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SELLER COMPOUND SEARCH FOR BIDDERS*

JOOSUNG LEE†

DANIEL Z. LI‡

This article studies a seller’s compound search for bidders by a dead-
line. We show that the optimal search outcomes can be implemented
by a sequence of second-price auctions, characterized by declining
reserve prices and increasing search intensities (sample sizes) over
time. The monotonicity results are robust in both cases of short-lived
and long-lived bidders. Furthermore, a seller with short-lived bidders
sets lower reserve prices and searches more intensively than one with
long-lived bidders. We also show that the inefficiency of an optimal
search auction can stem from its inefficient search rule.

I. INTRODUCTION

IT IS PUZZLING THAT THE DOMINANT selling processes in many markets seem not
competitive, where no obvious competition among buyers is observed. For
instance, in mergers and acquisitions (M&As), it is well-documented that the
dominant selling process is one-on-one negotiation.1 Andrade et al. [2001]
describe the prototypical M&As in the 1990s as friendly transactions, where
normally there was just one bidder. Betton et al. [2008] also report that 95%
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SELLER COMPOUND SEARCH FOR BIDDERS 1005

of their sample deals in the US market, during the period from 1980 to 2005,
are noncompetitive negotiations. The observations go against the conven-
tional wisdom that competition among buyers not only raises bid premiums
but enhances allocative efficiency.

There have been various empirical explanations for this puzzle. Aktas
et al. [2010] argue that negotiation in M&A is under the threat of following-up
auctions. For example, if a seller fails to achieve a good deal at the negotiation
stage, she may contact other bidders and run auctions in the following stages.
Therefore, the pressure of following-up auctions will drive up bid premi-
ums of the negotiation stage. This argument is supported by the empirical
evidence that, in general, there is no significant difference in bid premiums
across negotiation and auction in M&As (Boone & Mulherin [2007, 2008]).2

Besides the sequential nature, a typical M&A process also involves a dead-
line for completion and a search cost for contacting a potential bidder.3 As the
search is costly, a full-scale simultaneous search is usually not optimal. Like-
wise, constrained by a deadline, a one-by-one sequential search may not be
optimal either, as too few bidders might be contacted. Therefore, a seller may
conduct a compound search and search both sequentially and simultaneously,
that is, she may contact a batch of bidders in each period.

In fact, we may take M&A as an example of a more general problem, where
a searcher conducts a compound search for potential agents by a deadline. For
example:

• Academic recruitment in the UK is normally driven by the REF deadline,
where academic departments interview job candidates batch by batch.

• People in dating markets are usually under age-related pressures and would
attend speed dating events, where they can meet many daters in a single
event.

• In job search and school applications, a job searcher or a student normally
sends out his applications batch by deadlines.

• In IPO roadshows, the underwriting firm and the management team travel
across different cities and make promotions to potential investors before
going public.

We investigate this kind of problem from the perspective of seller com-
pound search. A (female) seller wants to allocate an indivisible product
among a large number of potential (male) bidders within T periods. Bidders
are grouped into different bidder samples, over which the seller may or may

2 Alternatively, Boone & Mulherin [2007] state that many M&A deals classified as negotiation
are auction in fact. After reconstructing a new sample using their measure, they still have half of
the deals classified as noncompetitive negotiations.

3 The search cost can be an information cost of the target firm (seller) due to the loss of its
proprietary information to potential acquirers (bidders) in the process of due diligence.

© 2023 The Authors. The Journal of Industrial Economics published by The Editorial Board of The Journal of Industrial
Economics and John Wiley & Sons Ltd.
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1006 JOOSUNG LEE AND DANIEL Z. LI

not have complete control. The seller searches across the bidder samples till
the deadline. The search rule involves a search schedule, for example, which
sample to contact in the next period, and a stopping rule, for example, when to
stop searching.

We consider both cases of short-lived and long-lived bidders. A short-lived
bidder only participates in the stage transaction when invited, yet a long-lived
bidder, once invited, will stay in the transaction thereafter. The two cases of
short and long-lived bidders are analogous to sequential search with no and
full recall, respectively.

The optimal search outcomes can be implemented by a compound search
auction defined by {rt,Mt}T

t=1, that is, a sequence of reserve prices and bidder
samples. The auction proceeds as follows: in period t, the seller invites a bid-
der sample Mt to a second-price auction with a reserve price rt; if any bidder
submits an effective bid, then the product is allocated according to the auction
rule; if not, the seller then moves on to period t + 1 and invites a new bidder
sample Mt+1, and runs an auction among all the participating bidders with
a new reserve price rt+1; the seller continues with this process till the end of
period T .

Our analysis generates several interesting results. First, an optimal search
auction is characterized by decreasing reserve prices and increasing search
intensities (sample sizes) over time. Moreover, the monotonicity results are
robust in both cases of short-lived and long-lived bidders. Intuitively, an opti-
mal reserve price in period t reflects the continuation value of following an
optimal search rule from that point on, which gets smaller when the deadline
T approaches. The other result of increasing search intensities suggests that a
seller will contact a sample of the smallest size in the first period, and invite
increasingly more bidders in later periods. This result may help explain why
the dominant selling process in many important markets, for example, M&As,
can be noncompetitive negotiation.

Second, we compare the optimal search auctions between short and
long-lived bidders. Given a sequence of bidder samples, we show that the
optimal reserve prices for short-lived bidders are lower than those for
long-lived bidders in each period. On the other hand, given a sequence
of reserve prices, a seller with short-lived bidders will search more inten-
sively. The intuition is that a seller with short-lived bidders will lose her
current bidders if she continues to search, and therefore, she is willing to set
lower reserve prices and would search more intensively in the next period
ceteris paribus.

Third, we show that an efficient search auction is also featured by decreasing
reserve prices and increasing search intensities. Compared with the optimal
auction, the efficient search auction has both lower reserve prices and search
intensities ceteris paribus. The result indicates that the inefficiency of an opti-
mal search auction may stem from its inefficient search rule.
© 2023 The Authors. The Journal of Industrial Economics published by The Editorial Board of The Journal of Industrial
Economics and John Wiley & Sons Ltd.
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SELLER COMPOUND SEARCH FOR BIDDERS 1007

Finally, we explore the seller’s optimal choice of the collection of bid-
der samples. For short-lived bidders, we can derive the optimal collection of
bidder samples by the standard method of backward induction. For long-lived
bidders, we specify some conditions that are necessarily satisfied in optimum.
With the aid of the formula of optimal search profit, we can derive the
optimal collection of bidder samples.

The remainder of this paper is organized as follows. Section II provides
a review of the related literature. Section III is model setup. Section IV
investigates the optimal compound search problem with short-lived bidders.
Section V studies the same problem with long-lived bidders. Section VI
further studies an efficient compound search problem with long-lived
bidders. Section VII is a short conclusion. All proofs appear in Appendices.

II. RELATED LITERATURE

Our paper is mainly related to the following strands of literature: (1)
sequential search and search mechanisms, (2) negotiation versus auction, (3)
sequential auctions and revenue management, and (4) auctions with buy-price
options.

First, Weitzman [1979] studies so-called Pandora’s problem of sequential
search with full recall. In his model, Pandora faces a number of closed boxes,
each containing a random prize; she needs to open the boxes sequentially,
each at a search cost; her objective is to maximize the expected value of the
prize discovered, net of the total search costs. The optimal search rule is as fol-
lows: (i) for each box, one can derive a unique cutoff value at which Pandora
is indifferent between keeping this value and inspecting that box; (ii) the selec-
tion rule suggests that she should open the boxes in the order of descending
cutoff values; (iii) the stopping rule indicates that she should stop searching
whenever the value discovered is greater than the highest cutoff value of the
remaining unopened boxes.4

When the search is bounded by a deadline, a searcher may adopt a
compound search rule and sample multiple boxes in a single period. Gal
et al. [1981] study compound search in labor markets by introducing a finite
deadline into the sequential search model of Lippman & McCall [1976].
When the search is with no recall, they show that a searcher’s optimal
search rule is featured by decreasing reservation wages and increasing search
intensities over time.5 Morgan [1983] further studies the case of search with
full recall and shows that the sequence of optimal search intensities is, in

4 Armstrong [2017] provides some additional results of Weitzman’s model and reviews its rel-
evant applications and progress in the context of consumer search.

5 Benhabib & Bull [1983] also study search intensity in job markets, where job offers are homo-
geneous and the search is with no recall. They derive similar monotonicity results on the optimal
search rule as Gal et al. [1981], but they further consider the on-the-job search problem.

© 2023 The Authors. The Journal of Industrial Economics published by The Editorial Board of The Journal of Industrial
Economics and John Wiley & Sons Ltd.
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1008 JOOSUNG LEE AND DANIEL Z. LI

general, a stochastic process. This is because a searcher chooses search
intensity adaptively in each period, depending on the realizations of the
previous search outcomes. For the problem of sequential search with a
deadline, Lee & Li [2021] develop a simple yet unified framework that fully
characterizes the optimal search rules and values in both cases of full and
no recall.

In the above literature, the targets for search are nonstrategic, for example,
boxes. The literature on search mechanisms studies the search for strategic
agents. McAfee & McMillan [1988] study a procurement auction where
a buyer searches homogenous long-lived suppliers sequentially.6 Crémer
et al. [2007] examine a search mechanism where a seller searches heteroge-
nous long-lived bidders. Using a mechanism design approach, they prove
the insightful result that the seller’s search for bidders can be reformulated
as Pandora’s problem. They show that the optimal search outcomes can
be implemented by a sequential auction, with declining reserve prices and
bidders invited one-by-one sequentially.

Our paper studies a seller’s compound search problem with both short
and long-lived bidders. For long-lived bidders, our analysis resembles that of
Crémer et al. [2007]. For example, if we consider a bidder sample as a single
aggregate bidder, our compound search problem is analogous to a sequential
search problem. However, our paper differs from Crémer et al. [2007] in
several aspects. (1) By studying a general compound search rule, we are able
to examine how optimal search intensities (sample sizes) change over time.
Our result shows that a seller becomes less selective (by setting a lower reserve
price) and more aggressive (by searching more intensively) when the deadline
approaches. (2) We study both cases of short and long-lived bidders. The
comparative results suggest that a seller with short-lived bidders searches
more intensively and sets lower reserve prices than one with long-lived bid-
ders. (3) By comparing optimal and efficient search auctions, we show that
the inefficiency of an optimal search auction can stem from its inefficient
compound search rule.

Second, our paper is related to the persistent debates on the choice
between negotiation and auction as an optimal selling mechanism. Bulow &
Klemperer [1996] show that the value of competition by inviting one more
bidder dominates the value of bargaining power. In a later paper, Bulow &
Klemperer [2009] argue that a simultaneous auction can yield higher expected
revenue than a sequential negotiation. In their model, bidders need to pay pos-
itive entry costs, and a seller is unable to commit to a take-it-or-leave-it offer.
In a sequential negotiation, an already entered bidder can make a jump-bid

6 In their model of procurement, a buyer seeks to buy an indivisible product from one of a set
of producers, who are ex-ante homogeneous. The buyer searches the producers sequentially, each
at a constant cost. They show that the optimal search mechanism is a combination of constant
reservation-price search and auction.

© 2023 The Authors. The Journal of Industrial Economics published by The Editorial Board of The Journal of Industrial
Economics and John Wiley & Sons Ltd.
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SELLER COMPOUND SEARCH FOR BIDDERS 1009

to deter further entries of outside bidders, which may harm the seller.
Therefore, a seller usually prefers a simultaneous auction over a sequential
negotiation.7

But the empirical evidence does not support their results in general. For
example, in M&As, the dominant selling process is one-on-one negotiation,
not a competitive auction. Our paper proposes a possible explanation for this
puzzle by modeling the selling process as a seller’s compound search for bid-
ders by a finite deadline.

Third, our paper is related to the growing literature on sequential auc-
tions and revenue management. Said [2011] studies sequential auctions of
multi-unit products with changing populations, yet in a different environment
to our model. Liu et al. [2019] study sequential auctions in the case of lim-
ited commitment. Other recent literature on revenue management includes
Board & Skrzypacz [2016] with forward-looking buyers in the case of full
commitment, and Dilme & Li [2019], who study revenue management with
the arrivals of strategic buyers in the case of no commitment. This paper
studies a compound search auction with a changing population and full
commitment.

Finally, our paper is also related to the literature on buy-price auc-
tions. Reynolds & Wooders [2009] study a static buy-price auction with
risk-averse bidders, and derive bidders’ cutoff strategies similar to our paper.
Zhang [2021] studies the optimal sequence of posted-price and auction in a
sequential mechanism, where a population of short-lived bidders enters the
market periodically. In each period, the seller chooses between a posted-price
and an auction mechanism. He shows that, when there is a deadline and the
auction cost is moderate, the optimal mechanism sequence takes the form of
posted-prices and then auctions.

III. THE MODEL

III(i). Model Setup

A (female) seller wants to allocate an indivisible product among a set
N = {1, 2, … , n} of (male) bidders. She needs to complete the transaction
within T ≤ n periods, and her value of the product is normalized to 0.
Bidders’ values of the product, Vi’s, are independent draws from the
distribution F on [0, 1] with a density f > 0. F is common knowledge,
yet the realization of Vi is bidder i’s private information. We assume F is of

7 Lu et al. [2019] study how to orchestrate costly information acquisition in an auction with
a preshort-listing stage. Bidders are initially endowed with private signals that are positively
correlated to their true values, and a bidder can learn his true value by paying an entry cost. They
show that, under a sequential short-listing rule, the seller admits the most efficient remaining bid-
der in each round, provided that his conditional expected contribution to the virtual surplus is
positive.

© 2023 The Authors. The Journal of Industrial Economics published by The Editorial Board of The Journal of Industrial
Economics and John Wiley & Sons Ltd.
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1010 JOOSUNG LEE AND DANIEL Z. LI

increasing failure rate (IFR) and hence the virtual value, 𝜓(v) = v − 1−F(v)
f (v) ,

is strictly increasing. Both the seller and the bidders are risk-neutral, and we
abstract from time discounting.8

A bidder can not submit a bid if not invited. To invite a bidder, the seller
needs to incur a search cost c ≥ 0, which is small enough such that a bidder is
valuable, that is,

(1)
∫

1

r∗
𝜓(v)dF(v) > c,

where 𝜓(r∗) = 0. Note that the LHS of (1) is the maximum expected revenue
the seller can obtain from a truthful bidder, and the RHS is just the search
cost.

We consider the following compound search procedure for the seller. First,
in period t = 0, the seller selects a collection ℳ =

{
M1

,M2
, … ,MT

}
of

bidder samples, such that Mj ∩Mj′ = ∅ for j ≠ j′ and
⋃T

j=1 Mj
⊆ N. Second,

in periods t = 1, … ,T , the seller searches across the bidder samples in
the form of a sequential auction. The auction is defined by (r,M), where
r = (r1, r2, … , rT ) is a sequence of reserve prices and M = (M1,M2, … ,MT )
is a sequence of bidder samples. Specifically, M specifies a search schedule
which is a permutation of the collection ℳ. For example, if Mt = Mj, then
the seller will search the bidder sample Mj in period t, if she intends to. Let
𝒩 c

t ≡ℳ ⧵{M1,M2, … ,Mt} denote the set of bidder samples in ℳ that
the seller has not searched till the end of period t. For convenience, denote
M0 ≡ ∅ and 𝒩 c

0 ≡ℳ.
We further denote mt = ||Mt

|| as the cardinality of Mt and cMt
≡ mtc the

gross search cost of inviting the Mt bidders. Without causing confusion, we
sometimes use the sequence of sample sizes, M = (m1,m2, … ,mT ), to denote
a search schedule. Intuitively, the level of search intensity in period t is mea-
sured by mt. We say a seller searches more intensively in period t′ than in
period t, if and only if mt′ ≥ mt.

We consider both cases of short-lived and long-lived bidders. Denote Bt the
set of bidders who can bid in the stage auction of period t. It then follows that

Bt =

{
Mt for short-lived bidders,

Nt ≡
⋃t

𝜏=0 M
𝜏

for long-lived bidders.

We also denote nt = ||Nt
|| as the cardinality of Nt. Given a collection ℳ, the

rule of the search auction (r,M) is as follows

8 The introduction of time discounting does not change the results qualitatively.

© 2023 The Authors. The Journal of Industrial Economics published by The Editorial Board of The Journal of Industrial
Economics and John Wiley & Sons Ltd.

 14676451, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/joie.12355 by T

est, W
iley O

nline L
ibrary on [30/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



SELLER COMPOUND SEARCH FOR BIDDERS 1011

• At the beginning of period t = 1, the seller invites a sample M1 ∈𝒩 c
0 of bid-

ders to the auction at the search cost cM1
, and runs a second-price auction

among the set B1 of bidders, with a reserve price r1;
• If an effective bid, for example, a bid higher than r1, is submitted by any

bidder i ∈ B1 in period t = 1, then the transaction ends, and the payment
and allocation are implemented according to the auction rule. Otherwise,
the seller continues searching in period t = 2, by inviting a sample M2 ∈
𝒩 c

1 of bidders at the search cost cM2
. She then runs a second-price auction

among the set B2 of bidders, with a new reserve price r2;
• The seller continues with this process, until the end of period T .

Here are some comments. First, we assume the seller announces the auc-
tion rule (r,M) in period 0, and then commits to it. Second, we consider the
sealed-bid second price auction, where bidding true value is a weakly dom-
inant strategy given the rule of the search auction.9 Third, the individual
rationality constraint is obviously satisfied.

We solve the optimal search problem in two steps. First, for any given col-
lectionℳ of bidder samples, we solve for the optimal search auction (r∗,M∗)
that maximizes the expected auction profit, that is, the expected auction rev-
enue net of the total search costs. Second, we show how to derive the optimal
collection ℳ∗ with some examples.

III(ii). Compound Search Problem: A Reformulation

The well-known result of Myerson [1981] shows that, in an incentive feasible
mechanism, the maximum revenue a seller can obtain from a bidder sample
M is equal to

𝜓

(
V (1)

M

)
= 𝜓

(
max
i∈M

{
Vi

})
,

where V (1)
M denotes the first order statistics of the M bidders’ values, which has

a distribution F (1)
M (v) ≡ Fm(x). As in standard search models, we may think of

a bidder sample M as a single “box” that contains a random value 𝜓

(
V (1)

M

)

and has a gross search cost cM . Therefore, in an incentive feasible search
auction, we can formulate the seller’s compound search of T bidder samples in
T periods as a sequential search of T “boxes” in T periods. Crémer
et al. [2007, Theorem 1] has shown this result in the case of long-lived bidders,
and reformulate their problem of sequential search without a deadline
as Pandora’s problem à la Weitzman [1979]. For short-lived bidders, the

9 Note that an effective bid will terminate the transaction, and a participating bidder has just
one chance to submit an effective bid. In the format of a second price auction, a bidder is indif-
ferent between winning and losing conditional on just winning, and therefore, bidding true value
is a weakly dominant strategy.

© 2023 The Authors. The Journal of Industrial Economics published by The Editorial Board of The Journal of Industrial
Economics and John Wiley & Sons Ltd.
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1012 JOOSUNG LEE AND DANIEL Z. LI

reformulation is even more straightforward as the incentive compatible
conditions are simpler.

For a given collection ℳ of bidder samples, a seller’s search rule involves
both a search schedule M and a stopping rule, for example, when to stop
searching. We can formulate the search problem as a dynamic programming
(DP) problem. Specifically, at the end of period t, suppose the seller has a
fall-back revenue 𝜓(v), and she then faces two options. If she stops, she can
claim the fall-back revenue 𝜓(v) and the product is allocated. If she contin-
ues searching, she needs to decide which bidder sample to invite in the next
period.

For long-lived bidders, let Jt(v) denote the value of having a fall-back
revenue 𝜓(v) at the end of period t. For t ≤ T , the Bellman equation for this
search problem is

(2) Jt(v) = max
M∈𝒩 c

t

{
𝜓(v),−cM + EJt+1

[
max

{
v,X (1)

M

}]}
,

where E is the expectation operator. The first term 𝜓(v) ≥ 0 is the fall-back
revenue the seller can claim by stopping searching,10 and the other term is the
maximum expected profit by continuing searching bidder sample M in the
next period t + 1. It is clear that JT+1(v) = 0. Note that, at the end of period
t + 1, the new state variable is the maximum of v and X (1)

M , as bidders are
long-lived and the fall-back revenue 𝜓(v) is still reclaimable in the next period.
The case of long-lived bidders is analogous to sequential search with full
recall.

For short-lived bidders, similarly, denote ̂Jt(v) the value of having a
fall-back revenue 𝜓(v) at the end of period t. For t ≤ T , the Bellman equation
for this search problem is

(3) ̂Jt(v) = max
M∈𝒩 c

t

{
𝜓(v),−cM + E ̂Jt+1

[
max

{
r∗,X (1)

M

}]}
.

We also have ̂JT+1(v) = 0. Note that, in the case of short-lived bidders, the
seller cannot reclaim the current revenue𝜓(v) in later periods. Therefore, when
the seller declines 𝜓(v) and continues searching, her fall-back revenue turns
to 0 = 𝜓(r∗). The new state variable at the end of period t + 1 is then given by
the maximum of r∗ and X (1)

M . The case of short-lived bidders is analogous to
sequential search with no recall.

10 The assumption of 𝜓(v) ≥ 0 generally holds, as the seller can always stop searching and
realize a zero revenue. In another word, without loss of generality, we can assume the fall-back
value v ≥ r∗.

© 2023 The Authors. The Journal of Industrial Economics published by The Editorial Board of The Journal of Industrial
Economics and John Wiley & Sons Ltd.
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SELLER COMPOUND SEARCH FOR BIDDERS 1013

IV. OPTIMAL SEARCH AUCTION: SHORT-LIVED BIDDERS

We start with the case of short-lived bidders, where Bellman equation (3)
formulates the seller’s search problem. Using backward induction, we can
solve the optimal collection ̂ℳ

∗
of bidder samples and the optimal search

rule in one go. We denote
(
m̂∗

1, … , m̂∗
T

)
the optimal search schedule, and(

̂
𝜉

∗
1, … ,

̂
𝜉

∗
T

)
the sequence of optimal cutoff values in this case. For example,

at the end of period t, the seller is indifferent between stopping with a current
revenue 𝜓

(
̂
𝜉

∗
t

)
and continuing searching in the next period t + 1, as shown

in (3). Proposition 1 below fully solves the optimal compound search rule
with short-lived bidders, which is featured by decreasing cutoff values and
increasing search intensities.

Proposition 1 (optimal search with short-lived bidders). For compound search
with short-lived bidders, the optimal cutoff value ̂

𝜉

∗
t and sample size m̂∗

t are
given by

(4) 𝜓

(
̂
𝜉

∗
t

)
= max

mt+1

{

∫

1

̂
𝜉

∗
t+1

[
𝜓(x) − 𝜓

(
̂
𝜉

∗
t+1

)]
dFmt+1 (x) − cmt+1

}

+ 𝜓

(
̂
𝜉

∗
t+1

)
.

for any t < T and 𝜓

(
̂
𝜉

∗
T

)
= 0. Moreover, the sequence of optimal cutoffs

̂𝝃
∗ =

(
̂
𝜉

∗
1, … ,

̂
𝜉

∗
T

)
is decreasing and that of optimal sample sizes ̂M

∗ =(
m̂∗

1, … , m̂∗
T

)
is increasing over time. That is, for all t < T , we have

̂
𝜉

∗
t >

̂
𝜉

∗
t+1, m̂∗

t ≤ m̂∗
t+1.

Proof. Please refer to Appendix A for the omitted proofs. ◾

A simple transformation of (4) gives the following equivalent expression

(5) 𝜓

(
̂
𝜉

∗
t

)
= max

mt+1

{

∫

1

0
max

{

𝜓

(
∗
̂
𝜉

t+1

)

, 𝜓(x)

}

dFmt+1(x) − cmt+1

}

,

where the LHS is the seller’s payoff by stopping and keeping the current rev-
enue 𝜓

(
̂
𝜉

∗
t

)
, and the RHS is her maximum expected payoff by continuing

searching in period t + 1. The optimal cutoff values of ̂𝜉
∗
t and m̂∗

t can be recur-
sively derived from the last period T .

We can interpret the revenue 𝜓

(
̂
𝜉

∗
t

)
as a reservation revenue for the seller,

which is achievable by following an optimal search rule from period t + 1 on.
The reservation revenue is decreasing over time, as there is fewer trial oppor-
tunities for the seller to improve her payoff. On the other hand, when the
deadline T approaches, as the seller has fewer opportunities to search, she
would have stronger incentives to search more intensively.
© 2023 The Authors. The Journal of Industrial Economics published by The Editorial Board of The Journal of Industrial
Economics and John Wiley & Sons Ltd.
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1014 JOOSUNG LEE AND DANIEL Z. LI

The monotone properties of the optimal search rule match many real-world
observations. For example, in M&As, it suggests that a seller will contact the
smallest number of bidders and has the highest reservation revenue in the first
stage. It may explain why negotiation can be the dominant selling-mechanism
in M&As. Another example could be academic recruitment in the UK
under the REF pressure. With the approaching of the REF deadline, UK
universities would generally increase their recruitment intensities, in order to
build up strong profiles of research outputs for REF submissions.

The optimal search outcomes in Proposition 1 can be implemented by
the proposed search auction. The incentive problem for short-lived bidders
is simple as a bidder will bid whenever his value is greater than the reserve
price of the stage auction. Therefore, by setting a sequence of reserve prices
r̂∗ = ̂𝝃

∗
, the search auction

(
r̂∗, ̂M

∗)
implements the optimal outcomes of the

compound search mechanism with short-lived bidders.
The proof of Proposition 1 provides an algorithm for deriving the optimal

collection ̂ℳ
∗

and the optimal sequence ̂𝝃
∗

of cutoff values. To be clear, in
the last period T , the optimal cutoff ̂

𝜉

∗
T = r∗ and we can solve for the optimal

sample size m̂∗
T that maximizes the expected auction profit in period T . With

the solution of
(
̂
𝜉

∗
T , m̂

∗
T

)
, we can calculate the value of 𝜓

(
̂
𝜉

∗
T−1

)
using (4),

with which we then have the optimal cutoff value ̂
𝜉

∗
T−1. From the RHS of

(4), we then can solve for the optimal search intensity m̂∗
T−1. Continuing with

the process, we then fully solve the optimal compound search problem with
short-lived bidders.

We next propose a simple example that may illustrate how to derive the
optimal collection ̂ℳ

∗
and cutoff values ̂𝝃

∗
using the above algorithm.

Example 1 (2-period with 3 short-lived bidders). Let F(x) = x and c > c ≈
0.047.11 We denote the search schedule by ̂M =

(
m̂1, m̂2

)
, where m̂t is the bid-

der sample size in period t. We consider two candidates for optimal search
schedule, ̂M = (1, 1) and (1, 2).

We define 𝜔t, t = 1, 2, as the continuation value of following an optimal
search procedure after the end of period t, and the optimal cutoff value ̂

𝜉

∗
t

satisfies 𝜓
(
̂
𝜉

∗
t

)
= 𝜔t, as implied by the Bellman equation of (3). It is clear that

𝜔2 = 0 and ̂
𝜉

∗
2 = r∗; and

(6) 𝜔1 = max
m̂2

{

∫

1

r∗
𝜓(x)dFm̂2(x) − m̂2c

}

,

11 When c < c, it is optimal to invite all the three bidders in the first period, as m̂∗
2 = 3 maximizes

(6). Note that inviting all bidders in one period is never optimal with long-lived bidders.

© 2023 The Authors. The Journal of Industrial Economics published by The Editorial Board of The Journal of Industrial
Economics and John Wiley & Sons Ltd.
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SELLER COMPOUND SEARCH FOR BIDDERS 1015

Figure 1

Optimal Search for Short-lived Bidders

Notes: See Example 1. When bidders are short-lived and c ≤ ĉ∗ ≈ 0.167, the optimal search
schedule is ̂M

∗ = (1, 2), as shown by the dashed red curve. If c > ĉ∗, however, the optimal search
schedule turns to be ̂M

∗ = (1, 1), as shown by the solid red curve [Colour figure can be viewed at
wileyonlinelibrary.com]

where the virtual value function 𝜓(x) = 2x − 1. Following an optimal search
procedure of

{(
̂
𝜉

∗
1, r

∗)
,

(
m̂∗

1, m̂
∗
2

)}
, the expected profit is

�̂�

∗ =

[

∫

1

̂
𝜉

∗
1

𝜓(x)dFm̂∗1 (x) − m̂∗
1c

]

+ Fm̂∗1
(
̂
𝜉

∗
1

)
[

∫

1

r∗
𝜓(x)dFm̂∗2 (x) − m̂∗

2c

]

.

There are two cases, depending on the value of c.

• c < c ≤ ĉ∗ = 1∕6, we have m̂∗
2 = 2 maximizes (6) with 𝜔1 =

5
12
− 2c and

̂
𝜉

∗
1 =

17
24
− c. The expected profit is �̂�∗ = c2 − 29c

12
+ 289

576
.

• ĉ∗ < c < 1∕4, we have m̂∗
2 = 1 maximizes (6) with 𝜔1 =

1
4
− c and ̂

𝜉

∗
1 =

5
8
−

1
2
c. The expected profit is �̂�∗ = 1

64
(16c2 − 104c + 25).

The results are illustrated by the two red curves in Figure 1, which shows
how optimal

(
m̂∗

1, m̂
∗
2

)
changes with the search cost c. For example, when

c ≥ ĉ∗, the optimal sample collection ̂ℳ
∗ = (1, 1). When c < ĉ∗, the optimal

sample collection ̂ℳ
∗ = (1, 2).

We further provide two results for comparison purpose in Example 2.

• c = 1
16

: it follows m̂∗
2 = 2, 𝜔1 =

7
24

and ̂
𝜉

∗
1 =

31
48
≈ 0.646;

• c = 5
24

: it follows m̂∗
2 = 1, 𝜔1 =

1
24

, and ̂
𝜉

∗
1 =

25
48
≈ 0.521.

© 2023 The Authors. The Journal of Industrial Economics published by The Editorial Board of The Journal of Industrial
Economics and John Wiley & Sons Ltd.
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1016 JOOSUNG LEE AND DANIEL Z. LI

V. OPTIMAL SEARCH AUCTION: LONG-LIVED BIDDERS

For long-lived bidders, similar to the cutoff value of a box in Pandora’s
problem, we can define a unique cutoff value for any bidder sample M ∈ℳ
with a sample size m, denoted by 𝜉

∗(m). The Bellman equation (2) then
implies 𝜉∗(m) satisfies

(7) 𝜓(𝜉∗(m)) =
∫

1

0
max

{
𝜓(𝜉∗(m)), 𝜓(x)

}
dFm(x) −mc.

The LHS of (7) is the fall-back revenue 𝜓(𝜉∗(m)), and the RHS is the net
expected revenue if the seller searches the sample M in the next period and
then stops.12 For any given collection ℳ, the Pandora’s rule then implies the
following optimal search rule:

• Search order: At the end of period t < T , if a bidder sample is to be searched
in period t + 1, it must be the sample with the highest cutoff value in 𝒩 c

t .
The optimal search schedule, denoted by M∗ =

(
m∗

1, … ,m∗
T

)
, is such that

𝜉

∗(m∗
1

)
≥ 𝜉

∗(m∗
2

)
≥ · · · ≥ 𝜉

∗(m∗
T

)
.

• Stopping rule: At the end of any period t < T , if the fall-back value v is
greater than all the cutoff values of the remaining bidder samples, then stops
searching; otherwise, continues searching in period t + 1.

Next, we first characterize the optimal search rule in Sections V(i)–(iii)
when a collection ℳ is given. Second, we show how to derive the optimal
collection ℳ∗ in Section V(iv), with an illustrative example. Finally, we pro-
vide some comparative results on the optimal search rules with short and
long-lived bidders in Section V(v).

V(i). Incentive Compatibility

We first investigate the incentive compatible conditions for bidders, and
will study equilibria in the form of cutoff strategies. A cutoff strategy is
characterized by a vector of cutoff values, 𝝃 = (𝜉t)1≤t≤T , such that a bidder
will bid his true value v in period t if v ≥ 𝜉t, and wait otherwise. Given that
bidders are ex-ante homogeneous, we will focus on symmetric equilibria
where all the bidders adopt the same cutoff strategy in equilibrium.

Lemma 1 below characterizes a bidder’s equilibrium cutoff strategy with
decreasing cutoff values. Its proof also shows that there exists a one-to-one
mapping between the sequence of reserve prices r and that of the cutoff

12 Note that the cutoff value 𝜉∗(m) in (7) is solely determined by the bidder sample M, which the
seller will search in the right next period. It is known as the one-step-ahead property in sequential
search problems with full recall.

© 2023 The Authors. The Journal of Industrial Economics published by The Editorial Board of The Journal of Industrial
Economics and John Wiley & Sons Ltd.
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SELLER COMPOUND SEARCH FOR BIDDERS 1017

values 𝝃. Therefore, the search auction (r,M) can be equivalently represented
by (𝝃,M), which is used in our following discussions.

Lemma 1 (Bidders’ equilibrium cutoff strategy). Given a compound search
auction (𝝃,M) with decreasing cutoff values, 𝜉t is uniquely determined by

(8) F (1)
Nt⧵{i}

(
𝜉t

)(
𝜉t − rt

)
= F (1)

Nt+1⧵{i}

(
𝜉t+1

)(
𝜉t+1 − rt+1

)
+
∫

𝜉t

𝜉t+1

F (1)
Nt+1⧵{i}

(x)dx,

for t < T , and 𝜉T = rT . Moreover, the reserve prices (rt)1≤t≤T is also decreasing
in t.

Proof. The proof appears in Appendix B. ◾

It is intuitive that 𝜉T = rT , as it is the last period to submit a bid, and a
bidder will bid whenever his value is greater than the reserve price. For t <
T , condition (8) implies that 𝜉t ≥ rt, and a bidder with a value higher than
the reserve price rt may wait. The intuition is that, with decreasing reserve
prices, a bidder faces the trade-off between bidding now with a higher reserve
price yet less competition, or bidding later with a lower reserve price yet more
competition, as more bidders will enter the auction in the next period.

V(ii). Optimal Cutoff Values

Given a search auction (𝝃,M) with declining cutoff values, the expected auc-
tion profit is

(9) 𝜋

(
𝝃,M

)
=

T∑

t=1

F (1)
Nt−1

(
𝜉t−1

) [
Rt(Nt) − cMt

]
,

where F (1)
N0
(𝜉0) ≡ 1 and Rt(Nt) is the expected revenue of the stage auction in

period t, conditional on it happens. Note that, in the stage auction of period
t, there are Mt strong bidders and Nt−1 weak bidders. For example, the values
of the Mt new bidders are independent draws from F , while those of the Nt−1
weak bidders are truncated above from 𝜉t−1. Substituting the bidders’ equilib-
rium cutoff strategies (8) into (9), we then get the following expression of the
expected auction profit.

Lemma 2 (expected auction profit). Given a compound search auction (𝝃,M)
with declining cutoff values, the expected auction profit is

(10)

𝜋(𝝃,M) =
T∑

t=1
∫

𝜉t−1

𝜉t

𝜓(x)dF (1)
Nt
(x) +

T∑

t=1

F (1)
Nt−1

(
𝜉t−1

)
[

∫

1

𝜉t−1

𝜓(x)dF (1)
Mt
(x) − cMt

]

,

where 𝜉0 ≡ 1.
© 2023 The Authors. The Journal of Industrial Economics published by The Editorial Board of The Journal of Industrial
Economics and John Wiley & Sons Ltd.
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1018 JOOSUNG LEE AND DANIEL Z. LI

Different from the standard results of static auctions with symmetric bid-
ders, (10) provides a nice formula of the expected revenue of a sequential
auction net of search costs with asymmetric bidders. For example, the stage
auction in period t happens with probability F (1)

Nt−1
(𝜉t−1), where there are Mt

strong bidders and Nt−1 weak bidders. When the highest value of the Mt strong
bidders is below 𝜉t−1, all the Nt bidders are competing with each other for
the product. This corresponds to the first term of ∫ 𝜉t−1

𝜉t
𝜓(x)dF (1)

Nt
(x) in (10).

On the other hand, when the highest value of the Mt bidders is greater than
𝜉t−1, then the Nt−1 weak bidders are strictly dominated, and only the Mt bid-
ders are competing for the product. This corresponds to the second term of
∫

1
𝜉t−1

𝜓(x)dF (1)
Mt
(x) in (10).

Proposition 2 (Optimal Cutoffs). Given a compound search auction
(𝝃,M) with declining cutoff values, the expected auction profit 𝜋(𝝃,M)
is quasi-concave in 𝜉t. Moreover, the sequence of optimal cutoff values,
(𝜉∗t )1≤t≤T , satisfies

(11) cMt+1
=
∫

1

𝜉

∗
t

[
𝜓(x) − 𝜓(𝜉∗t )

]
dF (1)

Mt+1
(x), for 1 ≤ t < T ,

and 𝜓(𝜉∗T ) = 0 for t = T .

The optimal cutoff value in (11) also specifies the condition for optimal
stopping, which is the same as (7). For instance, given the current fall-back
revenue 𝜓(𝜉∗t ), the RHS of (11) is the increment in expected auction revenue if
the seller continues searching the Mt+1 bidders in period t + 1 and then stops,
while the LHS is the gross search cost cMt+1

. If the RHS is smaller than cMt+1
,

then the seller will stop searching at the end of period t.13

V(iii). Optimal Search Intensity

We will next show that the optimal search intensities (sample sizes) are increas-
ing over time. Therefore, these monotonicity properties of optimal cutoffs
and optimal search intensities are robust across both cases of short-lived and
long-lived bidders.

First, define 𝜉

∗(m) as the optimal cutoff value for searching a bidder sam-
ple M of sample size m. From condition (11), 𝜉∗(m) is the implicit function
defined by

(12) mc =
∫

1

𝜉
∗(m)

[
1 − Fm(x)

]
d𝜓(x).

13 The solution of 𝜉∗t is unique, as the RHS of (11) is strictly decreasing in 𝜉

∗
t . Moreover, 𝜉∗t

reveals a one-step-ahead property, in the sense that it just depends on the bidder sample Mt+1
only. This property is based on the fact that the optimal cutoff values are decreasing, while the
seller’s fall-back values with long-lived bidders are necessarily increasing over time.

© 2023 The Authors. The Journal of Industrial Economics published by The Editorial Board of The Journal of Industrial
Economics and John Wiley & Sons Ltd.
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SELLER COMPOUND SEARCH FOR BIDDERS 1019

The following result shows 𝜉∗(m) is decreasing in m.

Lemma 3. The optimal cutoff value 𝜉∗(m) is strictly decreasing in m. That is,
for any two sets of bidders, M,M′

⊆ N, if m < m′, then

𝜉

∗(m) > 𝜉

∗(m′).

The result is more striking than it first looks. Lemma 3 shows that, for
homogeneous bidders, the benefit of increasing competition by inviting one
more bidder is strictly dominated by the cost of doing that. In other words,
removing one bidder from the sample will strictly increase the optimal cutoff
value of that sample. Therefore, 𝜉∗(m) achieves its maximum when the seller
just samples 1 bidder. It also implies that, when a seller is not constrained by
a finite deadline, it is optimal to search the bidders one-by-one sequentially.

We next show that the sequence of optimal search intensities is increasing
over time. This result is a direct implication of Lemma 3 and the fact that,
under an optimal search rule, the optimal cutoff value 𝜉

∗
t is decreasing in t.

Proposition 3 (optimal search intensity). The sequence of optimal search
intensity (sample size), denoted by M∗ =

(
m∗

1,m
∗
2, … ,m∗

T

)
, is increasing over

time, that is, for 1 ≤ t < T ,
m∗

t ≤ m∗
t+1.

Proposition 3 also confirms the result of increasing search intensity in the
case of long-lived bidders. In other words, in a compound search, a seller will
search increasingly more intensively from one period to the next. Again, the
result may help explain why, in many important markets, the dominant selling
process can be noncompetitive negotiation, where a seller just contacts one
potential bidder in the first stage.

Finally, let us show how the proposed search auction (𝝃∗,M∗) can imple-
ment the optimal search outcomes. By comparing (11) with (12), it is clear
that 𝜉

∗
t = 𝜉

∗(mt+1

)
for 1 ≤ t < T , and the result of (11) coincides with the

optimal cutoff condition of (7). It then implies that the proposed search
auction can implement the optimal search outcomes. To be specific, for
any given collection ℳ of bidder samples, the optimal search schedule
M∗ =

(
m∗

t

)
1≤t≤T is such that m∗

t ≤ m∗
t+1 for 1 ≤ t < T . The sequence of

optimal cutoff values, denoted by 𝝃∗ =
(
𝜉

∗
t

)
1≤t≤T , is determined as follows:

for 1 ≤ t < T , 𝜉∗t = 𝜉

∗(m∗
t+1

)
, and 𝜉

∗
T = r∗.

V(iv). Optimal Sample Collection ℳ∗

For any given collection ℳ of bidder samples, let 𝜋∗(ℳ) denote the optimal
expected auction profit by following an optimal search rule. By substituting
© 2023 The Authors. The Journal of Industrial Economics published by The Editorial Board of The Journal of Industrial
Economics and John Wiley & Sons Ltd.
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1020 JOOSUNG LEE AND DANIEL Z. LI

(11) into the expected auction profit of (10), we have the following formula of
optimal search profit.

Lemma 4 (optimal auction profit). Given a collection ℳ of bidder samples,
a seller’s optimal expected auction profit by following an optimal search rule
is

(13) 𝜋

∗(ℳ) =
T∑

t=1
∫

𝜉

∗(m∗t )

𝜉
∗
(

m∗
t+1

)
[
1 − F (1)

Nt
(x)

]
d𝜓(x),

where 𝜉

∗(mT+1) ≡ r∗.

The formula (13) suggests a simple way to find the optimal collection ℳ∗

that maximizes 𝜋

∗(ℳ). First, the requirement of increasing sample sizes
implies that we can focus on monotone search schedules without loss of
generality, that is, mt ≤ mt+1. Second, as 𝜉∗(mT ) ≥ 𝜉

∗(mT+1

)
= r∗ and 𝜉

∗(m)
is strictly decreasing in m, there then exists an upper bound for mT , denoted
by m. The maximum number of bidders in an ℳ∗ is then min{n,mT}. Using
formula (13), we can find the optimal collection.

We next provide a simple example of 2-period with 3 long-lived bidders.

Example 2 (2-period with 3 long-lived bidders). Let F(x) = x and c ∈ (0, 1∕4).
The virtual value function is 𝜓(x) = 2x − 1, and the search schedule is
M = (m1,m2). Proposition 5 suggests the optimal search schedule is either
M = (1, 1) or (1, 2), depending on the value of c. From formula (12), the
optimal cutoff values for different sample sizes are given by:

• If m = 1, then 𝜉

∗(1) is the solution to c = (1 − 𝜉)2, that is, 𝜉∗(1) = 1 −
√

c;
• If m = 2, then 𝜉

∗(2) is the solution to 2c = 2
3
(1 − 𝜉)2(2 + 𝜉).

Case 1: If c = 1
16

, then 𝜉

∗(1) = 3
4

and 𝜉

∗(2) ≈ 0.738. For a search schedule of
M = (1, 1), the expected profit, from (13), is

𝜋(1, 1) =
∫

𝜉

∗(1)

𝜉
∗(1)

[1−F(x)] d𝜓(x)+
∫

𝜉

∗(1)

r∗

[
1−F2(x)

]
d𝜓(x) = 29

96
≈ 0.302.

The expected profit for a search schedule of M = (1, 2) is

𝜋(1, 2) =
∫

𝜉

∗(1)

𝜉
∗(2)

[1 − F(x)] d𝜓(x) +
∫

𝜉

∗(2)

r∗

[
1 − F3(x)

]
d𝜓(x) ≈ 0.365.

Therefore, the optimal collection of bidder samples is ℳ∗ = (1, 2).
© 2023 The Authors. The Journal of Industrial Economics published by The Editorial Board of The Journal of Industrial
Economics and John Wiley & Sons Ltd.
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SELLER COMPOUND SEARCH FOR BIDDERS 1021

Case 2: If c = 5
24

, then 𝜉

∗(1) ≈ 0.544 and 𝜉

∗(2) = 0.5. For a search schedule
of (1, 1), the expected profit, again from (13), is

𝜋(1, 1) =
∫

𝜉

∗(1)

𝜉
∗(1)

[1 − F(x)] d𝜓(x) +
∫

𝜉

∗(1)

r∗

[
1 − F2(x)

]
d𝜓(x) ≈ 0.0634.

The expected profit for a search schedule of (1, 2) is

𝜋(1, 2) =
∫

𝜉

∗(1)

𝜉
∗(2)

[1 − F(x)] d𝜓(x) +
∫

𝜉

∗(2)

r∗

[
1 − F3(x)

]
d𝜓(x) ≈ 0.0417.

Therefore, the optimal collection of bidder samples is ℳ∗ = (1, 1).

Figure 2 illustrates how the optimal sample collection changes with c. When
c ≤ c∗ ≈ 0.164, the optimal sample collection is (1, 2), for example, the dashed
blue curve, and when c ≥ c∗, the optimal search schedule is (1, 1), for example,
the solid blue curve.

Figure 2 also illustrates the comparative results on optimal search with
long-lived and short-lived bidders, as later to be shown in Proposition 4 and 5
in Section V(v). First, it shows that when c∗ < c < ĉ∗, a seller with short-lived
bidders searches more intensively than one with long-lived bidders in period
t = 2. Second, it also shows that when the search schedule M is given, the
cutoff value for short-lived bidders is smaller than that for long-lived bidders.
For instance, when c = 1

16
, the optimal search schedules in both cases are the

same, for example, (1, 2). We have, from the results in Example 1,

̂
𝜉

∗
1 =

31
48

≈ 0.646 < 𝜉

∗
1 ≈ 0.738.

When c = 5
24

, the optimal schedule in both cases is (1, 1), and we have

̂
𝜉

∗
1 =

25
48

≈ 0.521 < 𝜉

∗
1 ≈ 0.544.

V(v). Short-lived versus Long-lived Bidders

Comparing the Bellman equations of (2) and (3), we can show that, for a given
search schedule M, the optimal cutoff value for short-lived bidders is smaller
than that for long-lived bidders in each period. This is because a seller with
short-lived bidders can not reclaim any offer declined before, and therefore,
she is willing to accept a lower reserve prize.

Proposition 4 (Short-Lived versus Long-Lived Bidders: Cutoff Value). For a
given search schedule M, the optimal cutoff value for short-lived bidders is
© 2023 The Authors. The Journal of Industrial Economics published by The Editorial Board of The Journal of Industrial
Economics and John Wiley & Sons Ltd.
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1022 JOOSUNG LEE AND DANIEL Z. LI

Figure 2

Long-Lived versus Short-Lived Bidders

Notes: See Example 2, where bidders are long-lived (as shown by the two blue curves). If c
is in between c∗ ≈ 0.164 and ĉ∗ ≈ 0.167, the seller with short-lived bidders will invite more
bidders in the second period than one with long-lived bidders [Colour figure can be viewed at
wileyonlinelibrary.com]

smaller than that for long-lived bidders in each period. That is, for 0 ≤ t <
T − 1,

̂
𝜉

∗
t < 𝜉

∗
t ,

and ̂
𝜉

∗
T = 𝜉

∗
T = r∗ for t = T .

Another intuitive result is that, for given cutoff values, the optimal
search intensity (sample size) for short-lived bidders is greater than that
for long-lived bidders. For long-lived bidders, a higher fall-back revenue
decreases the marginal value of search, and therefore dampen a seller’s
incentive to search bidders. In contrast, for short-lived bidders, a seller’s
fall-back revenue always turns to 0, as she cannot reclaim a previously
declined revenue. Therefore, a seller with short-lived bidders will search bid-
ders more intensively. Figure 2 in Example 2 also illustrates the comparative
results on optimal cutoff and search intensity with long-lived and short-lived
bidders.

Proposition 5 (short-lived versus long-lived bidders: search intensity). Given a
sequence of cutoff values 𝝃 that is declining in t, the optimal search intensity
(sample size) for short-lived bidders is greater than that for long-lived bidders
in each period t = 1, … ,T .

© 2023 The Authors. The Journal of Industrial Economics published by The Editorial Board of The Journal of Industrial
Economics and John Wiley & Sons Ltd.
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SELLER COMPOUND SEARCH FOR BIDDERS 1023

VI. EFFICIENT SEARCH AUCTION: LONG-LIVED BIDDERS

An optimal auction may lead to inefficient outcomes, for example, due to the
possibility of no trade or a biased allocation where a bidder with the highest
value does not win. Here, in our model of compound search auctions, the inef-
ficiency may stem from the inefficiency of an optimal search rule. For example,
a profit-maximizing seller may exclude some bidders who would otherwise be
socially valuable, or she may also have excessive incentives to invite bidders
sometime, or the optimal sequence of bidder samples can be different from
an efficient one. In this section, we will examine efficient search auctions in
the case of long-lived bidders.

VI(i). Efficient Search Auction

An efficient search auction maximizes the expected social welfare, which is
equal to the value of the winning bidder net of the total search cost. Replacing
the virtual value 𝜓(v) by the true value v in (2), we can similarly set up the DP
problem for welfare maximization, and conduct similar analysis. Specifically,
given a compound search auction (𝝃,M) with declining cutoff values, similar
to (9), the ex-ante expected social welfare is

(14) W (𝝃,M) =
T∑

t=1

F (1)
Nt−1

(
𝜉t−1

) [
Wt(Nt) − cMt

]
,

where Wt(Nt) is the expected value of the winning bidder in the stage auction
of period t, conditional on it happens. It is evident that the incentive problem
for the bidders remains the same as in Section V(i). By substituting (8) into the
expected social welfare function (14), we can derive the following expression
of the expected social welfare.

Lemma 5. Given a compound search auction (𝝃,M) with declining cutoff
values, the expected social welfare is

(15)

W (𝝃,M) =
T∑

t=1
∫

𝜉t−1

𝜉t

xdF (1)
Nt
(x) +

T∑

t=1

F (1)
Nt−1

(
𝜉t−1

)
[

∫

1

𝜉t−1

xdF (1)
Mt
(x) − cMt

]

,

where 𝜉0 ≡ 1.

The following result characterizes the cutoff values in an efficient search
auction.

Proposition 6 (efficient cutoffs). Given a compound search auction
(𝝃,M) with declining cutoff values, the expected social welfare W (𝝃,M)
© 2023 The Authors. The Journal of Industrial Economics published by The Editorial Board of The Journal of Industrial
Economics and John Wiley & Sons Ltd.
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1024 JOOSUNG LEE AND DANIEL Z. LI

is quasi-concave in 𝜉t. The sequence of efficient cutoff values, (𝜉∗∗t )1≤t≤T , is
the unique solution to

(16) cMt+1
=
∫

1

𝜉

∗∗
t

(
x − 𝜉

∗∗
t

)
dF (1)

Mt+1
(x), for 1 ≤ t < T ,

and 𝜉

∗∗
T = 0 for t = T .

The formula (16) for efficient cutoff value is identical to that for optimal
cutoff value (11), except that the virtual value 𝜓(v) is now replaced by the
true value v. Similarly, we can define a function of the efficient cutoff for a
bidder sample M, denoted by 𝜉

∗∗(m). Specifically, applying condition (16),
𝜉

∗∗(m) is the implicit function defined by

(17) mc =
∫

1

𝜉
∗∗(m)

[
1 − Fm(x)

]
dx.

It is easy to show that 𝜉∗∗(m) is also strictly decreasing in m. For given bidder
sample collection ℳ, denote M∗∗ = (m∗∗

t )1≤t≤T as an efficient search sched-
ule. Proposition 7 below shows that the sequence of efficient sample sizes is
increasing over time.

Proposition 7 (efficient search intensity). The sequence of efficient search
intensities (sampling sizes) is increasing over time, that is, for t = 1, … ,T − 1,

m∗∗
t ≤ m∗∗

t+1.

Comparing (16) and (17), we have 𝜉

∗∗
t = 𝜉

∗∗(m∗∗
t+1), and the compound

search auction (𝝃∗∗,M∗∗) then implements the efficient search outcomes.
Given a collectionℳ of bidder samples, we denote W∗∗(ℳ) as the maximum
social welfare by following an efficient search rule. By substituting (16) into
(15), it follows that

Lemma 6. Given a collection ℳ of bidder samples, the maximum expected
social welfare is

(18) W∗∗(ℳ) =
T∑

t=1
∫

𝜉

∗∗(m∗∗t )

𝜉
∗∗
(

m∗∗
t+1

)
[
1 − F (1)

Nt
(x)

]
dx

VI(ii). Efficient versus Optimal Search Auction

It is helpful to compare the cutoff values and the sample sizes between the
optimal and the efficient search auction. The first result shows that, when the
© 2023 The Authors. The Journal of Industrial Economics published by The Editorial Board of The Journal of Industrial
Economics and John Wiley & Sons Ltd.
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SELLER COMPOUND SEARCH FOR BIDDERS 1025

sequence of bidder samples is given, the optimal cutoff value is greater than
the efficient one in each period.

Corollary 1. For a given search schedule M, the optimal cutoff value is
higher than the efficient one in each period, that is, for 1 ≤ t ≤ T ,

𝜉

∗(mt) > 𝜉

∗∗(mt).

This result is reminiscent of the related results in static auctions. In a
symmetric static auction, the optimal reserve price is r∗ > 0, and the efficient
reserve price is simply 0. Corollary 1 produces a similar result in the case of
compound search auctions.

Second, as both 𝜉

∗(m) and 𝜉

∗∗(m) are strictly decreasing in m, we can
define their inverse functions, denoted by m∗(𝜉t) and m∗∗(𝜉t) respectively,
which roughly measure the optimal and efficient search intensity for a given
cutoff value 𝜉t.

Proposition 8 (efficient versus optimal search intensity). For a given sequence
of declining cutoff values 𝝃, the optimal search intensity (sample size) is
greater than the efficient one in each period, that is, for 1 ≤ t ≤ T ,

m∗(𝜉t) > m∗∗(𝜉t).

Proposition 8 shows that, given a declining sequence of cutoff values, a
profit-maximizing seller will search bidders more intensively in each period
than a welfare-maximizing seller. Therefore, the expected total number of
participating bidders is also larger than that in an efficient search auction,
provided that the cutoff value is decreasing. This over-invitation result is rem-
iniscent of the similar results in static search auctions (Szech [2011]; Li [2017];
Xu & Li [2019]).

In the end, we consider an simple example of efficient search auctions using
the previous example of 2-period with 3 homogeneous bidders. Figure 3 illus-
trates how the efficient and the optimal search intensities vary with the search
cost c. It clearly shows the new sources of inefficiency from an optimal search
rule. For example, when 1∕4 < c ≤ 1∕2, a profit-maximizing seller will not
invite any bidder, yet it is desirable for a welfare-maximizing seller to invite
bidders. Second, when c∗∗ < c ≤ c∗, a profit-maximizing seller will choose a
search schedule of M∗ = (1, 2), while the efficient one is M∗∗ = (1, 1).

Example 3 (2-period with 3 long-lived bidders). Let F(x) = x and c ∈ (0, 1∕2].
Denote the search schedule by M = (m1,m2). Proposition 7 suggests that the
efficient search schedule is either M = (1, 1) or (1, 2), depending on the value
of c. From formula (17), the efficient cutoff value for different sample size is
given by:
© 2023 The Authors. The Journal of Industrial Economics published by The Editorial Board of The Journal of Industrial
Economics and John Wiley & Sons Ltd.
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1026 JOOSUNG LEE AND DANIEL Z. LI

Figure 3

Optimal versus Efficient Auction

Notes: See Example 2 for expected profit and Example 3 for expected welfare. (1) optimal search
schedules: when c ≤ c∗, the optimal search schedule is (1, 2), as shown by the dashed blue curve;
when c∗ < c ≤ 1∕4, it is (1, 1), as shown by the solid blue curve; furthermore, when c > 1∕4,
a profit-maximizing seller never searches. (2) efficient search schedules: when c ≤ c∗∗, the effi-
cient search schedule is (1, 2), as shown by the dashed red curve; when c∗∗ < c ≤ 1∕2, it is (1, 1),
as shown by the solid red curve; moreover, when c2 > 1∕2, a welfare-maximizing seller never
searches. Note that c∗∗ < c∗. Therefore, when c∗∗ < c ≤ c∗, a profit-maximizing seller searches
more intensively in period 2 than a welfare-maximizing seller [Colour figure can be viewed at
wileyonlinelibrary.com]

• If m = 1, then 𝜉

∗∗(1) is the solution to c = 1
2
(1 − 𝜉)2, for example,

𝜉

∗∗(1) = 1 −
√

2c;
• If m = 2, then 𝜉

∗∗(2) is the solution to 2c = 1
3
(1 − 𝜉)2(2 + 𝜉).

Case 1: If c = 1
16

, then 𝜉

∗∗(1) ≈ 0.646 and 𝜉

∗∗(2) ≈ 0.622. For a search
schedule of (1, 1), the expected social welfare, from (18), is

W (1, 1) =
∫

𝜉

∗∗(1)

𝜉
∗∗(1)

[1 − F(x)] dx +
∫

𝜉

∗∗(1)

0

[
1 − F2(x)

]
dx ≈ 0.556.

The expected welfare for a search schedule of (1, 2) is

W (1, 2) =
∫

𝜉

∗∗(1)

𝜉
∗∗(2)

[1 − F(x)] dx +
∫

𝜉

∗∗(2)

0

[
1 − F3(x)

]
dx ≈ 0.593.

Therefore, the search schedule of (1, 2) is efficient.
© 2023 The Authors. The Journal of Industrial Economics published by The Editorial Board of The Journal of Industrial
Economics and John Wiley & Sons Ltd.

 14676451, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/joie.12355 by T

est, W
iley O

nline L
ibrary on [30/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://wileyonlinelibrary.com


SELLER COMPOUND SEARCH FOR BIDDERS 1027

Case 2: If c = 5
24

, then 𝜉

∗∗(1) ≈ 0.355 and 𝜉

∗∗(2) = 0.256. For a search
schedule of (1, 1), the expected social welfare, from (18), is

W (1, 1) =
∫

𝜉

∗∗(1)

𝜉
∗∗(1)

[1 − F(x)] dx +
∫

𝜉

∗∗(1)

0

[
1 − F2(x)

]
dx ≈ 0.340.

The expected profit for a search schedule of (1, 2) is

W (1, 2) =
∫

𝜉

∗∗(1)

𝜉
∗∗(2)

[1 − F(x)] dx +
∫

𝜉

∗∗(2)

0

[
1 − F3(x)

]
dx ≈ 0.323.

Therefore, the search schedule of (1, 1) now is efficient.

Figure 3 plots how the efficient and optimal search schedule change with
the unit search cost c. For example, when c ≤ c∗∗ ≈ 0.142, the efficient search
schedule is (1, 2); when c∗∗ < c ≤ 1∕2, the efficient search schedule is (1, 1);
and when c > 1∕2, a welfare-maximizing seller will not conduct search at all.
It also compares the efficient and the optimal search schedules connected to
the two cutoff values of c∗∗ and c∗. When c∗∗ < c ≤ c∗, a welfare-maximizing
seller invites just 1 bidder in the second period, while a profit-maximizing
seller invites 2 instead. It reveals the tendency of over-invitation by a
profit-maximizing seller.

VII. CONCLUSION

This paper proposes a framework for studying seller compound search
problems, where a seller searches for bidders batch by batch under a finite
deadline. This model can be applied to a large variety of real-world prob-
lems, such as M&A selling processes, job recruiting campaigns, speed dating
events, job/school applications, etc. Our main results show that an optimal
compound search is characterized by decreasing reserve prices and increasing
search intensities over time. The monotonicity results are robust in both
cases of short and long-lived bidders, and across optimal and efficient search
auctions. The result of increasing search intensities may help explain why
negotiation could be a dominant selling process in many important markets,
such as M&As, and why academic job markets in the UK become more active
when the REF deadline approaches, and so on.

We show how the optimal search outcomes can be implemented by a com-
pound search auction, and conduct several comparative analyses. First, across
short and long-lived bidders, we show that a seller with short-lived bidders
will set lower reserve prices and search more intensively than a seller with
long-lived bidders ceteris paribus. This is because a seller with short-lived bid-
ders can not reclaim any previously declined offer, and therefore, she is willing
to set a lower reserve price and will search bidders more intensively.

Second, we show that an efficient search auction is featured by both lower
reserve prices and greater search intensities than an optimal search auction,
© 2023 The Authors. The Journal of Industrial Economics published by The Editorial Board of The Journal of Industrial
Economics and John Wiley & Sons Ltd.
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1028 JOOSUNG LEE AND DANIEL Z. LI

ceteris paribus. The result indicates a new source of inefficiency of the optimal
search auction, for example, due to the inefficient search rule. For example, a
profit-maximizing seller may exclude some socially valuable bidders, or has
excessive incentives to invite bidders in certain stages of the transaction.

This paper contributes to the literature of search mechanism, where the
targets for search are strategic agents. Compared with the existing literature,
there are several distinct features of our model. First, we consider a model of
compound search within a finite horizon, which enables us to investigate how
optimal search intensities (sample sizes) vary over time. Second, we study both
cases of short-lived and long-lived bidders, and provide some comparative
results absent in the literature. Third, we identify a new source of inefficiency
in optimal search auctions, for example, the inefficient search rule. We believe
our framework can be conveniently applied to the study of a large variety of
search problems, such as sequential matching in marriage markets, job recruit-
ment by a deadline, or R&D tournament within a finite time horizon. We keep
these extensions and explorations for future research.

APPENDIX A

OMITTED PROOFS

Proof of Proposition 1. We solve (3) by backward induction. Denote Z(1)
m =

max
{

r∗,X (1)
m

}
and define

𝜔t = max
m

{
E ̂Jt+1

[
Z(1)

m

]
−mc

}
,

which is the continuation value of following an optimal search rule from the end of
period t on. The Bellman equation (3) is then equivalent to

(A1) ̂Jt(v) = max
m

{
𝜓(v),E ̂Jt+1

[
Z(1)

m

]
−mc

}
= max

{
𝜓(v), 𝜔t

}
,

It is clear that 𝜔T = 0, that is, the continuation value after the deadline T is 0. When
t = T − 1,

𝜔T−1 = max
m

{
E ̂JT

[
Z(1)

m

]
−mc

}
= max

m

{
E max

{
𝜓(

(1)
Z
m
), 𝜔T

}
−mc

}
> 0 = 𝜔T .

When t = T − 2, similarly,

𝜔T−2 =max
m

{
E max

{
𝜓

(
Z(1)

m

)
, 𝜔T−1

}
−mc

}
>max

m

{
E max

{
𝜓

(
Z(1)

m

)
, 𝜔T

}
−mc

}
= 𝜔T−1,

where the inequality is from 𝜔T−1 > 𝜔T . Continuing in this manner, we see that

𝜔t > 𝜔t+1 for t = 0, 1, … ,T − 1.

The result of decreasing cutoff ̂
𝜉

∗
t is then implied by the fact that 𝜓

(
̂
𝜉

∗
t

)
= 𝜔t.

Second, note that the optimal sample size m∗
t is the maximizer of

𝜍(m,
̂
𝜉

∗
t ) = E max

{
𝜓

(
Z(1)

m

)
, 𝜔t

}
−mc = 𝜓( ̂𝜉∗t ) + ∫

1

̂
𝜉

∗
t

[
𝜓(x) − 𝜓

(
̂
𝜉

∗
t

)]
dF (1)

m (x) −mc,

© 2023 The Authors. The Journal of Industrial Economics published by The Editorial Board of The Journal of Industrial
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SELLER COMPOUND SEARCH FOR BIDDERS 1029

Combining with (A1), we then have the recurrence relation of (4). As 𝜓(x) is increasing
and ̂

𝜉

∗
t is independent of m, 𝜍

(
m,

̂
𝜉

∗
t

)
is then concave in m [Lemma 1][Szech 2011].

Furthermore,

𝜍

(
m + 1, ̂𝜉

∗
t

)
− 𝜍

(
m,

̂
𝜉

∗
t

)
=
∫

1

̂
𝜉

∗
t

F (1)
m (x) [1 − F(x)] d𝜓(x) − c

is decreasing in ̂
𝜉

∗
t . The optimization condition for mt is thus

𝜍

(
m,

̂
𝜉

∗
t

)
− 𝜍

(
m − 1, ̂𝜉

∗
t

)
≥ 0 > 𝜍

(
m + 1, ̂𝜉

∗
t

)
− 𝜍

(
m,

̂
𝜉

∗
t

)
.

Given that ̂
𝜉

∗
t >

̂
𝜉

∗
t+1, the concavity of 𝜍

(
m,

̂
𝜉

∗
t

)
in m then implies m̂∗

t ≤ m̂∗
t+1.

Proof of Lemma 2. In the stage auction of period t, the set of participating bidders is
Nt = Nt−1 ∪Mt. Among them, Mt strong bidders’ values are independent draws from
F , and those of the other Nt−1 weak bidders are independent draws from the truncated
distribution F(v ||𝜉t−1 ) ≡ Pr(V ≤ v ||V ≤ 𝜉t−1 ).14 Let G(k)

Nt
denote the distribution of the

k-th highest value of the Nt bidders. Based on the properties of order statistics, we then
have

G(1)
Nt
(x) = F (1)

Nt−1

(
v ||𝜉t−1

)
F (1)

Mt
(v),

G(2)
Nt
(x) = F (1)

Nt−1

(
v ||𝜉t−1

)
F (2)

Mt
(v) + nt−1F

(
x ||𝜉t−1

)
F (1)

Nt−1−1

(
v ||𝜉t−1

)
F (1)

Mt
(v),

where nt−1 = |Nt−1|, F
(
x ||𝜉t−1

)
= 1 − F

(
x ||𝜉t−1

)
is the survival function, and

F (1)
Nt−1−1

(
v ||𝜉t−1

)
≡ Fnt−1−1

(
v ||𝜉t−1

)
. The expected revenue of the stage auction in

period t is thus
Rt(Nt) = rt

[
G(2)

Nt
(𝜉t) − G(1)

Nt
(𝜉t)

]
+
∫

1

𝜉t

xdG(2)
Nt
(x)

It is helpful to do the following transformation,

(A2)

Rt(Nt) =
{
𝜉t

[
G(2)

Nt
(𝜉t) − G(1)

Nt
(𝜉t)

]
+
∫

1

𝜉t

xdG(2)
Nt
(x)

}
− (𝜉t − rt)

[
G(2)

Nt
(𝜉t) − G(1)

Nt
(𝜉t)

]
,

where the part in the curly braces is the expected revenue of a one-shot auction with a
reserve price 𝜉t. From Myerson [1981] and Kirkegaard [2012], it is equal to

F (1)
Nt−1

(
𝜉t
||𝜉t−1

)
∫

1

𝜉t

𝜓(x)dF (1)
Mt
(x)(A3)

+
∫

𝜉t−1

𝜉t

[
𝜓

(
v ||𝜉t−1

)
F (1)

Mt
(v) +

∫

1

v
𝜓(x)dF (1)

Mt
(x)

]
dF (1)

Nt−1

(
v ||𝜉t−1

)
,

where 𝜓

(
v ||𝜉t−1

)
is the virtual value of the Nt−1 weak bidders. Substituting

𝜓

(
v ||𝜉t−1

)
= 𝜓(v) + F(𝜉t−1)

f (v)
into (A3) and integrating by parts, we have the other

expression of (A3) as

14 Note that, if F is of IFR, so is the truncated distribution F(v ||𝜉t−1 ).

© 2023 The Authors. The Journal of Industrial Economics published by The Editorial Board of The Journal of Industrial
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1030 JOOSUNG LEE AND DANIEL Z. LI

(A4)
∫

𝜉t−1

𝜉t

𝜓(x)d
F (1)

Nt
(x)

F (1)
Nt−1

(
𝜉t−1

) +
∫

1

𝜉t−1

𝜓(x)dF (1)
Mt
(x) +

nt−1F(𝜉t−1)
F (1)

Nt−1
(𝜉t−1) ∫

𝜉t−1

𝜉t

F (1)
Nt−1(x)dx.

Second, from the cutoff condition (8) for bidders’ equilibrium strategies, we have

(A5)
∫

𝜉t−1

𝜉t

F (1)
Nt−1(x)dx = F (1)

Nt−1−1(𝜉t−1)(𝜉t−1 − rt−1) − F (1)
Nt−1(𝜉t)(𝜉t − rt).

Moreover, the property of order statistics implies that

(A6) G(2)
Nt
(𝜉t) − G(1)

Nt
(𝜉t) = mtF(𝜉t)

F (1)
Nt−1(𝜉t)

F (1)
Nt−1

(𝜉t−1)
+ nt−1F(x ||𝜉t−1 )

F (1)
Nt−1(𝜉t)

F (1)
Nt−1−1(𝜉t−1)

.

Substituting the results of (A3)-(A6) into (A2), we then have the ex-ante expected stage
revenue in period t as follows:

F (1)
Nt−1

(𝜉t−1)Rt(Nt)

=
∫

𝜉t−1

𝜉t

𝜓(x)dF (1)
Nt
(x) + F (1)

Nt−1
(𝜉t−1)

∫

1

𝜉t−1

𝜓(x)dF (1)
Mt
(x)

+ nt−1F(𝜉t−1)
[
F (1)

Nt−1−1(𝜉t−1)(𝜉t−1 − rt−1) − F (1)
Nt−1(𝜉t)(𝜉t − rt)

]

− (𝜉t − rt)
[
mtF(𝜉t)F

(1)
Nt−1(𝜉t) + nt−1(F(𝜉t−1) − F(𝜉t))F

(1)
Nt−1(𝜉t)

]

=
∫

𝜉t−1

𝜉t

𝜓(x)dF (1)
Nt
(x) + F (1)

Nt−1
(𝜉t−1)

∫

1

𝜉t−1

𝜓(x)dF (1)
Mt
(x)

+ nt−1F(𝜉t−1)F
(1)
Nt−1−1(𝜉t−1)(𝜉t−1 − rt−1) − ntF(𝜉t)F

(1)
Nt−1(𝜉t)(𝜉t − rt).

Summing all of them together, we then get the expected auction revenue of (10). ◾

Proof of Proposition 2. For t < T , from (10), the partial derivative of 𝜋(𝝃,M) with
respect to 𝜉t is

𝜕𝜋

𝜕𝜉t
= 𝜓(𝜉t)

[
f (1)Nt+1

(𝜉t) − f (1)Nt
(𝜉t)

]

+ f (1)Nt
(𝜉t)

[

∫

1

𝜉t

𝜓(x)dF (1)
Mt+1

(x) − cMt+1

]
− 𝜓(𝜉t)F

(1)
Nt
(𝜉t)f

(1)
Mt+1

(𝜉t)

= f (1)Nt
(𝜉t)

[

∫

1

𝜉t

(𝜓(x) − 𝜓(𝜉t))dF (1)
Mt+1

(x) − cMt+1

]
= f (1)Nt

(𝜉t) ⋅ 𝜂(𝜉t),

where f (1)Nt
is the density function of F (1)

Nt
. Note that

𝜕𝜂

𝜕𝜉t
= −𝜓 ′(𝜉t)

∫

1

𝜉t

dF (1)
Mt+1

(x) < 0,

© 2023 The Authors. The Journal of Industrial Economics published by The Editorial Board of The Journal of Industrial
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SELLER COMPOUND SEARCH FOR BIDDERS 1031

and then 𝜕𝜋

𝜕𝜉t
changes its sign from positive to negative at most once. 𝜋(𝝃,M) is

then quasi-concave in 𝜉t, and the first order necessary condition is also sufficient.
The optimal condition then gives (11) for t < T . When t = T , 𝜕𝜋

𝜕𝜉T
= −𝜓(𝜉T )f

(1)
NT
(𝜉T ). It

is obvious that 𝜋 is concave in 𝜉T given the IFR assumption, and thus 𝜓(𝜉∗T ) = 0.

Proof of Lemma 3. From (12), we have

c =
∫

1

𝜉
∗(m)

1
m
(1 − Fm(x)) d𝜓(x).

As F(x) < 1 for x ∈ [0, 1), (1 − Fm(x))∕m is strictly decreasing in m. Therefore, when
m increases, 𝜉∗(m) must decrease so as to keep the above equality to hold. ◾

Proof of Proposition 3. It is straightforward from Lemma 3.

Proof of Lemma 4. Given a collection ℳ of bidder samples, Proposition 3 suggests
the optimal search schedule is such that m∗

t ≤ m∗
t+1, for 1 ≤ t < T . From (12) and (11),

we have 𝜉

∗(m∗
t+1) = 𝜉

∗
t for 1 ≤ t < T , and define 𝜉

∗(mT+1) ≡ r∗ Substituting (11) into
(10), we then get

𝜋

∗(ℳ) =

[

∫

𝜉0

𝜉

∗
1

𝜓(x)dF (1)
N1
(x) − cm∗

1

]

+
T∑

t=2

[

∫

𝜉

∗
t−1

𝜉

∗
t

𝜓(x)dF (1)
Nt
(x) + F (1)

Nt−1

(
𝜉

∗
t−1

)
∫

1

𝜉

∗
t−1

𝜓

(
𝜉

∗
t−1

)
dF (1)

Mt
(x)

]

=

[

∫

1

𝜉

∗
1

𝜓(x)dF (1)
N1
(x) − cm∗

1

]

+
T∑

t=2

[

𝜓

(
𝜉

∗
t−1

)
F (1)

Nt−1

(
𝜉

∗
t−1

)
− 𝜓(𝜉∗t )F

(1)
Nt
(𝜉∗t ) − ∫

𝜉

∗
t−1

𝜉

∗
t

F (1)
Nt
(x)d𝜓(x)

]

=

[

∫

1

𝜉

∗
1

𝜓(x)dF (1)
N1
(x) − cm∗

1

]

+ 𝜓(𝜉∗1 )F
(1)
N1
(𝜉∗1 ) − 𝜓(𝜉∗1 ) +

T∑

t=2
∫

𝜉

∗
t−1

𝜉

∗
t

[
1 − F (1)

Nt
(x)

]
d𝜓(x)

=
∫

𝜉

∗(m1)

𝜉
∗(m2)

[
1 − F (1)

N1
(x)

]
d𝜓(x) +

T∑

t=2
∫

𝜉

∗(mt)

𝜉
∗(mt+1)

[
1 − F (1)

Nt
(x)

]
d𝜓(x).

For the last equality, we apply the definition that cm∗
1 = ∫

1
𝜉
∗(m∗

1
)

[
1 − F (1)

M1
(x)

]
d𝜓(x). ◾

Proof of Proposition 4. Consider a given search schedule M = (M1, … ,MT ). For
t = T , ̂JT (v) = max {𝜓(v), 0} = JT (v), and therefore, ̂

𝜉

∗
T = 𝜉

∗
T = r∗. For t = T − 1, for

long-lived bidders, from (2),

JT−1(v) = max
{
𝜓(v),−cMT

+ EJT

[
max

{
v,X (1)

MT

}]}
,

© 2023 The Authors. The Journal of Industrial Economics published by The Editorial Board of The Journal of Industrial
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1032 JOOSUNG LEE AND DANIEL Z. LI

and v ≥ r∗ as 𝜓(v) ≥ 0. For short-lived bidders, from (3),

̂JT−1(v) = max
{
𝜓(v),−cMT

+ E ̂JT

[
max

{
r∗,X (1)

MT

}]}
.

As ̂JT (v) = JT (v) and both are increasing function, it is then clear that JT−1(v) ≥ ̂JT−1(v)
with equality only when v = 0. Repeating this process, we then conclude that
Jt(v) ≥ ̂Jt(v), for 0 ≤ t < T − 1. The indifference condition for cutoff value then
implies ̂

𝜉

∗
t < 𝜉

∗
t , for 0 ≤ t < T − 1.

Proof of Proposition 5. Recall the condition (7) for long-lived bidders and the
recurrence equation (5) for short-lived bidders. Given a sequence of cutoff values
𝝃 such that 𝜉t ≥ 𝜉t+1, the above equations define the inverse real-value functions
of m∗

t+1(𝜉t) for long-lived bidders and m̂∗
t+1(𝜉t, 𝜉t+1) for short-lived bidders. That

is, for given 𝝃, m∗(𝜉t) and m̂∗(𝜉t, 𝜉t+1) are respectively the optimal sample sizes
for long-lived and short-lived bidders in period t + 1. Our objective is to show
m∗

t+1(𝜉t) < m̂∗
t+1(𝜉t, 𝜉t+1). We can define a new function

𝜌(m, 𝜉) =
∫

1

0
max {𝜓(𝜉), 𝜓(x)}dFm(x) −mc

which is strictly concave in m (Szech [2011]), and obeys single-crossing difference in
(m, 𝜉) given that, for m′

> m, 𝜌(m′′
, 𝜉) − 𝜌(m′

, 𝜉) is decreasing in 𝜉. The well-known
result of Milgrom & Shannon [1994](Theorem 4) gives that

m̃(𝜉) ≡ arg max
𝜉

𝜌(m, 𝜉)

is strictly decreasing in 𝜉, and hence m̃(𝜉t) < m̃(𝜉t+1). In addition, from (7), it follows

𝜓(𝜉t) =
∫

1

0
max

{
𝜓(𝜉t), 𝜓(x)

}
dFm∗(𝜉t)(x) −m∗(𝜉t)c

≤
∫

1

0
max

{
𝜓(𝜉t), 𝜓(x)

}
dFm̃(𝜉t)(x) − m̃(𝜉t)c.

Therefore, m∗(𝜉t) ≤ m̃(𝜉t) < m̃
(
𝜉t+1

)
= m̂∗(𝜉t, 𝜉t+1), where the last equality is by (5).

Proof of Lemma 5. The conditional expected social welfare of the stage auction in
period t is

Wt(Nt) =
∫

𝜉t−1

𝜉t

xdG(1)
Nt
(x) +

∫

1

𝜉t−1

xdF (1)
Mt
(x).

where G(1)
Nt
(x) = F (1)

Nt−1

(
x ||𝜉t−1

)
F (1)

Mt
(x). Summing up all the terms of F (1)

Nt−1

(
𝜉t−1

)
Wt(Nt),

we then get the result of (15). ◾

Proof of Proposition 6. For 1 ≤ t < T , from (15), the derivative of W (𝝃,M) with
respect to 𝜉t is

𝜕W
𝜕𝜉t

= f (1)Nt
(𝜉t)

[

∫

1

𝜉t

(x − 𝜉t)dF (1)
Mt+1

(x) − cMt+1

]
= f (1)Nt

(𝜉t)�̃�(𝜉t) = 0.

© 2023 The Authors. The Journal of Industrial Economics published by The Editorial Board of The Journal of Industrial
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SELLER COMPOUND SEARCH FOR BIDDERS 1033

Note that �̃�(𝜉t) is decreasing in 𝜉t. Then W is quasi-concave in 𝜉t, and the first order
condition is also sufficient. Second, when t = T , the partial derivative of W with
respect to 𝜉t is 𝜕W

𝜕𝜉T
= −𝜉T f (1)Nt

(𝜉T ) ≤ 0, and therefore 𝜉∗∗T = 0.

Proof of Lemma 6. From (16) and (17), we have 𝜉

∗∗(m∗∗
t+1) = 𝜉

∗∗
t for 1 ≤ t < T . For

t = T , we define 𝜉∗∗
(
mT+1

)
= 𝜉

∗∗
T = 0. We then have W ∗∗(ℳ) equal to

[

∫

𝜉0

𝜉

∗∗
1

xdF (1)
N1
(x) − cm∗∗

1

]

+
T∑

t=2

[

∫

𝜉

∗∗
t−1

𝜉

∗∗
t

xdF (1)
Nt
(x) + F (1)

Nt−1
(𝜉∗∗t−1) ∫

1

𝜉

∗∗
t−1

𝜉

∗∗
t−1dF (1)

M∗∗
t
(x)

]

=

[

∫

1

𝜉

∗∗
1

xdF (1)
N1
(x) − cm∗∗

1

]

+
T∑

t=2

[

𝜉

∗∗
t−1F (1)

Nt−1
(𝜉∗∗t−1) − 𝜉

∗∗
t F (1)

Nt
(𝜉∗∗t ) − ∫

𝜉

∗∗
t−1

𝜉

∗∗
t

F (1)
Nt
(x)dx

]

=

[

𝜉

∗∗
1 − 𝜉

∗∗
1 F (1)

N1
(𝜉∗∗1 ) + ∫

𝜉

∗∗(m∗∗
1
)

𝜉

∗∗
1

[
1 − F (1)

N1
(x)

]
dx

]

+
T∑

t=2

[

𝜉

∗∗
t−1F (1)

Nt−1

(
𝜉

∗∗
t−1

)
− 𝜉

∗∗
t F (1)

Nt
(𝜉∗∗t ) + ∫

𝜉

∗∗
t−1

𝜉

∗∗
t

[
1 − F (1)

Nt
(x)

]
dx −

(
𝜉

∗∗
t−1 − 𝜉

∗∗
t

)
]

=
T∑

t=1
∫

𝜉

∗∗(M∗∗
t )

𝜉
∗∗(M∗∗

t+1
)

[
1 − F (1)

Nt
(x)

]
dx,

where in the third equality, we substitute cm∗∗
1 = ∫ 1

𝜉
∗∗(m∗∗

1
)

[
1 − F (1)

M∗∗
1
(x)

]
dx. ◾

Proof of Proposition 7. It is due to the fact that 𝝃∗∗ is decreasing over time.

Proof of Corollary 1. For 1 ≤ t < T , 𝝃∗ and 𝝃∗∗ are given by (11) and (16) respectively.
If we define

�̃�(v) =
∫

1

v
(x − v)dF (1)

Mt
(x) − cMt

and 𝜂(v) =
∫

1

v
[𝜓(x) − 𝜓(v)] dF (1)

Mt
(x) − cMt

,

then both �̃�(v) and 𝜂(v) are decreasing in v. Note that

𝜂(v) − �̃�(v) =
∫

1

v

[
1 − F(v)

f (v)
− 1 − F(x)

f (x)

]
dF (1)

Mt
(x) > 0,

due to the IFR assumption. It then follows that 𝜉∗(mt) > 𝜉

∗∗(mt). Finally, for t = T ,
we already know r∗ = 𝜉

∗
T > 𝜉

∗∗
T = 0.

© 2023 The Authors. The Journal of Industrial Economics published by The Editorial Board of The Journal of Industrial
Economics and John Wiley & Sons Ltd.
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1034 JOOSUNG LEE AND DANIEL Z. LI

Proof of Proposition 8. From (12) and (17), it follows that, for a given 𝜉,

c =
∫

1

𝜉

1 − Fm∗ (x)
m∗ ⋅ 𝜓 ′(x)dx =

∫

1

𝜉

1 − Fm∗∗ (x)
m∗∗ dx.

As 𝜓 ′(x) > 1 from the IFR assumption and [1 − Fm(x)] ∕m is decreasing in m, we then
get the result.

APPENDIX B

BIDDERS’ EQUILIBRIUM CUTOFF STRATEGY

For a bidder i ∈ Nt with value v, let Ui,t(v) denote his maximum expected payoff at the
beginning of period t. It is clear that Ui,T+1(v) = 0. Let Ub

i,t(v) denote bidder i’s expected
payoff of submitting an effective bid in the stage auction of period t, where there are a
set Nt of participating bidders. It then follows that, in any period t ≤ T ,

(B1) Ub
i,t(v) = F (1)

Nt⧵{i}
(𝜉t)(v − rt) + I{v≥𝜉t} ∫

v

𝜉t

(v − x)dF (1)
Nt⧵{i}

(x),

where I is an indicator function, and F (1)
Nt⧵{i}

is the distribution of the highest value of
the set Nt ⧵ {i} of bidders. On the RHS of (B1), the first term is the expected payoff
when no other bidders in Nt bid, and the second term is that when some other bidders
in Nt submit bids in the stage auction.

The envelope theorem then gives

(B2) Ui,t(v) = max{Ub
i,t(v),Ui,t+1(v)},

which is nondecreasing, convex, and right-hand differentiable for all v ∈ (0, 1].15 The
properties of Ui,t(v) imply that a bidders’ optimal strategy is necessarily in the form
of cut-off strategies, and hence our assumption of cutoff strategies is without loss
of generality. Applying envelope theorem, Lemma 7 below shows that there exists a
one-to-one mapping between the sequence of reserve prices, r, and that of the cutoff
values, 𝝃.

Lemma 7. Given a compound search auction (r,M), in each period t ≤ T , there exists
a unique 𝜉t such that each bidder i ∈ Nt bids if and only if his value v ≥ 𝜉t. Further-
more,

(B3) Ui,t(v) =

{
Ui,t+1(v) if v < 𝜉t,

Ui,t+1(𝜉t) + ∫
v
𝜉t

F (1)
Nt⧵{i}

(x)dx if v ≥ 𝜉t.

Proof of Lemma 7. It is obvious from (B2) that Ui,t(0) = Ui,t+1(0) = 0. As the
product must be sold at a positive probability in any period t ≤ T , there exists

15 The derivation of the cut-off strategy is standard. It also appears in the literature of buy-price
auction (Reynolds & Wooders [2009]; Chen et al. [2017]) and sequential auctions with informa-
tion acquisition costs (Crémer et al. [2009]). Here we apply the envelope theorem.

© 2023 The Authors. The Journal of Industrial Economics published by The Editorial Board of The Journal of Industrial
Economics and John Wiley & Sons Ltd.
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SELLER COMPOUND SEARCH FOR BIDDERS 1035

a v∘ ∈ (0, 1] such that Ui,t(v∘) > Ui,t+1(v∘). To prove (B3), we will first show that
Ui,t(v) > Ui,t+1(v) for any v ≥ v∘. Suppose, for a contradiction, that Ui,t(v) = Ui,t+1(v)
for some v ≥ v∘. Let v = min{v ≥ v∘ | Ui,t(v) = Ui,t+1(v)}, which is well-defined as Ui,t

and Ut+1 are continuous. Then for any ṽ ∈ [v∘, v), it must be Ui,t(ṽ) = Ub
t (v) > Ui,t+1(ṽ)

and hence U
′
i,t(ṽ) = F (1)

Nt⧵{i}
(ṽ) from (B1), which is in turn strictly greater than

F (1)
Nt+1⧵{i}

(ṽ) ≥ U
′
i,t+1(ṽ). It then contradicts the continuity of Ui,t(v) and Ui,t+1(v)

and hence Ui,t(v) > Ui,t+1(v) for all v ≥ v∘. Then, 𝜉t ≡ max{v | Ui,t(v) = Ui,t+1(v)} is
uniquely defined and the standard payoff equivalence argument yields the bidder’s
payoff function as (B3). ◾

Note that, if v < 𝜉t, a bidder will not bid in period t and hence his maximum expected
payoff remains unchanged till the beginning of the next period, that is, for any v < 𝜉t,
Ui,t(v) = Ui,t+1(v), as shown in (B3). Similarly, an “incumbent” bidder i ∈ Nt−1 has a
higher expected payoff than a “newly solicited” bidder j ∈ Mt, only when i’s value is
greater than 𝜉t−1. As long as the incumbent bidder i remains in period t, his expected
payoff function should be equal to newly solicited bidders. That is, for any i ∈ Nt−1,
j ∈ Mt, and any v ≤ 𝜉t−1,

Ui,t(v) = Uj,t(v),

and hence the cutoff 𝜉t does not depend on when the bidder has been invited, as long
as the cutoff is decreasing (i.e., 𝜉t−1 ≥ 𝜉t).

With the preparation, we provide the proof of Lemma 1 as below.

Proof of Lemma 1. For t < T , a bidder i ∈ Nt with the cutoff value 𝜉t is indifferent
between bidding and waiting in period t, and therefore Ui,t(𝜉t) = Ub

i,t(𝜉t) = Ui,t+1(𝜉t).
As 𝜉t ≥ 𝜉t+1, he then prefers bidding to waiting in period t + 1, which implies Ut+1(𝜉t) =
Ub

t+1(𝜉t). It follows from (B1) that, for t < T , Ub
i,t(𝜉t) = F (1)

Nt⧵{i}
(𝜉t)(𝜉t − rt), and

Ub
i,t+1(𝜉t) = F (1)

Nt+1⧵{i}

(
𝜉t+1

)(
𝜉t − rt+1

)
+ I{𝜉t≥𝜉t+1} ∫

𝜉t

𝜉t+1

(𝜉t − x)dF (1)
Nt+1⧵{i}

(x)

= F (1)
Nt+1⧵{i}

(
𝜉t+1

)(
𝜉t+1 − rt+1

)
+
∫

𝜉t

𝜉t+1

F (1)
Nt+1⧵{i}

(x)dx.

We then prove the result (8) as Ub
i,t(𝜉t) = Ub

i,t+1(𝜉t). Moreover, Ui,T+1(v) = 0 implies that
𝜉T = rT . Finally we show the reserve prices

{
rt

}
1≤t≤T

are also decreasing in t. From (8),

F (1)
Nt⧵{i}

(𝜉t)(𝜉t − rt) = F (1)
Nt+1⧵{i}

(
𝜉t+1

)(
𝜉t+1 − rt+1

)
+
∫

𝜉t

𝜉t+1

F (1)
Nt+1⧵{i}

(x)dx

≤ F (1)
Nt+1⧵{i}

(
𝜉t

)(
𝜉t+1 − rt+1

)
+ F (1)

Nt+1⧵{i}
(𝜉t)

(
𝜉t − 𝜉t+1

)

= F (1)
Nt+1⧵{i}

(𝜉t)(𝜉t − rt+1).

The result then implies rt ≥ rt+1, as desired. ◾

© 2023 The Authors. The Journal of Industrial Economics published by The Editorial Board of The Journal of Industrial
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