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Abstract. This paper describes several cases of adjunction in the homomorphism preorder
of relational structures. We say that two functors Λ and Γ between thin categories of relational
structures are adjoint if for all structures A and B, we have that Λ(A) maps homomorphically to
B if and only if A maps homomorphically to Γ(B). If this is the case, Λ is called the left adjoint
to Γ and Γ the right adjoint to Λ. Foniok and Tardif [8] described some functors on the category of
digraphs that allow both left and right adjoints. The main contribution of Foniok and Tardif is a
construction of right adjoints to some of the functors identified as right adjoints by Pultr [16]. We
generalise results of Foniok and Tardif to arbitrary relational structures, and coincidently, we also
provide more right adjoints on digraphs, and since these constructions are connected to finite duality,
we also provide a new construction of duals to trees. Our results are inspired by an application in
promise constraint satisfaction — it has been shown that such functors can be used as efficient
reductions between these problems.
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1. Introduction. The study of homomorphisms between (di)graphs and general
relational structures plays an important role in combinatorics and theoretical com-
puter science [9, 6, 12]. The importance in theoretical computer science stems, in
particular, from the fact that the Constraint Satisfaction Problem (CSP) and its rel-
atives can be cast as the problem of existence of a homomorphism from one relational
structure to another. The class of all relational structures of a given signature (e.g.,
all digraphs) admits the homomorphism preorder, where A ≤ B for two structure A
and B if and only if there exists a homomorphism from A to B. This preorder is in-
teresting in its own right [9], and, moreover, important computational problems such
as non-uniform CSPs and promise CSPs can be stated in terms of a relative position
of an input structure with respect to a fixed structure or a pair of fixed structures.
Specifically, the CSP with a template A (which is a fixed structure) asks whether a
given structure I satisfies I ≤ A [6, 12], and the promise CSP with a template A,B
(which is a pair of structures such that A ≤ B) asks to distinguish between the cases
I ≤ A and I ̸≤ B [1, 10]; the promise being that input falls into one of the two
(disjoint) cases.

A (thin) functor from the class of structures of some signature to the class of
structures of a possibly different signature is a mapping that is monotone with respect
to the homomorphism preorder. Many well-known examples of constructions in graph
theory, such as the arc graph construction, are functors [7, 8]. In this paper we
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investigate a kind of homomorphism duality of such functors called adjunction — two
functors Λ and Γ form an adjoint pair if Λ(H) maps homomorphically to G if and
only if H maps homomorphically to Γ(G) for all relational structures G,H of the
corresponding signatures. In this case, Λ is called a left adjoint of Γ and Γ is a right
adjoint of Λ. If, for some Γ, there exists such Λ we also say that Γ has (or admits) a
right adjoint.

Adjunction is a core concept of category theory, although we should note that
here we work with posetal categories of relational structures, i.e., only existence of
a homomorphism matters, rather than with the category of relational structures to-
gether with homomorphisms. Adjoints between categories of relational structures in
the stricter categorical sense have been completely described by Pultr [16]. Here, we
call these functors left and central Pultr functors (following the nomenclature of Fo-
niok and Tardif [8]) — a left Pultr functor is a left adjoint to a central Pultr functor.
It is clear, that each pair of left and central Pultr functors is adjoint in our sense as
well. Nevertheless, there are more functors that admit a right adjoint than left Pultr
functors, e.g., the afore-mentioned arc graph construction. In this paper, we ask the
question which central Pultr functors (i.e., the functors which admit a left adjoint by
Pultr’s characterisation) admit a right adjoint?

A necessary condition for a central Pultr functor to have a right adjoint was
given by Foniok and Tardif [8]. They also provided explicit constructions of the right
adjoints for some of such functors mapping digraphs to digraphs. Loosely speaking,
they gave explicit constructions of right adjoints to functors that either do not change
the domain (i.e., the set of vertices) of the digraph, or such that the new domain
is the set of edges (arcs) of the input digraph. In the present paper, we extend
their results by proving an explicit construction that works with general relational
structures. In particular, we provide adjoints to some of the functors between classes
of relational structures satisfying the above-mentioned necessary condition, and that
either do not change the domain of the structure, or the new domain is one of the
relations of the input structure. Hence we prove a direct generalisation of [8] to
arbitrary relational signatures (see Sections 5 and 6). Furthermore, by composing
right adjoints constructed in this way, we obtain more adjunctions than [8] even for
the digraph case (see Section 7). Finally, we believe that our constructions are more
intuitive than those provided by [8] — in particular, the above mentioned necessary
condition relates adjunction with finite duality, and therefore a construction of a
right adjoint is related to a construction of a dual of a tree. Moreover, every finite
tree can be built via natural inductive process. Our constructions, and the proofs
that they work, reflect this inductive process for certain trees used in the definition
of the functor.

2. Preliminaries. We recall some basic definitions and notation. We use the
symbol P(X) to denote the power set of a set X.

2.1. Structures and homomorphisms. A directed graph can be defined as a
pair G = (G,EG) where G is the set of vertices of G and EG ⊆ G×G is the set of
edges of G. This is a special case of a relational structure with a single relation of
arity 2 as defined below.

Definition 2.1. A relational signature τ is a tuple of relational symbols R,S, . . .
where each symbol is assigned a positive integer, called an arity and denoted by
arR, arS, . . . .

A relational τ -structure is a tuple A = (A;RA, SA, . . . ), where A is a set called
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the domain (or universe) of A, and RA ⊆ AarR, SA ⊆ AarS, . . . are relations on
this domain of the corresponding arity.

The relational symbols R,S, . . . in τ are also referred to as τ -symbols. When no
confusion can arise, we say a τ -structure (dropping “relational”), or even simply a
structure, when τ is clear from the context. Two structures of the same signature are
said to be similar. We will call elements from the domain of some structure vertices,
and tuples in a relation R of some structure R-edges, or simply edges if the symbol R
is either irrelevant or clear from the context.

In the rest of the paper, we will not use the symbol V as a relational symbol —
we restrict its use to refer to the domain of the structure (e.g., in Definition 2.5 and
Section 3 below).

Loosely speaking, a homomorphism between two similar structures is a map that
preserves relations, e.g., a graph homomorphism would be a map between the two
graphs that preserves edges. Formally, a homomorphism is defined as follows.

Definition 2.2. Let A and B be two structures of the same signature τ . A
homomorphism f : A → B is defined to be a mapping f : A → B such that, for each
relational symbol R in τ and each (a1, . . . , aarR) ∈ RA, we have

(f(a1), . . . , f(aarR)) ∈ RB.

We will write A → B if there exists a homomorphism from A to B. The set of all
homomorphisms from A to B is denoted by hom(A,B).

The above definition can be rephrased by saying that the function f : A → B has
a coordinate-wise action on each of the relations R, i.e., for each relational symbol R
in the signature, the expression

fR((a1, . . . , aarR)) = (f(a1), . . . , f(aarR))

defines a function fR : RA → RB. We use the symbol fR throughout this paper.
Finally, since we will be extensively working with the homomorphism preorder,

this in particular means that we will often work with structures up to homomorphic
equivalence — we say that two structures A and B are homomorphically equivalent
if we have A → B and B → A. Such structures would be identified if we followed
the standard procedure to turn the homomorphism preorder into a proper partial
order. Note that two structures A and B are homomorphically equivalent if and
only if for every structure C, we have C → A if and only if C → B, i.e., they
allow homomorphisms from the same structures. The same is also true for allowing
homomorphisms to the same structures, i.e., A and B are homomorphically equivalent
if and only if, for all C, we have A → C if and only if B → C. A structure is called
a core, if it is not homomorphically equivalent to any of its proper substructures.

Certain structures called trees play a special role in this paper. We use a definition
of a tree equivalent to the one given in [15, Section 3]. Loosely speaking, a relational
structure is a tree if it is connected, contains no cycles, and none of its relations has
tuples with repeated entries. This is more precisely defined by using the incidence
graph of a structure.

Definition 2.3. The incidence graph of a structure A = (A;RA, . . . ) is a bipar-
tite multigraph whose vertex set is the disjoint union of A and RA for each relational
symbol R. There is an edge connecting every tuple (a1, . . . , ak) ∈ RA with every one
of its coordinates ai ∈ A. In particular, if some element appears multiple times in
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this tuple, then the edge connecting it to the tuple appears with the same multiplicity.
In this case, the incidence graph contains a cycle of length 2 (i.e., two parallel edges).

A τ -structure is a (τ -)tree if its incidence graph is a tree, i.e., an acyclic connected
digraph.

Remark 2.4. An undirected graph can be viewed as a relational structure with a
single relation E whose universe is the set of vertices V . The relation E ⊆ V × V
contains for every edge two tuples (u, v) and (v, u). This means that no undirected
graph with at least one edge is a tree according to the above definition since if (u, v)
is an edge, then u, (u, v), v, (v, u) is a 4-cycle of the incidence graph. Intuitively,
relational structures with binary relations are directed graphs; an undirected graph
is encoded as directed by including both orientations of each edge which results in a
directed cycle of length 2. Under the above definition, a directed graph is a tree if it
is an oriented tree.

We now fix notation for some small structures that will be used later.

Definition 2.5. Fix a relational signature σ. We define the following structures:
• V1 is the structure with a single vertex, i.e., V1 = {1}, and empty relations,

i.e., RV1 = ∅ for all σ-symbols R.
• Let S be a relational symbol, S1 is a structure with arS vertices related by S

and all other relations empty. More precisely, S1 = {1, . . . , k} where k = arS,
SS1 = {(1, . . . , k)}, and RS1 = ∅ for all σ-symbols R except S.

Since adjunction is a form of duality, we will often mention homomomorphism
duality of structures.

Definition 2.6. A pair (T,D) of similar structures is called a duality pair if,
for all structures A similar to T, either T → A or A → D. In this case, D is called
a dual to T.

It was shown in [15] that a structure has a dual if and only if this structure is
homomorphically equivalent to a tree. We will also give an alternative proof of one
of the implications in Section 4.

2.2. Pultr functors: gadget replacement and pp-constructions. Tradi-
tionally, in the CSP literature, pp-constructions would be described in the language
of logic using so called primitive positive formulae (logical formulae that use only
∃, ∧, and =). We refer to [4, Definition 19] for details. In this paper, we define
“pp-constructions” using a language similar to [8, Definitions 2.1–2.3].

Definition 2.7. Let σ and τ be two relational signatures. A (σ, τ)-Pultr template
is a tuple of σ-structures consisting of P, and QR, one for each τ -symbol R, together
with homomorphisms ϵi,R : P → QR for each τ -symbol R and all i ∈ {1, . . . , arR}.

Definition 2.8. Given a (σ, τ)-Pultr template as above, we define two functors
Λ and Γ, called (left and central) Pultr functors.

• Given a τ -structure A, we define a σ-structure Λ(A) in the following way:
For each a ∈ A, introduce to Λ(A) a copy of P denoted by Pa, and for each
τ -symbol R and each (a1, . . . , ak) ∈ RA, introduce to Λ(A) a copy of QR with
the image of P under ϵi,R identified with Pai for all i ∈ {1, . . . , k}.

• Given a σ-structure B, we define a τ -structure Γ(B) whose universe consists
of all homomorphisms h : P → B. The relation RΓ(B) where R is a τ -symbol
is then defined to contain all tuples (h1, . . . , hk) of such homomorphisms for
which there is a homomorphism g : QR → B such that hi = g ◦ ϵi,R for all
i ∈ {1, . . . , k}.
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Once the definitions are settled, it is not too hard to show that, for any Pultr
template, the corresponding Pultr functors Λ and Γ are left and right adjoints. This
statement is attributed to [16], although it was rediscovered on numerous occasions,
and it is considered folklore in category theory.

The fact that both Λ and Γ are (thin) functors follows from the adjunction. It
can be also easily proved directly, for example, a homomorphism fΓ : Γ(A) → Γ(B)
can be obtained from a homomorphism f : A → B by setting fΓ(h) = f ◦ h for each
h : P → A.

Example 2.9. Let us consider the Pultr template consisting of structures P =
({0, 1}; {(0, 1)}) and QE = ({0, 1, 2}; {(0, 1), (1, 2)}) with ϵ1(0) = 0 and ϵ1(1) = 1,
and ϵ2(0) = 1 and ϵ2(1) = 2.

The corresponding central Pultr functor Γ is the arc-graph construction that is
usually denoted by δ; given a (directed) graph G = (G,EG), the digraph δ(G) is
defined as the graph with the vertex set EG and edges ((u, v), (v, w)) ∈ EG × EG.

The left Pultr functor Λ corresponding to this template provides a left adjoint
to the arc-graph construction, and can be explicitly described as follows: Given a
digraph G, the digraph Λ(G) is constructed by replacing each vertex v ∈ G with a
pair of vertices v0, v1 connected by an edge, i.e., with (v0, v1) ∈ EΛ(G). Furthermore,
for each edge (u, v) ∈ EG, we identify the vertices u1 and v0. For example, the image
of a path of length n, i.e., the digraph Pn = ({0, . . . , n}; {(i, i+ 1) | i ∈ {0, n− 1}) is
the path of length n+ 1 consisting of vertices 00, 01 = 10, 11 = 20, . . . , n1.

Observe that, in this case, we have that Λ(Γ(Pn)) is isomorphic to Pn. This does
not need to happen for any digraph in place of Pn, nevertheless, the existence of a
homomorphism Λ(Γ(G)) → G for all digraphs G follows from the adjunction in a
straightforward way.

We remark that the connection between the adjunction of left and central Pultr
functors and the algebraic reductions between CSPs has been described in [11, Section
4.1]. Let us briefly mention that the central Pultr functors are pp-constructions (more
precisely, a structure A is pp-constructible from B if it is homomorphically equivalent
to the structure Γ(B) for some Pultr functor Γ), and the left Pultr functors are called
gadget replacements in this context.

The main contribution of the present paper is an investigation of the cases of
Pultr templates, for which Γ is also a left adjoint, i.e., it admits a right adjoint Ω.
The following necessary condition for this was proved in [8] for the case of digraphs, but
the proof goes through verbatim for general structures; we include it for completeness.

Theorem 2.10 ([8, Theorem 2.5]). Let Λ and Γ be a pair of left and central
Pultr functors defined by a (σ, τ)-Pultr template. If Γ has a right adjoint, then, for
each τ -tree T, Λ(T) is homomorphically equivalent to a σ-tree.

Proof. A structure has a dual if and only if it is homomorphically equivalent to
a tree [15]. Thus, it suffices to prove that if Γ has both a left adjoint Λ and a right
adjoint Ω, and (T,D) is a duality pair, then (Λ(T),Ω(D)) is a duality pair as well.
To show that, observe that, for any A, Λ(T) ̸→ A is equivalent to T ̸→ Γ(A) since
Λ is a left adjoint to Γ. The latter condition is equivalent to Γ(A) → D, since D is a
dual of T, which in turn is equivalent to A → Ω(D), since Ω is a right adjoint to Γ.

Corollary 2.11. If a central Pultr functor Γ has a right adjoint, then all the
structures in its Pultr template are homomorphically equivalent to trees.

Proof. As shown in [8] (and not hard to see), if the template consists of structures
P and QR for τ -symbols R, then P is isomorphic to Λ(V1) and QR is isomorphic
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to Λ(R1) for each τ -symbol R (where tree τ -structures V1 and R1 are as in Defini-
tion 2.5).

It is open whether the condition in Theorem 2.10 is also sufficient to have a right
adjoint. In this paper, as well as Foniok-Tardif do in [8], we focus on the cases when
P and QR’s are actually trees, and we give a concrete construction of the adjoint
in two cases: P = V1 (this is shown in Section 5), and P = S1 is the tree with
a single S-edge for some σ-symbol S (this is shown in Section 6). Finally, in the
last section, we combine these two constructions to prove that if P and QR’s are
trees, and, moreover, the images of P in QR under the maps ϵi,R are either disjoint
or intersect in one vertex, then the corresponding central Pultr functor has a right
adjoint (Theorem 7.3).

Finally, let us note a well-known fact from category theory that if Ω1 and Ω2 are
both right adjoints to Γ, then Ω1(A) and Ω2(A) are homomorphically equivalent for
all structures A. The proof is immediate from the definitions: both structures allow
a homomorphism from B if and only if Γ(B) → A.

3. An inductive construction of trees. For our constructions, it will be con-
venient to describe τ -trees by certain formal terms. Our terms will correspond to trees
that are rooted, either in a vertex or in an edge (i.e., a tuple in one of the relations).
Each term will correspond to a unique inductive construction of a tree, but the same
tree can be obtained by several inductive constructions.

We recall that we assume that none of the relational signatures uses V as a
relational symbol. Each term will be either a V -term (V stands for vertices) or an
R-term where R is a relational symbol in τ . The rules for the inductive construction
of terms and their semantics are as follows:

• vertex is a V -term.
• If t1, . . . , tk are V -terms and R is a k-ary symbol in τ , then edgeR(t1, . . . , tk)

is an R-term.
• If t is an R-term and i ∈ {1, . . . , arR}, then pri(t) is a V -term.

The rooted tree (T(t), rt), where rt is the root, corresponding to a term t is
defined in the following way:

• T(vertex) is the one-vertex tree, rooted at its only vertex, i.e., T(vertex) = V1

and rt = 1.
• If t = edgeR(t1, . . . , tk) is an R-term, then T(t) is the tree obtained by taking

the disjoint union of the trees T(ti) (with roots rti) and adding the tuple
(rt1 , . . . , rtk) to the relation R. The root rt is defined to be this new tuple.

• If t = pri(s) is a V -term and rs = (v1, . . . , vk), then we set T(t) = T(s) and
rt = vi.

The domain of T(t) is denoted by T (t).
We say that t represents a tree T if T(t) is isomorphic to T, and that t represents

a tree T rooted in r if T(t) is isomorphic to T via an isomorphism mapping rt to
r. The same tree can in general be represented by several terms (see the following
example), but each term represents a unique tree up to isomorphism.

Example 3.1. The following are examples of terms and the trees they represent
in the relational signature of digraphs. The corresponding roots are highlighted. We
drop the brackets around arguments of pri to ease readability.

vertex edgeE(vertex, vertex) pr2 edgeE(vertex, vertex)

Note that the difference between the second tree and the third tree is the root; the



FUNCTORS WHICH ADMIT BOTH LEFT AND RIGHT ADJOINTS 7

edgeE(pr2 edgeE(vertex, vertex), vertex) edgeE(vertex, pr2 edgeE(vertex, vertex))

edgeE
(
pr1 edgeE(pr2 edgeE(vertex, vertex), vertex), pr2 edgeE(vertex, vertex)

)

Fig. 3.1. Examples of terms and trees they represent.

latter tree is obtained from the other by applying pr2, and thus only changing the
root. Further, we present a few examples of more complicated trees in Fig. 3.1.

We remark that a tree can be represented by multiple terms even when we fix the
root. For example, the last tree in Fig. 3.1 can be also represented by the term

edgeE
(
pr2 edgeE(vertex, pr1 edgeE(vertex, vertex)), pr2 edgeE(vertex, vertex)

)
.

Lemma 3.2. Fix a relational signature τ . Any finite τ -tree can be represented by
a term. More precisely,

• for every finite tree T and r ∈ T , there is a V -term t such that T(t) is
isomorphic to T via an isomorphism that maps rt to r, and

• for every finite tree T and r ∈ RT for some τ -symbol R, there is an R-term
t such that T(t) is isomorphic to T via an isomorphism that maps rt to r.

The proof is a simple argument by induction on the number of edges of the tree.
We include it in detail to provide more intuition about terms.

Proof. We prove this statement by induction on the number of edges of T. Each
induction step is moreover split in two: we first prove that trees with n edges rooted
in an edge can be represented, and then, assuming the above, we show that trees with
n edges rooted in a vertex can be represented.

1. We start with n = 0. There is a single tree T with no edges, namely the tree
with one vertex. It cannot be rooted in an edge, but it can be rooted in its
only vertex. It is represented by the term vertex.

2. Assume n > 0, and we can represent all trees rooted in a vertex with less than
n edges. Assume that T has n edges and is rooted in an edge (r1, . . . , rk) ∈ RT

for some k-ary symbol R. Removing this edge from T splits T into k con-
nected components T1, . . . ,Tk, where Ti contains ri for each i. Each of these
components is a tree. Assuming that Ti rooted in ri is represented by the
term ti for each i, T rooted in (r1, . . . , rk) is represented by edgeR(t1, . . . , tk).

3. Assume that n > 0, and we can represent all trees rooted in an edge with at
most n edges. Let T be a tree with n edges and r ∈ T . Since T is connected,
r is involved in some edge, say (v1, . . . , vk) ∈ RT where k = arR and r = vi
for some i. Now, T rooted in (v1, . . . , vk) is represented by an R-term t by
the inductive assumption, so T rooted in r is represented by pri(t).

Finally, our constructions use the notion of a subterm of a term. Intuitively a
subterm of a term t is any proper term that appears as a part of t. The set of all
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subterms of t encodes all intermediate byproducts of the inductive construction of
T(t). Formally, we define subterms as follows.

• The only subterm of vertex is itself.
• If t = edgeR(t1, . . . , tk) is an R-term, where t1, . . . , tk are V -terms and R is a
k-ary symbol in τ , then the set of its subterms consists of the term itself and
all subterms of t1, . . . , tk.

• If t = pri(s) is a V -term, where s is an R-term, then the set of its subterms
consists of the term itself and all subterms of s.

If s is a subterm of t, then we write s ≤ t, moreover, if s is a proper subterm of t,
i.e., it is a subterm and s ̸= t, we write s < t. A V -subterm of a term t is a subterm
which is a V -term, and similarly an R-subterm for a relational symbol R is a subterm
which is an R-term.

For example, the term

t = edgeE
(
pr1(edgeE(vertex, vertex)), pr1(edgeE(vertex, vertex))

)
has four distinct subterms: two E-terms, which are t and edgeE(vertex, vertex), and
two V -terms, which are pr1(edgeE(vertex, vertex)) and vertex.

We note that statements about terms can be proven by an inductive principle:
showing the statement is true for the term vertex, and then showing that if it is true
for all proper subterms of a term t, it is also true for t.

4. Prelude: Duals to trees. Before we get to the main construction of ad-
joints, let us briefly discuss a simpler construction of a dual of a tree. There are a
few similarities between the construction of duals and right adjoints to central Pultr
functors: as we mentioned before (see the proof of Theorem 2.10), if Γ is a central
Pultr functor that has a left adjoint Λ and a right adjoint Ω, and (T,D) is a duality
pair, then (Λ(T),Ω(D)) is also a duality pair. Moreover, our construction of the dual
uses the inductive construction of trees from the previous section in a similar way as
the constructions of right adjoints in Sections 5 and 6, but the construction of a dual
is conceptually easier, so we present it to create some intuition that will be useful
below. We also note that we show an explicit connection between constructions of a
dual and the construction of a right adjoint in Section 5.3.

Again, we fix a relational signature. Recall that a pair (T,D) of similar structures
is called a duality pair if, for all structures A similar to T, either T → A or A → D.
In this case, D is called a dual to T, and it was shown in [15] that a structure has
a dual if and only if it is homomorphically equivalent to a tree. See [13, 14] for
other characterisations of finite duality. Our construction is loosely inspired by the
construction in [14].

Another way to look at duals is that for any structure A, a homomorphism A → D
should correspond to a ‘proof ’ that T ̸→ A. How can one prove that a tree does not
map to a structure A if that is the case? This can be done by an inductive argument.
Let us outline this argument in the case T and A are digraphs. More precisely, we
describe a procedure that shows that, for a fixed root r ∈ T and some a ∈ A, there is
no homomorphism from T to A that maps r to a. Pick a neighbour s of r in T, and
assume that (r, s) ∈ ET, the other orientation is dealt with symmetrically. We can
show that there is no homomorphism from T to A mapping r to a by showing that,
for none of the neighbours b of a in A, there is a homomorphism T → A that maps
the edge (r, s) to (a, b). In turn, removing the edge (r, s) from T splits the tree into
two subtrees T1, containing r, and T2, containing s. A homomorphism T → A that
maps (r, s) to (a, b) is equivalent to a pair of homomorphisms T1 → A, that maps
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r to a, and T2 → A, that maps s to b. We have thus reduced the claim to proving
that there is no homomorphism from (at least) one of the two smaller trees, and can
therefore recursively repeat our strategy for these two smaller trees. We further design
a structure D, in which we can encode proofs of the above form. In particular, the
image of an element a ∈ A under a homomorphism A → D will contain answers to
questions of the form ‘Is there a homomorphism T′ → A that maps r to a?’ for all
trees T′ and all roots r ∈ T ′ that would appear in the above inductive argument.

Definition 4.1. Let tQ be an S-term for some relational symbol S. Let TV be
the set of all V -subterms of tQ, and let TR be the set of all R-subterms of tQ for each
relational symbol R. We define a structure D(tQ).

The domain of this structure, denoted by D(tQ), is the set of all tuples v ∈
{true, false}TV , indexed by V -subterms of tQ, such that vvertex = true.

To define edges, we introduce the following notation. For terms t1, . . . , tk ∈ TV ,
a relational symbol R of arity k, and v1, . . . , vk ∈ D(tQ), we let

&edgeR(t1,...,tk)(v
1, . . . , vk) = v1t1 ∧ · · · ∧ vktk .

A tuple (v1, . . . , vk) of vertices is related in a relation R (of arity k) in D(tQ) if
(D1) For all t ∈ TS and i ∈ {1, . . . , k} such that pri(t) ∈ TV , we have

&t(v
1, . . . , vk) ⇒ vipri(t).

(D2) If R = S, i.e., if tQ is an R-term, then

&tQ(v
1, . . . , vk) = false.

If e = (v1, . . . , vk), we will often write &t(e) instead &t(v1, . . . , vk). Note that if
e ∈ RD(tQ), then we have a tuple e∗ ∈ {true, false}TR defined by e∗t = &t(e), which
satisfies e∗tQ = false (assuming tQ is an R-term). This draws a parallel to how vertices
are defined. Finally, note that item (D1) is essentially quantified by the V -subterms
of tQ, since all of such subterms t′, with the exception t′ = vertex, are of the form
pri(t) for some t, and t and i are uniquely defined by t′.

Theorem 4.2. For any relational structure Q that is homomorphically equivalent
to T(tQ) for some S-term tQ where S is a relational symbol, D(tQ) is a dual of Q.

Proof. Without loss of generality, we may assume that Q = T(tQ). We need to
show that, for all structures A, A → D(tQ) if and only if Q ̸→ A.

First, assume that Q ̸→ A. We define f : A → D(tQ) by putting, for each u ∈ A
and each t ∈ TV , f(u)t = true if there is a homomorphism h : T(t) → A that maps
the root to u, and f(u)t = false otherwise. Clearly, f(u)vertex = true. Now, assume
that e = (u1, . . . , uk) ∈ RA. Observe that &t(f

R(e)) is true if and only if there is a
homomorphism h : T(t) → A mapping the root edge to e. In other words, there is
a homomorphism h : T(t) → A mapping the root edge to e if and only if there are
homomorphisms hi : T(ti) → A with hi(rti) = ui for all i. Assuming that such a
homomorphism h exists, the homomorphisms hi are defined as restrictions of h to the
corresponding subtrees. Assuming homomorphisms hi exist, taking the union of hi

defines a mapping h on all vertices of T(t). This mapping clearly preserves all edges
different from the root, since hi are homomorphisms, and it also preserves the root
edge, since it is mapped to e ∈ RA. This means that h is indeed a homomorphism.
We need to show that fR(e) satisfies (D1) and (D2). For (D1), we want

&t(f
R(e)) ⇒ f(ui)pri(t),
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i.e., if there is a homomorphism T(t) → A mapping the root to e then there is a
homomorphism T(pri(t)) → A mapping the root to ui. This is trivial, since T(t) =
T(pri(t)) and a homomorphism h : T(t) → A that maps the root rt to (u1, . . . , uk)
necessarily maps rpri(t) to ui. Finally, (D2) is clear from the definition, since we
assumed that Q ̸→ A.

For the other implication, we first prove the following by induction on the term
t ≤ tQ:

Claim 4.3. Let t ≤ tQ and let h : T(t) → D(tQ) be a homomorphism. Then
h(rt)t = true if t is a V -term, and &t(h

R(rt)) = true if t is an R-term.

1. The case t = vertex is trivial.
2. Let t = edgeR(t1, . . . , tarR). We assume that h : T(t) → A is a homomor-

phism and h(rt) = (v1, . . . , varR). This in particular means that, for each i,
h maps the root of T(ti) to vi. Hence, we can apply the inductive assump-
tion on the restrictions of h to T(ti)’s to get that viti = true for all i, and
consequently the claim by the definition of &t(h

R(rt)).
3. Let t = pri,R(t

′), and h : T(t) → A. Note that T(t) = T(t′), so h is also
a homomorphism from T(t′). Let hR(rt′) = (v1, . . . , vk), and observe that
h(rt) = vi. By the inductive assumption, this implies that &t′(h

R(rt′)) =
&t′(v

1, . . . , vk) = true. Consequently, we get that h(rt)t = vit = true from
(D1).

This concludes the proof of the claim. Assume for a contradiction that f : A →
D(tQ) and g : Q → A are homomorphisms. Since T(tQ) = Q, the above claim
applied to t = tQ and the homomorphism h = f ◦ g : Q → D(tQ), would imply that
&tQ(h

R(rtQ)) = true which would contradict (D2).

4.1. Example: Dual to a directed path. It is well known (see, e.g., [9,
Proposition 1.20]) that a directed graph maps homomorphically to the graph Lk =
({1, . . . , k};<), where the edge relation is given by the strict order on the domain, if
and only if it does not allow a homomorphism from a directed path with k edges (and
k + 1 vertices) — we denote this path by Pk. This means that Lk is the dual of Pk.
Let us compare this observation with our construction of the dual.

Fix k > 0. We pick the term

tk = edgeE
(
pr2

(
edgeE

(
. . . pr2(edgeE(vertex, vertex)), . . . , vertex

))
, vertex

)
,

where edgeE appears k times, to represent Pk rooted in its last edge, i.e., the following
graph.

. . .

We also let s0 = vertex, ti = edgeE(si−1, vertex) and si = pr2(ti) for i ∈ {1, . . . , k−1}.
Note that both ti and si represent a path of length i — the difference is the root
which is either the last edge or the last vertex. Finally, note that s0, . . . , sk−1 and
t1, . . . , tk are the only subterms of tk.

By definition, a vertex of D(tk) is a tuple

u ∈ {true, false}{s0,...,sk−1}

such that us0 = true. This allows us to write them simply as ordered k-tuples whose
i-th entry is the value corresponding to si−1.

To check whether u is connected by an edge to v or not, we consider the expressions
&ti(u, v) = usi−1

∧ vs0 for all i. Using the definition, we get that (u, v) is an edge if
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(D1) for all i, &ti(u, v) ⇒ vsi since si = pr2(ti),1 and
(D2) &tk(u, v) = false.

Since vs0 = true, we may simplify &ti(u, v) = usi−1
, and substitute into the conditions

above:
1. usi−1 ⇒ vsi , for all i < k, and
2. usk−1

= false.
In particular, observe that u has no out-edge (i.e., there is no edge of the form (u, v)
for any v) if its last entry is true.

It is not hard to see that Lk maps to a dual constructed this way. We can
construct a homomorphism h by mapping i ∈ {1, . . . , k} to the tuple starting with i
true’s and followed by all false’s, i.e.,

h(1) = (true, false, . . . , false)
h(2) = (true, true, false, . . . , false)

...
h(k) = (true, true, . . . , true)

Note that this is exactly the same homomorphism that is constructed in the proof of
Theorem 4.2 (assuming A = Lk). And indeed, it is easy to check that if i < j, then
h(i) and h(j) satisfy the conditions for an edge given above.

Naturally, there is also a homomorphism the other way. One such homomorphism
maps a tuple u that begins with i true’s followed by a false to i. Again, it is easy to
check that if (u, v) is an edge then v has to begin with one more true. This establishes
that our construction is homomorphically equivalent to Lk (as it should be).

Remark 4.4. Let us note that any homomorphism constructed according to the
proof of Theorem 4.2 uses only the vertices in the image of h above, i.e., the tuples
of the form

(true, . . . , true, false, . . . , false),

where true appears at least once and false does not need to appear at all. This is
quite easy to see: T(ti) maps to T(tj) for all i < j via a homomorphism preserving
the roots, hence, for any u in the image, we get that if utj = true then uti = true for
all i < j.

We could force similar implications in the definition of the dual by requiring that
ut ⇒ us whenever there is a homomorphism T(s) → T(t) preserving roots. We
did not include this condition in the definition because our goal is to get a simple
construction and not necessarily that the construction results in the smallest graph
possible. Nevertheless, this raises a question: Would it be possible by enforcing such
implications on our general construction to produce a dual that would be a core (i.e., a
structure that is not homomorphically equivalent to any of its proper substructures)?

Finally, we note that our construction of the dual of a tree can be naturally
extended to any (finite) tree duality, i.e., given a finite set of finite trees F =
{T1, . . . ,Tn}, we can construct their dual D that will satisfy that, for any struc-
ture A, A → D if and only if for all i = 1, . . . , n, Ti ̸→ A. This D is constructed
as in Definition 4.1 with the following changes: Assume that a term ti represents Ti

rooted in an edge for each i (we are assuming that none of Ti’s consists of a single
vertex). Let T be the set of all subterms of any of the ti’s. We use notation TV and

1The implication &ti (u, v) ⇒ vpr1(ti) is not needed since pr1(ti) is not a subterm of tk.
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TR (where R is a relational symbol) for the V -terms and S-terms, respectively, that
belong to this set. Finally, replace the condition (D2) with

(D2’) &ti(e) = false for all i = 1, . . . , n (naturally, this only applies if ti is an
R-term).

We denote a structure constructed this way by D(t1, . . . , tn).

Theorem 4.5. Let q1, . . . , qn be terms for each i ∈ {1, . . . , n}, and assume that
qi is an Ri-term, where Ri is a relational symbol. For each structure A, we have that
either there exists i such that T(qi) → A or A → D(q1, . . . , qn).

Proof. The proof is essentially identical to the proof of Theorem 4.2. First, the
implication ‘T(qi) ̸→ A for all i ∈ {1, . . . , n} implies A → D(q1, . . . , qn)’ is proven
by the same argument as before. In particular, we define f : A → D(q1, . . . , qn) by
f(u)t = true if T(t) → A for each t ∈ TV and u ∈ A, and f(u)t = false otherwise. The
rest of the proof is identical except that instead of arguing that &t(f

R(e)) satisfies
(D2) using Q ̸→ A, we argue that &t(f

R(e)) satisfies (D2’) for some i using that
T(qi) ̸→ A.

For the other implication, it is enough to argue that T(qi) ̸→ D(q1, . . . , qn) for
each i, since then T(qi) does not map homomorphically to any A that maps to
D(q1, . . . , qn). Observe that Claim 4.3 and its proof is valid in this case. Consequently,
if h : T(qi) → D(q1, . . . , qn) for some i, then &qi(h

Ri(rqi)) = true by the claim, which
would contradict (D2’).

5. Adjoints to functors not changing the domain. In this section, we
describe the simpler of the cases of our construction of an adjoint. We consider
(σ, τ)-Pultr templates where P = V1 (i.e., a vertex) and, for each τ -symbol R,
QR is a σ-tree. The homomorphisms ϵi,R : P → QR are given by picking elements
x1, . . . , xarR ∈ QR that are the images of the unique vertex of P under ϵi,R for the
respective i’s. Note that some of the xi’s might coincide, and QR can also have other
vertices. Naturally, the elements x1, . . . , xarR depend on the symbol R which will be
always clear from the context. This means that the structure Γ(A) can be equiva-
lently described in the following way: the universe of Γ(A) coincides with the universe
of A, and for every τ -symbol R, we have

(5.1) RΓ(A) = {(r(x1), . . . , r(xarR)) | r : QR → A}.

Finally, in this case we have that every homomorphism h : A → B is also a homo-
morphism h : Γ(A) → Γ(B).

We will construct the right adjoint Ω in two steps: First, we define the set of
vertices of a structure Ω(B), and second, we define the edges on these vertices. Before
defining edges, we introduce new notation.

Throughout these definitions, we fix the following setting: Fix a (σ, τ)-Pultr tem-
plate with P being a singleton structure with empty relations and with QR being a
σ-tree for each τ -symbol R. First, for each R, we pick a term tR representing QR,
and define T to be the set of all subterms of any of the tR’s. We use notation TV and
TS (where S is a σ-symbol) for the V -terms and S-terms, respectively, that belong
to this set.

Definition 5.1 (Vertices of Ω(B)). Let B be a τ -structure. We define Ω(B) to
be the set of all tuples

U ∈
∏

t∈TV

P(hom(Γ(T(t)),B))
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such that Uvertex is a singleton set, i.e., vertices of Ω(B) are tuples U indexed by V -
terms in T , where the t-th entry is a set of homomorphisms from Γ(T(t)) to B such
that Uvertex contains exactly one homomorphism.

Let us remark on the above definition. Observe that the domain of T(vertex) is
{rvertex}, hence Uvertex = {rvertex 7→ u} for some u ∈ B, i.e., Uvertex selects an element
u of B. Also note that the relations in Γ(T(t)) will be empty whenever none of the
trees QR map to T(t), in which case Ut is a set of functions from T (t) to B.

Intuitively, elements of Ω(B) are elements u of B together with some extra infor-
mation. The additional information stores data about mappings from the subtrees of
each QR to B and how they interact.

To define edges, we need to introduce some notation. Let S be a relational
symbol of arity k, t1, . . . , tk ∈ TV , and U1, . . . , Uk ∈ Ω(B). Consider the term
t = edgeS(t1, . . . , tk) and the tree T(t). Since its domain T (t) is the disjoint union
of T (t1), . . . , T (tk), we may associate to every tuple (f1, . . . , fk) ∈ U1

t1 × · · · × Uk
tk

a
unique mapping f : T (t) → B defined as f = f1 ∪ · · · ∪ fk. We define×t

(U1, . . . , Uk)
as the set of all such mappings, i.e., we let

×t
(U1, . . . , Uk) = {f1 ∪ · · · ∪ fk | f1 ∈ U1

t1 , . . . , fk ∈ Uk
tk
}.

Note that×t
(U1, . . . , Uk) is bijective to U1

t1 × · · · × Uk
tk

. Often, we will write simply
×t

(E) instead of×t
(U1, . . . , Uk) if E = (U1, . . . , Uk).

Definition 5.2 (Edges of Ω(B)). Let B be a τ -structure, we define a σ-structure
Ω(B) with universe Ω(B). For each σ-symbol S of arity k, let SΩ(B) consist of all
tuples (U1, . . . , Uk) ∈ Ω(B)k that satisfy:

(A1) For all t ∈ TS and i ∈ {1, . . . , k} such that pri(t) ∈ TV , we have

×t
(U1, . . . , Uk) ⊆ U i

pri(t)
.

(A2) For all t ∈ TS,

×t
(U1, . . . , Uk) ⊆ hom(Γ(T(t)),B).

Let us comment on the definition. In (A1), the trees represented by t and pri(t)
coincide, and hence both sets in the condition consist of mappings with the same
domain. Item (A2) requires that the mappings that we defined by taking union of ho-
momorphisms T(ti) → U i, where t = edgeR(t1, . . . , tk), are actually homomorphisms.
Consequently, given that E is an edge in SΩ(B), we may thus define a tuple

E∗ ∈
∏
t∈TS

P(hom(Γ(T(t)),B))

with E∗
t =×t

(E). The intuition behind requiring condition (A2) is that the union
of homomorphisms is a homomorphism as long as the root edge of t is mapped to
an edge. Observe that condition (A2) does not need to be checked if pri(t) ∈ TV for
some i since then it follows from (A1). Nevertheless, it will be useful to talk about it
separately.

We claim that this construction Ω yields a right adjoint to the considered cases
of central Pultr functors Γ.

Theorem 5.3. Assume a (σ, τ)-Pultr template with P being the σ-structure with a
single vertex and empty relations, and QR being a σ-tree for all τ -symbols R. Further,
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assume Γ is the central Pultr functor defined by this template, and Ω is defined as in
Definition 5.2.

For every σ-structure A and τ -structure B, there is a homomorphism Γ(A) → B
if and only if there is a homomorphism A → Ω(B).

We now proceed to prove the above theorem in several steps. The following lemma
proves one of the implications and gives further insights to why U ’s and×t

(E)’s are
defined as above.

Lemma 5.4. If there is a homomorphism f : Γ(A) → B, then there is a homo-
morphism g : A → Ω(B).

Proof. We define a mapping g : A → Ω(B) by

g(u)t = {f ◦ h | h : T(t) → A, h(rt) = u}.

We claim that this mapping is a homomorphism. First, we show that g(u) is well-
defined, i.e., that g(u)vertex is a singleton set, and the elements of g(u)t are homomor-
phisms from Γ(T(t)) to B. For the former, observe that g(u)vertex = {rvertex 7→ f(u)},
since there is a single homomorphism h : T(vertex) → A which maps the root (and
the only vertex) rvertex to u. For the latter, assume t is a V -term. Since h : T(t) → A
is also a homomorphism Γ(T(t)) → Γ(A), and f is a homomorphism Γ(A) → B, we
get that f ◦ h : Γ(T(t)) → B is homomorphism by composition.

To prove that g preserves the relations, assume that e = (u1, . . . , uk) ∈ SA is an
edge. We first show that

×t
(gS(e)) = {f ◦ h | h : T(t) → A, hS(rt) = e}

for each t ∈ TS , t = edgeS(t1, . . . , tk). This is true because, for any homomor-
phism h : T(t) → A that maps the root edge to e = (u1, . . . , uk), its restriction
hi : T(ti) → A maps the roots to the respective ui for all i, and, for any tuple of
homomorphisms hi : T(ti) → A which maps the roots to the respective ui’s, their
union is a homomorphism T(t) → A.

To prove property (A1), we need to check that×t
(gS(e)) ⊆ g(ui)pri(t). This is

easy to see, since any homomorphism h : T(t) → A that maps rt to e maps rpri(t),
which is the i-th component of rt, to ui. Finally, the property (A2), that each map-
ping in×t

(gS(e)) is a homomorphism, is proved in the same way as the analogous
statement for g(u), i.e., it follows from the above claim.

The above lemma concludes one of the implications that we need for the adjunc-
tion. We turn to the other implication which we prove in two steps, each provided by
one of the following two lemmas. The first lemma proves the adjunction in the special
case when A = T(t) for some t ∈ T . This will be used in the proof of the general
case.

Lemma 5.5. Let t ∈ T and let h : T(t) → Ω(B) be a homomorphism. Then the
mapping d : T (t) → B, defined so that d(v) = f(rvertex) where f is the unique element
of h(v)vertex, is a homomorphism Γ(T(t)) → B.

Proof. We prove by induction on t that d ∈ h(rt)t if t is a V -term, and d ∈
×t

(hS(rt)) if t is an S-term.
Case t = vertex. This is a trivial case.
Case t = edgeS(t1, . . . , tk). Note that restrictions of h to subtrees T(ti) are homo-

morphisms, so we know that, for all i, h(rti)ti contains the restrictions of d
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by the inductive assumption. The claim then immediately follows from the
definition of×t

(hS(rt)).
Case t = pri(t

′). Since h is a homomorphism from T(t) = T(t′) to B, we know that
d ∈×t′

(hS(rt′)), and the claim subsequently follows by (A1).
The lemma then immediately follows either by the definition, if t is a V -term, or by
(A2), otherwise.

Note that the induction in the above proof alternates between V -terms and S-
terms. We use the above lemma to prove the general case.

Lemma 5.6. If g : A → Ω(B) is a homomorphism, then there is a homomorphism
f : Γ(A) → B.

Proof. Recall that, for each τ -symbol R, tR is a fixed term representing QR, and
hence T(tR) and QR are isomorphic. We further assume (without loss of generality)
that QR = T(tR). We define f by setting f(u) to be the unique value attained by the
single map in g(u)vertex. This is a well-defined mapping on the vertices of Γ(A). We
need to show that it preserves the relations of Γ(A). To this end, assume that R is a τ -
symbol of arity k and (u1, . . . , uk) ∈ RΓ(A). This means that there is a homomorphism
h : QR → A, s.t., h(xi) = ui for all i ∈ [k]. Observe that g ◦ h : T(tR) → Ω(B) is
a homomorphism since it is obtained as a composition of two homomorphisms, so
Lemma 5.5 applies to g ◦ h in place of h and f ◦ h in place of d (since fh(v) is
the unique value attained by the single map in gh(v)vertex). Consequently, f ◦ h is a
homomorphism from Γ(T(tR)) to B, and therefore

(f(u1), . . . , f(uk)) = (fh(x1), . . . , fh(xk)) ∈ RB,

since h(xi) = ui and (x1, . . . , xk) ∈ RΓ(T(tR)), where the latter follows from the
definition of RΓ(T(tR)) as phrased in (5.1) by letting r be the identity homomorphism
on T(tR).

Lemmas 5.4 and 5.6 together yield Theorem 5.3.

Remark 5.7. Let us briefly compare our general construction to that of Foniok
and Tardif [8, Theorem 7.1] assuming that both signatures are digraphs and P = V1

(denoted by P⃗0 in [8]). An analogous comparison also applies for the construction
presented in the next section. Also, examples below compare the two constructions
in several concrete cases of central Pultr functors.

First, both the domain of our right adjoint Ω and Foniok-Tardif right adjoint ΩFT
consist of some tuples indexed by some rooted subtrees of QE . The first difference
is in how we choose the subtrees. Foniok and Tardif choose a vertex of QE called
middle vertex which disconnects the two copies of P in QE , and define the set of
subtrees using this vertex. This is similar to choosing a term representing QE rooted
in the middle vertex, although not every subtree used by Foniok and Tardif needs to
be represented by a subterm. Furthermore, note that the requirement that the middle
vertex separates the two copies of P creates an obstacle to generalising Foniok and
Tardif’s construction to relational structures with higher arity.

Second, the elements of tuples comprising the universe of ΩFT are subsets of
vertices of B while elements of our tuples are sets of mappings to B. The main reason
that Foniok and Tardif are able to do this is that the middle vertex separates the
two copies of P, and hence they only need to track the value of the mappings on one
distinguished vertex. Again, since our aim is to provide adjoints in a more general
setting, we cannot afford to do that.
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5.1. Example: An oriented path. In this example, we compare our construc-
tion to the construction introduced in [8, Definition 4.1]. Our goal is to construct the
adjoint to the digraph Pultr functor Γ defined by the Pultr template where QE is the
following digraph:

x1 x2

The maps ϵ1,E and ϵ2,E map the singleton P to x1 and x2, respectively.
Let us start by fixing a term tE representing QE . Namely, we let

tE = edgeE(pr1(edgeE(vertex, vertex)), pr1(edgeE(vertex, vertex)))

which represents QE rooted in the middle edge. It has two V -subterms and two
E-subterms (including itself) that represent the following trees:

s0 = vertex t1 = edgeE(s0, s0)

s1 = pr1(t1) tE = edgeE(s1, s1)

For a directed graph H, the definition of Ω(H) is spelled out as follows. The vertices
of Ω(H) are pairs U = (Us0 , Us1), where Us0 is the set containing the map that sends
the unique vertex of T(vertex) to some u0 ∈ H and Us1 ⊆ HT (s1); this is because
Γ(T(s1)) has no edges since QE ̸→ T(s1). There is an edge from U = (Us0 , Us1) to
V = (Vs0 , Vs1) if

1. ×t1
(U, V ) ⊆ Us1 , and

2. ×tE
(U, V ) ⊆ hom(Γ(QE),H)

(the remaining condition (A2) for t = t1 is trivial). Let us simplify this definition.
First, we will write homomorphisms from the above paths as tuples, writing the values
of such homomorphisms from left to right as the vertices appear on the picture above.
In this way, we have Us0 ⊆ H, Us1 ⊆ H ×H for each U . Since t1 = edgee(s0, s0), we
get a bijection×t1

≃ Us0×Vs0 . Furthermore, using the above ordering, we may simply
say that×t1

= Us0 ×Vs0 . Similarly,×tE
(U, V ) ≃ Us1 ×Vs1 , since tE = edgeE(s1, s1),

more precisely

×tE
(U, V ) = {(u1, u0, v0, v1) | (u0, u1) ∈ Us1 and (v0, v1) ∈ Vs1}.

The two conditions are then rephrased as follows:
1. Us0 × Vs0 ⊆ Us1 , and
2. (u1, v1) ∈ EH for every (u0, u1) ∈ Us1 and (v0, v1) ∈ Vs1 .

We claim that this construction results (on the same input) in a digraph that is
homomorphically equivalent to the one obtained by [8, Definition 4.1]. Namely, the
adjoint constructed there, let us call it Ω′, is as follows: The vertices of Ω′(H) are
pairs (a,A), where a ∈ H and A ⊆ H, and there is an edge from (a,A) to (b, B) if
b ∈ A and A×B ⊆ EH.

We show that, for every graph H, there is a homomorphism α : Ω′(H) → Ω(H)
defined by α((a,A)) = U where Us0 = {a} and Us1 = {a} × A. To show that α
preserves edges, assume that (a,A) and (b, B) are connected by an edge in Ω′(H),
i.e., b ∈ A and A×B ⊆ EH, and U = α((a,A)), V = α((b, B)). We have that

×t1
(U, V ) = {(a, b)}

×tE
(U, V ) = A× {(a, b)} ×B,
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and claim that: (1)×t1
(U, V ) ⊆ Us1 ; which is true because b ∈ A. (2)×tE

(U, V ) ⊆
hom(Γ(QE),H); which is true, since the only edge of Γ(QE) is (x1, x2) and the
projection of×tE

(U, V ) to x1, x2 (the first and the last coordinate) is A×B ⊆ EH.
A homomorphism β : Ω(H) → Ω′(H) is given by β(U) = (a,A) where a is the

unique element of Us0 , and

A = {a′ | (a, a′) ∈ Us1}.

To show that it is a homomorphism, assume (U, V ) ∈ EΩ(H), and let β(U) = (a,A)
and β(V ) = (b, B). Since×t1

(U, V ) = Us0 × Vs0 = {(a, b)} and×t1
(U, V ) ⊆ Us1 , we

have (a, b) ∈ Us1 , which implies that b ∈ A. Also since×tE
(U, V ) ⊆ hom(Γ(QE),H),

a×A ⊆ Us1 , b×B ⊆ Vs1 , and tE = edgeE(s1, s1), we have that

A× {(a, b)} ×B ⊆×tE
(U, V ) ⊆ hom(Γ(QE),H),

where the first inclusion follows from the definition of×tE
(U, V ), and the second

includion follows from (A2). In particular, the inclusion above implies that A×B ⊆
EH. This concludes the proof of the homomorphic equivalence of Ω(H) and Ω′(H).

We note that our Ω(H) can be reduced to a smaller homomorphically equivalent
structure by requiring that vertices U ∈ Ω(H) satisfy

(A3) for all s, s′ ∈ TV and homomorphisms h : T(s) → T(s′) with h(rs) = rs′ , we
have

{f ◦ h | f ∈ Us′} ⊆ Us.

Note that the elements constructed in the proof of Lemma 5.4 satisfy this property.
In this particular example, this requirement would force that Us1 = a × A for some
A ⊆ H and a ∈ Us0 , since s0 is embedded to s1 as the root. This would then make
the two homomorphisms defined above isomorphisms.

5.2. Example: A 4-ary relation defined by an oriented path. Our def-
inition works also for Pultr templates that are not just digraph templates. As an
example for comparison, let us consider a Pultr template that is similar to the previ-
ous example, but in this case maps digraphs to structures over a signature containing
one 4-ary relational symbol R.

Specifically, P is still a singleton with no edges, and QR is the same digraph as
QE above, but we now have 4 homomorphisms ϵi,R : P → QR for i = 0, 1, 2, 3 which
map the vertex of P to 0, 1, 2, or 3 respectively. Pictorially, the digraph QR together
with its distinguished vertices x0, . . . , x3 is as follows.

x0 x1 x2 x3

We let tR = tE where tE is as above, and we use the same notation as in the previous
example.

For a structure B with a 4-ary relation RB, vertices of Ω(B) are defined in a
similar way as above, i.e., they are pairs (Us0 , Us1) where Us0 = {b} for some b ∈ B
and Us1 ⊆ B ×B. Two such vertices (U, V ) are connected by an edge if

1. ×tR
(U, V ) ⊆ RB, and

2. ×t1
(U, V ) ⊆ Us1 ;

where tR = edgeE(s1, s1) and t1 = edgeE(s0, s0). More precisely, the first condition
can be written as

{(u1, u0, v0, v1) | (u0, u1) ∈ Us1 , (v0, v1) ∈ Vs1} ⊆ RB,
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and the second condition can be written as Us0 × Vs0 ⊆ Us1 .
The only real difference from the previous example is that×tR

(U, V ) ⊆ RB in-
stead of requiring that the projection of×tE

(U, V ) on the first and the last coordinates
is a subset of EH. As above, we could create a homomorphically equivalent Ω′(B)
whose vertices would be pairs (u, U) where u ∈ B and U ⊆ B. Two such vertices (u, U)
and (v, V ) would be then connected by an edge if v ∈ U and U × {(u, v)} × V ⊆ RB.

5.3. Duals from adjoints. In [8], the authors claim that, for digraph Pultr
templates with the edge relation defined by QE , the image of the digraph with a
single vertex and no edges under the right Pultr functor is a dual to QE . We may
be slightly more precise when talking about our constructions, namely, we claim the
following.

Proposition 5.8. Let τ contain a single symbol R, and fix a (σ, τ)-Pultr template
defined by P = V1 and QR = T(tR) for some term tR such that QR ̸→ T(t) for any
t < tR (i.e., tR is a minimal term among those representing a structure homomorphi-
cally equivalent to QR). Let Ω be the right adjoint to Γ as defined in Definition 5.2.
Then the image of the τ -structure V1 under Ω is isomorphic to D(tR).

Proof. Observe that there is only one function from any set T to V1 = {1}. Hence,
there is only one candidate function f for a homomorphism Γ(T(t)) → V1 for any
term t. It is not hard to observe that f is a homomorphism if and only if Γ(T(t))
has no edges. In particular, f is a homomorphism for all t < tr, since QR ̸→ T(t) in
that case. Consequently, each of the components of an element U ∈ Ω(V1) is either
the empty set or a singleton set. Furthermore, we have that hom(Γ(T(tR)),V1) = ∅,
since Γ(T(tR)) has an edge (witnessed by the identity homomorphism).

The rest of the proof is based on the idea of treating ∅ as false and any singleton
set as true. With this interpretation, we get that X ⇒ Y is equivalent to X ⊆ Y and
X ∧Y is equivalent to X×Y whenever X,Y are sets with at most one element. Note
that this draws an immediate parallel between the definitions of &t and×t

, (D1) and
(A1), and also (D2) and (A2) if we take into account that hom(Γ(T(tR)),V1) = ∅.

We may now define an isomorphism Ω(V1) ≃ D(tR) by assigning to u ∈ D(tR)
an element U ∈ Ω(V1) where, for each t ∈ TV , ut = false if Ut = ∅, and ut = true if
Ut = {x 7→ 1}. The observations in the first paragraph of this proof show that this
assignment is bijective.

To show that it preserves edges, observe that, for each t ∈ TR, &t(u
1, . . . , uk) =

false if and only if×t
(U1, . . . , Uk) = ∅, since the former is defined as &t(u1, . . . , uk) =

u1
t1 ∧ · · · ∧ uk

tk
and the latter satisfies×t

(U1, . . . , Uk) ≃ U1
t1 × · · · ×Uk

tk
. Furthermore,

(A1) is equivalent to (D1) since, for all t ∈ TR with pri(t) ∈ TV , &t(u
1, . . . , uk) ⇒

ui
pri(t)

is equivalent to×t
(U1, . . . , Uk) ⊆ U i

pri(t)
. Finally, (A2) &tQ(u

1, . . . , uk) = false
is equivalent to

(D2) for all t ∈ TR,×t
(U1, . . . , Uk) ⊆ hom(Γ(T(t)),B).

This is because hom(Γ(T(t)),B)) = ∅ if and only if t = tQ, hence (D2) is trivially
satisfied unless t = tQ, in which case it says×tQ

(U1, . . . , Uk) = ∅.

6. Adjoints to functors with domains defined by a relation. In this sec-
tion, we construct a right adjoint to the central Pultr functor defined by a (σ, τ)-Pultr
template for which P = Š1, for some choice of σ-symbol Š, i.e., P is an Š-edge. Again,
for each k-ary τ -symbol R, we have a σ-tree QR with a k-tuple ϵ1,R, . . . , ϵk,R of ho-
momorphisms P → QR. Each of these homomorphisms selects an Š-edge of QR, we
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denote these edges by x1, . . . , xk, respectively, i.e., xi = ϵŠi,R(e) for each i = 1, . . . , k

where e ∈ ŠP is the unique Š-edge of P. Naturally, the edges x1, . . . , xarR depend on
the symbol R which will be always clear from the context. Let us repeat the definition
of Γ(A) for a σ-structure A using this notation: The domain of Γ(A) is ŠA, and for
each τ -symbol R of arity k, the corresponding relation of Γ(A) is defined as

RΓ(A) = {(hŠ(x1), . . . , h
Š(xk)) | h : QR → A}.

We also note that, for each homomorphism h : A → B between two σ-structures A
and B, hŠ : Γ(A) → Γ(B) is a homomorphism.

The construction of Ω in this case is almost identical to the construction in Sec-
tion 5.3 (Definitions 5.1 and 5.2), and we present it in a similar way.

We fix the following setting: Fix a (σ, τ)-Pultr template with P = Š1 for some
σ-symbol Š, and assume QR is a σ-tree for each τ -symbol R. For each τ -symbol R,
we pick a term tR representing QR, and we let T be the set of all subterms of any
of the tR’s. We use notation TV and TS for the V -terms and S-terms, where S is a
σ-symbol, that belong to this set.

Definition 6.1 (Vertices of Ω(B)). Let B be a τ -structure. We define Ω(B) to
be the set of all tuples

U ∈
∏

t∈TV

P(hom(Γ(T(t)),B))

such that Uvertex is a singleton set, i.e., Uvertex = {∅}.
As before, vertices of Ω(B) are tuples U indexed by V -terms in T , where the t-th

entry is a set of homomorphisms from Γ(T(t)) to B such that Uvertex contains exactly
one homomorphism. A difference here is that this homomorphism is the map ∅ → B,
since Γ(T(vertex)) has no vertices as P ̸→ T(vertex). Thus Uvertex does not contain
any information; it serves a similar purpose as uvertex = true in Definition 4.1.

To define edges, we use similar notation×t
as before. Let t1, . . . , tk ∈ TV , S a

relational symbol of arity k, and U1, . . . , Uk ∈ Ω(B). Again, we consider the term
t = edgeS(t1, . . . , tk) and the tree T(t). Unlike in Section 5, the domain of Γ(T(t)) is
now ŠT(t) and not T (t). This means we have to distinguish two cases:

Case 1: S = Š. In this case, the domain of Γ(T(t)) is

ŠT(t) = ŠT(t1) ∪ · · · ∪ ŠT(tk) ∪ {rt}.

Hence, in order to define a mapping f : ŠT(t) → B, we need to specify its value on rt in
addition to its restrictions to ST(Ti)’s. In detail, a k-tuple of mappings f1 ∈ U1

t1 , . . . ,
fk ∈ Uk

tk
together with an element e• ∈ B uniquely defines a mapping f : ŠT(t) → B

by
f = f1 ∪ · · · ∪ fk ∪ {rt 7→ e•}.

Therefore, for each e• ∈ B, we denote by ×t
(U1, . . . , Uk; e•) the set of all such

mappings. Again, we have that, for each e•,×t
(U1, . . . , Uk; e•) is bijective to U1 ×

· · · ×Uk. We will simply write×t
(E; e•) for×t

(U1, . . . , Uk; e•) if E = (U1, . . . , Uk).
Case 2: S ̸= Š. In this case, we have ŠT(t) = ŠT(t1) ∪ · · · ∪ ŠT(tk). Thus

the domain of Γ(T(t)) is the disjoint union of domains of Γ(T(ti)), and we define
×t

(U1, . . . , Uk) the same way as before, i.e., as the set of all unions f1∪· · ·∪fk where
fi ∈ U i

ti for each i.
If S ̸= Š, S-edges are defined analogously to Definition 5.2. To define Š-edges,

we have to take into account the new element e•.
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Definition 6.2 (Edges of Ω(B)). Let B be a τ -structure, we define a σ-structure
Ω(B) with universe Ω(B).

We first define Š-edges. Let k be the arity of Š. ŠΩ(B) consists of all tuples
(U1, . . . , Uk) ∈ Ω(B)k for which there exists e• ∈ B such that

(B1) For all t ∈ TS and i ∈ {1, . . . , k} such that pri(t) ∈ TV , we have

×t
(U1, . . . , Uk; e•) ⊆ U i

pri(t)
.

(B2) For all t ∈ TS,

×t
(U1, . . . , Uk; e•) ⊆ hom(Γ(T(t)),B).

If S ̸= Š, the relation SΩ(B) is defined in the same way as in Definition 5.2 except
we use the meaning of×t

defined in this section.

Given an edge E ∈ ŠΩ(B), we call the element e•, which satisfies the conditions
(B1) and (B2), a witness of this edge. Note that this witness is the only significant
difference between Definitions 5.2 and 6.2.

We claim that this definition indeed constructs a right adjoint to Γ.

Theorem 6.3. Assume a (σ, τ)-Pultr template with P being the σ-tree with ar Š
vertices connected by an Š-edge for some σ-symbol Š, and QR being a σ-tree for all
τ -symbols R. Further, assume Γ is the central Pultr functor defined by this template,
and Ω is defined as in Definition 6.2.

For every σ-structure A and τ -structure B, there is a homomorphism Γ(A) → B
if and only if there is a homomorphism A → Ω(B).

The proof is analogous to the proof of Theorem 5.3 with the following changes: we
use hŠ in place of h whenever h : A → B was used as a homomorphism Γ(A) → Γ(B).
Furthermore, we use a witness e• in place of the unique value of the homomorphism
f ∈ Uvertex throughout the proof. In particular, if f : A → Ω(B), we define g : Γ(A) →
B by letting g(e) be the witness of the edge f Š(e). With these substitutions all the
arguments of the previous section apply in the case of Theorem 6.3. For completeness
and reference, we include the proof in full detail in the last subsection of this section.

6.1. Example: The arc graph construction. Recall the arc-graph construc-
tion from Example 2.9, which can be expressed as the central Pultr functor whose tem-
plate consists of structures P = ({0, 1}; {(0, 1)}) and QE = ({0, 1, 2}; {(0, 1), (1, 2)})
with ϵ1(0) = 0 and ϵ1(1) = 1, and ϵ2(0) = 1 and ϵ2(1) = 2.

The right adjoint Ω according to our definition above would be constructed in
the following way: First, we choose a term tE representing QE . We can pick t2 as in
Section 4.1.

t2 = edgeE(pr2(edgeE(vertex, vertex)), vertex)

We also name all its subterms as in Section 4.1, i.e.,

s0 = vertex t1 = edgeE(s0, s0)

s1 = pr2(t1)

The vertices of Ω(B) are defined as pairs (Us0 , Us1) such that Us0 = {∅} and
Us1 ⊆ hom(Γ(T(s1)),B). Two such vertices U, V are connected by an edge if there is
e• ∈ B such that
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1. ×t1
(U, V ; e•) ⊆ Vs1 — this is condition (B1) for t = t1;

2. ×ti
(U, V ; e•) ⊆ hom(Γ(T(ti)),B) for i = 1, 2 — this is condition (B2).

These conditions can be considerably simplified. First, since Us0 = Vs0 = {∅}, we
have

×t1
(U, V ; e•) = {rt1 7→ e•}

×t2
(U, V ; e•) = {f ∪ (rt2 7→ e•) | f ∈ Us1}.

Further, since Γ(T(s1)) = Γ(T(t1)) is the graph with a single vertex and no edges,
we can identify Us1 and×t1

(U, V ; e•) with subsets of B. Connecting this observation
with the comment about Us0 , we can identify U with its coordinate Us1 ⊆ B. Finally,
if e• is a witness, the elements of×t2

(U, V ; e•) are homomorphisms from a directed
edge to B which correspond to the edges of B. Using this correspondence, we can
identify×t2

(U, V ; e•) with a subset of EB. Taking all of these into account the
conditions above simplify to

1. ×t1
(U, V ; e•) = {e•} ⊆ V , and

2. ×t2
(U, V ; e•) = U × {e•} ⊆ EB.

So, we can say that a vertex of Ω(B) is a subset U of B, and (U, V ) is an edge of
Ω(B) if

∃e• ∈ V such that U × {e•} ⊆ EB.

We compare this construction with the functor δR described in [8, Definition 3.1]
as a right adjoint to δ. For a digraph B, the vertices of the digraph δR(B) are the
complete bipartite subgraphs of B, i.e., pairs (U−, U+) of subsets of vertices of B such
that U− × U+ ⊆ EB. There is an edge from (U−, U+) to (V −, V +) if U+ ∩ V − ̸= ∅.
Below, we show that δR(B) and Ω(B) are homomorphically equivalent.

We start by constructing a homomorphism h : δR(B) → Ω(B). We let

h(U−, U+) = U−.

To show that it preserves edges, assume U+∩V − ̸= ∅, i.e., there exists e• ∈ U+∩V −.
We claim that this e• witnesses that U− and V − is an edge in Ω(B). Clearly, e• ∈ V −.
Also, we have

U− × {e•} ⊆ U− × U+ ⊆ EB.

A homomorphism g : Ω(B) → δR(B) is a bit harder to construct. Guided by the
above, it is natural to choose the first component of g(U) to be g(U)− = U . We need
to define the second component g(U)+. We let g(U)+ be the largest set such that
g(U)− × g(U)+ ⊆ EB, i.e.,

g(U)+ = {v ∈ B | ∀u ∈ U, (u, v) ∈ EB}.

Now, assume that U and V are connected by an edge in Ω(B) witnessed by e•. We
claim that e• ∈ g(U)+ ∩ g(V )−. By definition of Ω(B), we have e• ∈ V = g(V )−, and
U × {e•} ⊆ EB, which implies that e• ∈ g(U)+. Altogether, e• ∈ g(U)+ ∩ g(V )−,
and hence (g(U), g(V )) ∈ EδR(B). This completes the proof.

This example shows how Uvertex can be eliminated from the definition of Ω(B). Let
us repeat again, that the only purpose of Uvertex is to avoid case distinction between
some E-terms, e.g., between edgeE(t, s) and edgeE(t, vertex) for s ̸= vertex. We may
ignore it in this example, since we expanded every single case when it is used.
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Fig. 6.1. A digraph, its arc graph and its arc structure. The O and I relations of ∂(G) are
symmetric, and O and I loops on all vertices of ∂(G) are omitted for readability.

6.2. Example: Arc structure. In this subsection, we consider a certain variant
of the arc graph construction, which we will call an arc structure and which encodes
more information than the arc graph: The domain of the arc structure coincides with
the domain of the arc graph, i.e., the set of all edges of the input graph, and we extend
the signature with two more binary symbols that will relate those pairs of edges that
are incident in a different sense. The goal of this example is two-fold: first, to show
how the construction of right adjoints works in a more general signature, and second,
to show how the right adjoint changes if we change the central Pultr functor in such a
way that it encodes more information about the input structure. Note, for example,
that any tree can be recovered from its image under the arc structure construction,
but there are trees (e.g., the one presented in Fig. 6.1) that cannot be recovered from
their arc graph.

We fix ϕ to be a signature with three binary relations D, I, and O, and we let γ be
the signature of digraphs. We define a central Pultr functor ∂ using the (γ, ϕ)-Pultr
template defined as follows: The digraph defining vertices is the digraph with a single
directed edge, i.e., P = E1, and the digraphs QD, QI , QO are the following where
the images of ϵi’s are highlighted and labelled by xi.

x1 x2 x1 x2 x1 x2

QD QI QO

Note that the digraph QD with the two distinguished edges defines the arc-graph
functor. This means that for each digraph G, the reduct (A,DA) where A = ∂(G)
is the arc-graph of G (if D is interpreted as E), see Figure 6.1.

Now, to construct the right adjoint to ∂, which we denote by ω∂ , we fix the
following terms representing the graphs QD, QI , and QO.

tD = edgeE(s2, vertex) tI = edgeE(vertex, s2) tO = edgeE(s1, vertex)

where si = pri(edgeE(vertex, vertex)) for i = 1, 2. We name all remaining subterms
as follows, s0 = vertex, tE = edgeE(vertex, vertex). The set of terms defining ω∂ is
T = {s0, s1, s2, tE , tD, tI , tO}. Of which, the V -terms are TV = {s0, s1, s2}. Which
means that the vertices of ω∂(B) are triples (Us0 , Us1 , Us2) where Us0 = {∅}, and
Us1 , Us2 are sets of functions from a 1-element set to B. We identify such a triple
with a pair (U+, U−) where U+ ⊆ B is the set of images of function in Us1 and
U− ⊆ B the set of images of functions in Us2 . Using a similar simplification of the
definition of edges as in the previous example, we get that two such pairs (U+, U−)
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and (V +, V −) are connected by an edge if there exists e• ∈ B, so that the sets

×tE
(U, V ; e•) = {e•} ×tD

(U, V ; e•) = U− × {e•}

×tI
(U, V ; e•) = {e•} × V − ×tO

(U, V ; e•) = U+ × {e•}

satisfy (B1)×tE
(U, V ; e•) ⊆ U+ ∩ V − and (B2)×tR

(U, V ; e•) ⊆ RB for each R ∈
{D, I,O}. This means that (U+, U−) and (V +, V −) are connected by an edge if there
exists e• ∈ U+ ∩ V − such that

U− × {e•} ⊆ DB, {e•} × V − ⊆ IB, U+ × {e•} ⊆ OB.

This completes the definition, although we can further refine it by requiring that for
each vertex, the sets U+ and U− satisfy additional properties that would automati-
cally imply the conditions above. Namely, we require

U− × U+ ⊆ DB, U− × U− ⊆ IB, U+ × U+ ⊆ OB.

To sum up the refined definition, we let ω∂(B) be the digraph with vertex set

{(U+, U−) | U− × U+ ⊆ DB, U− × U− ⊆ IB, U+ × U+ ⊆ OB}

where (U+, U−) and (V +, V −) form an edge if U+ ∩ V − ̸= ∅. It is not hard to
check that even after the refinements, we still get the right adjoint to ∂, i.e., that
indeed there is a homomorphism A → ω∂(B) if and only if there is a homomorphism
∂(A) → B for any digraph A and ϕ-structure B. Note how this compares to the right
adjoint δR of the arc digraph functor as defined in the previous subsection.

6.3. Proof of Theorem 6.3. As noted above, the proof closely follows the proof
of Theorem 5.3, and we present it with the same structure starting with the easier of
the two implications.

The following lemma is an analogue to Lemma 5.4. The statement is identical,
although the meaning of Γ and Ω has changed. In the proof, h is no longer a ho-
momorphism from Γ(T(t)) → Γ(A), hence we replace every instance of h being used
as such a homomorphism with hŠ . Furthermore, to show that g preserves an edge
e ∈ ŠA, we need to provide a witness, which is w• = f(e).

Lemma 6.4. If there is a homomorphism f : Γ(A) → B, then there is a homo-
morphism g : A → Ω(B).

Proof. Assuming f : Γ(A) → B, we define a mapping g : A → Ω(B) by setting,
for all u ∈ A and all t ∈ TV ,

g(u)t = {f ◦ hŠ | h : T(t) → A, h(rt) = u},

and claim that it is a homomorphism from A to Ω(B). We need to check that g(u) is
well-defined, i.e., that f ◦hŠ is a homomorphism from Γ(T(t)) to B for all t ∈ TV and
that g(u)vertex = {∅}. Indeed, f ◦hŠ is a homomorphism since it is a composition of ho-
momorphisms hŠ : Γ(T(t)) → Γ(A) and f : Γ(A) → B. And, g(u)vertex = {∅} because
T(vertex) has no Š-edges, which implies that the unique mapping h : T (vertex) → B

such that h(rvertex) = u is a homomorphism, and, moreover, this h satisfies hŠ = ∅.
Consequently, f ◦ hŠ = ∅, as we wanted to show.
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To show that g is a homomorphism, assume first that S ̸= Š is a σ-symbol of
arity k, and e = (u1, . . . , uk) ∈ SA. We claim that, for each t ∈ TS ,

×t
(g(e)) = {f ◦ hŠ | h : T(t) → A, hS(rt) = e}.

Let t = edgeS(t1, . . . , tk), and observe that homomorphisms h : T(t) → A such that
hS(rt) = e are in 1-to-1 correspondence with k-tuples of homomorphisms h1, . . . , hk,
such that hi : T(ti) → A and hi(rti) = ui for all i ∈ [k], obtained as their restrictions
to the respective subtrees. If h is the union of hi’s then also hŠ is the union of hŠ

i ’s.
The claim then easily follows. For (A1), we want to check that×t

(g(e)) ⊆ g(ui)s
where s = pri(t). Observe that if h : T(t) → A and hS(rt) = e, then h(rs) = ui, since
the i-th component of rt is rs. The condition then follows from the claim. Finally,
(A2) follows directly from the claim by the same argument as g(u)t ⊆ hom(T(t),B).

Second, for the case S = Š and e = (u1, . . . , uk) ∈ ŠA, we need to pick an element
w• ∈ B witnessing that gŠ(e) ∈ ŠΩ(B) — we pick w• = f(e). We claim that, for each
t ∈ TŠ ,

×t
(gŠ(e); f(e)) = {f ◦ hŠ | h : T(t) → A, hŠ(rt) = e}.

The inclusion ‘⊇’ is clear, since the restriction of h to T (ti) is a homomorphism
hi : T(ti) → A such that hi(rti) = ui. The other inclusion also follows, since, given
homomorphisms hi : T(ti) → A with hi(rti) = ui, their union is a homomorphism
h : T(t) → A with hŠ(rt) = e. Moreover,

hŠ = hŠ
1 ∪ · · · ∪ hŠ

k ∪ (rt 7→ e),

and hence
f ◦ hŠ = (f ◦ hŠ

1 ) ∪ · · · ∪ (f ◦ hŠ
k ) ∪ (rt 7→ f(e)).

The conditions (B1) and (B2) then follow from the claim similarly as above.

The other implication is proved in the following two lemmas. As in the case of
Lemma 5.5, the first lemma provides the adjunction in the special case A = T(t) for
t ∈ T , and we derive the general case, which is covered by the second lemma, using
the special case.

The statement of Lemma 5.5 is changed to account for differences in the defini-
tions. The mapping d is now defined to map s to a witness of the edge hŠ(s) instead
of the unique image of the element of h(v). The proof is analogous, by induction on
the term t, although now we have to distinguish four cases.

Lemma 6.5. Let t ∈ T , h : T(t) → Ω(B), and d : ŠT(t) → B be a map such that,
for all s ∈ ŠT(t), d(s) is a witness for the edge hŠ(s). Then d is a homomorphism
Γ(T(t)) → B.

Proof. The proof is similar to the proof of Lemma 5.5. We first show by induction
on the term t that either d ∈ h(rt)t if t is a V -term, or d ∈×t

(hŠ(rt); d(rt)) if t is an
Š-term, or d ∈×t

(hS(rt)) if t is an S-term for a symbol S ̸= Š.
Case t = vertex. Since ŠT(vertex) = ∅, the only map d : ŠT(vertex) → B is the empty

map, which is in h(rvertex)vertex by definition.
Case t = edgeŠ(t1, . . . , tk). Note that restrictions of h to subtrees T(ti)’s are homo-

morphisms, hence, for all i ∈ {1, . . . , k}, h(rti)ti contains the corresponding
restrictions of d by the inductive assumption. The claim then follows from
the definition of×t

(hŠ(rt); d(rt)).
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Case t = edgeS(t1, . . . , tk) where S ̸= Š. This is proved in the same way as the
above case, with the exception that we use the definition of×t

(hS(rt)) in-
stead of×t

(hŠ(rt); d(rt)).
Case t = pri(s). Since h is a homomorphism from T(t) = T(s) to B, we know that

either×s
(hS(rs)), if s is an S-term for S ̸= Š, or×s

(hŠ(rs); d(rs)), if s is
an Š-term, contains d by the inductive assumption. The claim then follows
from either (A1), or (B1).

The lemma then immediately follows by the definition if t is a V -term, by (B2) if t is
an Š-term, or by (A2) otherwise.

Finally, in the proof of Lemma 5.6, we define f to map e ∈ ŠA to a witness of the
edge g(e) ∈ ŠΩ(B) instead of letting f(u) be the unique value attained by the map
in g(u)vertex. The rest of the proof is then a straightforward application of the above,
i.e., completely analogous to the proof of Lemma 5.6 using Lemma 5.5.

Lemma 6.6. If there is a homomorphism g : A → Ω(B), then there is a homo-
morphism f : Γ(A) → B.

Proof. As before, we assume that, for each τ -symbol R, QR and T(tR) are equal
and not just isomorphic. We define a mapping f : Γ(A) → B by setting, for all s ∈ ŠA,
f(s) = e• for some witness e• of the edge gŠ(s) ∈ ŠΩ(B), and claim that this f is a
homomorphism from Γ(A) to B.

We need to show that f preserves each relation R. Assume that (u1, . . . , uk) ∈
RΓ(A), i.e., there is a homomorphism h : QR → A such that

(hŠ(x1), . . . , h
Š(xk)) = (u1, . . . , uk).

The previous lemma applied to the homomorphism g ◦h : T(tR) → Ω(B) in place of h
and the map f ◦hŠ in place of d implies that f ◦hŠ : Γ(QR) → B is a homomorphism,
which in turn implies

(f(u1), . . . , f(uk)) = (fhŠ(x1), . . . , fh
Š(xk)) ∈ RB

since (x1, . . . , xk) ∈ RΓ(QR), as we wanted to show.

This concludes the proof of Theorem 6.3.

7. Composition of adjoints. In this section, we give an example of what can be
achieved by composing functors defined in Sections 5 and 6. The power of composing
two adjoints to obtain more complicated constructions was observed in [8, Section
5], where the authors considered composition of digraph functors with adjoints. This
section gives several examples that show that we can obtain adjoints to more digraph
functors by composing functors that go outside of the scope of digraphs into general
relational structures. Naturally, our constructions also give more adjoints between
general relational structures.

We start with a few general observations. The key fact that makes composition
of adjoints useful is the following well-known category-theoretical observation.

Lemma 7.1. Assume that Λ1,Γ1 and Λ2,Γ2 are two pairs of (thin) adjoint func-
tors, then Λ1 ◦ Λ2 is a left adjoint to Γ2 ◦ Γ1.

Proof. The proof is straightforward. We get the following string of equivalences
from the two adjoints: Λ1Λ2(A) → B if and only if Λ2(A) → Γ1(B) if and only if
A → Γ2Γ1(B) for any two structures A and B of the right signatures.
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We note that a composition of Pultr functors gives a Pultr functor [16]. We
include a sketch of a proof of a slightly weaker statement.

Lemma 7.2. Let Λ1,Γ1 and Λ2,Γ2 be two pairs of left and central Pultr functors
such that Λ1 ◦Λ2 and Γ2 ◦ Γ1 are well-defined. Then there is a pair of Pultr functors
Λ and Γ such that Λ(A) and Λ1 ◦ Λ2(A) are isomorphic for all A, and Γ(B) and
Γ2 ◦ Γ1(B) are homomorphically equivalent for all B.

Proof sketch. The template of the composition can be obtained as the Λ1-image
of the Pultr template defining Λ2 and Γ2, i.e., if the template of Λ2 and Γ2 is
composed of structures P and QR, and homomorphisms ϵi,R, then the template
of the composition consists of structures Λ1(P) and Λ1(QR), and homomorphisms
ϵΛ1

i,R : Λ1(P) → Λ1(QR) that are induced by Λ1 from ϵi,R : P → QR.
The composition Λ1 ◦ Λ2 is, by defininion, a two-step process: In the first step

(applying Λ2), we replace each vertex with a copy of P, and in the second step
(applying Λ1), each of these copies is replaced with a copy of Λ1(P). Analogously,
an R-edge is replaced with a copy of Λ1(QR). It is also not hard to observe that
the identification corresponds to the maps ϵΛ1

i,R, which concludes that, for all A, Λ1 ◦
Λ2(A) is isomorphic to Λ(A). We get that Γ2 ◦Γ1(B) and Γ(B) are homomorphically
equivalent for all B, since both functors are right adjoints to Λ.

The following theorem is obtained by composing adjoints constructed in Sections 5
and 6. Although it is not an exhaustive list of adjunctions that can be constructed
by such compositions, it provides more adjoints to digraph functors on top of those
provided in [8]. The theorem concerns a relatively general case of Pultr templates
where P is an arbitrary tree. We only require that copies of P in the respective QR’s
intersect in at most one vertex. We also note that this theorem covers the cases of
central Pultr functors whose adjoints are provided by Theorems 5.3 and 6.3.

Theorem 7.3. Assume a (σ, τ)-Pultr template with P and all QR’s being σ-trees
such that, for each τ -symbol R,

1. ϵi,R is injective for all i ∈ {1, . . . , arR}, and
2. for each i ̸= j, i, j ∈ {1, . . . , arR}, the images of P under ϵi,R and ϵj,R

intersect in at most one vertex.
Then the corresponding central Pultr functor Γ has a right adjoint.

Proof. Assume that P = {1, . . . , p}. The goal is to decompose the functor Γ into
two Pultr functors Γ1 and Γ2. The intermediate step is to construct a structure of a
new signature. This new signature υ is obtained from σ by adding a new relational
symbol S of arity p (the size of the domain of P) while retaining all symbols in σ.

We define the first functor, Γ1 that maps σ-structures to υ-structures. Essentially,
this functor simply adds a new relation S that is defined by P, i.e., Γ1(B) is the υ-
structure with domain B, where the relations are defined as

RΓ1(B) = RB for each σ-symbol R, and

SΓ1(B) = {(h(1), . . . , h(p)) | h : P → B}.

It is clear that this functor is defined by a (σ, υ)-Pultr template that satisfies the
assumptions of Theorem 5.3.

The second functor, Γ2 is defined by altering the original Pultr template for
Γ. The new template consists of P′ and Q′

R’s defined as follows. First, P′ = S1.
For each τ -symbol R, we obtain Q′

R from QR by the following procedure: For each
i ∈ {1, . . . , arR}, remove from QR all edges in the image of ϵi,R, and add the edge
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(ϵi,R(1), . . . , ϵi,R(p)) ∈ SQ′
R . Finally, we let ϵ′i,R = ϵi,R, for all i and R, which is a

homomorphism P′ → Q′
R since we added the corresponding S-edge into Q′

R. Observe
that, since ϵi,R’s are injective, the above procedure does not introduce reflexive tuples
(i.e., tuples with repeated entries), and, since the images of ϵi,R and ϵj,R intersect in
at most one vertex for i ̸= j, this does not introduce cycles into Q′

R using S-edges,
and, since all other edges have been removed in the image, it does not introduce any
other cycles. Hence, Q′

R is still a tree for each τ -symbol R, and therefore Theorem 6.3
applies.

The above two paragraphs show that Γ1 and Γ2 have adjoints Ω1 and Ω2. And
it is straightforward to check that Γ = Γ2 ◦Γ1. This concludes that Ω1 ◦Ω2 is a right
adjoint to Γ by Lemma 7.1.

8. Conclusion. We have studied the problem of characterising central Pultr
functors for arbitrary relational structures that admit a right adjoint, and, for those
that do, giving an explicit construction for such an adjoint. There is a necessary
condition for the existence of such an adjoint (cf. Theorem 2.10 and comments after
it). We gave a sufficient condition in Theorem 7.3. These two conditions do not match,
there is a gap between them, and it is not quite clear what the necessary and sufficient
condition should be (even in the case of digraphs). Apart from the requirement that P
and all QR’s are trees, Theorem 7.3 has two additional assumptions. We believe that
the second assumption (about intersection of images of P in QR) is a technicality
that can be removed with some extra work. How essential is the first assumption
(about injectivity of homomorphisms ϵi,R)? For example, is it true that, for every
central Pultr functor Γ that has a right adjoint, there is another central Pultr functor
Γ′ such that (a) for every structure A of appropriate signature, Γ(A) and Γ′(A) are
homomorphically equivalent, and (b) the Pultr template corresponding to Γ′ has all
homomorphisms ϵi,R injective?

Finally, let us discuss possible applications of our results in the complexity of
(promise) CSPs. Left and central Pultr functors can alternatively be described as
“gadget replacements” and “pp-constructions”, respectively. These two constructions
are central to the algebraic theory of complexity of (promise) CSPs where gadget re-
placements are used as log-space reductions between (promise) CSPs whose templates
are related via pp-constructions; see, e.g., [2] or [11, Section 4.1]. The opposite type
of reductions, where gadgets are replaced by individual constraints, is less common,
but has already been shown to be important; see, e.g., [11, 3]. It was discovered
recently, that the right adjoints to some functor can be used to characterise when the
functor is a valid reduction between two (promise) CSPs [11, Theorem 4.6]. Moreover,
recent developments in the theory of promise CSPs have called for characterisation of
reductions which include central Pultr functors [3, 10, 5]. Our results provide a char-
acterisation of when a reduction from a general class is a valid reduction between two
promise CSPs. Although we are not aware of a specific interesting case of a promise
CSP whose hardness is proven by providing a right adjoint to a central Pultr functor,
apart from the use of the arc graph construction in [17], our general results can be
used as a foundation for further investigation of these reductions.
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