.

Lemma 8. Let Gt = (V,E) be a connected graph of n vertices. If Gt has a growth schedule of log n
slots and of no excess edges then there exists a perfect matching M in Gt and a valid candidate
vertex Lt, such that for every u ∈ Lt, there exists uv ∈M , such that v /∈ Lt.

Proof. In order for a growth schedule σ to generate a graph G of n vertices in log n slots, in each
slot t, every vertex in graph Gt must generate a vertex. Therefore, in the last slot of σ, there are
n/2 vertices that generate n/2 vertices. Since the growth schedule has no excess edges, In the last
slot, there are n/2 vertices for which n/2 other vertices are generated. Therefore, such a perfect
matching M always exists where set Lt contains the children.

Lemma 9. The 2-SAT formula φ, generated by the fast growth algorithm, has a solution if and
only if there is a valid set of candidate vertices Lt in graph Gt = (V,E).

Proof. Let us assume that graph Gt = (V,E) has a valid set of candidate vertices Lt. By Lemma
8, we also know that there is a perfect matching M between the vertices in Lt and the vertices in
V \ Lt. By construction of the 2-SAT formula, each edge uivi ∈M is represented by a variable xi.
The clauses added to the 2-SAT formula guarantee the following about any solution to it:

• if there is a set Lt, there are n/2 variables xi created, and n/2 clauses of the form (xi), (xi),
and (xi ∨ xi) in formula φ, that can all be satisfied.

• Additionally, since Lt is an independent set, the clauses of the form (xi ∨ xj) can also be
satisfied.

The inverse direction follows as well by construction of formula φ.

Lemma 10. Consider a connected graph Gt = (V,E). If Gt has a growth schedule of log n slots
and with no excess edges, then any perfect matching implies a valid candidate set |Lt| = n/2, where
Lt has exactly one vertex for each edge of the perfect matching.
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Algorithm 2 Fast growth algorithm.

Input: A graph G = (V,E) on n = 2δ vertices.
Output: A growth schedule of k = log n slots and of no excess edges for G.
1: for k = log n downto 1 do
2: Sk = ∅; φ = ∅
3: Find a perfect matching M = {uivi : 1 ≤ i ≤ n/2} of G.
4: if No perfect matching exists then
5: return “no”
6: for every edge uivi ∈M do
7: Create variable xi
8: for every edge uivi ∈M do
9: if ui is a candidate vertex and vi is not then

10: φ← φ ∧ (xi)
11: else if ui is a not candidate and vi is a candidate then
12: φ← φ ∧ (xi)
13: else if ui is not a candidate and vi is not a candidate then
14: return “no”
15: for every edge uiuj ∈ E \M do
16: φ← φ ∧ (xi ∨ xj)
17: for every edge vivj ∈ E \M do
18: φ← φ ∧ (xi ∨ xj)
19: for every edge uivj ∈ E \M do
20: φ← φ ∧ (xi ∨ xj)
21: if φ is satisfiable then
22: Let τ be a satisfying truth assignment for φ
23: for i = 1, 2, . . . , n/2 do
24: if xi = true in τ then
25: Sk ← Sk ∪ (ui, vi, {viw : w ∈ N(vi)})
26: V ← V \ {vi}
27: E ← E \ {viw : w ∈ N(vi)}
28: else {xi = false in τ}
29: Sk ← Sk ∪ (vi, ui, {uiw : w ∈ N(ui)})
30: V ← V \ {ui}
31: E ← E \ {uiw : w ∈ N(ui)}
32: else {φ is not satisfiable}
33: return “no”
34: return σ = (S1,S2, . . . ,Sk, ∅)

Proof. By Lemma 9, any perfect matching M contains edges uv, such that there exists a valid
candidate set Lt that contains one vertex exactly for each edge uv ∈ M . Thus, if graph Gt has a
growth schedule, the solution to the 2-SAT formula corresponds to a valid candidate set Lt.

Theorem 2. For a connected graph G on 2δ vertices, the fast growth algorithm computes in
polynomial time a growth schedule σ for G of log n slots and of no excess edges, if one exists.

14



Proof. By Lemmas 9 and 10, we know that our fast growth algorithm finds a set L for the last
slot of a schedule σ′′ but this might be a different set from the last slot contained in σ. Therefore,
for our proof to be complete, we need to show that if G has a growth schedule σ of log n slots and
` = 0 excess edges, for any L it holds that (G− L) has a growth schedule σ′ of log n− 1 slots and
` = 0 excess edges.

Assume that σ has in the last slot Sk a set of vertices V1 generating another set of vertices V2,
such that |V1| = |V2| = n/2, V1 ∩ V2 = ∅ and V2 is an independent set. Suppose that our algorithm
finds V ′2 such that V ′2 6= V2.

Assume that V ′2 ∩ V2 = Vs and |Vs| = n/2 − 1. This means that V ′2 = Vs ∪ u′ and V2 = Vs ∪ u
and u′ has no edge with any vertex in Vs. Since u′ 6∈ V2 and u′ has no edge with any vertex in Vs,
then u′ ∈ V1. However, u′ cannot be the candidate parent of anyone in V2 apart from u. Similarly,
u is the only candidate parent of u′. Therefore N [u] ⊆ N [u′] ⊆ N [u] =⇒ N [u] = N [u′]. This
means that we can swap the two vertices in any growth schedule and still maintain a correct growth
schedule for G. Therefore, for L = V ′2 , the graph (G−L) has a growth schedule σ′ of log n− 1 slots
and ` = 0 excess edges.

Assume now that V ′2 ∩ V2 = Vs, where |Vs| = x ≥ 0. Then, V ′2 = Vs ∪ u′1 ∪ u′2,∪ . . . ∪ u′y and
V2 = Vs ∪ u1 ∪ u2,∪ . . . ∪ uy, where y = n/2 − x. As argued above, vertices u′1, u′2, . . . , u′y can be
candidate parents only to vertices u1, u2, . . . , uy, and vice versa. Thus, there is a pairing uj , u′j such
that N [uj ] ⊆ N [u′j ] ⊆ N [uj ] =⇒ N [u′j ] = N [uj ], for every j = 1, 2, . . . , y. Thus, these vertices can
be swapped in the growth schedule and still maintain a correct growth schedule for G. Therefore
for any arbitrary L = V ′2 , the graph (G− L) has a growth schedule σ′ of log n− 1 slots and ` = 0
excess edges.

We will now show that the problem of computing the minimum number of slots required for a
graph G to be grown is NP-complete, and that it cannot be approximated within a n

1
3−ε factor for

any ε > 0, unless P = NP.

Definition 4. Given any graph G and a natural number κ, find a growth schedule of κ slots and
` = 0 excess edges. We call this problem zero-excess growth.

Theorem 3. The decision version of the zero-excess growth problem is NP-complete.

Proof. First, observe that the decision version of the problem belongs to the class NP. Indeed, the
required polynomial certificate is a given growth schedule σ, together with an isomorphism between
the graph grown by σ and the target graph G.

To show NP-hardness, we provide a reduction from the coloring problem. Given an arbitrary
graph G = (V,E) on n vertices, we grow graph G′ = (V ′, E′) as follows: Let G1 = (V1, E1) be an
isomorphic copy of G, and let G2 be a clique of n vertices. G′ consists of the union of G1 = (V1, E1)
and G2 = (V2, E2), where we also add all possible edges between them. Note that every vertex
of G2 is a universal vertex in G′ (i.e., a vertex which is connected with every other vertex in the
graph). Let χ(G) be the chromatic number of graph G, and let κ(G′) be the minimum number of
slots required for a growth schedule for G′. We will show that κ(G′) = χ(G) + n.

Let σ be an optimal growth schedule for G′, which uses κ(G′) slots. As every vertex v ∈ V2
is a universal vertex in G′, v cannot coexist with any other vertex of G′ in the same slot of σ.
Furthermore, the vertices of V1 require at least χ(G) different slots in σ, since χ(G) is the smallest
possible partition of V1 into independent sets. Thus κ(G′) ≥ χ(G) + n.

We now provide the following growth schedule σ∗ for G′, which consists of exactly χ(G) + n
slots. Each of the first n slots of σ∗ contains exactly one vertex of V2; note that each of these
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vertices (apart from the first one) can be generated and connected with an earlier vertex of V2.
In each of the following χ(G) slots, we add one of the χ(G) = χ(G1) color classes of an optimal
coloring of G1. Consider an arbitrary color class of G1 and suppose that it contains p vertices;
these p vertices can be born by exactly p of the universal vertices of V2 (which have previously
appeared in σ∗). This completes the growth schedule σ∗. Since σ∗ has χ(G) + n slots, it follows
that κ(G′) ≤ χ(G) + n.

Theorem 4. Let ε > 0. If there exists a polynomial-time algorithm, which, for every connected
graph G, computes a n

1
3−ε-approximate growth schedule (i.e., a growth schedule of at most n

1
3−εκ(G)

slots), then P = NP.

Proof. The reduction is from the minimum coloring problem. Given an arbitrary graph G = (V,E)
of n vertices, we grow in polynomial time a graph G′ = (V ′, E′) of N = 4n3 vertices, as follows: We
create 2n2 isomorphic copies of G, which are denoted by GA1 , GA2 , . . . , GAn2 and GB1 , G

B
2 , . . . , G

B
n2 ,

and we also add n2 clique graphs, each 2n vertices, denoted by C1, C2, . . . , Cn2 . We define V ′ =
V (GA1 )∪ . . .∪V (GAn2)∪V (GB1 )∪ . . .∪V (GBn2)∪V (C1)∪ . . .∪V (Cn2). Initially we add to the set E′
the edges of all graphs GA1 , . . . , GAn2 , GB1 , . . . , GBn2 , and C1, . . . , Cn2 . For every i = 1, 2, . . . , n2 − 1
we add to E′ all edges between V (GAi ) ∪ V (GBi ) and V (GAi+1) ∪ V (GBi+1). For every i = 1, . . . , n2,
we add to E′ all edges between V (Ci) and V (GAi ) ∪ V (GBi ). Furthermore, for every i = 2, . . . , n2,
we add to E′ all edges between V (Ci) and V (GAi−1)∪ V (GBi−1). For every i = 1, . . . , n2− 1, we add
to E′ all edges between V (Ci) and V (Ci+1). For every i = 1, 2, . . . , n2 and for every u ∈ V (GBi ), we
add to E′ the edge uu′, where u′ ∈ V (GAi ) is the image of u in the isomorphism mapping between
GAi and GBi . To complete the construction, we pick an arbitrary vertex ai from each Ci. We add
edges among the vertices a1, . . . , an2 such that the resulting induced graph G′[a1, . . . , an2 ] is a graph
on n2 vertices which can be grown by a path schedule in dlog n2e slots and of no excess edges (see
Lemma 3)5. This completes the construction of G′. Clearly, G′ can be grown in time polynomial
in n.

Now we will prove that there exists a growth schedule σ′ of G′ of number of slots at most
n2χ(G) + 4n− 2 + d2 log ne. The schedule will be described inversely, that is, we will describe the
vertices generated in each slot starting from the last slot of σ′ and finishing with the first slot. First
note that every u ∈ V (GAn2) ∪ V (GBn2) is a candidate vertex in G′. Indeed, for every w ∈ V (Cn2),
we have that N [u] ⊆ V (GAn2) ∪ V (GBn2) ∪ V (GAn2−1) ∪ V (GAn2−1) ∪ V (Cn2) ⊆ N [w]. To provide the
desired growth schedule σ′, we assume that a minimum coloring of the input graph G (with χ(G)
colors) is known. In the last χ(G) slots, σ′ generates all vertices in V (GAn2)∪V (GBn2), as follows. At
each of these slots, one of the χ(G) color classes of the minimum coloring cOPT of GAn2 is generated
on sufficiently many vertices among the first n vertices of the clique Cn2 . Simultaneously, a different
color class of the minimum coloring cOPT of GBn2 is generated on sufficiently many vertices among
the last n vertices of the clique Cn2 .

Similarly, for every i = 1, . . . , n2 − 1, once the vertices of V (GAi+1) ∪ . . . ∪ V (GAn2) ∪ V (GBi+1) ∪
. . . ∪ V (GBn2) have been added to the last (n2 − i)χ(G) slots of σ′, the vertices of V (GAi ) ∪ V (GBi )
are generated in σ′ in χ(G) more slots. This is possible because every vertex u ∈ V (GAi )∪V (GBi ) is
a candidate vertex after the vertices of V (GAi+1)∪ . . .∪V (GAn2)∪V (GBi+1)∪ . . .∪V (GBn2) have been
added to slots. Indeed, for every w ∈ V (Ci), we have that N [u] ⊆ V (GAi ) ∪ V (GBi ) ∪ V (GAi−1) ∪

5From Lemma 3 it follows that the path on n2 vertices can be grown in dlogn2e slots using O(n2) excess edges.
If we put all these O(n2) excess edges back to the path of n2 vertices, we obtain a new graph on n2 vertices with
O(n2) edges. This graph is the induced subgraph G′[a1, . . . , an2 ] of G′ on the vertices a1, . . . , an2 .
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V (GAi−1)∪V (Ci) ⊆ N [w]. That is, in total, all vertices of V (GA1 )∪. . .∪V (GAn2)∪V (GB1 )∪. . .∪V (GBn2)
are generated in the last n2χ(G) slots.

The remaining vertices of V (C1)∪ . . .∪V (Cn2) are generated in σ′ in 4n−2+dlog n2e additional
slots. First, for every odd index i and for 2n − 1 consecutive slots, for vertex ai of V (Ci) exactly
one other vertex of V (Ci) is generated. This is possible because for every vertex u ∈ V (Ci) \ ai,
N [u] ⊆ V (Ci) ∪ V (Ci−1) ∪ V (Ci+1) ⊆ N [ai]. Then, for every even index i and for 2n − 1 further
consecutive slots, for vertex ai of V (Ci) exactly one other vertex of V (Ci) is generated. That is,
after 4n − 2 slots only the induced subgraph of G′ on the vertices a1, . . . , an2 remains. The final
dlog n2e slots of σ′ are the ones obtained by Lemma 3. To sum up, G′ is grown by the growth
schedule σ′ in k = n2χ(G) + 4n− 2 + dlog n2e slots, and thus

κ(G′) ≤ n2χ(G) + 4n− 2 + d2 log ne. (1)

Suppose that there exists a polynomial-time algorithm A which computes an N
1
3−ε-approximate

growth schedule σ′′ for graph G′ (which has N vertices), i.e., a growth schedule of k ≤ N 1
3−εκ(G′)

slots. Note that, for every slot of σ′′, all different vertices of V (GAi ) (respectively V (GBi )) which
are generated in this slot are independent. For every i = 1, . . . , n2, denote by χAi (respectively χBi )
the number of different slots of σ′′ in which at least one vertex of V (GAi ) (respectively V (GBi ))
appears. Let χ∗ = min{χAi , χBi : 1 ≤ i ≤ n2}. Then, there exists a coloring of G with at most χ∗
colors (i.e., a partition of G into at most χ∗ independent sets).

Now we show that k ≥ 1
2n

2χ∗. Let i ∈ {2, . . . , n2 − 1} and let u ∈ V (GAi ) ∪ V (GBi ). Assume
that u is generated at slot t in σ′′. Then, either all vertices of V (GAi−1)∪ V (GBi−1) or all vertices of
V (GAi+1) ∪ V (GBi+1) are generated at a later slot t′ ≥ t + 1 in σ′′. Indeed, it can be easily checked
that, if otherwise both a vertex x ∈ V (GAi−1) ∪ V (GBi−1) and a vertex y ∈ V (GAi+1) ∪ V (GBi+1)
are generated at a slot t′′ ≤ t in σ′′, then u cannot be a candidate vertex at slot t, which is a
contradiction to our assumption. That is, in order for a vertex u ∈ V (GAi )∪V (GBi ) to be generated
at some slot t of σ′′, we must have that i is either the currently smallest or largest index for which
some vertices of V (GAi )∪V (GBi ) have been generated until slot t. On the other hand, by definition
of χ∗, the growth schedule σ′′ needs at least χ∗ different slots to generate all vertices of the set
V (GAi )∪V (GBi ), for 1 ≤ i ≤ n2. Therefore, since at every slot, σ′′ can potentially generate vertices
of at most two indices i (the smallest and the largest respectively), it needs to use at least 1

2n
2χ∗

slots to grow the whole graph G′. Therefore,

k ≥ 1

2
n2χ∗. (2)

Recall that N = 4n3. It follows by Equations (1) and (2) that

1

2
n2χ∗ ≤ k ≤ N 1

3−εκ(G′)

≤ N
1
3−ε(n2χ(G) + 4n− 2 + d2 log ne)

≤ 4n1−3ε(n2χ(G) + 6n)

and, thus, χ∗ ≤ 8n1−3εχ(G)+48n−3ε. Note that, for sufficiently large n, we have that 8n1−3εχ(G)+

48n−3ε ≤ n1−εχ(G). That is, given the N
1
3−ε-approximate growth schedule produced by the

polynomial-time algorithm A, we can compute in polynomial time a coloring of G with χ∗ colors
such that χ∗ ≤ n1−εχ(G). This is a contradiction since for every ε > 0, there is no polynomial-time
n1−ε-approximation for minimum coloring, unless P = NP [40].
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4. Growth Schedules of (Poly)logarithmic Slots

In this section, we study graphs that have growth schedules of (poly)logarithmic slots. As proved
in Section 3, an integral factor in computing a growth schedule for any graph G, is computing a
k-coloring for G. In particular, a growth schedule for graph G using k slots implies that graph G
can be colored with k colors. Since we consider polynomial-time algorithms, we have to restrict
ourselves to graphs where the k-coloring problem can be solved in polynomial time and, additionally,
we want small values of k since we want to produce fast growth schedules. Therefore, we investigate
tree, planar and k-degenerate graph families since there are polynomial-time algorithms that solve
the k-coloring problem for graphs drawn from these families. We continue with lower bounds on
the number of excess edges if we fix the number of slots to log n, for path, star and specific bipartite
graph families.

4.1. Trees
We give an algorithm that computes growth schedules for tree graphs. Let G be the target

tree graph. The algorithm applies a decomposition strategy on G, where vertices and edges are
removed in phases, until a single vertex is left. We can then grow the target graph G by reversing
its decomposition phases, using the path and star schedules as subroutines (from Section 2.2).

Tree algorithm: Starting from a tree graph G, the algorithm alternats between two phases, a
path-cut and a leaf-cut phase. Let G2i, G2i+1, for i ≥ 0, be the graphs obtained after the execution
of the first i pairs of phases and an additional path-cut phase, respectively.

Path-cut phase: For each path subgraph P = (u1, u2, . . . , uν), for 2 < ν ≤ n, of the current
graph G2i, where u2, u3, ..., uν−1 have degree 2 and u1, uν have degree 6= 2 in G2i, edge u1uν
between the endpoints of P is activated and vertices u2, u3, ...uν−1 are removed along with their
incident edges. An example of this is shown in Figure 4. If a single vertex is left, the algorithm
terminates; otherwise, it proceeds to the leaf-cut phase.
Leaf-cut phase: Every leaf vertex of the current graph G2i+1 is removed along with its incident
edge. An example of this is shown in Figure 5. If a single vertex is left, the algorithm terminates;
otherwise, it proceeds to the path-cut phase.

The algorithm reverses the phases (by decreasing i) to output a growth schedule for the tree G
as follows. For each path-cut phase, all path subgraphs that were decomposed in phase are regrown
by using the path schedule as a sub-process. These can be executed in parallel in O(log n) slots.
The same holds true for leaf-cut phases, where each can be reversed to regrow the removed leaves
by using star schedules in parallel in O(log n) slots. In the last slot, the schedule deletes every
excess edge.

Lemma 11. Given any tree graph G, the algorithm deconstructs G into a single vertex using at
most 2 log n phases.

Proof. Consider the graph G2i after the execution of the i-th path-cut phase. The path-cut phase
removes every vertex that has exactly 2 neighbors in the current graph, and in the next leaf cut
phase, the graph consists of leaf vertices u ∈ Su with |N(u)| = 1 and internal vertices v ∈ Sv with
|N(v)| > 2. Therefore, |Su| > |Sv| and since |Su|+ |Sv| = |Vi|, we can conclude that |Su| > |Vi|/2
and any leaf-cut phase cuts the number of vertices of the current graph in half since it removes
every vertex u ∈ Su. This means that after at most log n path-cut phases and log n leaf cut phases
the graph will have a single vertex.
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(a) Graph G2i at the beginning
of the i-th path-cut phase.

(b) The dotted and the dashed
edges with their incident ver-
tices form two different path
subgraphs. Every vertex, apart
from the endpoints of each
path, is removed and the end-
points become connected.

(c) The resulting graph G2i+1

at the end of the i-th path-cut
phase.

Figure 4: An example of a path-cut phase.

(a) Graph G2i+1 at the begin-
ning of the i-th leaf-cut phase.

(b) The leaf vertices along with
their incident edges are re-
moved.

(c) The resulting
graph G2i+2 at
the end of the i-th
leaf-cut phase.

Figure 5: An example of a leaf-cut phase.

Lemma 12. Every phase can be reversed using a growth schedule of O(log n) slots.

Proof. Let us consider the path-cut phase. At the beginning of this phase, every starting subgraph
G′ is a path subgraph with vertices u1, u2, ..., ux, where u1, ux are the endpoints of the path. At
the end of the phase, every subgraph has two connected vertices u1, ux. The reversed process works
as follows: for each path u1, u2, . . . ux that we want to generate, we use vertex u1 as the initiator
and we execute the path algorithm from Section 2.2 in order to generate vertices u2, u3, ..., ux−1.
We make the following modification to path: every time a vertex is generated, an edge between it
and vertex ux is activated. After this process completes, edges not belonging to the original path
subgraph G′ are deleted. This growth schedule requires log x ≤ log n slots. We can combine the
growth schedules of each path into a single schedule of log x slots since every schedule has distinct
initiators and they can run in parallel.

Now let us consider the leaf-cut phase. In this phase, every vertex removed is a leaf vertex u
with one neighbor v. Note that v might have multiple neighboring leaves. The reverse process
works as follows: For each vertex v, we use a separate star growth schedule from Section 2.2 with v
as the initiator, in order to generate every vertex u that was a neighbor to v. Each of this growth
schedule requires at most log x ≤ log n slots, where x is the number of leaves in the current graph.
We can combine the growth schedules of each star into a single schedule of log n slots since every
schedule has distinct initiators and they can run in parallel.
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Theorem 5. For any tree graph G on n vertices, the tree algorithm computes in polynomial time
a growth schedule σ for G of O(log2 n) slots and O(n) excess edges.

Proof. The growth schedules of the produced by each phase can be straightly combined into a single
one by appending the end of each growth schedule with the beginning of the next one, since every
sub-schedule σi uses only a single vertex as an initiator u, which is always available (i.e., u was
generated by some previous σj). Since we have O(log n) schedules and every schedule has O(log n)
slots, the combined growth schedule has O(log2 n) slots. Note that every schedule used to reverse
a phase uses O(n) excess edges, where n is the number of vertices generated in that schedule.
Since the schedule generates n− 1 vertices, the excess edges activated throughout the schedule are
O(n).

4.2. Planar Graphs
In this section, we provide an algorithm that computes a growth schedule for any target planar

graph G = (V,E). The algorithm first computes a 4-coloring of G and partitions the vertices into
color sets Vi, 1 ≤ i ≤ 4. The color sets are used to compute the growth schedule for G. The
schedule contains four sub-schedules, each sub-schedule i generating all vertices in color set Vi. In
every sub-schedule i, we use a modified version of the star schedule to generate set Vi.
Pre-processing: By using the algorithm of [35], the pre-processing step computes a 4-coloring
of the target planar graph G. This creates color sets Vi ⊆ V , where 1 ≤ i ≤ 4, every color set
Vi containing all vertices of color i. Without loss of generality, we can assume that |V1| ≥ |V2| ≥
|V3| ≥ |V4| ≥ |V4|. Note that every color set Vi is an independent set of G.

Planar algorithm: The algorithm picks an arbitrary vertex from V1 and makes it the initiator u0
of all sub-schedules. Let Vi = {u1, u2, . . . , u|Vi|}. For every sub-schedule i, 1 ≤ i ≤ 4, it uses the
star schedule with u0 as the initiator, to grow the vertices in Vi in an arbitrary sequence, with some
additional edge activations. In particular, upon generating vertex ux ∈ Vi, for all 1 ≤ x ≤ |Vi|:

1. Edge vux is activated if v ∈
⋃
j<i Vj and uyv ∈ E, for some uy ∈ Vi ∩ Pux

, both hold (recall
that Pux

contains the descendants of ux).

2. Edge wux is activated if w ∈
⋃
j<i Vj and wux ∈ E both hold.

Once all vertices of Vi have been generated, the schedule moves on to generate Vi+1. Once
all vertices have been generated, the schedule deletes every edge uv /∈ E. Note that every edge
activated in the growth schedule is an excess edge with the exception of edges satisfying (2). For an
edge wux from (2) to satisfy the edge-activation distance constraint it must hold that every vertex
in the birth path of ux has an edge with w. This holds true for the edges added in (2), due to the
edges added in (1).

The edges of the star schedule are used to quickly generate the vertices, while the edges of (1)
are used to enable the activation of the edges of (2). By proving that the star schedule activates
O(n) edges and (1) activates O(n log n) edges, and by observing that the schedule contains star
sub-schedules that have 4×O(log n) slots in total, the next lemma follows.

Lemma 13. Given a target planar graph G = (V,E), the planar algorithm returns a growth
schedule for G.
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Proof. Based on the description of the schedule, it is easy to see that we generate exactly |V |
vertices, since we break V into our four sets Vi and we generate each set in a different phase i. This
is always possible for any arbitrary graph G, since every set Vi is an independent set.

We will now prove that we also generate activate the edges of G. Note that this holds trivially
since (2) activates exactly those edges. What remains is to argue that the edges of (2) do not violate
the edge-activation distance d = 2 constraint. This constraint is satisfied by the edges activated by
(1) since for every edge wux ∈ E(G), the schedule makes sure to activate every edge uuy, where
vertices uy are the vertices in the birth path of ux.

Lemma 14. The planar algorithm has O(log n) slots and O(n log n) excess edges.

Proof. Let ni be the size of the independent set Vi. Then, the sub-schedule that grows Vi requires
the same number of slots as path, which is dlog nie slots. Combining the four sub-schedules requires∑4
i=1 log ni = log

∏4
i=1 ni < 4 log n = O(log n) slots.

Let us consider the excess edges activated in every sub-schedule. The number of excess edges
activated are the excess edges of the star schedule and the excess edges for the progeny of each
vertex. The excess edges of the star schedule are O(n). We also know that the progeny of each
vertex u includes at most |Pu| = O(log n) vertices since the number of slots of the growth schedule
is O(log n). Since we have a planar graph we know that there are at most 3n edges in graph
G. For every edge uv in the target graph, we would need to add at most O(log n) additional
excess edges. Therefore, no matter the structure of the 3n edges, the schedule would activate
3nO(log n) = O(n log n) excess edges.

The next theorem follows from Lemmas 13 and 14.

Theorem 6. For any planar graph G on n vertices, the planar algorithm computes in polynomial
time a growth schedule for G of O(log n) slots and O(n log n) excess edges.

Definition 5. A k-degenerate graph G is an undirected graph in which every subgraph has a vertex
of degree at most k.

Corollary 1. The planar algorithm can be extended to compute, for any graph G on n vertices
and in polynomial time, a growth schedule of O((k1 + 1) log n) slots, O(k2n log n) and excess edges,
where (i) k1 = k2 is the degeneracy of graph G, or (ii) k1 = ∆ is the maximum degree of graph G
and k2 = |E|/n.

Proof. For case (i), if graph G is k1-degenerate, then an ordering with coloring number k1 + 1
can be obtained by repeatedly finding a vertex v with at most x neighbors, removing v from the
graph, ordering the remaining vertices, and adding v to the end of the ordering. By Lemma 14, the
algorithm using a k1 + 1 coloring would produce a growth schedule of O((k1 + 1) log n) slots. Since
graph G is k2-degenerate, G has at most k2×n edges and by the proof of Lemma 14, the algorithm
would require O(k2n log n) excess edges. For case (ii), we compute a ∆ + 1 coloring using a greedy
algorithm and then use the planar graph algorithm with the computed coloring as an input. By the
proof of Lemma 14, the algorithm would produce a growth schedule of O((∆ + 1) log n) slots.

4.3. Lower Bounds on the Excess Edges
In this section, we provide some lower bounds on the number of excess edges required to grow a

graph if we fix the number of slots to log n. For simplicity, we assume that n = 2δ for some integer
δ, but this assumption can be dropped.
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We define a particular graph Gmin with n vertices, through a growth schedule σmin for it. The
schedule σmin contains log n slots. In every slot t, the schedule generates one vertex u′ for every
vertex u in (Gmin)t−1 and activates uu′. This completes the description of σmin. Let G be any
graph on n vertices, grown by a log n-slot schedule σ. Observe that any edge activated by σmin is
also activated by σ. Thus, any edges of Gmin “not used” by G are excess edges that must be deleted
by σ, for G to be grown by it. The latter is captured by the following minimum edge-difference
over all permutations of V (G) mapped on V (Gmin).

Consider the set B of all possible bijections between the vertex sets of V (G) and V (Gmin),
b : V (G) 7−→ V (Gmin). We define the edge-difference EDb of every such bijection b ∈ B as
EDb = |{uv ∈ E(Gmin) | b(u)b(v) /∈ E(G)}|. The minimum edge-difference over all bijections
b ∈ B is min

b
EDb. We argue that a growth schedule of log n slots for graph G uses at least

min
p
EDp excess edges since the schedule has to activate every edge of Gmin and then delete at least

the minimum edge-difference to get G. This property leads to the following theorem, which can
then be used to obtain lower bounds for specific graph families.

Theorem 7. Any growth schedule σof log n slots for a graph G of n vertices, uses at least min
b
EDb

excess edges.

Proof. Since every schedule σ of log n slots activates every edge uv of Gmini , σ must delete every
edge uv /∈ E(G). To find the minimum number of such edges, if we consider the set B of all possible
bijections between the vertex sets of V (G) and V (Gmin), b : V (G) 7−→ V (Gmin) and we compute
the minimum edge-difference over all bijections b ∈ B as min

b
EDb, then schedule σ has to activate

every edge of Gmin and delete at least min
b
EDb edges.

Corollary 2. Any growth schedule of log n slots for a path or star graph of n vertices, uses Ω(n)
excess edges.

Proof. Note that for a star graph G = (V,E), the maximum degree of a vertex in Gmin is log n and
the star graph has a center vertex with degree n− 1. This implies that there are n− 1− log n edges
of Gmin which are not in E. Therefore min

b
EDb = (n − 1 − log n). A similar argument works for

the the schedule of a path graph.

We now define a particular graph Gfull = (V,E) by providing a growth schedule for it. The
schedule contains log n slots. In every slot t, the schedule generates one vertex u′ for every vertex
u in Gt−1 and activates uu′. Upon generating vertex u′, it activates an edge u′v with every vertex
v that is at distance d = 2 from u′. Assume that we name the vertices u1, u2, . . . , un, where
vertex u1 was the initiator and vertex uj was generated in slot dlog(uj)e and connected with vertex
uj−dlog(uj)e.

Lemma 15. If n is the number of vertices of Gfull = (V,E) then the number of edges of Gfull is
n log n ≤ |E| ≤ 2n log n.

Proof. Let f(x) be the sum of degrees when x vertices have been generated. Clearly f(2) = 2. Now
consider slot t and lets assume it has x vertices at its end. At end of next slot we have 2x vertices.
Let the degrees of the vertices at end of slot t be d1, d2, ..., dk. Consider now that:

• Child i′ of vertex i (generated in slot t+ 1) has 1 edge with its parent and di edges (since an
edge between it and all vertices at distance 1 from i will be activated in slot t. So d′i = di + 1.
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• Vertex i has 1 edge (with its child) and di edges (one from each new child of its neighbours
in slot t), that is di(new) = 2di + 1.

Therefore f(2x) = 3f(x) + 2x. Notice that 2f(x) + 2x ≤ f(2x) ≤ 4f(x) + 4x. Let g(x) be such
that g(2) = 2 and g(2x) = 2g(x) + 2x. We claim g(x) = x log x. Indeed g(2) = 2 log 2 = 2 and
by induction g(2x) = 2g(x) + 2x = 2x log x + 2x = 2x log(2x). It follows that n log n ≤ f(n) ≤
2n log n.

We will now describe the following bipartite graph Gbipart = (V,E) using Gfull = (V ′, E′) to
describe the edges of Gbipart. Both parts of the graph have n/2 vertices and the left part, called
A, contains vertices a1, a2, . . . , an/2, and the right part, called B, contains vertices b1, b2, . . . , bn/2,
and E′ = {aibj | (ui, uj ∈ E) ∨ (i = j)}. This means that if graph Gfull has m edges, Gbipart has
Θ(m) edges as well.

Theorem 8. Consider graph Gbipart = (V ′, E′) of n vertices. Any growth schedule σ for graph
Gbipart of log n slots uses Ω(n log n) excess edges.

Proof. Assume that schedule σ of log n slots, grows graph Gbipart. Since σ has log n slots, for every
vertex u ∈ V ′j−1 a vertex must be generated in every slot j in order for the target graph to have
n vertices. This implies that in the last slot, n/2 vertices have to be generated and we remind
that these vertices must be an independent set in Gbipart. For i = 1, 2, . . . , n/2 and ai, bi ∈ E′,
vertices ai, bi cannot be generated together in the last slot. This implies that in the last slot, for
every i = 1, 2, . . . , n/2, we must have exactly one vertex from each pair of ai, bi. Note though that
vertices a1, b1 have an edge with every vertex in B,A respectively. If vertex a1 or b1 are generated
in the last slot, only vertices from A or B, respectively, can be generated in that same slot. Thus,
we can conclude that the last slot must either contain every vertex in A or every vertex in B.

Without loss of generality, assume that in the last slot, we generate every vertex in B. This
means that for every vertex ai ∈ A one vertex bj ∈ B must be generated. Consider an arbitrary
vertex ai for which an arbitrary vertex bj is generated. In order for this to happen in the last
slot, for every alai ∈ (E′ \ aibj), alai must be active and every edge alai is an excess edge since
set A is an independent set in graph Gbipart. This means that for each vertex bj generation, any
growth schedule must activate at least |N(bj)| − 1 excess edges. By construction, graph Gbipart
has O(n log n) edges and thus, the sum of the degrees of vertices in B is O(n log n). Therefore, any
growth schedule must activate Ω(n log n)− n = Ω(n log n) excess edges.

5. Edge-activation distances d 6= 2

For completeness, in this section we study edge-activation distances d 6= 2 and show that in this
cases there are simple and efficient algorithms for finding growth schedules. We begin with some
basic properties for the case where d = 1.

Observation 1. For d = 1, every graph G that has a growth schedule is a tree graph.

Proposition 4. For d = 1, the shortest growth schedule σ of a path graph (respectively a star
graph) on n vertices has dn/2e (respectively n− 1) slots.

Proof. Let G be the path graph on n vertices. By definition of the model for d = 1, edges can
only be activated during vertex generation, between the generated vertex and its parent. Thus,
increasing the number of vertices of the path can only be achieved by generating one new vertex
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at each of the endpoints of the path. The number of vertices of a path can only be increased by
at most 2 in each slot, where for each endpoint of the path a new vertex that becomes the new
endpoint of the path is generated. Therefore, in order to create any path graph of n vertices would
require at least dn/2e slots. The growth schedule where one vertex is generated at each of the
endpoints of the path in each slot creates the path graph of n vertices in dn/2e slots.

Now let G be the star graph of n− 1 leaves. Increasing the number of vertices of the star graph
can only be achieved by generating new leaves directly connected to the center vertex, and this can
occur at most once per slot. Therefore, the growth schedule of G requires exactly n− 1 slots.

Proposition 5. Let d = 1 and G = (V,E) be a tree graph with diameter D. Then any growth
schedule σ for G requires at least dD/2e slots.

Proof. Consider a path p of length D. By Proposition 4, p requires a growth schedule of at least
dD/2e slots.

Proposition 6. Let d = 1 and G = (V,E) be a tree graph with maximum degree ∆. Then any
growth schedule σ for G requires at least ∆ slots.

Proof. Consider a vertex u ∈ G with degree ∆ and let G′ = (V ′, E′) be a subgraph of G, such that
V ′ = N [u] and E′ = E(N [u]). Notice that G′ is a star graph of ∆ + 1 vertices. By Proposition 4,
any growth schedule for G′ has at least ∆ slots.

Proposition 7. Let d = 1. Consider a tree graph G and a growth schedule σ for it. Denote by Gt
the graph grown by the end of slot t of σ. Then any vertex generated in slot t must be a leaf in Gt.

Proof. Every vertex u generated in slot t has degree equal to 1 at the end of slot t by definition of
the model for d = 1. Therefore, vertex u must be a leaf.

We now provide an algorithm, called trimming (see Algorithm 3), that optimally solves the
graph growth problem for d = 1. The algorithm follows a bottom-up approach for building the
intended growth schedule σ = (S1,S2, . . . ,Sk, E) = (Kk,Kk−1, . . . ,K1, ∅). In every iteration t of
the algorithm, the parent-child pairs of Kt are formed between leaves and their parents on the tree.
The leaves that were included in a parent-child pair are removed and the algorithm repeats. The
process continues until graph G has a single vertex left, which is set as the initiator. In the next
theorem, we show that the algorithm outputs an optimum growth schedule with respect to the
number of slots.

Theorem 9. For d = 1 and for any tree graph G, the trimming algorithm computes in polynomial
time a slot-optimal growth schedule for G.

Proof. Let σ = (S1, . . . ,Sk, ∅) be the growth schedule obtained by the trimming algorithm on
input G. Suppose that σ is not optimum, and let σ′ 6= σ be an optimum growth schedule for G.
That is, σ = (S ′1, . . . ,S ′k′ , ∅), where k′ < k. Denote by (L1, L2, . . . , Lk) and (L′1, L

′
2, . . . , L

′
k′) the

sets of vertices generated in each slot of the growth schedules σ and σ′, respectively. Note that∑k
i=1 |Li| =

∑k′

i=1 |L′i| = n−1. Among all optimum growth schedules for G, we can assume without
loss of generality that σ′ is chosen such that the vector (|L′k′ |, |L′k′−1|, . . . , |L′1|) is lexicographically
largest.

Let ` be the number of slots such that the growth schedules σ and σ′ generate the same number
of leaves in their last ` slots, i.e., |Lk−i| = |L′k′−1|, for every i ∈ {0, 1, . . . , `−1}, but |Lk−`| 6= |L′k′−`|.
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Algorithm 3 Trimming algorithm, for d = 1.

Input: A target tree graph G = (V,E) on n vertices.
Output: An optimal growth schedule for G.
1: t← 1
2: while V 6= ∅ do
3: Kt = ∅
4: for each leaf vertex v ∈ V and its unique neighbor u ∈ V do
5: if u is not marked as a “parent in Kt” then
6: Mark u as a “parent in Kt”
7: Kt ← Kt ∪ {(u, v, {uv})}
8: V ← V \ {v}
9: t← t+ 1

10: return σ = (Kt,Kt−1, . . . ,K1, ∅)

Suppose that ` ≤ k − 1. Note by construction of the trimming algorithm that, since |Lk| = |L′k′ |,
both growth schedules σ and σ′ generate exactly one leaf for each vertex which is a parent of a
leaf in G. That is, in their last slot, both σ and σ′ have the same parents of new vertices; they
might only differ in which leaves are generated for these parents. Consider now the graph Gk−1
(respectively G′k′−1) that is obtained by removing from G the leafs of Lk (respectively of L′k′).
Then note that Gk−1 and G′k′−1 are isomorphic. Similarly it follows that, if we proceed removing
from the current graph the vertices generated in the last ` slots of the schedules σ and σ′, we
end up with two isomorphic graphs Gk−`+1 and G′k′−`+1. Recall now that, by our assumption,
|Lk−`| 6= |L′k′−`|. Therefore, since the trimming algorithm always considers all possible vertices in
the current graph which are parents of a leaf (to give birth to a leaf in the current graph), it follows
that |Lk−`| > |L′k′−`|. That is, at this slot the schedule σ′ misses at least one potential parent u
of a leaf v in the current graph G′k′−`+1. This means that the tuple (u, v, {uv}) appears at some
other slot S ′j of σ′, where j < k′ − `. Now, we can move this tuple from slot S ′j to slot S ′k′−`, thus
obtaining a lexicographically largest optimum growth schedule than σ′, which is a contradiction.

Therefore ` ≥ k, and thus ` = k, since
∑k
i=1 |Li| =

∑k′

i=1 |L′i| = n − 1. This means that σ and
σ′ have the same number of slots. That is, σ is an optimum growth schedule.

We move on to the case of d ≥ 4, and we show that for any graph G, there is a simple algorithm
that computes a growth schedule of an optimum number of slots and only linear number of excess
edges in relation to the number of vertices of the graph.

Lemma 16. For d ≥ 4, any given graph G = (V,E) on n vertices can be grown with a growth
schedule σ of dlog ne slots and O(n) excess edges.

Proof. Let G = (V,E) be the target graph, and Gt = (Vt, Et) be the grown graph at the end of
slot t. When the growth schedule generates a vertex w, w is matched with an unmatched vertex
of the target graph G. For any pair of vertices v, w ∈ Gdlogne that have been matched with a pair
of vertices vj , wj ∈ G, respectively, if (vj , wj) ∈ E, then (v, w) ∈ Edlogne, and if (vj , wj) /∈ E, then
(v, w) /∈ Edlogne.

To achieve growth of G in dlog ne slots, for each vertex of Gt the process must generate a new
vertex at slot t+1, except possibly for the last slot of the growth schedule. To prove the lemma, we
show that the growth schedule maintains a star as a spanning subgraph of Gt, for any t ≤ dlog ne,
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with the initiator u as the center of the star. Trivially, the children of u belong to the star, provided
that the edge between them is not deleted until slot dlog ne. The children of all leaves of the star
are at distance 2 from u, therefore the edge between them and u are activated at the time of their
birth.

The above schedule shows that the distance of any two vertices is always less or equal to four.
Therefore, for each vertex w that is generated in slot t and is matched to a vertex wj ∈ G, the
process activates the edges with each vertex u that has been generated and matched to vertex
uj ∈ Gj and (wj , uj) ∈ E. Finally, the number of the excess edges that we activate are at most
2n− 1 (i.e., the edges of the star and the edges between parent and child vertices). Any other edge
is activated only if it exists in G.

It is not hard to see that the proof of Lemma 16 can be slightly adapted such that, instead of
maintaining a star, we maintain a clique. The only difference is that, in this case, the number of
excess edges increases to at most O(n2) (instead of at most O(n)). On the other hand, this method
of always maintaining a clique has the benefit that it works for d = 3, as the next lemma states.

Lemma 17. For d ≥ 3, any given graph G = (V,E) on n vertices can be grown with a growth
schedule σ of dlog ne slots and O(n2) excess edges.

6. Conclusion and Open Problems

In this work, we considered a new model for highly dynamic networks, called growing graphs.
The model, with no limitation to the edge-activation distance d, allows any target graph G to be
grown, starting from an initial singleton graph, but large values of d are an impractical assumption
with simple solutions and therefore we focused on cases where d = 2. We defined performance
measures to quantify the speed (slots) and efficiency (excess edges) of the growth process, and we
noticed that there is a natural trade off between the two. We proposed algorithms for general graph
classes that try to balance speed and efficiency. If someone wants super efficient growth schedules
(zero excess edges), it is impossible to even find a n

1
3−ε-approximation of the number of slots of

such a schedule, unless P = NP. For the special case of schedules of log n slots and of no excess
edges, we provide a polynomial-time algorithm that can find such a schedule.

We believe that the present study, apart from opening new avenues of algorithmic research in
graph-generation processes, can inspire work on more applied models of dynamic networks and
network deployment, including ones in which the growth process is decentralized and exclusively
controlled by the individual network processors and models whose the dynamics is constrained by
geometry.

There is a number of interesting technical questions left open by the findings of this paper. It
would be interesting to see whether there exists an algorithm that can decide the minimum number
of edges required by any growth schedule for a graph G or whether the problem is NP-hard. Note
that this problem is equivalent to the cop-win completion problem; that is, ` is in this case equal to
the smallest number of edges that need to be added to G to make it a cop-win graph. We mostly
focused on the two extremes of the (k, `)-spectrum, namely one in which k is close to log n and
the other is which ` close to zero. The in-between landscape remains to be explored. We also gave
some efficient algorithms, mostly for specific graph families, but there seems to be room for more
positive results.

Finally. we could extend the model and study how much this changes our results. One approach
is to consider whether we can grow directed graphs or graphs with weighted edges. For example,
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we could consider a model where each vertex can activate edges that sum up to at most a fixed
weight per slot. Another interesting approach is to study a combination of the growth dynamics of
the present work and the edge-modification dynamics of [30], thus, allowing the activation of edges
between vertices generated in past slots.
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