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ABSTRACT
The 1-in-3 and Not-All-Eqal satisfiability problems for Boolean
CNF formulas are two well-known NP-hard problems. In contrast,
the promise 1-in-3 vs. Not-All-Eqal problem can be solved in
polynomial time. In the present work, we investigate this constraint
satisfaction problem in a regime where the promise is weakened
from either side by a rainbow-free structure, and establish a complex-
ity dichotomy for the resulting class of computational problems.
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1 INTRODUCTION
Let 𝜑 be a Boolean formula given as a conjunction of clauses, each
consisting of three (un-negated) variables. Consider the following
question:

Is there a truth assignment such that
each clause has exactly one true variable?

This is awell-knownNP-hard computational problem, called (mono-
tone) 1-in-3 Sat [30]. Similarly, the question

Is there a truth assignment such that
each clause has at least one true and one false variable?

is the NP-hard problem known in the literature as 3-Not-All-
Eqal (NAE) Sat [30, 47]. In these and other variants, the Boolean
satisfiability problem has had a central importance in the develop-
ment of complexity theory, its investigation dating back at least
to [24]. Notice that the first notion of satisfiability is stronger than
the second: Any 1-in-3 assignment is also an NAE assignment. Con-
sider now the promise satisfiability problem that asks to distinguish
whether a formula 𝜑 is satisfiable in the strong sense (a 1-in-3 as-
signment exists) or 𝜑 is not even satisfiable in the weak sense (an
NAE assignment does not exist). This problem — known as “1-in-3
vs. NAE” [12] — is a relaxation of both problems considered above,
in that it admits any answer on those formulas that are satisfiable in
the weak but not in the strong sense. Equivalently, one is promised
that the input formula is not of that kind. Let us try to solve this
problem, following an algorithm from [12]. For any clause in 𝜑

involving three variables 𝑥,𝑦, 𝑧, consider the linear equation

𝑥 + 𝑦 + 𝑧 = 1. (1)

This results in a linear system, which may be solved over the inte-
gers in polynomial time by using, essentially, Gaussian elimination.1
If there is no integer solution, we are sure that, in particular, no
{0, 1} solution exists: 𝜑 does not admit a 1-in-3 assignment. If there
is an integer solution, we round it by turning positive values into 1
and non-positive values into 0. Since no three positive (respectively,
non-positive) integers can sum up to 1, we are guaranteed that the
output of this process is a valid NAE assignment — while it is not

1More precisely, by the integral version of Gaussian elimination that corresponds, in
matrix terms, to computing the Hermite or Smith normal forms of the matrix of the
linear system [40].

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://orcid.org/0000-0001-9491-2016
https://orcid.org/0000-0002-1839-4824
https://orcid.org/0000-0003-4373-8227
https://orcid.org/0000-0003-3684-9412
https://orcid.org/0000-0002-0263-159X
https://doi.org/10.1145/3661814.3662069
https://arxiv.org/abs/2210.03343
https://doi.org/10.1145/3661814.3662069
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3661814.3662069&domain=pdf&date_stamp=2024-07-08


LICS ’24, July 8–11, 2024, Tallinn, Estonia Lorenzo Ciardo, Marcin Kozik, Andrei Krokhin, Tamio-Vesa Nakajima, and Stanislav Živný

necessarily a 1-in-3 assignment, as is witnessed, for example, by
the solution to (1) given by 𝑥 = 𝑦 = 2, 𝑧 = −3.

In other words, while 1-in-3 Sat is NP-hard, if we are promised
that all of the unsatisfiable formulas we are considering are not
even satisfiable in the weaker NAE sense, the problem becomes
tractable (solvable in polynomial time). Similarly (and dually), the
promise that all NAE-satisfiable formulas are also 1-in-3-satisfiable
turns NAE into a tractable problem. It is then natural to investigate
what happens if we modify the promise. Clearly, a stronger promise
would lead to an even easier problem and, in particular, to a tractable
one. What if we weaken it? How does the promise impact on the
complexity behaviour of the problem? Where is the boundary of
tractability?

In order to formulate these questions in a formal way, it shall be
convenient to use the paradigm of Constraint Satisfaction Problems
(CSPs), which provides a broader context for capturing Boolean sat-
isfiability problems, as well as other computational problems such
as graph and hypergraph colouring.We can phrase a CSP as a homo-
morphism problem, where the objective is to test for the existence
of a homomorphism between an instance structureX and a template
structure A. In the setting of satisfiability of Boolean formulas, we
should think of X as a proxy for the formula 𝜑 , while A encodes
the satisfiability notion we are considering. In this formulation, X
and A are two similar (finite) relational structures, consisting of
finite domains (𝑋 and𝐴, respectively), as well as relations (𝑅X ⊆ 𝑋𝑟

and 𝑅A ⊆ 𝐴𝑟 , respectively) for each relation symbol 𝑅, where the
positive integer 𝑟 is the arity of 𝑅. A homomorphism betweenX and
A is a map 𝑓 : 𝑋 → 𝐴 that preserves the relations; i.e., 𝑓 (x) ∈ 𝑅A

whenever x ∈ 𝑅X, where 𝑓 is applied entrywise. We denote the
existence of a homomorphism by X → A. The CSP parameterised
by A, denoted by CSP(A), is the computational problem: “Given an
instance X, output Yes if X → A and No if X ̸→ A”. If we define
the Boolean structure 1-in-3 whose unique relation, of arity 3, is
the set

{(0, 0, 1), (0, 1, 0), (1, 0, 0)},

then CSP(1-in-3) is precisely the 1-in-3 Sat problem. Similarly, we
can formulate the NAE Sat problem as the CSP parameterised by
the Boolean structure NAE whose unique relation, of arity 3, is the
set

{(0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}.

Other classic examples of CSPs are homomorphisms problems for
digraphs (which are relational structures having a single, binary
relation) and, more generally, hypergraphs. In particular, the CSP pa-
rameterised by the𝑛-cliqueK𝑛 is the well-known graph𝑛-colouring
problem.

Several decades of research efforts have equipped the framework
of CSPs with a rather sharp set of tools — mostly coming from
universal algebra — that can be leveraged to explain the compu-
tational complexity of satisfiability problems. More precisely, the
complexity of CSP(A) is entirely determined by a certain type of
identities holding in the polymorphism clone of A, which contains
all homomorphisms of the form A𝑘 → A (where A𝑘 is the 𝑘-fold
direct power of A) [7, 8, 20, 38, 39, 44].

This categorical phenomenon, known as a Galois connection, has
been invaluable in the exploration of the complexity landscape

of CSPs. Eventually, it has led to the positive resolution of Feder-
Vardi’s Dichotomy Conjecture (now Theorem) by Zhuk [50] and
Bulatov [19], which asserts that a CSP is tractable in polynomial
time if it has a polymorphism satisfying an identity of a certain
kind, and it is NP-hard otherwise [27].

Promise problems like 1-in-3 vs. NAE are captured by a para-
digm, known as Promise CSPs (PCSPs for short), that generalises
CSPs. Here, the template is a pair (A,B) of (finite) structures, and
the computational problem PCSP(A,B) is “Given an instance X,
output Yes if X → A and No if X ̸→ B”. In order for the Yes and
the No instances to be disjoint, we require that A → B. PCSPs
were introduced in [2, 12] to unify the study of approximability
of perfectly satisfiable CSPs. The PCSP framework vastly extends
CSPs: Firstly, several well-known computational problems can be
formulated in the former, but not in the latter. Primary examples
include the approximate colouring problems, which we shall dis-
cuss in more detail later. Secondly, already the early exploration
of PCSPs unveiled a number of new phenomena — absent in the
non-promise setting — that quickly called for a more general and
conceptually different approach to their study, going beyond the
universal-algebraic approach to CSPs. The crux of this need lies
in the fact that the Galois connection for PCSPs is far less struc-
tured than the one for CSPs: While the complexity of PCSPs is
still governed by polymorphisms (which are now homomorphisms
A𝑘 → B), the algebraic structure that they form does not admit
composition in the promise context. A consequence of this fact is
that the universal-algebraic tools that allow generating an infinite
set of new identities from a single polymorphic identity fails for
PCSPs. This, in turn, stimulated the use of different tools to study
PCSP polymorphisms, including Boolean function analysis [13],
topology [43], matrix and tensor theory [21–23], and Fourier anal-
ysis [34].

It is, of course, a very natural question whether the CSP di-
chotomy extends to PCSPs. Before being able to even conjecture a
dichotomy for such a wide class of problems, it would be benefi-
cial to obtain classifications in well-chosen special cases. When the
Feder-Vardi conjecture was made, it was supported, in particular, by
important special cases that were classified at the time: the Boolean
CSP (i.e., the domain of A is {0, 1}) [47], the afore-mentioned graph
colouring problem [41], and the undirected graph homomorphism
problem (i.e., A is an undirected graph) [35]. (Note that the second
problem is a special case of the third.) The promise versions of the
Boolean CSP, graph colouring, and graph homomorphism problem
have been studied and there are some partial complexity classifica-
tion results about them (see, e.g. [2, 4, 12, 13, 28, 43]), but full classi-
fications even in these cases are believed to be difficult to obtain. In
particular, the promise version of graph colouring is the well-known
approximate graph colouring problem: checking whether a given
graph is 𝑛-colourable or not even𝑚-colourable, for given 𝑛 ≤ 𝑚.
The complexity of this problem, that corresponds to PCSP(K𝑛,K𝑚),
is a long-standing open question in computer science [29]. It was
only resolved in certain special cases [4, 11, 37, 42, 43] or under
strong complexity-theoretic assumptions such as variants of the
Unique Games Conjecture [18, 25, 31]. Other particular examples
of PCSPs have been studied in [3, 15, 17, 45]. The PCSP templates
considered there have either small domains or specific structure.
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The 1-in-3 vs. NAE problem — i.e. PCSP(1-in-3,NAE) — is in
many respects a prototypical example of PCSP, in that it witnesses
several of the new behaviours separating the promise and the
non-promise worlds. Next, we discuss three of these separating
behaviours.

(i) If three structures A,B,C are such that A → C → B, then
PCSP(A,B) reduces to CSP(C) through the trivial reduction that
does not change the instance.2 Hence, if CSP(C) is tractable, the ex-
act same algorithm solving it also solves PCSP(A,B). The tractabil-
ity of many PCSPs can be certified through this pattern, by ex-
hibiting a suitable structure C. For finite C, this is provably not the
case for PCSP(1-in-3,NAE): It was established in [4] that any finite
structure C for which 1-in-3 → C → NAE is such that CSP(C)
is NP-hard.3 This means that for PCSP(1-in-3,NAE) the source
of its tractability lies outside of the scope of non-promise finite
CSPs and comes from infinite-domain CSPs. (We note that there
is no dichotomy for infinite-domain CSPs [9], although there is a
conjecture that the dichotomy for finite-domain CSPs extends to a
certain well-behaved class of infinite-domain CSPs, cf. [10].)

(ii) Local consistency is an algorithmic technique that consists
in relaxing the question “Does a homomorphism X → A exist?”
by testing whether all subinstances of X of bounded size admit
a system of compatible homomorphisms to A. This method ap-
plies to both CSPs and PCSPs; the templates that can be solved by
enforcing local consistency are said to have a bounded width. In
the realm of CSPs, local consistency has precisely the same power
as the linear-programming based Sherali-Adams hierarchy [48].
However, it was recently shown in [1] that PCSP(1-in-3,NAE) is
solved by some fixed round of the Sherali-Adams hierarchy and yet
it has unbounded width, thus implying a lack of collapse of the two
algorithmic models for PCSPs.

(iii) Another singular behaviour of PCSP(1-in-3,NAE) emerged
in the context of robust algorithms. The class of CSPs that can be
solved robustly — i.e., through some algorithm that is not highly
sensitive to small noise in the instance — coincides with the class
of bounded-width problems [5]. Nevertheless, it was established
in [14] that the problem PCSP(1-in-3,NAE) can be solved robustly
although it is of unbounded width — thus yielding another discrep-
ancy between the promise and the non-promise settings.

For these reasons, a deeper understanding of why problems
akin to PCSP(1-in-3,NAE) are tractable can shed light on the new
type of behaviours we expect to find in the complexity landscape
of promise problems. To that end, in this paper we investigate
the tractability boundary of problems that weaken the promise of
PCSP(1-in-3,NAE) either from the left or from the right — when
theweakened version of the promise continues to share key features
with 1-in-3 and NAE (namely being symmetric and rainbow-free),
we find a dichotomy for the corresponding fragments of PCSPs. We
note that [17], motivated by the same goal, considered a certain
class of Boolean templates that result from weakening the promise

2In the PCSP literature, C is known as a sandwich.
3 We remark that the statement is false if we admit structures having an infinite domain.
In fact, the algorithm based onGaussian elimination that was described at the beginning
of the Introduction can be reformulated as a reduction of PCSP(1-in-3,NAE) to
CSP(Z) , where Z = (Z; { (𝑥, 𝑦, 𝑧 ) ∈ Z3 | 𝑥 + 𝑦 + 𝑧 = 1}) satisfies 1-in-3 → Z →
NAE.

of one of the two structures. Unlike [17], we go beyond Boolean
domains.

The relational structures 1-in-3 and NAE contain one ternary
relation, which is symmetric, i.e., it is invariant under permutations
of the arguments, and it is rainbow-free, i.e., it does not contain any
tuple (𝑥,𝑦, 𝑧) whose arguments are all distinct (note that this is
always the case for Boolean ternary structures). Following [3], we
describe this type of relational structures by associating digraphs
to them. More precisely, given a digraph G = (𝑉 , 𝐸), we let Ĝ be
the relational structure defined by

Ĝ = (𝑉 ; {(𝑥, 𝑥,𝑦), (𝑥,𝑦, 𝑥), (𝑦, 𝑥, 𝑥) | (𝑥,𝑦) ∈ 𝐸}) .

For example, if G is a single directed edge (from 0 to 1) or a single
undirected edge, the corresponding structure Ĝ is 1-in-3 or NAE,
respectively. It is easy to check that we have G → H if and only
if Ĝ → Ĥ. Moreover, PCSP(G,H) always reduces to PCSP(Ĝ, Ĥ),
but the latter problem can be harder — for example, if G = H
is an undirected edge, PCSP(G,H) = CSP(G) is the (tractable) 2-
colouring problem, whereas PCSP(Ĝ, Ĥ) = CSP(Ĝ) = CSP(NAE)
is NP-hard.

We are now ready to state our main results, which concern the
regime where the promise of the 1-in-3 vs.NAE problem is “broken”
from either side — i.e., one of the two structures in the template
(1-in-3,NAE) is replaced by a different structure.4 First, fix 1-in-3
and consider any digraphG such that (1-in-3, Ĝ) is a valid template
— which happens if and only if 1-in-3 → Ĝ or, equivalently, if and
only if G contains at least one edge.

Theorem 1. PCSP(1-in-3, Ĝ) is tractable if G has a directed cycle
of length at most 3, and it is NP-hard otherwise.

Second, fixNAE and consider any digraph G such that (Ĝ,NAE)
is a valid template — which happens if and only if Ĝ → NAE or,
equivalently, if and only if the graph obtained from G by forgetting
directions is bipartite. Following [36], we say that a digraph is
balanced if each of its oriented cycles has as many edges in one
direction as in the other.

Theorem 2. PCSP(Ĝ,NAE) is tractable if G is balanced, and it is
NP-hard otherwise.

The rest of the paper is dedicated to the proofs of Theorems 1
and 2, which are given in Sections 3 and 4, respectively, after intro-
ducing some preliminary notions in Section 2. In Section 5, we shall
discuss the implications of the current analysis in the context of
the theory of PCSPs, and we shall outline some natural directions
for future investigation.

2 PRELIMINARIES
Wedenote by [𝑛] the set {1, 2, . . . , 𝑛}. Moreover, we denote by [𝑛,𝑚)
the set {𝑛, . . . ,𝑚 − 1}. We say that a collection of sets 𝐴1, . . . , 𝐴𝑛 is
disjoint if 𝐴𝑖 ∩𝐴 𝑗 = ∅ whenever 𝑖 ≠ 𝑗 .

4We remark that PCSPs (and CSPs) can also be formulated in their search version, as
opposed to the decision versions discussed in this Introduction. The two versions are
polynomial-time equivalent for CSPs [20]; for PCSPs, decision reduces to search, but it
is not known whether an efficient reduction in the other direction always exists. Our
results hold for both decision and search versions of PCSPs.
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Relational structures and homomorphisms. Except for from di-
graphs, all relational structures that appear in this paper are pairs
A = (𝐴;𝑅A), where 𝐴 is the domain and 𝑅A ⊆ 𝐴3 is a ternary
relation. A relational structure A is called symmetric if the relation
𝑅A is symmetric, i.e., invariant under any permutation of its three
arguments.

Given two relational structures A = (𝐴;𝑅A) and B = (𝐵;𝑅B),
a homomorphism from A to B is a function ℎ : 𝐴 → 𝐵 such that
(ℎ(𝑥), ℎ(𝑦), ℎ(𝑧)) ∈ 𝑅B whenever (𝑥,𝑦, 𝑧) ∈ 𝑅A. We denote the
existence of a homomorphism from A to B by A → B. A pair of
relational structures (A,B) with A → B is called a (PCSP) template.

Polymorphisms, minions. We say that a function 𝑓 : 𝐴𝑛 → 𝐵

has arity ar(𝑓 ) = 𝑛. For such a function, we say that a coordinate
𝑖 ∈ [𝑛] is essential if there exist 𝑎1, . . . , 𝑎𝑛, 𝑎′𝑖 ∈ 𝐴 such that

𝑓 (𝑎1, . . . , 𝑎𝑖−1, 𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑛)
≠

𝑓 (𝑎1, . . . , 𝑎𝑖−1, 𝑎′𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑛).

An 𝑛-ary function 𝑓 has essential arity at most 𝑘 if it has at most 𝑘
essential coordinates. Let (A,B) be a template. An 𝑛-ary function
𝑓 is a polymorphism of (A,B) if (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ) ∈ 𝑅A for every 𝑖 ∈ [𝑛]
implies

(𝑓 (𝑥1, . . . , 𝑥𝑛), 𝑓 (𝑦1, . . . , 𝑦𝑛), 𝑓 (𝑧1, . . . , 𝑧𝑛)) ∈ 𝑅B .

We denote by Pol(𝑛) (A,B) the set of𝑛-ary polymorphisms of (A,B)
and by Pol(A,B) the set of all polymorphisms of (A,B). Polymor-
phisms form a minion, which we define below. Given an 𝑛-ary
function 𝑓 : 𝐴𝑛 → 𝐵 and a map 𝜋 : [𝑛] → [𝑚], an𝑚-ary function
𝑔 : 𝐴𝑚 → 𝐵 is called a minor of 𝑓 given by the map 𝜋 if

𝑔(𝑥1, . . . , 𝑥𝑚) = 𝑓 (𝑥𝜋 (1) , . . . , 𝑥𝜋 (𝑛) ).

We write 𝑓
𝜋−→ 𝑔 or 𝑔 = 𝑓 𝜋 if 𝑔 is the minor of 𝑓 given by the map 𝜋 .

Aminion on a pair of sets (𝐴, 𝐵) is a non-empty set of functions from
𝐴𝑛 to 𝐵 (for 𝑛 ∈ N) that is closed under taking minors. For any tem-
plate (A,B), the set of polymorphisms Pol(A,B) is a minion [4]. A
map𝜓 : ℳ → 𝒩 from aminionℳ to aminion𝒩 is aminion homo-
morphism if𝜓 preserves arities, i.e., ar(𝑔) = ar(𝜓 (𝑔)) for any𝑔 ∈ ℳ,
and𝜓 preserves minors, i.e., for each 𝜋 : [𝑛] → [𝑚] and each 𝑛-ary
𝑔 ∈ ℳ we have𝜓 (𝑔) (𝑥𝜋 (1) , . . . , 𝑥𝜋 (𝑛) ) = 𝜓 (𝑔(𝑥𝜋 (1) , . . . , 𝑥𝜋 (𝑛) )).

NP-hardness. Certain properties of the polymorphisms of (A,B)
guarantee the NP-hardness of PCSP(A,B) [4, 6, 16]. We use the
following result from [16]; see also [6].

Theorem 3 ([16, Corollary 4.2]). Let 𝑘, ℓ be integers, and let (A,B)
be a template. Suppose that 𝐼 is an assignment that takes any poly-
morphism 𝑓 ∈ Pol(A,B) to a subset of [ar(𝑓 )] of size at most 𝑘 .
Suppose that for any chain of minors

𝑓1
𝜋1,2−−−→ 𝑓2

𝜋2,3−−−→ . . .
𝜋ℓ−1,ℓ−−−−−→ 𝑓ℓ

where 𝑓1, . . . , 𝑓ℓ ∈ Pol(A,B), there exist 1 ≤ 𝑖 < 𝑗 ≤ ℓ such that
𝜋𝑖, 𝑗 (𝐼 (𝑓𝑖 )) ∩ 𝐼 (𝑓𝑗 ) ≠ ∅, where 𝜋𝑖, 𝑗 = 𝜋 𝑗−1, 𝑗 ◦ . . . ◦ 𝜋𝑖,𝑖+1. Then
PCSP(A,B) is NP-hard.

Intuitively, one thinks of the mapping 𝐼 as nondeterministically
“decoding” a polymorphism 𝑓 to one of its coordinates. We bound

the number of elements in 𝐼 (𝑓 ) in order to bound the nondetermin-
ism. For the decoding to be good enough to work, it must satisfy
the chain condition in the theorem.

Another important hardness result we will use is the following,
which is a direct corollary of [4, Corollary 5.3], rephrased in terms
of essential arity.

Theorem 4. Let (A,B) be a template. If Pol(3) (A,B) contains only
non-constant functions of essential arity 1, then PCSP(A,B) is NP-
hard.

Theorems 3 and 4 hold for both decision and search versions of
PCSP.

Digraphs. Unless said otherwise, all digraphs in this paper are
finite. A loopless digraph G is a tournament if, for any two dis-
tinct vertices 𝑥,𝑦, precisely one of the pairs (𝑥,𝑦) and (𝑦, 𝑥) is a
directed edge of G. A tournament is transitive if its edge relation is
transitive. Note that a tournament is transitive if and only if it has
no directed cycles of length 3. We will use the well-known result
that a tournament is acyclic if and only if it is transitive, cf. [33,
Corollary 5a, (1–2)]. We let T𝑖 denote the transitive tournament
on 𝑖 vertices. Following [32], an oriented path or oriented cycle is
a digraph formed by choosing an orientation for each edge of a
path or cycle. The net length of an oriented path or cycle is the
absolute value of the number of forward edges minus the num-
ber of backward edges, for an arbitrary direction of the path or
cycle. (By taking the absolute value of this difference, the direc-
tion we traverse the path or cycle does not matter.) In contrast, a
directed cycle is a digraph isomorphic to the digraph with edges
1 → 2 → · · · → 𝑘 → 1 for some 𝑘 ∈ N. An oriented path is mini-
mal if no subpath has a strictly greater net length. For an oriented
path and a fixed direction, the level of a vertex 𝑣 , denoted lvl(𝑣), is
the net length of the initial part of the oriented path ending at 𝑣 .
We shall make use of the following result.

Theorem 5 ([32]). Let P, P′ be minimal oriented paths of the same
net length. Then there exists an oriented path Q that can be homo-
morphically mapped to P and P′ with beginnings and ends preserved.

Note that Q needs to be a minimal path of the same net length as
P and P′. Hence, Theorem 5 can be extended to a finite number of
minimal oriented paths P, P′, P′′, . . . of equal net length.

For an integer 𝑖 ≥ 2, we let D𝑖 be the directed cycle on 𝑖 ver-
tices and L𝑖 be the directed path on 𝑖 vertices. We also let D1 be
a single vertex with a loop and L1 be an isolated vertex, while
L𝜔 = (N; {(𝑥, 𝑥 + 1) | 𝑥 ∈ N}) denotes the infinite directed path.
A digraph G is balanced if each of its oriented cycles has zero
net length. Equivalently, this means that G → L𝜔 [36]. We will
show (cf. Proposition 8) that this is also equivalent to the condition
Ĝ → Z, where Z is the relational structure over the domain Z
whose unique, ternary relation is {(𝑥,𝑦, 𝑧) ∈ Z3 | 𝑥 + 𝑦 + 𝑧 = 1},
see Footnote 3.

Trees. We will need the following fact about binary trees that
can be easily shown by induction. All of our trees will be rooted.

Lemma 6. A binary tree with more than 2𝑛 leaves must have a path
from the root to a leaf containing at least 𝑛 + 2 vertices.
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Primitive positive formulas, definitions. Wewill define the notions
of primitive positive (pp) formulas and definitions for the special
case of relational structures with one ternary relation symbol 𝑅. A
pp-formula is an existentially quantified conjunction of (positive)
atomic formulas, that are of the form 𝑥 = 𝑦 or 𝑅(𝑥,𝑦, 𝑧) for variables
𝑥,𝑦, 𝑧. For example,

∃𝑦∃𝑧 𝑅(𝑥,𝑦, 𝑧) ∧ (𝑥 = 𝑦)

is a pp-formula. For a relational structure A = (𝐴;𝑅A) and a pp-
formula 𝜑 (𝑥,𝑦, 𝑧) in which only 𝑥,𝑦, 𝑧 are free, we define 𝜑A as a
ternary relation that contains a tuple (𝑎, 𝑏, 𝑐) if and only if substi-
tuting (𝑎, 𝑏, 𝑐) for (𝑥,𝑦, 𝑧), interpreting existential quantification as
being over 𝐴, and interpreting 𝑅 as 𝑅A leads to a true statement.
We say that 𝜑 interpreted in A = (𝐴;𝑅𝐴) pp-defines B = (𝐵;𝑅𝐵) if
𝐴 = 𝐵 and 𝑅𝐵 = 𝜑A.

For templates (A,B) and (A′,B′), we say that (A,B) pp-defines
(A′,B′) whenever there exists a pp-formula 𝜑 (𝑥,𝑦, 𝑧) in which
precisely 𝑥,𝑦, 𝑧 are free, for which 𝜑 interpeted in A pp-defines A′,
and 𝜑 interpreted in B pp-defines B′.

Theorem 7 ([12]). Suppose the template (A,B) pp-defines (A′,B′).
Then PCSP(A′,B′) reduces to PCSP(A,B) in logarithmic space.

3 BREAKING THE PROMISE FROM THE
RIGHT

Let G be a digraph such that (1-in-3, Ĝ) is a valid template (equiva-
lently, the edge set of G is nonempty). In this section, we will prove
the following result.

Theorem 1. PCSP(1-in-3, Ĝ) is tractable if G has a directed cycle
of length at most 3, and it is NP-hard otherwise.

The tractability part of Theorem 1 follows from the next, graph-
theoretic result.5

Proposition 8. For any digraph G, the following holds

(i) Ĝ → Z if and only if G → L𝜔 if and only if G is balanced,
and

(ii) Z → Ĝ if and only if D𝑖 → G for some 𝑖 ∈ {1, 2, 3}. Moreover,
if a homomorphism from Z to Ĝ exists, then it can be efficiently
computed.

Proof. For a relational structure A = (𝐴;𝑅) with one ternary
symmetric relation 𝑅, define Ã to be the graph (𝐴, 𝐸) where (𝑥,𝑦) ∈
𝐸 if and only if (𝑥, 𝑥,𝑦) ∈ 𝑅. Note that Ĝ → A if and only ifG → Ã.6

Observe that Z̃ = (Z; {(𝑎, 1 − 2𝑎) : 𝑎 ∈ Z}). This structure
is a disjoint union of (countably many) forward-infinite directed
paths: First, every vertex has exactly one outgoing and at most one
incoming edge (odd 𝑎 has in-degree 1 while even 𝑎 has in-degree
0). Second, note that (0, 1) and (1,−1) are edges in Z̃ and for the
remaining edges (𝑎, 1 − 2𝑎) we have |𝑎 | < |1 − 2𝑎 | which proves
that forward paths lead away from 0 and that Z̃ is acyclic. Thus
Z̃⇆ L𝜔 . It follows that G → Z̃ if and only if G → L𝜔 ; respectively,
Z̃ → G if and only if L𝜔 → G.

5The second part of the proposition that follows may be derived from a result in [15].
We include a shorter, self-contained proof for completeness.
6In other words, ·̂ and ·̃ form a Galois connection under the preordering given by→.

(i) Ĝ → Z if and only if G → Z̃, if and only if G → L𝜔 . For
the second equivalence: as G is finite, G → L𝜔 if and only if
G → L |G | , which is equivalent to G being balanced by e.g. [36,
Proposition 1.13].

(ii) For the “if“ direction: a homomorphism ℎ𝑖 : Z → D̂𝑖 exists
for 𝑖 ∈ [3] (namely ℎ1 (𝑥) = 0, ℎ2 (𝑥) = [𝑥 > 0], ℎ3 (𝑥) = 𝑥 mod 3),
so D𝑖 → G for 𝑖 ∈ [3] implies Z → D̂𝑖 → Ĝ. Conversely, let
𝑓 : Z → Ĝ be a homomorphism, and assume that 𝑓 is surjective (we
can take the image of the map in place of Ĝ) and that D1 and D2 do
not map to G. We will show that G is a non-transitive tournament;
as such, the graph must contain D3 and the proof is finished. Take
any 𝑣 ≠ 𝑣 ′ vertices ofG and find 𝑎, 𝑎′ such that 𝑓 (𝑎) = 𝑣, 𝑓 (𝑎′) = 𝑣 ′.
The triplet (𝑎, 𝑎′, 1 − 𝑎 − 𝑎′) belongs to the relation of Z. Therefore,
either (𝑣, 𝑣 ′) or (𝑣 ′, 𝑣) is an edge of G — since G additionally does
not contain directed cycles of length at most 2 by assumption, we
have that G is a tournament. Since 𝑓 : Z → Ĝ, we have Z̃ → G and
hence L𝜔 → G, so by the pigeonhole principle G must contain a
directed cycle and, thus, it cannot be transitive.

Finally, if Z → Ĝ, using the second part of the lemma we deduce
that D𝑖 → G (and hence D̂𝑖 → Ĝ) for some 𝑖 ∈ {1, 2, 3}. Both
homomorphisms D̂𝑖 → Ĝ and Z → D̂𝑖 are efficiently computable,
and their composition yields a concrete homomorphism from Z to
Ĝ. □

Proof of tractability in Theorem 1. IfD𝑖 → G for some 𝑖 ∈
{1, 2, 3}, it follows from Proposition 8 that 1-in-3 → Z → Ĝ. There-
fore, PCSP(1-in-3, Ĝ) trivially reduces toCSP(Z), which is tractable
as it corresponds to solving linear Diophantine systems [40]. □

In the rest of this section, we prove the hardness part of Theo-
rem 1. We note that this proof can be seen as a generalisation of
the proof of hardness of PCSP(1-in-3, T̂3) from [3], where T̂𝑘 is a
directed tournament on 𝑘 vertices.7 To that end, fix G and suppose
it contains no directed cycles of length at most 3. If we consider
the edge relation of G, we see that it is irreflexive (since G has no
loops) and antisymmetric (since G has no directed cycles of length
2). Unfortunately it is not transitive — nonetheless we will see the
edge relation as a kind of weak order relation, and we will prove
that it is “transitive enough” for our purposes. Thus, write < for
the edge relation of G (keeping in mind that < is not in general
transitive), and define ≤, >, ≥ in the obvious way. Write 𝑥 ≃ 𝑦 if
𝑥 = 𝑦 or 𝑥 < 𝑦 or 𝑥 > 𝑦.

In this section, all polymorphismswill be from the polymorphism
minion Pol(1-in-3, Ĝ). Note that such polymorphisms are simply
functions from {0, 1}𝑛 to 𝑉 , the vertex set of G. We can see such a
function as a function from 2[𝑛] to 𝑉 , i.e. from subsets of [𝑛] to 𝑉 .
The fact that 𝑓 ∈ Pol(𝑛) (1-in-3, Ĝ) is a polymorphism then implies
that, for any partition 𝐴, 𝐵,𝐶 of [𝑛], two of 𝑓 (𝐴), 𝑓 (𝐵), 𝑓 (𝐶) are
equal, and the last is strictly greater (i.e., there is an edge in G from
the two equal elements to the third one). In this interpretation,
for 𝜋 : [𝑛] → [𝑚], observe that 𝑓 𝜋 = 𝑓 ◦ 𝜋−1, where 𝜋−1 is the
preimage of 𝜋 .

Definition 9. For a polymorphism 𝑓 ∈ Pol(𝑛) (1-in-3, Ĝ), call a
set 𝑋 ⊆ [𝑛] a hitting set (for 𝑓 ) if it has a subset 𝑌 ⊆ 𝑋 such that,

7T̂3 is denoted by T1 in [3].
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for all 𝑍 ⊆ [𝑛] with 𝑓 (𝑍 ) = 𝑓 (𝑌 ), we have 𝑋 ∩ 𝑍 ≠ ∅. In this case,
say that 𝑓 (𝑌 ) is a hitting value for 𝑋 .

Note that the property of being a hitting set is upwards closed;
i.e., if 𝑋 is hitting and𝑊 ⊇ 𝑋 , then𝑊 is hitting as well.

Theorem 10. Let G be a digraph without directed cycles of length
at most 3 and let 𝑁 be the number of vertices of G. Then every poly-
morphism 𝑓 ∈ Pol(1-in-3, Ĝ) has a nonempty hitting set of size at
most (𝑁 + 1) (1 + 𝑁 + 𝑁 22𝑁 ).

As we shall see next, the result above is sufficient for establishing
the NP-hardness part of Theorem 1.

Proof of Theorem 1. For any 𝑓 ∈ Pol(1-in-3, Ĝ), define 𝐼 (𝑓 )
to be a hitting set for 𝑓 of minimum size — it exists and its size
is bounded by some function of 𝑁 by Theorem 10. Observe that,
as G is fixed, 𝑁 is a constant, so the size of 𝐼 (𝑓 ) is bounded by
a constant. Moreover, it is nonempty as ∅ is never a hitting set.
Consider any 𝑁 + 1 polymorphisms of Pol(1-in-3, Ĝ) connected
by a chain of minors. By the pigeonhole principle, polymorphisms
𝑓

𝜋−→ 𝑔 must exist within this chain such that 𝐼 (𝑓 ) and 𝐼 (𝑔) have
a hitting value in common. Suppose this value is 𝑐; thus 𝐼 (𝑓 ), 𝐼 (𝑔)
intersect all sets 𝑋 for which 𝑓 (𝑋 ) = 𝑐 , and both contain such a
set. Suppose that 𝑋 ⊆ 𝐼 (𝑔) has 𝑓 (𝑋 ) = 𝑐; thus 𝑓 (𝜋−1 (𝑋 )) = 𝑐

and 𝐼 (𝑓 ) ∩ 𝜋−1 (𝑋 ) ≠ ∅. Thus 𝜋 (𝐼 (𝑓 )) ∩ 𝐼 (𝑔) ≠ ∅. By Theorem 3
(with ℓ = 𝑁 + 1 and 𝑘 = (𝑁 + 1) (1 + 𝑁 + 𝑁 22𝑁 )), it follows that
PCSP(1-in-3, Ĝ) is NP-hard. □

In the remainder of this section, we shall prove Theorem 10.
Henceforth, we fix a directed graph G with 𝑁 vertices and no
directed cycles of length at most 3, and a polymorphism 𝑓 ∈
Pol(𝑛) (1-in-3, Ĝ). We first show that, in this case, [𝑛] is a hitting
set for 𝑓 .

Lemma 11. [𝑛] is a hitting set for 𝑓 .

Proof. Since 𝑓 is a polymorphism, the tuple

(𝑓 (∅), 𝑓 (∅), 𝑓 ( [𝑛]))

must belong to the relation of Ĝ, which means that 𝑓 (∅) < 𝑓 ( [𝑛]).
Since G has no loops, 𝑓 (∅) ≠ 𝑓 ( [𝑛]). We then have from Defini-
tion 9 that [𝑛] is a hitting set, as witnessed by the subset [𝑛] ⊆
[𝑛]. □

Next, we give two laws governing 𝑓 .

Lemma 12 (Disjointness law). For disjoint 𝐴, 𝐵 ⊆ [𝑛], we have
𝑓 (𝐴) ≃ 𝑓 (𝐵).

Proof. Consider the partition 𝐴, 𝐵, [𝑛] \ (𝐴 ∪ 𝐵). Since 𝑓 is a
polymorphism, the tuple

(𝑓 (𝐴), 𝑓 (𝐵), 𝑓 ( [𝑛] \ (𝐴 ∪ 𝐵)))

belongs to the relation of Ĝ. Hence, either 𝑓 (𝐴) = 𝑓 (𝐵) < 𝑓 ( [𝑛] \
(𝐴 ∪ 𝐵)), or 𝑓 (𝐴) = 𝑓 ( [𝑛] \ (𝐴 ∪ 𝐵)) < 𝑓 (𝐵), or 𝑓 (𝐵) = 𝑓 ( [𝑛] \
(𝐴 ∪ 𝐵)) < 𝑓 (𝐴). □

Lemma 13 (Union law). Consider disjoint 𝐴, 𝐵,𝐶 ⊆ [𝑛]. Let𝑀 be
the multiset [𝑓 (𝐴), 𝑓 (𝐵), 𝑓 (𝐴∪𝐶), 𝑓 (𝐵∪𝐶)]. There exists an element
𝑚 of𝑀 with multiplicity 2 or 4, which we call the pseudo-minimum

of 𝑀 . If𝑚 has multiplicity 2 and �̂�, �̃� are the remaining (possibly
equal) elements of𝑀 , then at least one of the following occurs:

• 𝑚 < �̂� and𝑚 < �̃�, or
• 𝑚 < �̂� < �̃�, or
• 𝑚 < �̃� < �̂�.

Proof. Let𝐷 = [𝑛]\(𝐴∪𝐵∪𝐶). By disjointness, 𝑓 (𝐴∪𝐶) ≃ 𝑓 (𝐵)
and 𝑓 (𝐴) ≃ 𝑓 (𝐵 ∪𝐶). If neither of these pairs have equal values,
then one element in each pair is equal to 𝑓 (𝐷) (due to the partitions
𝐴 ∪𝐶, 𝐵, 𝐷 and 𝐴, 𝐵 ∪𝐶, 𝐷), and is less than the other value in the
pair. This corresponds to the case where𝑚 < �̂� and𝑚 < �̃�. Now
assume that the elements in at least one of the pairs coincide — say
𝑓 (𝐴) = 𝑓 (𝐵 ∪ 𝐶). If the elements of the other pair are not equal,
then one of the two values is equal to 𝑓 (𝐷), and the other is greater;
since 𝑓 (𝐴) < 𝑓 (𝐷) (due to partition 𝐴, 𝐵 ∪𝐶, 𝐷), this corresponds
to the case where𝑚 < �̃� < �̂� or the case where𝑚 < �̂� < �̃�. If also
the other pair has equal values, then by disjointness 𝑓 (𝐴) ≃ 𝑓 (𝐵).
If 𝑓 (𝐴) ≠ 𝑓 (𝐵) we get the case where𝑚 < �̂� and𝑚 < �̃�; and if
𝑓 (𝐴) = 𝑓 (𝐵) then all four elements of𝑀 coincide, so we are in the
case where𝑚 has multiplicity 4. □

Remark 14. The pseudo-minimum is not necessarily a true min-
imum, since in the case where 𝑚 < �̂� < �̃� (or symmetrically
𝑚 < �̃� < �̂�) it is possible that 𝑚 ≰ �̃� (respectively 𝑚 ≰ �̂�).
Nonetheless, since G has no directed cycles of length 3, we have
that𝑚 ≯ �̃� (respectively,𝑚 ≯ �̂�) even in this case. Indeed, in all
cases, for any 𝑚′ ∈ 𝑀 we have that 𝑚 ≯ 𝑚′, since otherwise a
directed cycle of length at most 3 would appear.

Our final goal is to establish that 𝑓 has a hitting set of bounded
size. The following lemma shows that a long sequence of sets whose
images under 𝑓 are strictly increasing yields a hitting set.

Lemma 15. Suppose there exist sets 𝑋1, . . . , 𝑋𝑘 ⊆ [𝑛] with 𝑘 > 𝑁 ,
where 𝑓 (𝑋1) < . . . < 𝑓 (𝑋𝑘 ). Then

⋃
ℓ 𝑋ℓ is a hitting set.

Proof. Suppose for contradiction that for all 𝑖, 𝑗 ∈ [𝑘] we have
𝑓 (𝑋𝑖 ) ≃ 𝑓 (𝑋 𝑗 ). Thus, 𝑓 (𝑋1), . . . , 𝑓 (𝑋𝑘 ) induce a tournament in G.
This tournament is not acyclic, since 𝑓 (𝑋1) < . . . < 𝑓 (𝑋𝑘 ) must
contain a directed cycle by the pigeonhole principle. Therefore, G
is not transitive, which means that it must contain a directed cycle
of length at most 3, a contradiction.

Thus, there exist 𝑖, 𝑗 ∈ [𝑘] such that 𝑓 (𝑋𝑖 ) ̸≃ 𝑓 (𝑋 𝑗 ). By (the
contrapositive of) the disjointness law, any set 𝑌 ⊆ [𝑛] such that
𝑓 (𝑌 ) = 𝑓 (𝑋𝑖 ) ̸≃ 𝑓 (𝑋 𝑗 ) is not disjoint from 𝑋 𝑗 . Hence, 𝑋𝑖 ∪ 𝑋 𝑗 is
a hitting set. Since hitting sets are upwards closed and

⋃
ℓ 𝑋ℓ ⊇

𝑋𝑖 ∪ 𝑋 𝑗 , we find that
⋃

ℓ 𝑋ℓ is a hitting set, too. □

The next three lemmata will partially determine 𝑓 (𝑋 ∪ 𝑆 ∪𝑇 )
in terms of 𝑓 (𝑋 ∪ 𝑆) and 𝑓 (𝑋 ∪ 𝑇 ), under the assumption that
𝑓 (𝑋 ) = 𝑓 (𝑌 ) and 𝑋,𝑌, 𝑆,𝑇 are disjoint. These proofs are based on
repeated applications of the union law, and involve a case analysis.

Lemma 16. For disjoint 𝑋,𝑌, 𝑆 , if 𝑓 (𝑋 ∪ 𝑆) ≯ 𝑓 (𝑋 ) = 𝑓 (𝑌 ) then
𝑓 (𝑋 ∪ 𝑆) = 𝑓 (𝑌 ∪ 𝑆).

Proof. By the disjointness law, 𝑓 (𝑋 ∪ 𝑆) ≃ 𝑓 (𝑌 ) = 𝑓 (𝑋 ). Since
𝑓 (𝑋 ∪ 𝑆) ≯ 𝑓 (𝑋 ), we have 𝑓 (𝑋 ∪ 𝑆) ≤ 𝑓 (𝑋 ). Apply the union law
to 𝑋 , 𝑌 , and 𝑆 .
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Suppose first that the pseudo-minimum of the multiset

[𝑓 (𝑋 ), 𝑓 (𝑌 ), 𝑓 (𝑋 ∪ 𝑆), 𝑓 (𝑌 ∪ 𝑆)]
is 𝑓 (𝑋 ) = 𝑓 (𝑌 ). Note that 𝑓 (𝑋 ∪ 𝑆) ≤ 𝑓 (𝑋 ), and since 𝑓 (𝑋 ) is
the pseudo-minimum, 𝑓 (𝑋 ∪ 𝑆) ≮ 𝑓 (𝑋 ). So 𝑓 (𝑋 ∪ 𝑆) = 𝑓 (𝑋 ).
Since the pseudo-minimummust appear 2 or 4 times, it follows that
𝑓 (𝑌 ∪ 𝑆) = 𝑓 (𝑋 ) = 𝑓 (𝑌 ) = 𝑓 (𝑋 ∪ 𝑆), as required.

Otherwise, if the pseudo-minimum is 𝑓 (𝑋 ∪𝑆) (or symmetrically
𝑓 (𝑌 ∪𝑆)), since the minimummust appear 2 or 4 times, and 𝑓 (𝑋 ) =
𝑓 (𝑌 ) is not the pseudo-minimum, we have that 𝑓 (𝑋 ∪ 𝑆) = 𝑓 (𝑌 ∪
𝑆). □

Lemma 17. If 𝑋,𝑌, 𝑆,𝑇 are disjoint, 𝑓 (𝑋 ∪ 𝑆) = 𝑓 (𝑋 ∪ 𝑇 ), and
𝑓 (𝑋 ) = 𝑓 (𝑌 ), then either 𝑓 (𝑋 ) ≤ 𝑓 (𝑋 ∪ 𝑆 ∪ 𝑇 ) or 𝑓 (𝑋 ∪ 𝑆) <

𝑓 (𝑋 ∪ 𝑆 ∪𝑇 ).

Proof. Apply the union law to 𝑋 , 𝑌 , and 𝑆 . Since 𝑓 (𝑋 ) = 𝑓 (𝑌 ),
there are two possibilities for the pseudo-minimum of

[𝑓 (𝑋 ), 𝑓 (𝑌 ), 𝑓 (𝑋 ∪ 𝑆), 𝑓 (𝑌 ∪ 𝑆)] .
Case 1. Assume that the pseudo-minimum is 𝑓 (𝑋 ∪ 𝑆) = 𝑓 (𝑌 ∪

𝑆). Since 𝑓 (𝑋 ) = 𝑓 (𝑌 ), we deduce that 𝑓 (𝑋 ∪ 𝑆) = 𝑓 (𝑌 ∪ 𝑆) ≤
𝑓 (𝑋 ) = 𝑓 (𝑌 ). Apply the union law to 𝑌 , 𝑋 ∪𝑇 , and 𝑆 . Since 𝑓 (𝑋 ∪
𝑇 ) = 𝑓 (𝑋 ∪ 𝑆) = 𝑓 (𝑌 ∪ 𝑆) ≤ 𝑓 (𝑌 ), the pseudo-minimum of

[𝑓 (𝑌 ), 𝑓 (𝑋 ∪𝑇 ), 𝑓 (𝑌 ∪ 𝑆), 𝑓 (𝑋 ∪𝑇 ∪ 𝑆)]
is 𝑓 (𝑋 ∪𝑇 ) = 𝑓 (𝑌 ∪ 𝑆). We thus have four cases:
• 𝑓 (𝑋 ∪𝑇 ) = 𝑓 (𝑌 ∪ 𝑆) = 𝑓 (𝑌 ) = 𝑓 (𝑋 ∪𝑇 ∪ 𝑆),
• 𝑓 (𝑌 ) > 𝑓 (𝑋 ∪𝑇 ) = 𝑓 (𝑌 ∪ 𝑆) < 𝑓 (𝑋 ∪𝑇 ∪ 𝑆),
• 𝑓 (𝑋 ∪𝑇 ) = 𝑓 (𝑌 ∪ 𝑆) < 𝑓 (𝑌 ) < 𝑓 (𝑋 ∪𝑇 ∪ 𝑆),
• 𝑓 (𝑋 ∪𝑇 ) = 𝑓 (𝑌 ∪ 𝑆) < 𝑓 (𝑋 ∪𝑇 ∪ 𝑆) < 𝑓 (𝑌 ).
Keeping in mind that 𝑓 (𝑋 ) = 𝑓 (𝑌 ) and 𝑓 (𝑋 ∪ 𝑆) = 𝑓 (𝑌 ∪ 𝑆), the
conclusion follows in all 4 cases.

Case 2. Assume that the pseudo-minimum is equal to neither
𝑓 (𝑋 ∪ 𝑆) nor 𝑓 (𝑌 ∪ 𝑆). Thus the pseudo-minimum is 𝑓 (𝑋 ) = 𝑓 (𝑌 ).
In this case, 𝑓 (𝑌 ) ≯ 𝑓 (𝑋 ∪ 𝑆) = 𝑓 (𝑋 ∪𝑇 ) and 𝑓 (𝑌 ) ≯ 𝑓 (𝑌 ∪ 𝑆). By
assumption, 𝑓 (𝑌 ) ≠ 𝑓 (𝑋 ∪𝑇 ) and 𝑓 (𝑌 ) ≠ 𝑓 (𝑌 ∪𝑆). By disjointness,
𝑓 (𝑌 ) ≃ 𝑓 (𝑋 ∪𝑇 ) and 𝑓 (𝑌 ) = 𝑓 (𝑋 ) ≃ 𝑓 (𝑌 ∪ 𝑆), so it follows that
𝑓 (𝑌 ) < 𝑓 (𝑋 ∪𝑇 ) and 𝑓 (𝑌 ) < 𝑓 (𝑌 ∪ 𝑆). Now, apply the union law
to 𝑌 , 𝑋 ∪𝑇 , and 𝑆 . Since 𝑓 (𝑌 ) < 𝑓 (𝑋 ∪𝑇 ) and 𝑓 (𝑌 ) < 𝑓 (𝑌 ∪ 𝑆),
the pseudo-minimum of

[𝑓 (𝑌 ), 𝑓 (𝑋 ∪𝑇 ), 𝑓 (𝑌 ∪ 𝑆), 𝑓 (𝑋 ∪𝑇 ∪ 𝑆)]
must be 𝑓 (𝑌 ) = 𝑓 (𝑋 ∪𝑇 ∪ 𝑆), and the conclusion follows. □

Lemma 18. If𝑋,𝑌, 𝑆,𝑇 are disjoint and 𝑓 (𝑋 ) = 𝑓 (𝑌 ) = 𝑓 (𝑋 ∪𝑆) =
𝑓 (𝑋 ∪𝑇 ), then 𝑓 (𝑋 ) = 𝑓 (𝑋 ∪ 𝑆 ∪𝑇 ).

Proof. Since G has no loops, 𝑓 (𝑋 ∪ 𝑆) ≯ 𝑓 (𝑋 ) and 𝑓 (𝑋 ∪𝑇 ) ≯
𝑓 (𝑋 ). Therefore, by Lemma 16, 𝑓 (𝑌 ∪ 𝑆) = 𝑓 (𝑋 ∪ 𝑆) = 𝑓 (𝑋 ) and
𝑓 (𝑌 ∪𝑇 ) = 𝑓 (𝑋 ∪𝑇 ) = 𝑓 (𝑋 ). Let us now apply the union law to 𝑌 ,
𝑋 ∪ 𝑆 , and𝑇 . Since three of the elements of [𝑓 (𝑌 ), 𝑓 (𝑋 ∪ 𝑆), 𝑓 (𝑌 ∪
𝑇 ), 𝑓 (𝑋 ∪ 𝑆 ∪𝑇 )] are equal, the fourth is also. □

The next lemma is the crucial one: Given some nonempty set
𝑋 , it either creates a hitting set of bounded size immediately, or
finds some set 𝑋 ′ of bounded size such that 𝑓 (𝑋 ) < 𝑓 (𝑋 ′). The
conclusion will follow by repeatedly applying this lemma.

Lemma 19. Consider a nonempty set 𝑋 ⊆ [𝑛]. Then either a hitting
set of size at most 1 + |𝑋 | + 2𝑁 exists, or we can find a nonempty set
𝑋 ′ ⊆ [𝑛] of size at most 1 + |𝑋 | + 𝑁 2𝑁 such that 𝑓 (𝑋 ) < 𝑓 (𝑋 ′).

Proof. We can assume that |𝑋 | ≤ 𝑛 − 2 as, otherwise, it would
follow from Lemma 11 that [𝑛] is the required hitting set. Thus,
let 𝑎 ≠ 𝑏 ∈ [𝑛] \ 𝑋 , and suppose that 𝑋 ∪ {𝑎, 𝑏} is not hitting
(if it were, it would be the required hitting set). Thus, some set
𝑌 ⊆ [𝑛] \ (𝑋 ∪ {𝑎, 𝑏}) exists such that 𝑓 (𝑋 ) = 𝑓 (𝑌 ). Let 𝑆 =

[𝑛] \ (𝑋 ∪ 𝑌 ∪ {𝑎}); since 𝑏 ∈ 𝑆 , 𝑆 ≠ ∅.
Create a partition 𝑃1, . . . , 𝑃𝑘 of 𝑆 , that initially consists of one

singleton for each element of 𝑆 . While
(i) all the parts 𝑃 such that 𝑓 (𝑋 ∪ 𝑃) < 𝑓 (𝑋 ) have size |𝑃 | ≤

2𝑁−1, and
(ii) there exist distinct parts 𝑃𝑖 , 𝑃 𝑗 such that 𝑓 (𝑋 ∪ 𝑃𝑖 ) = 𝑓 (𝑋 ∪

𝑃 𝑗 ) < 𝑓 (𝑋 ),
merge any two such parts 𝑃𝑖 and 𝑃 𝑗 . Observe that at all times all
parts must have size at most 2𝑁 , since they are either singletons
or the union of two parts with size at most 2𝑁−1. It follows that
this procedure must eventually terminate; we now consider what
happens when it does, depending on the reason for termination.

First, suppose that the procedure terminates because (i) ceases
to hold; i.e., we arrive at a part 𝑃 with size greater than 2𝑁−1 with
𝑓 (𝑋 ∪ 𝑃) < 𝑓 (𝑋 ). 𝑃 was created by repeated merges of parts in
the partition; thus, consider a binary tree rooted at 𝑃 where each
vertex is labelled by a subset of 𝑃 that was at some point a part in
the partition, and the children of a vertex are the parts that were
merged to form that part. Consider any non-root vertex in the tree,
and suppose it is labelled by part 𝑃 ′. Since 𝑃 ′ was merged with
some other part, it must be the case that 𝑓 (𝑋 ∪ 𝑃 ′) < 𝑓 (𝑋 ). Since
this is true by assumption for 𝑃 as well, it is true for all the parts
that appear in the tree. Now, consider any non-leaf vertex, labelled
by part 𝑄 ∪ 𝑅, where its children are labelled by 𝑄 and 𝑅. Since 𝑄
and 𝑅 are merged, 𝑓 (𝑋 ∪𝑄) = 𝑓 (𝑋 ∪𝑅) and𝑄 ∩𝑅 = ∅. Thus, apply
Lemma 17 to 𝑋,𝑌,𝑄, 𝑅 and note that 𝑓 (𝑋 ) ≰ 𝑓 (𝑋 ∪𝑄 ∪ 𝑅), since
𝑓 (𝑋 ∪ 𝑄 ∪ 𝑅) < 𝑓 (𝑋 ); it follows that 𝑓 (𝑋 ∪ 𝑄) < 𝑓 (𝑋 ∪ 𝑄 ∪ 𝑅)
and 𝑓 (𝑋 ∪ 𝑅) < 𝑓 (𝑋 ∪𝑄 ∪ 𝑅). In other words, for any two parts 𝐴
and 𝐵 where the vertex corresponding to 𝐴 is a child of the vertex
corresponding to 𝐵, we have 𝑓 (𝑋∪𝐴) < 𝑓 (𝑋∪𝐵). Since the tree has
more than 2𝑁−1 leaves, by Lemma 6 we can find a path in the tree
starting at the root with at least 𝑁 + 1 vertices. Call the labels of the
vertices of such path 𝑃 ′

𝑘
= 𝑃, 𝑃 ′

𝑘−1, . . . , 𝑃
′
1, starting from the root and

going to the leaves. Since 𝑓 (𝑋 ∪𝑃 ′1) < 𝑓 (𝑋 ∪𝑃 ′2) < · · · < 𝑓 (𝑋 ∪𝑃 ′
𝑘
),

we obtain from Lemma 15 that the set 𝑋 ∪⋃
ℓ∈[𝑘 ] 𝑃

′
ℓ
is a hitting set.

Using that 𝑃 is a superset of all sets appearing in the path and that
hitting sets are upwards closed, we conclude that 𝑋 ∪ 𝑃 is a hitting
set. Recall that |𝑃 | ≤ 2𝑁 . So, the required hitting set is 𝑋 ∪ 𝑃 .

Second, suppose that the procedure terminates because the con-
dition (ii) ceases to hold (regardless of whether (i) holds or not). By
the pigeonhole principle there exist at most 𝑁 parts 𝑃 for which
𝑓 (𝑋∪𝑃) < 𝑓 (𝑋 ). Let𝑍 be the union of these parts and the set {𝑎} (if
there are not any such parts then𝑍 = {𝑎}), and let𝑄1, . . . , 𝑄ℓ be the
remaining parts; i.e., 𝑓 (𝑋∪𝑄𝑖 ) ≮ 𝑓 (𝑋 ). Observe that |𝑍 | ≤ 1+𝑁 2𝑁 .
There are now two cases. First, suppose that for some 𝑖 ∈ [ℓ] we
have 𝑓 (𝑋 ) < 𝑓 (𝑋 ∪ 𝑄𝑖 ). In this case, since |𝑋 ∪ 𝑄𝑖 | ≤ |𝑋 | + 2𝑁 ,
the set 𝑋 ′ = 𝑋 ∪ 𝑄𝑖 witnesses that the statement of the lemma
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holds. Otherwise, for every 𝑖 ∈ [ℓ], since 𝑓 (𝑋 ) ≮ 𝑓 (𝑋 ∪ 𝑄𝑖 ) and
𝑓 (𝑋 ∪𝑄𝑖 ) ≮ 𝑓 (𝑋 ), yet 𝑓 (𝑋 ) = 𝑓 (𝑌 ) ≃ 𝑓 (𝑋 ∪𝑄𝑖 ) by disjointness,
we find that 𝑓 (𝑋 ) = 𝑓 (𝑋 ∪𝑄𝑖 ). By Lemma 18 applied ℓ − 1 times,
𝑓 (𝑋 ∪ ⋃

𝑖 𝑄𝑖 ) = 𝑓 (𝑋 ) = 𝑓 (𝑌 ). (This also holds when there are
no sets 𝑄𝑖 , since 𝑋 ∪⋃

𝑖 𝑄𝑖 = 𝑋 in this case.) Now, the partition
𝑋 ∪ ⋃

𝑖 𝑄𝑖 , 𝑌 , 𝑍 implies that 𝑓 (𝑋 ∪ ⋃
𝑖 𝑄𝑖 ) = 𝑓 (𝑌 ) < 𝑓 (𝑍 ) (as

𝑓 is a polymorphism), and thus 𝑓 (𝑋 ) = 𝑓 (𝑌 ) < 𝑓 (𝑍 ). Thus, as
|𝑍 | ≤ 1 + 𝑁 2𝑁 , the set 𝑋 ′ = 𝑍 witnesses that the statement of the
lemma holds. □

Proof of Theorem 10. Create a sequence of nonempty sets

𝑋1, . . . , 𝑋𝑁+1 ⊆ [𝑛]

in the following way. Let 𝑋1 = {1}. For 𝑖 ∈ [𝑁 ], apply Lemma 19 to
𝑋𝑖 . If it yields a nonempty hitting set of size at most 1 + |𝑋𝑖 | + 2𝑁 ,
then let 𝑋𝑖+1 be this hitting set. Otherwise, if it yields a nonempty
set 𝑋 ′ of size at most 1 + |𝑋𝑖 | + 𝑁 2𝑁 for which 𝑓 (𝑋𝑖 ) < 𝑓 (𝑋 ′), set
𝑋𝑖+1 = 𝑋 ′. Note that |𝑋𝑖+1 | ≤ 1+ |𝑋𝑖 | +𝑁 2𝑁 and |𝑋1 | = 1, so, for all
𝑖 ∈ [𝑁 ], |𝑋𝑖+1 | ≤ 1+ 𝑖 (1+𝑁 2𝑁 ) ≤ 1+𝑁 (1+𝑁 2𝑁 ) = 1+𝑁 +𝑁 22𝑁 .
If 𝑋ℓ is a hitting set for some ℓ ∈ [𝑁 + 1], the conclusion follows.
Otherwise, we must have 𝑓 (𝑋1) < 𝑓 (𝑋2) < . . . < 𝑓 (𝑋𝑁+1), in
which case, by Lemma 15,

⋃
𝑖 𝑋𝑖 is a hitting set. Since |⋃𝑖 𝑋𝑖 | ≤

(𝑁 + 1) (1+𝑁 +𝑁 22𝑁 ), the conclusion follows in this case, too. □

4 BREAKING THE PROMISE FROM THE LEFT
Let G be a digraph such that (Ĝ,NAE) is a valid template (equiv-
alently, the graph obtained from G by forgetting the directions is
bipartite; in this case, we say that G is bipartite). In this section, we
will prove the following result.

Theorem 2. PCSP(Ĝ,NAE) is tractable if G is balanced, and it is
NP-hard otherwise.

The tractability part is a direct application of Proposition 8.

Proof of tractability in Theorem 2. If G is balanced, apply-
ing both parts of Proposition 8, we find

Ĝ → Z → D̂2 = NAE.

Therefore, PCSP(Ĝ,NAE) reduces to CSP(Z) and is thus tractable.
□

We now turn to prove the hardness part of Theorem 2. Suppose
that G is unbalanced — i.e., G ̸→ L𝜔 . Note that, since G is bipartite,
the net length of any oriented cycle is even. The proof of hardness
in Theorem 2 shall follow from the combination of the next two
facts.

Proposition 20. For any positive integer 𝑘 , PCSP(D̂2𝑘 ,NAE) is
NP-hard.

Proposition 21. For any bipartite digraph G that contains an ori-
ented cycle with net length 2𝑘 ≠ 0, PCSP(D̂2𝑘 ,NAE) reduces in
polynomial time to PCSP(Ĝ,NAE).

These two results will be proved in Section 4.1 and Section 4.2,
respectively.

Proof of hardness in Theorem 2. Suppose thatG contains an
oriented cycle of nonzero net length. Since G is bipartite, this net
length must be even, say 2𝑘 . By Proposition 21, PCSP(D̂2𝑘 ,NAE)
reduces to PCSP(Ĝ,NAE). NP-hardness of PCSP(Ĝ,NAE) then fol-
lows by Proposition 20. □

4.1 Hardness of cycle vs. NAE
In this section, we prove the following result.

Proposition 20. For any positive integer 𝑘 , PCSP(D̂2𝑘 ,NAE) is
NP-hard.

In the following proof, we make use of the fact that, for 𝑓 ∈
Pol(3) (D̂2𝑘 ,NAE), if

𝑓 (𝑥,𝑦, 𝑧) = 𝑓 (𝑥 ′, 𝑦′, 𝑧′)

(𝑥, 𝑥 ′, 𝑥 ′′), (𝑦,𝑦′, 𝑦′′), (𝑧, 𝑧′, 𝑧′′) ∈ 𝑅D̂2𝑘 ,

then 𝑓 (𝑥,𝑦, 𝑧) ≠ 𝑓 (𝑥 ′′, 𝑦′′, 𝑧′′). This fact follows directly from the
definitions of polymorphisms and of NAE. Furthermore, clearly, if
we have 𝑓 (𝑥,𝑦, 𝑧) ≠ 𝑓 (𝑥 ′, 𝑦′, 𝑧′) ≠ 𝑓 (𝑥 ′′, 𝑦′′, 𝑧′′), then 𝑓 (𝑥,𝑦, 𝑧) =
𝑓 (𝑥 ′′, 𝑦′′, 𝑧′′), since NAE is Boolean. Finally, since D̂2𝑘 can be de-
scribed as the template whose domain is [0, 2𝑘) and whose relation
contains all permutations of tuples of the form (𝑥, 𝑥, 𝑥 + 1 mod 2𝑘),
we will consider addition over [0, 2𝑘) to be done modulo 2𝑘 . In
particular, these facts imply that 𝑓 (𝑥,𝑦, 𝑧) ≠ 𝑓 (𝑥 + 1, 𝑦 + 1, 𝑧 + 1)
for 𝑥,𝑦, 𝑧 ∈ [0, 2𝑘).

Proof. The result clearly holds for 𝑘 = 1, since in this case
PCSP(D̂2𝑘 ,NAE) = CSP(NAE), which is NP-hard. Thus, assume
𝑘 ≥ 2. We show that every ternary polymorphism of (D̂2𝑘 ,NAE) is
non-constant and has essential arity 1. This is sufficient for hardness
by Theorem 4. Since 𝑓 (𝑥,𝑦, 𝑧) ≠ 𝑓 (𝑥 +1, 𝑦 +1, 𝑧 +1) for any 𝑥,𝑦, 𝑧 ∈
[0, 2𝑘), we deduce that 𝑓 (𝑥,𝑦, 𝑧) = 𝑧 + 𝑓 (𝑥 − 𝑧,𝑦 − 𝑧, 0) mod 2 for
𝑥,𝑦, 𝑧 ∈ [0, 2𝑘). It thus follows that it is sufficient to describe the
matrix𝑀𝑥𝑦 = 𝑓 (𝑥,𝑦, 0) in order to characterise 𝑓 entirely. We now
observe the following.

(i) If𝑀 contains two adjacent equal elements, then the row or
column on which they are found is constant. To see why,
suppose without loss of generality that 𝑓 (𝑥,𝑦, 0) = 𝑀𝑥𝑦 =

𝑀𝑥,𝑦+1 = 𝑓 (𝑥,𝑦 + 1, 0) for some 𝑥,𝑦 ∈ [0, 2𝑘). Thus 𝑓 (𝑥 +
1, 𝑦, 1) ≠ 𝑓 (𝑥,𝑦, 0). Furthermore, 𝑓 (𝑥,𝑦−1, 0) ≠ 𝑓 (𝑥 +1, 𝑦, 1).
Thus,𝑀𝑥,𝑦−1 = 𝑓 (𝑥,𝑦 − 1, 0) = 𝑓 (𝑥,𝑦, 0) = 𝑀𝑥𝑦 . Repeating
this observation 2𝑘 − 2 times yields the result.

(ii) If a row or column of𝑀 is non-constant, then it alternates
between 0 and 1. This is just the contrapositive of (i).

(iii) The following configurations cannot appear in 𝑀 :
0 ★ ★

★ ★ 1
★ 1 ★

 ,

1 ★ ★

★ ★ 0
★ 0 ★

 .
Equivalently, if 𝑀𝑥,𝑦+1 = 𝑀𝑥+1,𝑦 then 𝑀𝑥−1,𝑦−1 = 𝑀𝑥,𝑦+1.
To see why this is the case, note that 𝑓 (𝑥,𝑦+1, 0) = 𝑀𝑥,𝑦+1 =
𝑀𝑥+1,𝑦 = 𝑓 (𝑥 +1, 𝑦, 0), so𝑀𝑥+1,𝑦 = 𝑓 (𝑥 +1, 𝑦, 0) ≠ 𝑓 (𝑥,𝑦, 1).
Furthermore,𝑀𝑥−1,𝑦−1 = 𝑓 (𝑥 − 1, 𝑦 − 1, 0) ≠ 𝑓 (𝑥,𝑦, 1).

These facts together show that𝑀 is completely determined by its
2 × 2 submatrix 𝑀′ located in the upper-left corner of 𝑀 : These
four entries dictate the rows and columns they are on by (i) and (ii),
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0 1 0 1
1 1 1 1
0 1 0 1
1 1 1 1



,

1 0 1 0
1 1 1 1
1 0 1 0
1 1 1 1



,

1 1 1 1
0 1 0 1
1 1 1 1
0 1 0 1



,

1 1 1 1
1 0 1 0
1 1 1 1
1 0 1 0



,

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0



,

Figure 1: Patterns from the proof of Proposition 20.

and these rows and columns determine all of 𝑀 in the same way.
By propagating out in this way, one easily shows that, if

𝑀′ ∈
{[
0 0
0 0

]
,

[
1 1
1 1

]
,

[
1 0
1 0

]
,

[
0 1
0 1

]
,

[
1 1
0 0

]
,

[
0 0
1 1

]}
,

then 𝑓 is non-constant and has essential arity 1.8 For the remaining
ten configurations, by propagating out we see that the 4 × 4 sub-
matrix located in the upper-left corner of𝑀 must follow one of the
five patterns in Figure 1 or one of the patterns obtained from those
in Figure 1 by swapping 0s and 1s. These patterns do not respect
rule (iii) due to the shaded elements. □

4.2 Reduction
In this section, we prove the following result.

Proposition 21. For any bipartite digraph G that contains an ori-
ented cycle with net length 2𝑘 ≠ 0, PCSP(D̂2𝑘 ,NAE) reduces in
polynomial time to PCSP(Ĝ,NAE).

In order to design the reduction, wewill need a key insight, which
we prove now. The reasoning builds up on an idea in [49]. In the
following, for two oriented paths P = 𝑝1 . . . 𝑝𝑛 and Q = 𝑞1 . . . 𝑞𝑚 ,
we let P +Q denote the path formed by identifying 𝑝𝑛 with 𝑞1, and
we let P − Q denote the path formed by identifying 𝑝𝑛 with 𝑞𝑚 .
Furthermore, recall that L2 denotes the oriented path 𝑝1𝑝2 with
one directed edge (𝑝1, 𝑝2).
Proposition 22. Let C be an oriented cycle of net length 𝑛 ≥ 1.
There exists an oriented path P and a set of vertices 𝑎0, . . . , 𝑎𝑛−1 of C
such that

(i) for each 𝑖 , P − P homomorphically maps into C in a way that
its endpoints map to 𝑎𝑖 , and

(ii) for each 𝑖 , L2 + P − P homomorphically maps into C in a
way that its first vertex maps to 𝑎𝑖 and its last vertex maps to
𝑎𝑖+1 mod 𝑛 .

Proof. We first choose a positive orientation of C, i.e., an ori-
entation such that the difference between the numbers of edges
directed forward and backward is positive (and thus equal to the
net length).

We now proceed to choose a “starting point”. Label the vertices
of C as 𝑐0, 𝑐1, 𝑐2, . . . , 𝑐𝑝 = 𝑐0, where 𝑐0 is an arbitrary vertex and
the other vertices are picked according to the positive orientation,
in the natural way. Let C̃ be the oriented path obtained from C by
deleting the edge connecting 𝑐0 and 𝑐𝑝−1, let 𝜇 be the minimum
level of the vertices of C̃, and let 𝑣 be the last vertex of C̃ of level 𝜇.

Let now C∗ be an oriented path starting at 𝑣 and wounding
around C a certain amount of times (the number is inessential, as
8In particular, 𝑓 is one of the 6 functions (𝑥1, 𝑥2, 𝑥3 ) ↦→ 𝑥𝑖 +𝑐 mod 2, for 𝑖 ∈ [3], 𝑐 ∈
[2].

long as it is sufficiently large) in the positive orientation. Consider
the levels of vertices in the oriented path C∗. Clearly lvl(𝑣) = 0;
the choice of 𝑣 guarantees that the levels of all other vertices are
strictly positive. (Indeed, the first time we wind around C this is
the case, and every successive time we wind around C the levels
are increased by the net length of C, which is positive.) Further,
for 𝑖 = 0, . . . , 𝑛, we let 𝑎𝑖 be the last vertex in C∗ of level 𝑖 . Note
that 𝑎0, . . . , 𝑎𝑛−1 appear in the first copy of C. Moreover, 𝑎0 = 𝑣 ,
while 𝑎𝑛 coincides with the duplicate of 𝑣 in the second copy of C.
It remains to find the path P.

First, for every 𝑖 = 0, . . . , 𝑛 − 1, we will find a minimal path P𝑖 of
net length 𝑝 so that P𝑖 − P𝑖 connects 𝑎𝑖 to itself. This is very easy:
We start with 𝑎𝑖 and go along C∗ until we hit the first element of
level 𝑖 +𝑝 . This is our P𝑖 ; the path is minimal since no element after
𝑎𝑖 has level 𝑖 , and since we chose the first element of level 𝑖 + 𝑝 to
be the end. Moreover, 𝑎𝑖 is clearly connected to itself via P𝑖 − P𝑖 in
C.

Next, for each 𝑖 = 0, . . . , 𝑛 − 1, we let 𝑎′
𝑖
be the element on C∗

coming after 𝑎𝑖 . Clearly, by the definition of 𝑎𝑖 , lvl(𝑎′𝑖 ) = 𝑖 + 1, and
all the vertices of C∗ after 𝑎′

𝑖
have level ≥ 𝑖 + 1. As before, we go

along C∗ until we hit the first vertex of level 𝑖 + 1 + 𝑝 , say 𝑏𝑖 . Let Q𝑖

be the part of C∗ connecting 𝑎′
𝑖
to 𝑏𝑖 ; it has net length 𝑝 and it is

minimal. By the choice of 𝑝 , along the way, we hit the element 𝑎𝑖+1.
Let Q′

𝑖
be the part of Q𝑖 connecting 𝑎𝑖+1 to 𝑏𝑖 ; it is clearly minimal

by the choice of 𝑎𝑖+1 and 𝑏𝑖 , and it has net length 𝑝 . Additionally,
L2 + Q𝑖 − Q′

𝑖
connects 𝑎𝑖 to 𝑎𝑖+1 by construction.

Now let P be the oriented path homomorphically mapping to
every P𝑖 , Q𝑖 , and Q′

𝑖
(it exists by Theorem 5). Using that 𝑎0 and 𝑎𝑛

are the same vertex in C, it follows that P satisfies the conclusion
of the lemma. □

Remark 23. Proposition 22 also holds if one replaces C with any
directed graphG that contains an oriented cycle of net length 𝑛 ≥ 1.
Indeed, one only needs to apply the result to any oriented cycle
contained in G.

Reduction. We reduce PCSP(D̂2𝑘 ,NAE) to PCSP(Ĝ,NAE). For
any oriented path P with vertex set {𝑣1, . . . , 𝑣𝑛}, whose first vertex
is 𝑣1, whose last vertex is 𝑣𝑛 , and whose edge set is 𝐸 (P), define the
pp-formula 𝑥

P−→ 𝑦 by

∃𝑢1, . . . , 𝑢𝑛 (𝑥 = 𝑢1) ∧ (𝑦 = 𝑢𝑛) ∧
∧

(𝑣𝑖 ,𝑣𝑗 ) ∈𝐸 (P)
𝑅(𝑢𝑖 , 𝑢𝑖 , 𝑢 𝑗 ) .

This pp-formula is such that, in the structure Ĝ, 𝑥
P−→ 𝑦 is true if

and only if P homomorphically maps into G in a way that 𝑣1 is
mapped to 𝑥 and 𝑣𝑛 is mapped to 𝑦.

Lemma 24. There is a pp-formula 𝜑 such that

(i) 𝜑 interpreted in D̂𝑖 pp-defines D̂𝑖 for any 𝑖 ∈ N, and
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(ii) if 𝜑 interpreted in Ĝ pp-defines T, then D̂2𝑘 homomorphically
maps into T.

Proof. Consider the path P for G provided by Proposition 22
(see Remark 23), and define the formula 𝜑 (𝑥,𝑦, 𝑧) by

∃𝑥 ′, 𝑦′, 𝑧′ 𝑅(𝑥 ′, 𝑦′, 𝑧′) ∧ 𝑥
P−P−−−→ 𝑥 ′ ∧ 𝑦

P−P−−−→ 𝑦′ ∧ 𝑧
P−P−−−→ 𝑧′ .

This is not a pp-formula, but it is equivalent to one, by “pulling out”
the existential quantifiers hidden in ★

P−P−−−→ ★.
To see why the first item follows, note that P − P has net length

0 and thus, in D̂𝑖 , we have 𝑥 ′ = 𝑥 , 𝑦′ = 𝑦, and 𝑧′ = 𝑧.
To see why the second item follows, consider the vertices

𝑎0, . . . , 𝑎2𝑘−1

given by Proposition 22. Suppose we label the vertices of D̂2𝑘 by
0, 1, . . . , 2𝑘−1. Then the desired homomorphism is the one sending 𝑖
to 𝑎𝑖 . Letting ⊕ be addition modulo 2𝑘 , that this is a homomorphism
is equivalent to saying that

𝜑 (𝑎𝑖 , 𝑎𝑖 , 𝑎𝑖⊕1) ∧ 𝜑 (𝑎𝑖 , 𝑎𝑖⊕1, 𝑎𝑖 ) ∧ 𝜑 (𝑎𝑖⊕1, 𝑎𝑖 , 𝑎𝑖 )

is true in Ĝ for all 𝑖 = 0, . . . , 2𝑘 − 1. Since 𝜑 is clearly symmetric,
it is only necessary to prove that 𝜑 (𝑎𝑖 , 𝑎𝑖 , 𝑎𝑖⊕1) holds. Recall that
L2 + P − P homomorphically maps into G such that its beginning is
mapped to 𝑎𝑖 and its end is mapped to 𝑎𝑖⊕1. In other words, there
exists some vertex 𝑏 such that an edge from 𝑎𝑖 to 𝑏 exists in G,
and P − P maps into G such that its beginning is mapped to 𝑏 and
its end is mapped to 𝑎𝑖⊕1. As a consequence, 𝑏

P−P−−−→ 𝑎𝑖⊕1 is true
when interpreted in Ĝ; by the symmetry of 𝑃 − 𝑃 , 𝑎𝑖⊕1

P−P−−−→ 𝑏 is
true as well. Thus, the witnesses to the truth of 𝜑 (𝑎𝑖 , 𝑎𝑖 , 𝑎𝑖⊕1) are
𝑥 ′ = 𝑎𝑖 , 𝑦

′ = 𝑎𝑖 , and 𝑧′ = 𝑏. Indeed, 𝑅(𝑎𝑖 , 𝑎𝑖 , 𝑏) is true since there
is an edge from 𝑎𝑖 to 𝑏; 𝑎𝑖

P−P−−−→ 𝑎𝑖 is true by Proposition 22; and
𝑎𝑖⊕1

P−P−−−→ 𝑏 is true as shown above. □

Proof of Proposition 21. Applying Lemma 24, we find that
there exists a pp-formula 𝜑 such that, if 𝜑 interpreted in Ĝ pp-
defines T, then D̂2𝑘 → T, and 𝜑 interpreted in NAE = D̂2 pp-
defines NAE. Hence, (Ĝ,NAE) pp-defines (T,NAE). By Theorem 7,
PCSP(T,NAE) reduces to PCSP(Ĝ,NAE). On the other hand, we
have that PCSP(D̂2𝑘 ,NAE) reduces to PCSP(T,NAE), since D̂2𝑘 →
T. Combining the two reductions, we obtain the required result. □

5 RELATEDWORK AND FUTURE
DIRECTIONS

The results obtained in the current work identified two features of
the satisfiability problem 1-in-3 vs. NAE that can be regarded as the
reason for its tractability: The problem is solvable in polynomial
time because 1-in-3 corresponds to a balanced digraph, or because
NAE corresponds to a small cycle. We completely classified the
complexity of the extensions of the 1-in-3 vs. NAE problem ob-
tained by breaking the promise either from the left or from the right,
in the symmetric rainbow-free regime. It is noteworthy that the
classifications for the two cases are in terms of structural properties
of the underlying graphs having two different natures. Indeed, the
key property guaranteeing tractability of templates of the form
(1-in-3, Ĝ) is local, in that it corresponds to the presence of small

directed cycles in G. In contrast, the balancedness property, regu-
lating the complexity of templates of the form (Ĝ,NAE), cannot be
detected by looking at small subgraphs of Ĝ, and is thus a global
property. As mentioned in the Introduction, our results fit within
the broader picture of the complexity investigation of PCSPs. In
this sense, we see two natural directions for future analysis:

(i) breaking the promise from both sides simultaneously;
(ii) relaxing the symmetricity and rainbow-freeness assump-

tions.
The direction (i) corresponds to studying the complexity of prob-

lems PCSP(Ĝ, Ĥ) for arbitrary pairs of digraphs G and H such that
G → H. Our results imply a classification of problems of this sort
in the bipartite regime.

Corollary 25. Let G → H be two bipartite digraphs with nonempty
edge sets. Then PCSP(Ĝ, Ĥ) is tractable if G has no oriented cycles
with nonzero net length and H has a directed cycle of length at most
3; otherwise, PCSP(Ĝ, Ĥ) is NP-hard.

Proof. The tractability result follows since when G has no ori-
ented cycles with nonzero net length and H has a directed cy-
cle of length at most 3, we have that Ĝ → Z → Ĥ. For hard-
ness, note that PCSP(Ĝ, Ĥ) is at least as hard as PCSP(1-in-3, Ĥ)
and PCSP(Ĝ,NAE). Hence, the hardness follows from Theorems 1
and 2. □

Observe that the tractability boundary in this case is a conjunction
of a condition on G and a condition on H, with these conditions
being independent. Is this a coincidence, or does the independence
of the properties drawing the tractability boundary for PCSPs hold
in a more general regime?

All tractable cases of problems PCSP(Ĝ, Ĥ) that we are aware of
are those that can sandwich Z, D̂1, or D̂3 (excluding trivial cases
when G has no edges).9 Are all remaining problems in this class
NP-hard?10 We proved this to be true when G is balanced (and
contains at least one edge), or when G is an arbitrary unbalanced
bipartite digraph and H = D2. It is known (see e.g. [32]) and easy
to show that G → D3 if and only if all oriented cycles in 𝐺 have
net length divisible by 3. Thus, to answer the above question in
the positive, it would be sufficient to prove NP-hardness for the
following two cases: (a) when G is an oriented cycle of net length
not divisible by 3 and H is a complete graph with at least three
vertices, and (b) when G is an oriented cycle of nonzero net length
divisible by 3 and H is D3-free.11

9Sandwiching D̂1 is the same as Ĥ having a loop, hence all of these examples are trivial.
CSP(D̂3 ) is tractable since it is equivalent to solving mod-3 linear equations. For an
example of a PCSP that sandwiches D̂3 (but not Z) without having any structure in
the template be homomorphically equivalent to D̂3 , let X be the unique tournament
on 4 vertices that has a cycle of length 4, and consider PCSP(D̂9,X) .
10Note that the statement is true if G contains an undirected edge D2 . Indeed, in this
case, letting ℎ be the size of H, and NAEℎ = ( [ℎ]; [ℎ]3 \ { (1, 1, 1), . . . , (ℎ,ℎ,ℎ) } ) ,
as D1 ̸→ H, we have the sandwich NAE = D̂2 → Ĝ → Ĥ → NAEℎ , and
PCSP(NAE,NAEℎ ) is NP-hard by [26].
11To see why, note that when G has no edges PCSP(Ĝ, Ĥ) is tractable; when G is
balanced and has an edge then PCSP(Ĝ, Ĥ) is tractable if and only if PCSP(1-in-3, Ĥ)
is; when all cycles ofG have net length divisible by 3 andD3 → Ĥ then PCSP(Ĝ, Ĥ) is
tractable by reduction to CSP(D̂3 ) . The remaining cases are (a) when G is unbalanced
yet all cycles have net length divisible by 3, andH isD3-free, which is hard by reducing
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We also note that all our tractable cases can be solved by the
Affine Integer Programming (AIP) relaxation of [12]. This pro-
vides more evidence for the conjecture, first formally stated in
the work [46], namely that PCSP(1-in-3,A) is tractable if and only
if it is solved by AIP.

We now discuss direction (ii). It was observed in [3, 17] that
assuming the structure A in a problem PCSP(1-in-3,A) to be sym-
metric does not yield a loss of generality, as, if A is non-symmetric,
replacing it with the maximal symmetric substructure does not
alter the complexity of the problem. In [3], essentially the following
question was posed: Are templates of the form (1-in-3,A) tractable
precisely when A contains one of the three structures D̂1, D̂2, D̂3 as
a substructure? When A is rainbow-free, the current work shows
that this is indeed the case.

Given a digraph G, let Ĝ+ denote the ternary structure obtained
from Ĝ by adding all rainbow tuples (i.e., tuples (𝑥,𝑦, 𝑧) with 𝑥,𝑦, 𝑧
all distinct) to the relation. Recall that T𝑖 denotes the transitive tour-
nament with 𝑖 vertices. [3] classified the complexity of all problems
PCSP(1-in-3,A) where A has a 3-element domain, with the excep-
tion of PCSP(1-in-3, T̂+3 ).

12 Note that 1-in-3 is precisely T̂+2 . Within
[3] it is conjectured that PCSP(T̂+

𝑘
, T̂+

ℓ
) is NP-hard for 𝑘 ≤ ℓ .13

Versions of this problem for higher arities were shown to be hard
in [45], and the techniques of [45, Theorem 26] show that to prove
this conjecture it is necessary and sufficient to show that

PCSP(T̂+2 , T̂
+
𝑘
) = PCSP(1-in-3, T̂+

𝑘
)

is NP-hard for all 𝑘 ≥ 2. We view our hardness results as a partial
step towards the resolution of this conjecture, in the rainbow-free
regime: It follows fromTheorem 1 that PCSP(1-in-3, T̂𝑘 ) isNP-hard
for 𝑘 ≥ 2; what the conjecture then requires is for this hardness to
hold even if rainbow tuples are allowed.

Nakajima and Živný [46] classified all PCSPs which have the
form PCSP(1-in-3,A) where A is functional, that is, the relation of
A does not contain tuples (𝑥,𝑦, 𝑧), (𝑥,𝑦, 𝑧′) with 𝑧 ≠ 𝑧′. Thus, these
results fail to classify PCSP(1-in-3, Ĝ) whenever G has a vertex
with out-degree at least 2. On the other hand, unlike this paper,
some of the structures A for which [46] gave a classification do
have rainbow tuples.

Comparing with the literature on PCSP(1-in-3,A), we find it
interesting that the dual extension PCSP(A,NAE) has been signifi-
cantly less investigated. We are aware of only two works in this line
of work. Firstly, [17] studied PCSP(A,NAE) for Boolean (possibly
non-symmetric) A obtained from 1-in-3 by adding extra tuples.
Secondly, [28] established a classification of Boolean symmetric
PCSPs — however, up to isomorphism, the only Boolean symmetric
relational structures with one ternary relation that map to NAE are
({0, 1}; ∅), 1-in-3, and NAE. Thus, for the case PCSP(Ĝ,NAE) with
Ĝ Boolean, the results of [28] only yield trivial results: The problem
is tractable when G is empty or has a loop, or when Ĝ = 1-in-3,
and is otherwise NP-complete. Our results thus additionally cover
all other digraphs G — i.e., the non-Boolean setting.

from case (a) above, and (b) when G has an oriented cycle of net length indivisible by
3, which is hard by a reduction from case (b) above.
12In [3], T̂3 and T̂+

3 are denoted by T1 and T+
1 , respectively.

13In [3], T̂+
𝑘
is denoted by LO𝑘 .

Finally, we observe that extending our results in both directions
(i) and (ii) simultaneously would amount to classifying the complex-
ity of all problems PCSP(A,B) withA and B having a single, ternary
relation. Through a similar argument as in [12] (see also [27]), this
is easily seen to be equivalent to a classification for all PCSPs. Such
a wide classification appears to be out of reach for the current
techniques.
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