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Bayesian Emulation for Computer Models with
Multiple Partial Discontinuities

Ian Vernon∗, Jonathan Owen∗, and Jonathan Carter†

Abstract. Computer models are widely used across a range of scientific disci-
plines to describe various complex physical systems, however to perform full un-
certainty quantification we often need to employ emulators. An emulator is a
fast statistical construct that mimics the slow to evaluate computer model, and
greatly aids the vastly more computationally intensive uncertainty quantification
calculations that an important scientific analysis often requires. We examine the
problem of emulating computer models that possess multiple, partial discontinu-
ities occurring at known non-linear locations. We introduce the Torn Embedding
Non-Stationary Emulation (TENSE) framework, based on carefully designed cor-
relation structures that respect the discontinuities while enabling full exploitation
of any smoothness/continuity elsewhere. This leads to a single emulator object
that can be updated by all runs simultaneously, and also used for efficient design.
This approach avoids having to split the input space into multiple subregions. We
apply the TENSE framework to the TNO Challenge II, emulating the OLYMPUS
reservoir model, which possesses multiple such discontinuities.
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1 Introduction
The use of computer models, or simulators, to describe the dynamics of complex phys-
ical systems is now commonplace in a wide variety of scientific disciplines. Often such
simulators possess high numbers of input and/or output dimensions and, due to their
complexity, take a substantial amount of time to evaluate. This presents an immediate
challenge, as the responsible use of a simulator (e.g. for model calibration, prediction, de-
cision support, etc.), usually demands Bayesian uncertainty quantification, to capture
all major sources of uncertainty, which typically requires a vast number of simulator
evaluations. For complex simulators possessing even a modest runtime, this is utterly
infeasible. Emulators represent a solution to this problem. An emulator is a statistical
construct that seeks to mimic the behaviour of the simulator over its input space, but
which is several orders of magnitude faster to evaluate. As the emulator provides both a
prediction and an uncertainty statement about the simulator’s behaviour at unexplored
input locations (an attribute that elevates it above interpolation or other proxy mod-
elling approaches), it can naturally be incorporated in a wider Bayesian uncertainty
analysis.
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2 Emulation with Multiple Partial Discontinuities

Early uses of Gaussian process emulators for computer models were given by Sacks
et al. (1989); Currin et al. (1991). For an early example using multilevel emulation
combined with structural discrepancy modelling in a Bayesian history matching con-
text see Craig et al. (1997), and for a fully Bayesian calibration of a complex nuclear
radiation model, see Kennedy and O’Hagan (2001). Emulators have now been success-
fully employed across several scientific disciplines, including cosmology (Vernon et al.,
2010a,b; Bower et al., 2010; Schneider et al., 2008; Heitmann et al., 2009; Kaufman
et al., 2011; Vernon et al., 2014; Rodrigues et al., 2017), climate modelling (Williamson
et al., 2013; Johnson et al., 2015; Holden et al., 2016; Edwards et al., 2019, 2021), engi-
neering (Du et al., 2021), epidemiology (Andrianakis et al., 2015, 2017; McKinley et al.,
2018; McCreesh et al., 2017; Vernon et al., 2022), systems biology (Vernon et al., 2018;
Jackson et al., 2020), oil reservoir modelling (Cumming and Goldstein, 2010, 2009),
environmental science (Goldstein et al., 2013), vulcanology (Bayarri et al., 2009; Gu
and Berger, 2016; Marshall et al., 2019) and even to Bayesian analysis itself (Vernon
and Gosling, 2023). The development of improved emulation strategies therefore has
the potential to benefit multiple scientific areas, allowing more accurate analyses with
lower computational cost (Higdon et al., 2008).

Most emulator constructions exploit prior judgements about the behaviour of the
simulator in terms of its smoothness/differentiability/continuity etc. In this work, how-
ever, we are confronted with a problem arising in the TNO Challenge II: a joint industrial
and academic challenge posed in the oil industry (see Section 4 for details). A key part
of this problem requires the emulation of simulators that are anticipated to be smooth
over much of the input space, but that also possess multiple, partial discontinuities at
known, non-linear locations. We use the term “partial” in the sense that the locations of
the discontinuities begin within the input space, typically ending on the boundary, and
hence are not closed, nor do they necessarily bisect the space. Examples of the locations
of these discontinuities are shown in Figure 4a (with toy versions in Figures 1 to 3).

A possible way to incorporate discontinuities is to partition the input space into
various subregions, and then fit separate, independent emulators in each subregion. For
example, Treed GPs (Gramacy and Lee, 2008) which use rectangular, axis aligned sub-
regions, or Pope et al. (2021) who use Voronoi tessellations. Although flexible, these
approaches typically require substantial numbers of simulator evaluations, especially in
higher dimensions, and critically will not exploit the smoothness around the discontinu-
ity endpoints, which we wish to do here. In addition, many subregions may be required
to handle curved discontinuities (especially for Treed GPs). Caiado and Goldstein (2015)
use emulators to identify discontinuities caused by tipping points, and then emulate the
output separately in each region. This however, is used for discontinuities that bisect the
input space, unlike the case here, and the identification of the discontinuities is reported
to be time-consuming (see also Ghosh et al., 2018). Deep GPs (see e.g. Dunlop et al.,
2018 and references therein), whereby either the correlation lengths or GP inputs are
modelled by a second layer GP, with inputs or dependent parameters in turn modelled
by the next layer GP etc. have almost unlimited flexibility, but this comes at a cost,
requiring substantial numbers of runs to train, whereas for our application run numbers
will be extremely limited. Deep GPs also typically have non-analytic uncertainty prop-
agation, which poses problems for full UQ (Sauer et al., 2022). More importantly, even
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a deep GP based on smooth layers may fail diagnostics on closer examination, as the
impact of the discontinuity will percolate down the layers and still be evident at each
level e.g. mimicking rapid (i.e. discontinuous) change in the simulator on the top layer
would require rapid (also discontinuous) change of inputs or correlation lengths on the
second layer, and so on. Mohammadi et al. (2020) attempted to emulate across sim-
ple 1D step functions using a variety of interesting covariance structures with moderate
success, although most structures used were either still essentially continuous and hence
couldn’t fully represent the discontinuity, or induced additional unwanted features.

We instead introduce the TENSE framework, based around carefully designed co-
variance structures that respect the discontinuities while fully exploiting any smooth-
ness/continuity elsewhere, leading to a single emulator object that can be updated by
all runs simultaneously. The layout of the article is as follows. In Section 2 we construct
emulators that exhibit partial discontinuities using torn embeddings, before showing
how to correct for various induced warpings in Section 3. In Section 4 we apply the
TENSE framework to the TNO Challenge II. Example code to reproduce the plots in
Sections 2 and 3 can be found at https://github.com/ivernon/TENSE.git.

2 Emulating Computer Models with Partial
Discontinuities using Torn Embeddings

2.1 Emulation of Computer Models
We now summarise the standard emulation of computer models approach. We consider
a complex computer model represented by a function f(x), where x ∈ X denotes a d-
dimensional vector containing the computer model’s input parameters, and X ⊂ R

d is a
pre-specified input parameter space of interest. We imagine that due to its complexity,
a single evaluation of the computer model will take a substantial amount of time to
complete, and due to limited computational resources we will only be able evaluate
it at a relatively small number of locations across the input space. Here we assume
f(x) is univariate, but the methods we develop should in principle generalise to the
multivariate case. Following the Bayesian paradigm, we represent our beliefs about the
unknown f(x) at unevaluated input x via an emulator. A typical approach is to use a
pure Gaussian process (GP) for the emulator, such that

f(·)|m(·), c(·, ·) ∼ GP
(
m(·), c(·, ·)

)
, (2.1)

for some mean function m(·) and covariance function c(·, ·) (Kennedy and O’Hagan,
2001), chosen corresponding to any prior beliefs we hold about the properties of the
function f(x). While this form of GP emulator has been successfully employed in a
large number of applications, it is sometimes argued that it is the core second-order
structure of the GP that is its most important feature, a structure which aligns more
closely with our actual beliefs about the behaviour of f(x). The additional distributional
assumptions that use of a GP entails, namely that any finite collection of outputs
{f(x(1)), . . . , f(x(n))} have specifically a multivariate normal distribution is, in some
cases, too strong an assumption, which can have unintended consequences.

https://github.com/ivernon/TENSE.git
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Therefore, we often prefer to focus directly on the second-order structure itself, and
employ Bayes linear emulators instead of the above GP version. Bayes linear methods
follow the foundational work of DeFinetti (De Finetti, 1974) by treating expectation
instead of probability as primitive, and respect the subjectivist Bayesian paradigm,
but require only a second-order specification (Goldstein, 1999; Goldstein and Wooff,
2007). In this framework, instead of a GP we represent f(x) as a weakly stationary
stochastic process. A simple prior specification appropriate for some computer models
(see Appendix A (Vernon et al., 2024) for a more complex version) would be to set
E[f(x)] = m(x) for some mean function m(x), and to specify the covariance structure
as

Cov
[
f(x), f

(
x′)] = σ2 r

(
x − x′) (2.2)

where σ2 represents the prior variance of f(x), and r(x−x′) defines a stationary corre-
lation structure, of which there are many possible options (see Rasmussen and Williams
(2006)). A popular choice for smooth (i.e. infinitely differentiable) functions being the
squared exponential:

r
(
x − x′) = exp

{
−
(
x − x′)TΣ−1(x − x′)} (2.3)

where Σ is a covariance matrix governing general Mahalanobis distances. Setting Σ =
diag{θ, . . . , θ}, regains the usual isotropic form, where θ is the standard correlation
length. Another widely used choice is the Matérn correlation function:

r
(
x − x′) = 21−ν

Γ(ν)

(√
2ν‖x − x′‖

θ

)ν

Kν

(√
2ν‖x − x′‖

θ

)
, (2.4)

where Kν is a modified Bessel function of the second kind and θ and ν are parameters
to be specified that govern the correlation length and the derivatives of the computer
model respectively (ν rounded up to the next integer gives the number of derivatives
that exist).

Given such a second-order specification and a set of model evaluations at locations
x(1), . . . ,x(n), yielding simulator outputs D = (f(x(1)), . . . , f(x(n)))T , we can update
our second-order beliefs about f(x) at unevaluated location x via the Bayes linear
adjustment formulae:

ED

[
f(x)

]
= E

[
f(x)

]
+ Cov

[
f(x), D

]
Var[D]−1(D − E[D]

)
(2.5)

VarD
[
f(x)

]
= Var

[
f(x)

]
− Cov

[
f(x), D

]
Var[D]−1Cov

[
D, f(x)

]
(2.6)

where ED[f(x)] and VarD[f(x)] are the expectation and variance of f(x) adjusted by D.
See Goldstein (1999); Goldstein and Wooff (2007) for details and discussion of the ben-
efits of using a Bayes linear approach, and Vernon et al. (2010a,b, 2018) for the benefits
within a computer model setting. The fully specified Bayesian GP based calculation,
would of course yield similar update formulae for the analogous posterior mean and vari-
ance quantities (conditioned upon various hyperparameters in the definitions of c(·, ·)
and m(·)). While the results derived in this article apply to both the Bayes linear and
the fully specified GP emulator frameworks, we will most often refer to the Bayes linear
case, as the core arguments concern the second order covariance structure itself, and
how we adapt it to the presence of discontinuities. Additionally, for clarity of exposition,
we will mainly focus on the standard emulator specification as given by equations (2.2)
and (2.3), however see Appendix A for more advanced emulator specifications.
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2.2 Emulation Problems caused by Partial Discontinuities
It is worth discussing the specific difficulties that partial discontinuities pose for standard
emulators of the form described in the previous section. An example toy computer model
that exhibits a partial discontinuity is given by the function:

f(x) ≡ f(x, y) = 0.4 sin(5x) + 0.4 cos(5y) + 0.8(x− 0.75)2 sign(y − 1)1{x>0.75} (2.7)

where the two-dimensional x = (x, y)T and 1A is the indicator function that takes
value 1 when statement A is true and 0 otherwise, and “sign” just returns the sign of
its argument. The form of this function is shown in Figure 1a for the region X = {0 <
x < 2, 0 < y < 2}. We see that it has a discontinuity across the line y = 1, for x > 0.75,
shown as the black horizontal line, and that the discontinuity begins in the interior of
X at the point (x = 0.75, y = 1), and ends on the boundary at (x = 2, y = 1). It is
also clear that the function is smooth everywhere else apart from the discontinuity, an
attribute that we would wish to exploit in the emulation process.

However, if we naively attempt to apply standard GP or Bayes Linear emulation
procedures to f(x, y) they will fail, as they will attempt to smooth over the discontinuity
leading to two problems (i) the emulator predictions close to the discontinuity will
be highly inaccurate resulting in poor emulator diagnostics, and (ii) the estimation
of global emulation parameters (e.g. the correlation lengths θ) may produce strange
results that are very sensitive to the design, leading to possible global issues with the
emulator. We see that the main problem here is that a discontinuity of this form severely
violates the assumption of stationarity and also the common assumption of some form
of smoothness/differentiability/continuity implicit in the standard emulator covariance
structures. As argued in the Introduction, attempts to alter these assumptions e.g. by
breaking stationarity via input dependent correlation lengths or resorting to full deep
GPs, do not adequately address this issue as they are still using essentially continuous
structures to represent a discontinuity. Our approach in contrast, uses torn embeddings
that naturally capture the essence of the discontinuity.

Another approach worth mentioning would be to tinker with the correlation struc-
ture of the emulator directly, to reduce the correlation between outputs either side
of the discontinuity. For example, one suggestion is to use the geodesic distance be-
tween input points in the correlation function, defined such that viable geodesics do
not cross the discontinuity (and hence have to go around it). However, this fails as
it does not provide a valid covariance structure. This is easy to demonstrate e.g. by
using equations (2.2) and (2.3) to construct the 4 × 4 covariance matrix formed from
the four outputs f(xA), f(xB), f(xC), f(xD) corresponding to the four input points
xA = (0.5, 1), xB = (0.75, 1), xC = (1, 1+), xD = (1, 1−), and noting that it is not posi-
tive semi-definite (see Appendix B for details). This shows that altering the covariance
structure of an emulator to deal with a discontinuity in such ad hoc ways is fraught
with danger, even more so for multiple discontinuities of possibly complex, non-linear
shape.

Our proposed approach however, guarantees the validity of the emulator’s covariance
structure, even in the presence of multiple discontinuities of arbitrary shape, while still
providing a flexible choice of emulator form, as we now describe.
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Figure 1: (a) An example toy 2-dimensional function f(x) with partial discontinuity
located along the black horizontal line. (b) The embedding surface v(x, y), torn along
the location of the discontinuity. (c) Emulator expectation ED[f(x, y)] with induced
partial discontinuity. (d) Emulator standard deviation

√
VarD[f(x, y)] with induced

partial discontinuity (note the horizontal compression for larger x).

2.3 Torn Embedding in a Higher Dimension

The challenge is therefore clear: to develop more sophisticated emulators that exploit
regions of smoothness/differentiability/continuity while also respecting the effects of
multiple partial discontinuities at known, but possibly non-linear, locations, as seen in
the TNO Challenge II. In the interest of clarity, we introduce our approach in terms of
a 2-dimensional computer model, but note that the generalisation to higher dimensions
is straightforward. To incorporate discontinuities we employ the following procedure:

1. We embed the emulator’s 2-dimensional input space x ∈ X ⊂ R
2 into a higher

3-dimensional input space v(x) ∈ V ⊂ R
3 using the embedding surface v(x, y)
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such that we have

x =
(
x
y

)
and v(x) =

⎛
⎝ x

y
v(x, y)

⎞
⎠ . (2.8)

2. We tear the otherwise smooth 2-dimensional embedding surface v(x, y) along the
known locations of the discontinuities.

3. We then set up the emulator as usual using equations (2.2), (2.3), (2.5) and
(2.6), but now in the full 3-dimensional space, using the 3-dimensional v(x) as
its input. Specifically, we can design a space-filling collection of runs at locations
x(1), . . . ,x(n) that are embedded in 3-dimensional space as v(x(1)), . . . ,v(x(n)),
where the design process can now respect the presence of the discontinuities.

4. To evaluate the emulator’s expectation and variance at a new point x we simply
evaluate the emulator on the projection of x onto the embedding surface, that is
evaluate ED[f(v(x))] and VarD[f(v(x))] using equations (2.5) and (2.6).

The tears in the embedding surface v(x, y) will induce a discontinuity, of as yet uncertain
size, in the unknown output f(x), and also in our uncertainty statements for f(x), just
as we require.

So for example, the covariance structure of the original non-embedded 2-dimensional
emulator using the squared exponential covariance function of equation (2.3) was:

Cov
[
f(x), f

(
x′)] = σ2 exp

{
−
(
x − x′)TΣ−1

2D
(
x − x′)}. (2.9)

After the embedding into 3-dimensions, the covariance becomes simply:

Cov
[
f
(
v(x)

)
, f

(
v
(
x′))] = σ2 exp

{
−
(
v(x) − v

(
x′))TΣ−1

3D
(
v(x) − v

(
x′))} (2.10)

i.e. it depends on distances in the new 3-dimensional space via v(x) ∈ V, where Σ3D
governs the general 3D Mahalanobis distances. The freedom to choose from various
allowable forms for Σ3D will be an important part in the full embedded emulator de-
velopment as we shall discuss in Section 3. In practical terms, when constructing the
emulator using the embedding surface, we simply replace equations (2.2) and (2.3) by
equation (2.10).

Toy Example: Returning to the toy model of Figure 1a and equation (2.7), we specify
an embedding surface as

v(x, y) = −0.4(x− 0.75)2 sign(y − 1)1{x>0.75} (2.11)

which is shown in Figure 1b. The main requirement of the embedding surface at this
stage is that it is locally smooth, whilst also being torn along the discontinuity such
that the regions above and below the discontinuity are sufficiently different in height
in the third dimension in order to decorrelate outputs either side of the discontinuity.
Note that v(x, y) does not have to track the form of the actual computer model function
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f(x, y) at all: in this example v(x, y) above/below the discontinuity goes low/high while
the function f(x, y) does the opposite.

To demonstrate, we design a simple grid of 16 runs x(i), i = 1, . . . , 16 in the 2-
dimensional region X , shown as the black points in Figures 1c and 1d, and raise them
into 3 dimensions using v(i) = v(x(i)). Note that we choose a grid here as its symmetries
help to illustrate the emulator’s behaviour. We then emulate in the 3-dimensional space
as usual, using equations (2.10), (2.5) and (2.6), with D = {f(x(1)), . . . , f(x(16))}, and
using isotropic Σ3D = diag{θ, θ, θ}, with θ = 0.5 and σ = 0.7. The emulator expectation
ED[f(x)] ≡ ED[f(v(x))] evaluated across a dense grid of 80×80 points over X , is shown
in Figure 1c. We see that the emulator expectation is smooth away from the discontinu-
ity, but displays a suitable jump across the discontinuity, as desired, hence mimicking
the discontinuous behaviour of the real function f(x), given in Figure 1a, reasonably
well. Note that we do not claim that this emulator is particularly accurate (especially
given the simple grid design), just that it has the desired capability to represent smooth
regions combined with partial discontinuities. Individual realisations of f(x) drawn from
the emulator, also must have similar smooth/discontinuous behaviour, as shown in Ap-
pendix C. The emulator standard deviation

√
VarD[f(x)] ≡

√
VarD[f(v(x))] is shown

in Figure 1d, and shows the desired behaviour, in that the further we go along the dis-
continuity (in the positive x direction) the more uncorrelated the two regions (above and
below the discontinuity) become. For example, the point (1.75, 1−) just below the dis-
continuity has a similarly low level of emulator standard deviation as the point (1.75, 0)
i.e. a point on the lower boundary. This shows that the emulator at the point (1.75, 1−)
is just as uninformed as on the lower boundary, and is therefore hardly learning any-
thing from the runs above the discontinuity: it is almost uncorrelated with them, as
desired. There will be a more detailed discussion of this point and an examination of
the underlying induced 2D correlation structure in Section 4.2.

However, there is a problem: the emulator standard deviation (and expectation)
seem compressed slightly, in the x direction, for larger values of x. This issue is more
clearly seen in Figure 2 which shows a similar toy model example but now with two
discontinuities of different length. Here we have (see Figure 2a):

f(x, y) = 0.4 sin(5x) + 0.4 cos(5y) + 1.21{x>1}(x− 1)21{y>1.25}

− 0.6(x− 0.6)21{x>0.6}1{y<0.75}.

Now we have to use a more complex embedding surface to accommodate the discontinu-
ities of differing length (we postpone discussion of embedding strategies to Section 3.2):

v(x, y) = 0.6
(
x− b(y)

)2
1{x>b(y)}1{y<1.25}1{y>0.75}−0.6(x− 0.6)21{x>0.6}1{y<0.75}

with b(y) = 0.6 + (1 − 0.6)(y − 0.75)/(1.25 − 0.75) (2.12)

where b(y) represents the x coordinate of the line that interpolates the two interior end
points (0.6, 0.75) and (1, 1.25) of the discontinuities (see Figure 2b).

Now the emulator standard deviation
√

VarD[f(x)], shown in Figure 2d displays
clear compression/warping effects in the middle and lower regions for larger x, which
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Figure 2: (a) A 2-dimensional function f(x, y) with two partial discontinuities of dif-
fering length. (b) The embedding surface v(x, y). (c) The naive emulator expecta-
tion ED[f(x, y)] (note warping). (d) Naive emulator standard deviation

√
VarD[f(x, y)]

(note warping due to the embedded surface v(x, y)). (e) TENSE emulator expectation
ED[f(x, y)] with the warping induced by the use of the embedding surface v(x, y) shown
in (b), corrected using Non-Stationary Covariance Structures (compare with the uncor-
rected version given in (c)). (f) TENSE emulator standard deviation

√
VarD[f(x, y)],

again with the warping corrected using Non-Stationary-Covariance Structures (compare
with the uncorrected version in (d)).
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can be seen to be a direct consequence of the chosen form of v(x, y), as shown in
Figure 2b. This compression is a natural consequence of using a stretched embedding
surface (that for example does not conserve 2D distances) whilst using a stationary
(isotropic) 3-dimensional covariance structure: paths on steep regions of the embedded
surface move “too fast” into the 3rd dimension, and lead to an induced compression
in 2-dimensions. Equivalently, pairs of points in 2-dimensions end up further apart in
3-dimensions for regions of the embedding v(x, y) that possess large partial derivatives.

However, we really wish to keep the flexibility of stretched embeddings to ensure
that we can always create large enough jumps across discontinuities, and to handle
more complex cases, for example, discontinuities that begin and end within the space
X , or multiple sets of discontinuities of non-linear form that could be closed, or may
even intersect, neither of which could be addressed using say a distance conserving
embedding (which notably would mitigate such compression effects, but not entirely
remove them). Therefore the compression resulting from use of stretched embeddings
represents a serious problem that we will address in the next section.

3 Controlling the Warping Effect of the Embedding
3.1 Reversing the Local Impact of the Embedding

Problem: The use of the stretched embedding surface v(x, y) warps the emulator,
compressing the variances and expectations in the examples we have seen, inducing
unwanted x dependent correlation lengths (and more). This may lead to inefficient
emulators and multiple unintended consequences, and will not reflect our actual prior
beliefs about the 2-dimensional computer model. Additionally, we want the freedom
to choose a wide variety of embedding surfaces v(x, y) without this possibly damaging
warping effect occurring.

Solution: We can control this issue using carefully chosen non-stationary covariance
structures (NS-CS) defined over the 3-dimensional space.

We now detail a proposed form of the 3-dimensional correlation matrix Σ3D, used in
equation (2.10), that is guaranteed to reverse the local effect of the embedding, that is
for input points close together compared to the curvature of the embedding surface. We
discuss how to incorporate this choice across the whole input space using necessarily
NS-CS in the next section. We first focus on a reference input point x0, and wish to
specify a form for Σ3D that induces the desired squared exponential 2D covariance
structure locally around this point, that is such that Cov[f(x), f(x0)] approximately
has the form given by equation (2.9):

Cov
[
f(x), f(x0)

]
� σ2 exp

{
−(x − x0)TΣ−1

2D(x − x0)
}

(3.1)

for inputs x close to x0. For definiteness we choose the standard isotropic form of

Σ2D =
(
θ2 0
0 θ2

)
(3.2)
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although everything that follows can be applied to general Σ2D by using a simple pre-
transformation. As the actual covariance structure will be calculated via the embedding
v(x), using equations (2.10) and (3.1) we see that we simply require:

Cov
[
f(x), f(x0)

]
≡ Cov

[
f
(
v(x)

)
, f

(
v(x0)

)]
� σ2 exp

{
−(x − x0)TΣ−1

2D(x − x0)
}

⇔ σ2 exp
{
−
(
v(x) − v(x0)

)TΣ−1
3D

(
v(x) − v(x0)

)}
� σ2 exp

{
−(x − x0)TΣ−1

2D(x − x0)
}

⇔
(
v(x) − v(x0)

)TΣ−1
3D

(
v(x) − v(x0)

)
� (x − x0)TΣ−1

2D(x − x0). (3.3)

We now approximate v(x) by its linear Taylor expansion around the point x0. This
is equivalent to approximating the embedding surface v(x, y) by the tangent plane to
v(x, y) at the point x0 (we will require the tangent plane below for the construction of
Σ−1

3D). Hence we approximate:

v(x, y) − v(x0, y0) = vx(x− x0) + vy(y − y0) + O
(
x2) (3.4)

where vx = ∂v(x, y)/∂x and vy = ∂v(x, y)/∂y are the partial derivatives of v(x, y)
evaluated at x0, and O(x2) represents second-order terms and above. Similarly for the
vector quantity v(x), we have that, using equations (2.8) and (3.4):

v(x) − v(x0) =

⎛
⎝ x− x0

y − y0
v(x, y) − v(x0, y0)

⎞
⎠ =

⎛
⎝ x− x0

y − y0
vx(x− x0) + vy(y − y0) + O(x2)

⎞
⎠

=

⎛
⎝ 1 0

0 1
vx vy

⎞
⎠(

x− x0
y − y0

)
+ O

(
x2)

= A(x − x0) + O
(
x2), where A =

⎛
⎝ 1 0

0 1
vx vy

⎞
⎠ . (3.5)

Replacing this into equation (3.3) and dropping second-order terms and above, we get

⇔ (x − x0)TATΣ−1
3DA(x − x0) � (x − x0)TΣ−1

2D(x − x0) (3.6)
⇔ ATΣ−1

3DA � Σ−1
2D. (3.7)

Hence we see the intuitive result that in order to counter the linear effect of the em-
bedding surface in the vicinity of x0, we just need to choose a form for Σ3D that
satisfies equation (3.7), where A represents the linear embedding operator that raises
the 2-dimensional position vector x onto its corresponding location on the 3-dimensional
tangent plane given by A(x − x0).

Constructing Σ3D

There are several forms one could choose for Σ3D in order to satisfy equation (3.7),
however, many of these will not facilitate sufficient decorrelation of the emulator across
discontinuities in the embedding surface v(x, y). We hence choose a form for Σ3D that
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is aligned with the tangent plane to v(x, y) at the point x0, a form which is specifically
selected to provide substantial (possibly maximal) and controllable decorrelation across
the discontinuities.

We first set up a relevant orthonormal basis {w1,w2,w3}. Setting g(x, y, z) = z −
v(x, y) and noting that g(x, y, z) = 0 defines the embedding surface z = v(x, y), we see,
according to standard vector calculus results, that ∇g(x, y, z) evaluated at x0 gives the
vector normal to the embedding surface (and normal to the tangent plane), which we
set as the unit vector w3:

w3 ∝ ∇g(x, y, z) = −vxex − vyey + ez. (3.8)

We choose the unit basis vector w1 to lie in the tangent plane, but pointing in the direc-
tion of maximally increasing v(x, y). Hence w1 has 2-dimensional components parallel
to ∇v(x, y) = vxex + vyey, and hence has the form

w1 ∝ vxex + vyey + γez (3.9)

where as w1 lies on the tangent plane we have that w1.w3 = 0 which implies that
γ = v2

x+v2
y. The vector w2 will be orthogonal to both w1 and w3, but as w1 was chosen

to be in the direction of maximally increasing v(x, y), w2 must have zero component in
the 3rd dimension and so takes the form:

w2 ∝ βex + δey. (3.10)

Applying the orthogonality relation w2.w1 = 0 implies βvx + δvy = 0 which in turn
implies that β = −vy, δ = vx are suitable choices, up to an overall normalising constant.
To summarise, we have constructed the orthonormal basis {w1,w2,w3} given by

w1 = 1
c1

[
vxex + vyey +

(
v2
x + v2

y

)
ez
]
, where c21 = v2

x + v2
y +

(
v2
x + v2

y

)2 (3.11)

w2 = 1
c2

[−vyex + vxey], where c22 = v2
x + v2

y (3.12)

w3 = 1
c3

[−vxex − vyey + ez], where c23 = v2
x + v2

y + 1 (3.13)

where w1 and w2 lie on the tangent plane at x0, while w3 is orthogonal to the tangent
plane.

We postulate that if we specify Σ3D to be diagonal in the above {w1,w2,w3} ba-
sis, then it will satisfy the desired projection constraint given by equation (3.7). We
now show this to be true, subject to some additional conditions. For definiteness, say
that Σ3D is indeed diagonal with respect to the {w1,w2,w3} basis with corresponding
eigenvalues {α2

1, α
2
2, α

2
3}, hence we can represent Σ3D as:

Σ3D = α2
1 w1wT

1 + α2
2 w2wT

2 + α2
3 w3wT

3 (3.14)

and similarly the inverse Σ−1
3D as

Σ−1
3D = 1

α2
1
w1wT

1 + 1
α2

2
w2wT

2 + 1
α2

3
w3wT

3 . (3.15)
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To evaluate ATΣ−1
3DA as required by equation (3.7), we first note that

wT
3 A = 1

c3

(
−vx −vy 1

)⎛⎝ 1 0
0 1
vx vy

⎞
⎠ =

(
0 0

)
(3.16)

and hence we have that

ATΣ−1
3DA = AT

(
1
α2

1
w1wT

1 + 1
α2

2
w2wT

2 + 1
α2

3
w3wT

3

)
A = 1

α2
1
ATw1wT

1 A+ 1
α2

2
ATw2wT

2 A.

(3.17)
We see that ATΣ−1

3DA does not depend on α3. As will be discussed further below, α3
is a free parameter, which we can choose to control the extent of the decorrelation of
the emulator across the discontinuities, and is one of the motivations for choosing the
proposed form of Σ3D given by equation (3.14).

To evaluate the remaining terms in equation (3.17), we have that:

wT
2 A = 1

c2

(
−vy vx 0

)⎛⎝ 1 0
0 1
vx vy

⎞
⎠ = 1

c2

(
−vy vx

)
(3.18)

⇒ 1
α2

2
ATw2wT

2 A = 1
α2

2c
2
2

(
−vy
vx

)(
−vy vx

)
= 1

α2
2r

2

(
v2
y −vxvy

−vxvy v2
x

)
(3.19)

where we have employed the simplifying notation r2 ≡ v2
x + v2

y = c22. Similarly, and
using c21 = r2 + r4 = r2(1 + r2), we have

wT
1 A = 1

c1

(
vx vy v2

x + v2
y

)⎛⎝ 1 0
0 1
vx vy

⎞
⎠ = 1

c1

(
vx(1 + r2) vy(1 + r2)

)

⇒ 1
α2

1
ATw1wT

1 A = (1 + r2)2

α2
1c

2
1

(
vx
vy

)(
vx vy

)
= (1 + r2)

α2
1r

2

(
v2
x vxvy

vxvy v2
y

)
. (3.20)

Combining equations (3.2), (3.17), (3.19) and (3.20), we see that the projection
constraint given by equation (3.7) can now be rewritten as

Σ2D = ATΣ−1
3DA (3.21)

⇔
( 1

θ2 0
0 1

θ2

)
= (1 + r2)

α2
1r

2

(
v2
x vxvy

vxvy v2
y

)
+ 1

α2
2r

2

(
v2
y −vxvy

−vxvy v2
x

)
(3.22)

⇔
( 1

θ2 0
0 1

θ2

)
= 1

r2

⎛
⎝ v2

y

α2
2

+ (1+r2)v2
x

α2
1

( (1+r2)
α2

1
− 1

α2
2
)vxvy

( (1+r2)
α2

1
− 1

α2
2
)vxvy v2

x

α2
2

+ (1+r2)v2
y

α2
1

⎞
⎠ . (3.23)

Equating the off-diagonal terms gives:(
(1 + r2)

α2
1

− 1
α2

2

)
vxvy = 0 (3.24)
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⇔ Case 1: α2
1 = α2

2
(
1 + r2) or Case 2: vx = 0 or Case 3: vy = 0.

For Case 1 we replace α2
1 = α2

2(1 + r2) into equation (3.23) giving

( 1
θ2 0
0 1

θ2

)
= 1

r2

⎛
⎝ v2

y

α2
2

+ (1+r2)v2
x

α2
2(1+r2) 0

0 v2
x

α2
2

+ (1+r2)v2
y

α2
2(1+r2)

⎞
⎠ =

(
1
α2

2
0

0 1
α2

2

)
⇔ α2

2 = θ2.

(3.25)
For Case 2 we replace vx = 0 (which implies r2 = v2

y) into equation (3.23) giving

( 1
θ2 0
0 1

θ2

)
=

( 1
α2

2
0

0 (1+r2)
α2

1

)
⇔ α2

2 = θ2 and α2
1 = α2

2
(
1 + r2) (3.26)

which is exactly the same result as Case 1. Case 3 gives the same answer also, due to
the symmetry between x and y. Therefore, we finally see that the projection requirement
given by equation (3.7) is satisfied by specifying the first two eigenvalues α2

1 and α2
2 of

Σ3D to be
α2

1 = θ2(1 + r2) and α2
2 = θ2 (3.27)

with r2 = v2
x + v2

y. This demonstrates that the choice of form of Σ3D as proposed in
equation (3.14) is indeed valid. The constraint on the eigenvalues is intuitive from a
geometric perspective especially when considering the choice of the basis {w1,w2,w3}:
as w2 points along a direction in which the embedding surface v(x, y) is not (locally)
increasing, there will be no warping/compression of the emulator along this direction,
in which case α2

2 must equal the desired 2D correlation length of θ2. Conversely, w1 was
defined to point in the direction of maximally increasing v(x, y), and the gradient of
v(x, y) in this direction is |∇v(x, y)| = r hence α2

1 must be increased to counteract the
warping/compression along this direction that would otherwise be induced by the use
of such a stretched embedding surface. Finally, as w3 by construction is orthogonal to
v(x, y) at x0, and as we are only interested in points that lie on v(x, y), there must be
no constraint imposed at this stage on α2

3, and hence it will be a free parameter that
we can choose or indeed infer.

We need an explicit representation for Σ3D (in the standard Cartesian basis) for
use in the non-stationary emulators employed in the next section, and we now have all
the pieces required to build this representation, using equations (3.14), (3.27) and the
definition of the basis vectors (equations (3.11), (3.12) and (3.13)), as follows. We have

α2
1w1wT

1 = α2
1

c21

⎛
⎝ vx

vy
v2
x + v2

y

⎞
⎠(

vx vy v2
x + v2

y

)
= θ2

r2

⎛
⎝ v2

x vxvy vxr
2

vxvy v2
y vyr

2

vxr
2 vyr

2 r4

⎞
⎠ ,

α2
2w2wT

2 = α2
2

c22

⎛
⎝−vy

vx
0

⎞
⎠(

−vy vx 0
)

= θ2

r2

⎛
⎝ v2

y −vxvy 0
−vxvy v2

x 0
0 0 0

⎞
⎠ ,

α2
3w3wT

3 = α2
3

c23

⎛
⎝−vx
−vy
1

⎞
⎠(

−vx vy 1
)

= α2
3

r2 + 1

⎛
⎝ v2

x vxvy −vx
vxvy v2

y −vy
−vx −vy 1

⎞
⎠ .
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We can hence explicitly construct Σ3D = α2
1 w1wT

1 + α2
2 w2wT

2 + α2
3 w3wT

3 giving

Σ3D(x0) =

⎛
⎜⎜⎝

θ2 + α2
3v

2
x

r2+1
α2

3vxvy
r2+1 vx(θ2 − α2

3
r2+1 )

α2
3vxvy
r2+1 θ2 + α2

3v
2
y

r2+1 vy(θ2 − α2
3

r2+1 )

vx(θ2 − α2
3

r2+1 ) vy(θ2 − α2
3

r2+1 ) θ2r2 + α2
3

r2+1

⎞
⎟⎟⎠ (3.28)

where we make the dependence on x0 explicit. Using this expression for Σ3D(x0) in the
covariance structure of the embedded emulator as given in equation (2.10), will yield
for points close to x0, the desired induced covariance structure as represented by Σ2D
in equation (3.2). For embeddings with zero curvature, this correction based on linear
approximations to the embedding surface v(x, y), is exact.

3.2 Controlling the Global Impact of the Embedding Using
Non-Stationary Emulation

The above form of Σ3D(x0) as given by equation (3.28), will correct for the impact of the
embedding surface on the emulator’s covariance structure, but only locally around the
point x0, as vx, vy and r2 are all evaluated at x0. This is not enough for our needs, as we
wish to correct the whole emulator globally over all of X . Therefore we employ a non-
stationary covariance structure as follows. We define an x dependent covariance matrix
Σ3D(x) exactly of the form given by equation (3.28), but now evaluated at general
point x. As this covariance matrix Σ3D(x) will vary over the input space for general
embeddings v(x, y) (except in the trivial case of a linear embedding), we employ the
non-stationary apparatus recently used by Dunlop et al. (2018), first derived by Paciorek
(2003), in order to define a valid covariance structure.

In the standard non-stationary scenario (i.e. without any embedding surface) Dunlop
et al. (2018) use the generalised non-stationary squared exponential covariance function
which essentially averages an x dependent covariance matrix Σ(x) as follows, while
guaranteeing a valid covariance structure over the whole input space. They define the
quadratic form Q(x,x′) for an x dependent covariance matrix Σ(x) as

Q
(
x,x′) =

(
x − x′)T(Σ(x) + Σ(x′)

2

)−1(
x − x′) (3.29)

and then the corresponding non-stationary squared exponential covariance function for
use in the emulator is given, for d-dimensional x, as

Cov
[
f(x), f

(
x′)] = σ2 2 d

2 |Σ(x)| 14 |Σ(x′)| 14
|Σ(x) + Σ(x′)| 12

exp
{
−Q

(
x,x′)}. (3.30)

For our use we simply elevate this non-stationary structure to lie on the embedding
surface v(x, y) in the 3D space, hence we instead define the quadratic form via the
position vector on the embedding surface v(x) as

Q
(
v(x),v

(
x′)) =

(
v(x)−v

(
x′))T(Σ3D(v(x)) + Σ3D(v(x′))

2

)−1(
v(x)−v

(
x′)) (3.31)
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and similarly the corresponding non-stationary squared exponential covariance function
in the embedded 3D input space is given as

Cov
[
f
(
v(x)

)
, f

(
v
(
x′))] = σ2 2 3

2 |Σ3D(v(x))| 14 |Σ3D(v(x′))| 14
|Σ3D(v(x)) + Σ3D(v(x′))| 12

exp
{
−Q

(
v(x),v

(
x′))}
(3.32)

where Σ3D(v(x)) ≡ Σ3D(x) is given by equation (3.28) with x0 replaced by x. This
again guarantees a valid covariance structure throughout both the 3D space and the
induced 2D space. Note that this construction generalises to a wide class of covariance
structures (Dunlop et al., 2018).

We see that now for any pair of input points x and x′ that are close together relative
to the curvature of the embedding surface, the non-stationary covariance structure as
given by equation (3.32), which essentially averages the covariance matrices Σ3D(x)
and Σ3D(x′) defined at each of the points, will counteract the local warping effect of
the embedding surface, to first order. For pairs of input points that are further apart,
non-linear effects may become noticeable, however, for modest choices of correlation
length θ these effects will typically be suppressed as the covariance rapidly drops to
zero for points that are further apart than the correlation length. Therefore, an emulator
constructed using the non-stationary covariance structure given by equation (3.32) will
a) allow us the freedom to choose from a wide class of torn embedding surfaces v(x, y)
to handle unlimited numbers of discontinuities of complex configuration and to ensure
that the emulator is decorrelated across them, as discussed in Section 2.3, and b) will
approximately induce the desired stationary 2D covariance structure across local regions
that do not contain discontinuities. We refer to this general framework as the Torn
Embedding Non-Stationary Emulation (TENSE) approach.

In Figures 2e and 2f we apply the TENSE approach to the toy model discussed in
Section 2.3. Comparing with the uncorrected version, as seen in Figures 2c and 2d, we see
that the emulator standard deviation

√
VarD[f(x)] now displays no noticeable warping

effects and maintains the symmetry we would expect around each of the run locations
(the black points) especially in the top, middle and lower regions for large x, while
also displaying suitable uncorrelated behaviour across the discontinuities. The emulator
expectation also looks far more reasonable, displaying no noticeable warping, as desired.
See Appendix J for more detail where we present emulator diagnostics defined over
various test sets and a further examination of the induced TENSE covariance structure.

We see that the embedding surface v(x, y), here given by equation (2.12), is clearly
important for the TENSE emulator and must be constructed to satisfy the following
principles: a) there must be a large enough tear along each discontinuity to ensure suit-
able decorrelation of the emulator, but b) the curvature of v(x, y) must not be too large
in order to avoid unwanted non-linear artefacts in the induced covariance structure. We
have utilised quadratic surfaces to achieve these goals noting that they are continuous
in both v(x, y) and its first derivatives across the transition from the flat region of
v(x, y) = 0 to the quadratic region, and smooth (i.e. infinitely differentiable) elsewhere,
however many other embedding surfaces would be suitable. See Appendix K for more
details, where we show the effects on the emulator of different embedding choices and
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discuss the impact of the decorrelation parameter α3. We leave the interesting problem
of inferring the embedding surface to future work.

Although we demonstrate this framework in 2D/3D and for squared exponential
covariances, it is simple to extend in various ways. For example, the above calculations
extend to any covariance structure of the form r(a) where a is the general Mahalanobis
distance between x and x′ and r(.) is a valid covariance function, e.g. the Matérn (Ras-
mussen and Williams, 2006), using the general form for equation (3.32) (Dunlop et al.,
2018). If one desires a non-stationary induced 2D covariance structure we can achieve
this using a similar strategy by inserting a point-wise 2D pre-transformation. Similarly
this torn embedding strategy can be extended to higher dimensional input spaces with
more complex discontinuities, e.g. a d-dimensional input space containing discontinuities
residing on d− 1 dimensional hypersurfaces would be embedded in a d+ 1 dimensional
space. Note that more complex networks of m discontinuities may require embedding in
a higher dimensional space, e.g. of dimension d+m, which would provide more freedom
to decorrelate the emulator and therefore to avoid unwanted effects due to neighbour-
ing discontinuities. However, as we would still be operating on a d-dimensional surface,
emulator accuracy may not be penalised too severely by the use of m extra dimensions.

3.3 Emulating with Discontinuities on Non-Linear Locations
An attractive feature of the Torn Embedding Non-Stationary Emulation (TENSE) ap-
proach is that it can be applied to a broad class of discontinuities, for example, when
the discontinuities are situated on non-linear locations. An example of this is provided
by the function f(x, y), shown in Figure 3a (see Appendix D for the full definition).
A suitable embedding surface v(x, y) is shown in Figure 3b. Note again the difference
in form between v(x, y) and f(x, y): e.g. in the top/bottom regions v(x, y) is flat while
f(x, y) tends downwards, and in the right/left regions v(x, y) tends downwards/upwards
respectively whilst f(x, y) tends upwards in each case.

The TENSE emulator expectation ED[f(x, y)] and standard deviation√
VarD[f(x, y)] with v(x, y) induced warping corrected, are shown in Figures 3c and 3d

respectively, based on a 16 point grid design given as the black points. Comparing Fig-
ure 3c with 3a we see that the emulator expectation captures the form of f(x, y) well,
and handles the curved discontinuities with ease. We note that one could apply the
Treed GP method (Gramacy and Lee, 2008) here, that divides the input space up by
partitioning on individual inputs, effectively creating rectangular subregions in which
independent GPs are trained. However, although this method may learn the locations
of the discontinuities, it may perform poorly here, as it is very inefficient to represent
curved discontinuities using rectangular regions, and many more runs may be required
to train the independent GPs, instead of the single emulator used in the TENSE ap-
proach. Similarly, we note that a brief investigation showed that even using Treed GPs
for the simple examples in Figures 1 and 2, which possess linear discontinuity locations,
required far more runs in order to detect the existence of the discontinuities (36 and 64
runs respectively), than we used here (16 and 12 runs respectively). This is not unex-
pected and demonstrates that learning about even simple discontinuities without any
prior information is expensive.
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Figure 3: (a) A 2-dimensional function f(x, y) with curved discontinuity locations given
by the curved black lines. (b) The embedding surface v(x, y). (c) The TENSE emulator
expectation ED[f(x, y)] with v(x, y) warping corrected using NS-CS. (d) The TENSE
emulator variance VarD[f(x, y)] with v(x, y) warping corrected using NS-CS.

4 Application: TNO 2 Well Placement Challenge
4.1 Problem Setup: Multiple Partial Discontinuities

The motivation for developing the TENSE framework is in direct response to the fol-
lowing problem posed within the oil industry. The TNO OLYMPUS Field Development
Optimisation Challenge was devised by the Netherlands Organisation for Applied Scien-
tific Research (TNO) in collaboration with Delft University of Technology (TU Delft),
and industrial partners Eni S.p.A, Equinor ASA and Petrobras. The TNO challenge
is based around the fictitious oil reservoir model named OLYMPUS (TNO, 2017), and
was designed to mimic realistic simulation, optimisation and decision problems faced
by the oil industry. It has attracted much attention from industry and academia with
results from the active competition period presented and compared at the EAGE/TNO
Workshop on OLYMPUS Field Development Optimization (TNO, 2018).
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Figure 4: The TNO II Challenge Olympus oil reservoir model. (a) An image in physical
coordinates, with the blue areas representing higher oil volume per unit area. The black
lines show the locations of curved geological faults that will cause discontinuities in the
Net Present Value (NPV) surface defined over the 2D map. (b) In transformed grid
aligned coordinates, showing the oil volume per unit area of one of the 50 geological
realisations. Note that the geological faults (black horizontal lines) are now straight:
this is not required for the TENSE methodology, but is useful and worth exploiting.
The non-oil containing region is coloured blue.

The TNO Challenge I concerns well control, however the TNO Challenge II, which
we exclusively focus on here, concerns well placement. The challenge is to choose a con-
figuration of oil well placement to optimise the Net Present Value (NPV) over a 20 year
period for the OLYMPUS reservoir model. NPV essentially represents the discounted
profits over the 20 year period. As the reservoir model, used to calculate the NPV, has
complex features including geological uncertainty and is expensive to evaluate, and as
multiple wells may be used, this represents a demanding task. Figure 4a shows an image
from above of the Olympus reservoir in physical coordinates, coloured by oil volume per
unit area. We can choose to locate production wells or injection wells at any location
over this 2D map, with each configuration yielding a certain NPV value. Note however
in Figure 4a the black lines extending into the map from the northern edge: these are
geological faults in the model, with know location, that will inhibit the flow of oil and
water across them. This will induce a sharp discontinuity in the NPV response as the
possible well is moved either side of the fault. Away from such faults, we anticipate the
NPV surface to be far smoother.

In the Olympus model the location of the faults is fixed and known, however many
other geological aspects (e.g. the permeability/porosity fields) are treated as uncertain
and represented via 50 geological realisations provided by the TNO consortium, derived
from an underlying geology model which was not made freely available. An example of
one of the geological realisations is given in Figure 4b, coloured by the oil volume per unit
area, and more realisations are given in Figure 8, Appendix F, along with additional
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plots of the mean and SD of the oil volume per unit area of the 50 realisations. In
these plots the physical 2D coordinates have been transformed into grid aligned 2D
coordinates, which has the added effect of transforming the faults so that they lie along
constant horizontal (black) lines. As demonstrated in Section 3.3, the TENSE approach
does not require linear discontinuity locations, but this transformation, available due
to the way the OLYMPUS model was constructed, simplifies subsequent specifications
e.g. for the embedding surface, hence it would be remiss of us not to exploit it here.

The precise remit of the TNO Olympus Challenge II is to choose well locations to
optimise the mean NPV over the 50 geological realisations (each geological realisation
will generate its own NPV). For example, for a single vertical producer well located
at position x = (x, y), we could evaluate the NPV for any x and for any of the i =
1, . . . , 50 geological realisations, giving output NPV (i)(x). We hence define our primary
deterministic computer model of interest f(x) to be the mean over 50 realisations for a
single producer well located at x, in accordance with the challenge:

f(x) ≡ NPV (x) = 1
50

50∑
i=1

NPV (i)(x) (4.1)

(see Appendix E for details). Obviously there are several uncertainties and features
that one might want to include in a more detailed analysis, that are missing from the
original TNO Challenge. These include the effects of the finite sample size of geological
realisations, uncertainties due to oil price and water cost, model discrepancy due to
the imperfection of the reservoir (and geology) model itself, the benefits of sequential
decision making, and indeed whether the NPV should even be identified with the utility
of the decision makers. See Owen et al. (2020) for discussion of several of these issues,
and also House et al. (2009) for a relevant treatment of exchangeable computer models.
However, here we are primarily interested in the following emulation problem.

Concern has been expressed in the oil industry over the transparency of various
black-box optimisers that can produce counterintuitive well configurations of unfamil-
iar form (and of unknown optimality), that made some engineers nervous. We were
hence approached and asked if we could help visualise the NPV surface, to aid interpre-
tation and insight in various situations that may occur within a more human informed
optimisation process. Specifically a key request was to visualise the mean NPV surface
for a single producer well, as represented by f(x), over the full reservoir map X in
the presence of multiple discontinuities, using only a limited set of evaluations of the
expensive OLYMPUS model. This was the original motivation for developing TENSE.

4.2 Constructing the Embedding Surface v(x, y)

We proceed to apply the TENSE framework to the deterministic function f(x) repre-
senting the mean NPV of a single producer well as follows. We specify an embedding
surface v(x) = v(x, y) by tearing along the five discontinuities shown in Figure 4b and
bending alternate regions higher and lower into the 3D space using quadratic forms,
exploiting a similar strategy to that employed in Section 2.3. The embedding surface is
shown in Figure 9 (Appendix G) with the full definition also given in Appendix G.
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To check that this choice of embedding will produce the desired behaviour of allowing
the emulator to exhibit discontinuous jumps over the discontinuities with minimal warp-
ing, we examine the induced covariance structure of vertical lines of points that cross
all the discontinuities, as shown in Figure 5. For example, Figure 5a shows a zoomed
in section of the embedding surface v(x, y) with the discontinuities as horizontal black
lines (as in Figure 4b), but also highlights a green vertical line of points at x = 42,
while Figure 5b shows the induced 2D emulator correlation matrix corresponding to
this green line of points. The correlation matrix is formed from Cov[f(v(x)), f(v(x′))]
using equations (3.32), (3.31) and (3.28).

We see that the two regions y > 123.5 and y < 123.5 either side of the highest
fault are uncorrelated as desired, and that the correlation structure resorts to the usual
squared exponential form within each region. Figures 5c and 5d are defined similarly,
but for the line x = 78. Now we see that the regions either side of the fault at y = 85.5
are almost entirely uncorrelated, while either side of the fault at y = 99.5 the regions
have suppressed correlation, as the start of the fault is relatively close to the green
line. In Figures 5e and 5f the more extreme case of x = 116 is examined, where we see
six uncorrelated regions separated by the five faults, precisely as desired. Due to the
TENSE approach of embedding in a higher dimension, all these correlation matrices
are guaranteed to be valid. Note that we choose to directly specify the form of the
embedding surface v(x, y) here, as it is feasible to do this in a controlled way as to
ensure each region either side of a discontinuity is well separated in the third dimension.
One could of course treat v(x, y) as uncertain, possibly of parameterised form but still
torn along the locations of the discontinuities, and then use the run data to learn about
v(x, y). However, this may lead to several identifiability issues, and there may not be
a strong signal as to the particular form for v(x, y), so we leave such considerations to
future work. See also Appendices J and K for further discussions and analysis regarding
the covariance structures typically induced by TENSE.

4.3 Emulating the Net Present Value Surface

Having defined the embedding surface v(x, y), we are now able to construct an emulator
for the NPV output as represented by f(x), corresponding to a single producer well at
location x ∈ X ⊂ R

2, in the presence of the discontinuities caused by the geological
faults. However, there is additional prior information about the Olympus model that we
can include. We know, without performing any model evaluations, that if a well is placed
outside of the oil containing region of the reservoir, there will be no oil production and
the NPV will be zero (or a small negative value). For linear boundaries, one can in fact
incorporate known model behaviour on the boundary, within the emulator analytically
in any dimension (see for example Vernon et al., 2019 and Jackson and Vernon, 2023).
However, here the boundary around the edge of the oil containing region is complex,
and so we simply add a set of 36 “ghost points” just outside the oil containing region,
with the NPV value of each set to f(x) = 0. The effect of this prior information is shown
in Figure 6a which gives the prior emulator expectation E[f(x)] over X , and shows the
ghost points as red points located within the grey non-oil region.
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Figure 5: Left panels (a), (c) and (e): the torn surface v(x, y) embedded in 3D used
to induce the discontinuities along the five geological faults, shown as the horizontal
black lines, in the Olympus model. Right panels (b), (d) and (f): the induced emulator
correlation matrix of the set of points along the green vertical line highlighted in the
corresponding left panel, at locations x = 42, 78 and 116 respectively. See Figure 9,
Appendix G, for a 3D image of the full torn embedded surface v(x, y).
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The initial space filling set of (wave 1) runs was designed respecting the following
considerations. The Olympus model is computationally intensive and our collaborator
was uncertain as to how much (cloud) computational resources would be available, im-
plying early termination of the design was possible. We therefore constructed the design
one point at a time, with each point x(i) chosen to minimise the current emulator vari-
ance VarD(i) [f(x)] integrated over the oil reservoir region X , given x(i) and the previous
design points, where D(i) = {f(x(1)), . . . , f(x(i−1)), f(x(i))}. This criterion was calcu-
lated approximately using a large test set of regularly spaced input points spanning X ,
from which x(i) was also selected. The test set was composed of a fine grid of points with
points removed that did not lie within the oil containing region X , shown in Figure 4b.
As this calculation uses the emulator’s correlation structure, it respects the discon-
tinuities and specifically the low correlation between certain regions as highlighted in
Figure 5. In addition, due to the sequential nature of the design construction, even early
termination would result in a well spaced and informative set of runs. Some pragmatic
choices were used in the design calculation e.g. within an isotropic Σ2D we specified a
fixed 2D correlation length of θ = 12, a judgement informed by the local correlation
seen in the oil volume per unit area of the geological realisations (Figure 4b). We also
employed a nearest neighbour approximation in the emulator variance calculation, to
greatly improve efficiency: this exploited the smaller correlation lengths, which imply
that candidate points would mainly affect and be affected by the runs in their local
vicinity. Finally, we added three pairs of points to the design, either side of three of
the major faults to give more direct information regarding the discontinuities in those
regions. The resulting 47 point wave 1 design is shown in Figure 6b as the green points.
It displays good space filling properties, while adequately exploring each of the uncorre-
lated regions in between the faults. At each of the 47 points x(i), all 50 of the geological
realisations were evaluated giving NPV (j)(x(i)), j = 1, . . . , 50, and the mean calculated,
giving f(x(i)) and hence the first batch of runs, denoted D1 = {f(x(1)), . . . , f(x(47))},
for use in the emulator equations.

The TENSE framework was then applied to D1, employing the embedding surface
v(x, y) given in Appendix G, using equations (3.32), (3.28), (2.5) and (2.6), with details
given in Appendix H. The resulting emulator expectation ED1 [f(x)] adjusted by the
model evaluations D1 is shown in Figure 6b as the coloured contours. We see that the
emulator incorporates jumps in f(x) due to the discontinuities caused by the faults,
while remaining smooth in all other parts of the space X , as desired. In addition, a
clear visualisation of the (expected) NPV surface across the oil reservoir is obtained,
and the regions of suspected high NPV identified for further investigation.

Our primary goal is to visualise this surface, and to identify and examine in more
detail regions of higher NPV for consideration by the relevant expert/decision maker.
We hence use an upper credible interval (UCI) approach to define a region X1 of possibly
high NPV, worthy of further investigation, as

X1 ≡
{
x ∈ X | ED

[
f(x)

]
+ c

√
VarD

[
f(x)

]
> f+ − δ

}
(4.2)

where f+ is the highest NPV seen so far, δ is a tolerance based on uncertainties in
the decision process itself (Owen et al., 2020) and on our desire to explore the region
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Figure 6: The output of the TENSE emulator as applied to the TNO Challenge II
Olympus reservoir model. (a) The prior emulator expectation E[f(x)] trained only on
the ghost runs (red points) located in the non-oil producing (grey) regions. (b) Wave 1
TENSE emulator expectation ED1 [f(x)] trained on 47 wave 1 runs denoted D1 (green
points) in addition to the ghost points. Plots (a) and (b) share the same key. (c) The
wave 2 TENSE emulator expectation ED1∪D2 [f(x)] trained on an additional set of 48
wave 2 runs denoted D2. (d) The wave 2 TENSE emulator expectation of panel (c) now
with the high oil production regions highlighted. Plots (c) and (d) share the same key.
In all panels the horizontal black lines show the location of the geological faults which
induce the discontinuities.

of high NPV and not just to identify a single possibly non-robust maxima, and c is
typically chosen to be 3 based on Pukelsheim’s 95% 3-sigma rule for arbitrary unimodal
distributions (Pukelsheim, 1994). Figures 11a and 11b (in Appendix I) show respec-
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tively the prior UCI: E[f(x)] + c
√

Var[f(x)], and also the wave 1 UCI adjusted by D1:
ED1 [f(x)] + c

√
VarD1 [f(x)].

Following a general history matching strategy (Vernon et al., 2010a), we proceeded
by designing a second wave of space filling runs over the X1 region, now chosen to
minimise the mean emulator variance over X1 only. This design is shown as the light
blue points in Figure 6c. Evaluation of this design using the Olympus model creates
a second vector of model outputs denoted D2. We can then adjust the TENSE emu-
lators by D1 ∪ D2, giving the emulator expectation ED1∪D2 [f(x)] for the mean NPV,
were a producer well to be placed at location x, which is shown in Figure 6c as the
coloured contours. We now have a detailed representation of the high NPV areas of the
X map, naturally incorporating the fault discontinuities. Examination of the UCI after
the wave 2 runs (Appendix I, Figure 11c) shows that there is little to be learned about
this region by performing further runs. Figure 6d highlights the high NPV region in
question, with the solid contours corresponding to thresholds of f+ − δ = 2.2× 107 and
2.3 × 107 respectively. This achieves our objective of locating and visualising the high
NPV areas for the position of a single producer well. The TENSE framework can be
employed for several further types of analysis e.g. for quantile emulation to examine the
uncertainties in the NPV induced by the unknown geology, which we demonstrate in
Appendix I.

4.4 Extensions and Generalisations

These initial investigations of the TNO challenge using TENSE can be extended in
multiple ways. The full problem of optimising the joint location of multiple producer
and injector wells is of course the long-term goal. This is a very challenging problem
especially when combined with an appropriate level of uncertainty quantification (Owen
et al., 2020). However, due to the localised structure of oil reservoirs, for early/medium
times, often small groups of wells (e.g. one injector combined with two producers) are
optimised on particular sub-regions of the map, to break the full problem into smaller,
tractable pieces. The TENSE framework can be directly extended to such cases. For
the example of three wells, a 6-dimensional problem, we would need to employ a torn
embedding in a 9-dimensional space to account for the discontinuity effects on each of
the three wells. This 9-dimensional space would look like the direct product of three
versions of the 3-dimensional space used here in the single well example.

In principle the TENSE approach can be generalised to far more wells that just three,
however, constructing an accurate emulator over the full input space for larger numbers
may require infeasible numbers of runs (and we would waste a lot of runs exploring the
low NPV parts of the space). So a more targeted approach, optimising sets of three
wells, combining them and then employing a final wave or two of optimisation on the
full set of wells, may be a sensible strategy. We leave this, and the various associated
design strategies, to future work.
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5 Conclusion and Future Plans
We have introduced the Torn Embedding Non-Stationary Emulation (TENSE) approach
for emulating expensive functions that possess partial discontinuities of known location
and general non-linear form, which possibly begin and/or end within the input space
of interest. This method utilises a torn embedding surface to induce the required dis-
continuities, combined with a carefully chosen non-stationary covariance structure over
the embedding space, to correct for the local impact of the use of the non-linear embed-
ding. While we have introduced this in the context of a squared exponential covariance
structure in 2D/3D, it can be applied to a wide class of covariance structures and em-
ulator forms, and in principle, extended into higher dimensions. We demonstrated this
approach on various example functions, and then applied it to the realistic OLYMPUS
reservoir model, showing how it facilitated the design of model evaluations and the con-
struction of appropriate emulators to visualise the NPV surface, both of which respected
the presence of the discontinuities. It was also applied to quantile emulation, and the
extension to multiple wells and higher dimensions was discussed.

There are many possible extensions of this methodology. While we have employed
fixed embedding surfaces v(x, y) chosen to suitably decorrelate outputs either side of the
discontinuities, one could instead use the TENSE framework to learn about such surfaces
to find more accurate embeddings. This could be combined with methods to learn about
the location of the discontinuities themselves to provide a more complete analysis, in a
fully Bayesian framework. The extension to more complex networks of discontinuities
is also very interesting, as it may require embedding in higher dimensional spaces to
provide the necessary freedom to ensure sufficient decorrelation across all discontinuities,
especially those that intersect, resulting in a challenging embedding problem.
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