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Transport in novel materials, specifically those scaled up to wafer sizes, will be dominated

by thermionic emission over charged, randomly oriented grain boundaries. However, the

challenges presented by random dopant fluctuation in lightly and moderately doped nano-

crystalline materials are yet to be addressed. Here, we present a self-consistent model to

describe the transport in polycrystalline materials with medium doping levels, where con-

ductivity is governed by thermionic emission over low and wide barriers. We show that

random doping fluctuations contribute to a higher material resistivity which is explained

through a non-linear potential drop over the depletion regions on both sides of the bound-

ary. This leads to a decrease in the exponential slope at the onset of conductivity, down to

values of ∼ exp(−2.4kT )−1, as well as to asymmetry in the current-voltage characteristics.

We demonstrate that the model can be scaled up to several grains and their boundaries, by

using commercially available circuit simulators, where non-linearity is realized through

look-up tables. We find that an increase in resistivity of up to 18% compared to the nom-

inal, uniformly doped material, can be explained simply by the introduction of random

dopant fluctuations.
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Self-consistent statistical model for current transport in polycrystalline semiconductors

I. INTRODUCTION

Transport in polycrystalline semiconductors is attracting wide interest as new materials sys-

tems, such as van der Waals semiconductors1 and transparent conductive oxides,2 show great

potential for the realization of two-dimensional electronic devices,3 and photovoltaics,2 as well

as in more conventional devices.4,5 Delivering on that promise can only be realized using wafer-

scale growth and processing, which inevitably results in polycrystalline films3,6 where transport

properties are significantly different from the monocrystalline bulk.

The accepted theory of transport and electrostatics in polycrystalline media is underpinned by

models introduced in the seminal works of Seto,7 and Martinez and Piqueras,8 following earlier

observations on the mobility in polycrystalline silicon9. In short, the formation of defect-rich grain

boundaries10 results in the immobilization of free charge carriers between the grains and a decrease

in the number of free carriers that can exceed 107 orders of magnitude compared to the nominal

doping levels for realistic dispersion of interface state energies.11 The build-up of a surface charge

density depletes the grains, either wholly or partially, causing a potential barrier for transport

between them. The potential barrier is a function of the doping levels, ND, the grain length in the

dimension normal to the boundary, L, and the density of trapping states, NT . For cuboid grains,

the potential barrier will increase with doping up to a limit where ND = NT/L, under which the

grains are fully depleted, and then decrease as quasi-neutral regions begin to develop within the

grains.7 For spherical grains, ND = 3NT/Rc where Rc is the critical radius.12

These considerations lead to an analytical electrostatic description of a typical grain, which is

generalized to a bulk, but are based on a uniform distribution of doping and grain sizes through-

out the material.13 However, the random nature of crystal formation14 as well as random dopant

fluctuations15 are inherent to the materials growth process, and contribute to a non-negligible ran-

dom distribution of the density of free carriers within grains in materials with medium level doping

and nanometre-size grains.

Random distribution of doping and grain sizes significantly impacts transport characteristics

in polycrystalline thin film applications such as thin-film transistors (TFTs), as evidenced by

the efforts to derive expressions for the threshold voltage16 and field-effect mobility17 in sili-

con TFTs. However to date, most approaches that address the challenges of incorporating an

ensemble of grains into an analytical expression either assume similar potential barriers at grain

boundaries18,19, which is inconsistent with random doping fluctuations, or treat polycrystalline
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Self-consistent statistical model for current transport in polycrystalline semiconductors

transport using percolation theory20, which neglects contribution from less conducting paths and

cross-talk between paths.

Arguably the most significant factor in developing an accurate understanding of transport

through grain boundaries is the division of potential drop between the two sides of the grain

boundary. When the two depletion regions on both sides of the barrier are placed under bias,

one contracts and its resistivity is reduced as if under forward bias conditions due to the injection

of charges of similar polarity. The other extends due to the injection of opposite polarity charges

and its resistivity increases. Despite the two sides of the boundary acting as a non-linear voltage

divider, previous models assumed an equal potential drop over both sides of the barrier, which has

been shown to be inconsistent with charge neutrality requirements21. However, the model sug-

gested in [21] requires knowledge of the current, rendering it incompatible with simulations where

multiple dissimilar boundaries are considered.

Here we develop a general self-consistent statistical model of the electrostatic structure and

transport properties through grain boundaries with dissimilar doping. The model supports local

variations in the density of free charges, consistent with a uniform random distribution of doping

atoms under the assumption of established equilibrium, e.g., that charge trapping has taken place.

The presented model is valid for a wide range of doping densities, however, our focus here is on

low- to medium-doping where charge redistribution through diffusion is hindered by the energy

barriers at the grain boundaries.

The model is then scaled up to one-dimensional chains and two-dimensional networks, us-

ing large area circuit simulation methodology that has been demonstrated before for random RC

networks22 and porous conductors23. The material is ‘reconstructed’ in LTspice, a commercial

circuit simulator by Analog Devices, with linear resistors emulating regions of the materials away

from the grain boundaries, whereas grain boundaries and the quasi-neutral grains in their immedi-

ate vicinity are modelled as non-linear resistors using look-up tables constructed from the proposed

model. We demonstrate that the transport properties in realistic polycrystalline materials can be

accurately represented by a Weibull distribution which scales with the number of grains and grain

boundaries in the system.
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Self-consistent statistical model for current transport in polycrystalline semiconductors

II. SELF-CONSISTENT MODEL OF POLYCRYSTALLINE TRANSPORT

A. Statistics of Charge Distribution.

When considering moderately doped nanocrystalline films, care must be given to the statistical

distribution of dopant atoms per grain associated with low to medium level doping. For doping

levels of 1015 or 1016 cm−3, the mean distance between atoms is in the order of 125 and 60 nm,

respectively. This implies that a spherical nano-crystallite with a radius of 100 nm and nominal

doping levels of 1015 or 1016 cm−3 should contain on average four and 42 doping atoms, respec-

tively. Thus, fluctuations of a few single atoms have large implications on the inter-crystallite

doping levels.

It is important to highlight here the fundamental difference between chemical doping concen-

tration, i.e., the density of doping atoms in lattice sites, and the resulting density of free charge

carriers in polycrystalline materials. For doping levels below 1019 cm−3, the density of free charge

carriers is many orders of magnitude below the chemical doping concentration, due to significant

levels of charge trapping in interface states at the grain boundaries, and changes in a non-linear

fashion as was shown e.g., in [7]. This is a well understood phenomenon which is not critical for

the model presented here. Therefore our focus will be on the effective carrier density, nD, which

is lower, possibly by a significant margin, from the chemical doping levels, ND.

For a monocrystalline as well as highly doped polycrystalline systems, and in the absence of

external excitation, localized variations such as these are insignificant, as the charge carriers rear-

range through local diffusion to reach uniform distribution. However, in low- to medium-doped

polycrystalline materials, where diffusion is hindered by the potential barriers at grain boundaries,

variations in distribution remain localized, and as will be shown here, affect the conductance char-

acteristics of the film.

To better understand the expected distribution of carrier densities, a cuboid bulk of material

with a side length of 10 µm is simulated where 107 point-carriers are uniformly distributed, rep-

resenting an effective density of 1016 cm−3. Crucially, this distribution represents not only the

initial arrangement of charge density, but is valid for any subsequent redistribution of charges

following excitation where non-zero current is passed through the system, and the resulting distri-

bution is non-uniform due to the obstructions for diffusion posed by the potential barriers at the

grain boundaries. This charge density was chosen as it is in agreement with the assumptions dis-
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Self-consistent statistical model for current transport in polycrystalline semiconductors

cussed in the next section, namely, that grains with radii ranging between one hundred and a few

hundreds of nanometers will not be fully depleted. The bulk cuboid is then sampled 8,000 times

by choosing random points within the bulk, which are at least 500 nm from its edge, and counting

the number of point carriers within a radius rg ranging between 100 and 500 nm. A histogram of

the results of the simulation with rg = 300 nm is shown in Fig. 1 (a).

(a) (b)

FIG. 1. (a) Distribution of the number of doping ‘atoms’ in a spherical grain with a radius of rg = 300 nm.

The population number is 8,000, and the solid red line shows a fit to normal distribution. (b) The standard

deviation as a function of grain size. The solid red line shows a fit to r−3/2
g .

The histogram displayed here fits a normal distribution with a mean value of 1130.6 and a

standard deviation of 33.8 atoms per sphere which translate to mean effective density of µs =

1.00×1016 and standard deviation of σs = 0.03×1016 cm−3 when normalized to the grain volume

vg = (4/3)π × r3
g. A Kolmogorov-Smirnov goodness of fit test confirmed the fit of the data to the

distribution with a P-value of 0.1983 which is significantly larger than the critical value of 0.0182

for 0.01 significance level.

The results for 100 ≥ rg ≥ 500 nm24–26 follow a similar pattern with a normalized mean effec-

tive density of 1.00×1016 cm−3 and a normalized standard deviation that decreases like a square

root of the grain volume or σs ∝ r−3/2
g . The standard deviation values for grain sizes ranging from

100 ≤ rg ≤ 500 nm are displayed in Fig. 1 (b), along with their fit. These results will be utilized

in the subsequent treatment of systems that consist of multiple grains.

B. Electrostatic of the Boundary of Dissimilar Grains.

The electrostatic model of a grain boundary and its depletion regions on both sides follows the

same considerations used in Refs. [7,8]. The underlying assumptions are that (1) the depletion
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Self-consistent statistical model for current transport in polycrystalline semiconductors

approximation is a good description of the grain, i.e., the grain is completely depleted within the

depletion width xi, where i = 1 or 2 are the two grains that form the boundary; (2) that the surface

density of trapped charges nT is constant, due to the small potential drop over individual grains

and under steady-state conditions when transient process have ended; and (3) that the grain is not

fully depleted, i.e., that the effective doping nD,i satisfies nD,i > nT/L where L is the grain length.

These assumptions translate to a space charge distribution across a two-grains 1-boundary

(2G:1B) system given by ρi = qnD,i, within the ith side depletion region, and zero outside of

it. Charge neutrality requires that the sum of depletion charges on both sides of the grain boundary

balance the trapped surface charge at the boundary:

x1nD,1 + x2nD,2 = nT (1)

Solving the Poisson equation for the two depletion regions yields expressions for potential

across the boundary region:

ψ1 =
qnD,1(x+ x1)

2

2ε
+K1 (2a)

ψ2 =
qnD,2(x− x2)

2

2ε
+K2 (2b)

Where K1 and K2 are reference levels that depend on the boundary conditions. If ψi is chosen

to describe the conduction band potential, it can be shown that its value at the left edge (i = 1)

of the depletion region is ψ1(−x1) = kT ln(NC/nD,1), where k is the Boltzmann constant, T the

absolute temperature, and NC is the effective density of states in the conduction band. Similarly,

the potential on the right edge of the depletion region is ψ2(x2) = kT ln(NC/nD,2)−VA, where

an arbitrary external bias VA has been added as a boundary condition, such that the application of

positive bias lowers the potential of the conduction band on the right hand side.

The requirement for potential continuity at the boundary (x = 0) provides the second equation

required to determine the location of the depletion edges.

qnD,1x2
1

2ε
=

qnD,2x2
2

2ε
+ kT ln

(
nD,1

nD,2

)
−VA (3)

Where the logarithm terms have been grouped on one side for simplicity.

Solving Eqs. 1 and 3 allows the determination of the depletion widths, x1 and x2. When VA = 0,

the solution yields the equilibrium depletion width, from which both built-in potentials, V (1)
bi and

V (2)
bi can be evaluated using:

V (1)
bi =

qnD,1x2
1

2ε
(4a)
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Self-consistent statistical model for current transport in polycrystalline semiconductors

Vbi Vbi Vbi

Vbi

(1) (2) (1)

(2)

-αVA

+(1-α)VAVAkT lnnD
(1)/nD

(2)( ) +kT ln nD
(1)/nD

(2)( )

+0.5 V5 mV-0.5 V

EC
EF

EV

EC

EV

(a) (b)

(c) (d) (e) (f)

VA VA VA nD
(1)

FIG. 2. (a)+(b) Band structure of a grain boundary and its immediate vicinity, for a dissimilar charge

density profile where nD,1 < nD,2. The bands are shown in equilibrium conditions (a) and under bias (b).

(c)-(e) Values of the potential drop fraction, α as a function of RHS charge density levels for varying levels

of LHS charge density (indicated on each panel) and applied external bias. The bias increases monotonously

from −0.5 to +0.5 V from the top to the bottom, as indicated by the arrow. The line for VA = 0 V is not

shown as α is not defined for zero bias. (f) Values of α as a function of RHS charge density for different

levels of applied bias, indicated on the panel, and LHS charge density monotonously varying from 0.8 to

1.2×1016 cm−3 in the direction indicated by the arrow.

V (2)
bi =

qnD,2x2
2

2ε
(4b)

The resulting band structure is shown in Fig. 2 (a) where nD,1 < nD,2, and so the value of the

conduction band in the RHS quasi-neutral region is lower by
∣∣kT ln(nD,1/nD,2)

∣∣, and the built-in

potential differ by the same value. The parameters used to construct this band structure or those

of silicon, with a band gap of 1.12 eV, and εr = 11.7.

When VA is set to a non-zero bias, the magnitude of the band bending on either side will change,

and Eqs. 4 yield the band bending values ∆V (1) and ∆V (2), which is shown in Fig. 2 (b). In this

band diagram, it is clear that the LHS depletion region is significantly shorter, causing a smaller

band bending as expected in forward bias. The RHS is further depleted, and the band bending is

larger.
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Self-consistent statistical model for current transport in polycrystalline semiconductors

C. Potential Distribution Across the Boundary.

Eqs. 1 and 3 fully describe the potential drop over the grain boundary without any approxima-

tions, and reveal asymmetry in the distribution of potential even for a symmetrically doped system.

Keeping with the polarity of VA described in Eq. 3, a positive bias will inject electrons into the

left-hand side grain, reducing its depletion width and effectively inducing forward bias conditions,

while the depletion region on the right-hand side expands as it enters a ‘reverse’ mode. The sys-

tem, thus, can be viewed as two resistive components in series analogous to a voltage divider,

where the majority of voltage drop occurs over the larger resistor, i.e., the side of the boundary

that is in reverse bias.

Nevertheless, since the total potential difference over the two components must amount to the

applied value, the potential distribution can be described via a fraction, α , so that the potential

drop on the LHS is V (1) = αVA and correspondingly, V (2) = (1−α)VA on the RHS, and α is

α =
V (1)

bi −∆V (1)(VA)

VA
(5)

And is schematically demonstrated in Fig. 2 (b).

Fig. 2 (c)-(e) show the values of α as a function of the RHS charge density for LHS densities

of 0.8 (c), 1.0 (d) and 1.2× 1016 cm−3 (e) and for external bias values ranging from VA = −0.5

to +0.5 V. The value α = 0.5 is indicated as a gray dashed line. In all the panels, the value of α

increases with the RHS charge density and decreases with LHS values. This is justified through

the balance of depletion widths, as the LHS depletion width is a proportional to the square root of

the ratio of doping, x1 ∝ (ND2/ND1)
1/2, as well as the total doping (See Supplementary Material

for further details). When this ratio increases, i.e., when the RHS is more conductive than the

LHS, the potential distribution will skew to the LHS to compensate for the imbalance, and vice

versa.

Fig. 2 (f) shows calculated α as a function of charge density on the RHS for different nD,1 levels

and values of externally applied bias, ranging between VA =−0.5 (black traces), 0.005 (red traces),

and 0.5 V (blue traces). Within each group, the effective doping of the LHS grain monotonously

ranges between nD,1 = 0.8 at the top and 1.2×1016 cm−3 at the bottom, as indicated by the curved

arrows. The decreasing values of α with increased VA is consistent with the qualitatively discussed

model of the junctions, where a larger applied bias renders a less resistive LHS component, which

incurs a smaller fraction of the potential drop.
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Self-consistent statistical model for current transport in polycrystalline semiconductors

D. Transport Through Grain Boundaries.

The divergence of α from the expected value of 0.5 has significant implications for the pro-

posed model, as the current is exponentially dependent on α . In developing the current equation

for a grain boundary, we consider the case of a wide depletion region, through which the dominant

conduction mechanism is thermionic emission27,28. For brevity, the main considerations in devel-

oping the model are presented before discussing the resulting current equation. The full derivation

can be found in the Supplementary Material. Following the reasoning presented by Schottky in the

derivation of the metal-semiconductor current equation, the current from each side of the interface

is considered separately. The current from the LHS is given by:

I1→2 = A
∞∫

FN,1+φB,1

qvxdn (6)

Where A is the grain cross sectional area, vx is the electron velocity in the positive x direction, and

dn = gc(E) fFD(E)dE is the density of electrons per energy within the conduction band, where

gC(E) is the density of states in the conduction band, fFD(E) is the Fermi-Dirac distribution

function and E is the energy.

The minimal electron velocity that allows it to traverse across the boundary is

1
2

m∗
nv2

x,min = q
(

V (1)
bi −αVA

)
(7)

Expressed in Eq. 6 through the lower integration limit, which is the height of the potential barrier

taken from the electron quasi-Fermi reference level, φB,1 = EC −FN,1 + q(V (1)
bi −αVA) ≡ φ◦

B,1 −

qαVA. The solution for Eq. 6 is

I1→2 = AA ∗T 2 exp
(
−

φ◦
B,1 −qαVA

kBT

)
(8)

Where A ∗ is the modified Richardson constant. Equivalently, the RHS current is

I2→1 = AA ∗T 2 exp

(
−

φ◦
B,2 −q(1−α)VA

kBT

)
(9)

And so, the net current is:

I = AA ∗T 2
[

exp
(
−

φ◦
B,1 −qαVA

kBT

)
−

exp

(
−

φ◦
B,2 −q(1−α)VA

kBT

)]
(10)
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Self-consistent statistical model for current transport in polycrystalline semiconductors

(a) (b)

(c) (d)

1/kT

FIG. 3. (a)-(b) Current-voltage plots in linear (a) and semi-logarithmic (b) scales for 2G:1B systems

with similar (black) and dissimilar (red) systems. (c)-(d) Resistivity-voltage plots in linear (c) and semi-

logarithmic (d) scales for the same system.

Fig. 3 shows current-voltage and resistance-voltage plots for a symmetric 2G:1B system with

nD,1 = nD,2 = 1016 cm−3 (black curve) and for an asymmetric system, where the effective charge

density levels, nD,1 = 0.9×1016 cm−3 and nD,2 = 1.1×1016 cm−3 (red curve), represent the ex-

treme percentiles of the normal distribution, while maintaining an overall equal densities between

the systems. For both curves, as the externally applied bias increases, the depletion region on the

LHS grain becomes progressively narrow and the potential barrier decreases, as was demonstrated

in Fig. 2 (b), whereas the RHS depletion extends and the current traversing from right to left be-

comes negligible, resulting in an exponentially increasing net current. However, it is important to

note here that the slope of the current increase is smaller than the slope observed in an ideal Schot-

tky junction. While for the latter, the potential drop is entirely on the semiconductor side of the

junction, resulting in a semi-logarithmic slope of (kT )−1 seen as a dashed gray line in Fig. 3 (b),

the split of the applied potential in the 2G:1B system means that some of the potential is ‘lost’ on

increasing the RHS depletion width, resulting in a lower semi-logarithmic slope of S ∼ (2.4kT )−1

for the symmetric system.

E. Asymmetry in Transport Properties of Dissimilar Grains.

While the transport properties of the symmetric and asymmetric systems are qualitatively simi-

lar, it is clear from Fig. 3 (a) that the current in the asymmetric system reaches a higher magnitude
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Self-consistent statistical model for current transport in polycrystalline semiconductors

at positive bias and lower (absolute) magnitude at negative bias. The asymmetry here is such that

the RHS has higher doping, and so, in positive bias, when the RHS is driven into reverse condi-

tions, smaller extension of the depletion width is required to balance the reduction on the LHS, and

so a larger fraction of the bias is left to reduce the potential barrier on the LHS which determines

the current. In negative bias conditions, the situation is reversed, where larger fraction of the bias

is required to extend the depletion on the LHS, and the reduction in the RHS potential barrier is

of a smaller magnitude. This is also manifested through the semi-logarithmic slopes of the system

that are |S| ∼ (2.2 kT )−1 and ∼ (2.5 kT )−1, for positive and negative bias, respectively.

These observations are further emphasized by the resistivity traces shown in Fig. 3 (c) and

(d), where the maximal resistivity for the asymmetric system is larger by 3.5%, despite having an

overall equivalent density of carriers. Interestingly, the resistivity plot for the asymmetric system

is skewed to the (lesser doped) LHS, resulting in a shift in the bias at which the maximal resistivity

occurs, with the maximal (interpolated) resistivity for the symmetric system at VA = 0 mV and for

the asymmetric system at VA ≈−7.5 mV. This behavior can be traced back to the split in potential

drop, as manifested in α , when we consider the grain boundary resistivity as ρ ∝ (dI/dVA)
−1. The

significant terms for positive and negative bias are shown in Eq.11.

ρ ∝

[
qα

kT
exp
(
−

φ◦
B,1 −qαVA

kT

)
−

q(1−α)

kT
exp

(
−

φ◦
B,2 −q(1−α)VA

kT

)]−1

(11)

Keeping in mind that αasym > αsym for all bias values in systems where N(1) < N(2), it is clear that

the resistivity is expected to be lower on positive bias that is governed by the first exponent term

and vice versa (See Supplementary Material for further discussion).

III. NUMERICAL ANALYSIS

A. The 3G:2B System.

For the proposed model to be of practical value, it must be able to describe realistic materials

where many grains are connected, in series and in parallel, to other grains via non-linear bound-

aries. However, extending the model to three grains and two boundaries (3G:2B) increases the

number of degrees of freedom in the system to 5, namely, the depletion width on each side of each

11
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Self-consistent statistical model for current transport in polycrystalline semiconductors

boundary, and the fraction of the overall applied bias falling on each grain. For increased accuracy,

the system must be described by 8 degrees of freedom, as the potential drop over the quasi-neutral

grains cannot be neglected, or for a general case of (mG:(m−1)B), a system is fully described by

4(m−1) degrees of freedom.

It is clear that such a set of equations can be formulated as a sparse matrix, if the model devel-

oped in the previous section can be codified, analytically or otherwise. Here, LTSpice by Analog

Devices, which is in ubiquitous use and is free to use is utilized. To demonstrate the implications

of random charge density across the system, a 3G:2B system is considered first. A detailed ex-

planation to our approach for simulating this system follows, and larger more complex systems

will largely follow the same methodology. The model system consists of 3 grains of equal size,

rg = 300 nm, for which the distribution of effective charge density has been discussed in Fig.

1. The level of complexity in evaluating Eqs. 1 and 3 in situ during the solution renders this

approach as ineffective. Instead, look-up table (LUTs) are constructed for every combination of

charge density levels which has a reasonable probability of being chosen. Since the grain charge

densities will be randomly chosen from a Gaussian distribution of doping levels we must consider

the very extreme cases of this distribution. In this case the extreme values were chosen to be

µs ± 1.5× 1015 cm−3, for which the cumulative distribution is 2.9× 10−7, i.e., less than one in

every one-million grains.

The LUTs are built with charge density resolution of 5×1013 cm−3, and with a constant surface

charge density at the grain boundary of nT = 4×1011 cm−2, which satisfies the conditions stated

in Sec. II B. Without loss of generality, dielectric and transport parameters matching those of

polycrystalline silicon are used for the simulation. The external bias values range from −0.5 to

+0.5 V, with a step resolution of 0.5 mV. It is important to note here that the voltage considered

in building the LUTs is the local potential drop over the specific boundary; the overall applied

voltage will be considered via the netlist in a later stage.

The LUTs are constructed iteratively, by solving Eqs. 1 and 3 with the relevant parameters.

The overall potential drops on each side of the boundary, φB,1 = φ◦
B,1 − qαVA and φB,2 = φ◦

B,2 +

q(1−α)VA are evaluated directly from the resulting depletion width, without the need to assess α

explicitly. The current is calculated from Eq. 10 and subsequently, the resistance of the boundary

is assessed from RB = VA/I. The LUTs store both the depletion width and the resistance as a

function of the applied bias.

When the library of LUTs is complete, a netlist can be generated. A general schematic of

12
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Self-consistent statistical model for current transport in polycrystalline semiconductors

the netlist represented as a circuit diagrams is shown in Fig. 4 (a). Self-consistent treatment

of the model dictates that the expansion and contraction of the depletion region will affect the

resistance of the quasi-neutral regions of the grains as well as the boundaries. Hence, each grain is

represented as two resistors, with the resistance of each determined by its adjacent boundary. For

example, if the depletion width, x1 of a boundary expands by δx= x1(VA)−x1(0), the resistance of

its adjacent grain components is reduced by ∆RG =−ρGδx/A where the resistivity is determined

by ρG = (qµnnD)
−1.

Fig. 4 (b) shows the resistivity as a function of applied bias for 103 randomly sampled 3G:2B

grains. The shape of each trace in Fig. 4 (b) is qualitatively similar to the single boundary trace

shown in Fig. 3 (c), however, the spread of magnitudes shows that the small variations microscopic

properties, i.e., the individual grain charge density introduced through the sharp (σs = 0.03µs)

Gaussian distribution, results in a large variance in the macroscopic observables.

Fig. 4 (c) shows a histogram of the resistivities just over zero (VA = 0.5 mV). The distribution

is clearly skewed to higher values, which is in agreement with our previous observation (Fig. 3

(c)) that deviation from uniform charge density levels result in increased resistivity. To account

for the arbitrary skewness observed, the distribution is fitted with a translated Weibull distribution,

the probability distribution function (PDF) of which is shown by the solid red line in Fig. 4 (b).

The translated Weibull PDF is given by:

f (x) =
β

θ

(
x−δ

θ

)β−1

exp

(
−
(

x−δ

θ

)β
)

(12)

For x ≥ δ . Here β is the shape parameter, θ is the scale and δ is the shift parameters. The

methodology used to estimate the three fitting parameters, as well as the extraction of parameters

is discussed in the Supplementary Material.

The results of the 3G:2B sample are compared here with a uniformly doped 3G:2B, where

nD = 1.00×1016 cm−3 for all three grains. The Weibull mean estimated from this analysis is µW =

10.5 kΩ cm, which is a 7% increase over the uniform benchmark system where ρ = 9.8 kΩ cm.

The standard deviation is σW = 2.4 kΩ cm, which amounts to σW = 0.23µW .

B. Statistics of Larger Systems.

Interestingly, when assessed at any other voltage point across the resistance plot, the Weibull

shape parameter, β remains the same with βW = 2.35 ± 0.02, suggesting that the distribution
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(b)

(c)

(a)
Grain 1 Grain 2 Grain 3

Stat. QN-LUT GB-LUT

FIG. 4. (a) Schematics of the circuit diagram used to simulate a 3G:2B system, where white shaded resistors

are static, gray shaded resistors are the quasi-neutral regions for which resistance is a function of the poten-

tial drop over the near grain boundary, and black are the grain boundary elements. (b) Resistivity-voltage

traces of 103 simulations of the 3G:2B system (solid blue). The red line indicates the mean resistance, and

the shaded yellow area indicates the part of the distribution within one standard deviation from the mean,

bordered by the dashed red lines. (c) The distribution of resistivities just over zero bias. The solid red line

indicates the probability density function of a fitted translated Weibull distribution, for which the parameters

are noted on the panel. The dashed blue line indicates the expected resistivity of a uniformly distributed

(1016 cm−3) system.

describes inherent properties of the system that stem from its charge density variations, rather than

effects that relate to the operating point displayed in the figure. Likewise, the normalized standard

deviation remains σW/µW = 0.226± 0.002 across the whole voltage span. This is demonstrated

visually by the solid red line which follows µW (VA), and the area highlighted in yellow which

follow µW (VA)±σW (VA).

Extending the one-dimensional chain system up to 10G:9B shows that the results largely follow

a similar pattern with a few minor differences. First, the positive skew of the distribution slowly

14
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vanishes, decreasing from sk(β = 2.32) = 0.44 for a 2G:1B system, seen in Fig. 5 (a), down to

sk(β = 3.33) = 0.07 for 10G:9B, seen in Fig. 5 (b). The transition to a symmetric distribution is

caused by the prevalence of chains with larger density fluctuations that have higher resistivity. This

can be demonstrated by the distance of the mode of the distribution from the nominal resistivity

of a uniform chain. For 2G:1B, the mode of the distribution is 7.44 kΩ cm which is 1.2% higher

than the uniform chain. Here, the long tail to the right of the mean is generated by those chains

that have large density variations. In contrast, for the 10G:9B chains, the mode is 14.3 kΩ cm

which is 7.8% higher than the uniform chain. In this case, it is no longer a minority of chains that

contribute higher resistivity values and the distribution is shifted to larger resistivities.

(a) (b)

(c) (d)

FIG. 5. (a)-(b) Probability densities for the resistivities of 2G:1B (a) and 10G:9B (b) systems. The solid

red line is a fitted translated Weibull distribution, for which the parameters are discussed in the main text.

The dashed blue line indicates the expected resistivity of a uniformly distributed (1016 cm−3) system. (c)

The mean resistivity of mG:(m-1)B chains. The solid red line is a fit to Eq. 13 discussed in the main text.

(d) The normalized standard deviation for the systems described in (c). The solid red line is the fit to m−1/2.

An increase in resistivity with growing chains is detailed in Fig. 5 (c). The increase follows

ρ(m) =
mLgρg +(m−1)Lbρb

mLg +(m−1)Lb
(13)

Shown by the red line and is attributed to the apparent increase in line-density of grain bound-

aries across the chain. The fitted parameters are Lg = 670 and Lb = 52 nm, and ρg = 0.9

and ρb = 2.2 × 105 Ω cm. Critically, Eq. 13 saturates at very large m numbers to ρ(∞) =

(Lgρg +Lbρb)/(Lg +Lb) which here has a value of 15.6 kΩ cm, an increase of 18% compared to
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Self-consistent statistical model for current transport in polycrystalline semiconductors

the uniformly doped material. Interestingly, a decrease in the normalized standard deviation oc-

curs in conjunction to the increase in resistivity, and σ(m)/µ(m) ∝ m−1/2, in agreement with the

central limit theorem, suggesting that a reliable representation of the material as a bulk, emerges,

where microscopic fluctuations balance out. This analysis demonstrates the significant advantage

of representing a polycrystalline semiconductor through a distribution function, which is size de-

pendent, as it fully describes the behavior of non-deterministic conductors and is able to hedge the

uncertainty associated with them, which is usually perceived as a hindrance to incorporating these

materials into functional devices.

V1

G(a)

(b)

Grain

FIG. 6. (a) Part of a schematic diagram of the circuit used to generate the potential map shown in (b). A

repeating unit (grain) is indicated on the figure. The excitation (V1) and ground (G) points are noted. (b)

A differential potential map of a 15×15 grains system. The colors represent potential drop over individual

(grain / boundary) components.

Finally, the model is extended to a two dimensional film, measuring 15 by 15 grains, as shown

schematically in Fig. 6 (a). Here, a single bias point, denoted by V1 at the bottom left corner of the

diagram, is sourcing the film with 15 V, and a single outlet, denoted by G at the top right corner,

acts as a ground. The non-uniform cascade of potential caused by local variations of charge density
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is seen in Fig. 6 (b), where each data point shows the potential drop over an individual circuit

elements. The microscopic irregularities seen in the figure mean that the potential drop is not

uniform, even in larger systems. This in turn means that charge transport through a polycrystalline

film propagate in unique percolation paths, enabling the realisation of devices based on physical

random values, such as encryption keys and position sensors.

IV. CONCLUSIONS

We developed a self-consistent model for electrostatics and transport across grain boundaries in

polycrystalline films, where no a-priori knowledge of observable transport properties is required.

The model yields a potential drop fraction, α which is instrumental for the accurate description

of transport and was not considered in earlier works. The behavior of α in systems with different

doping levels and under bias is explained through charge balance requirements within microscopic

grains. The model is then extended to bulk using look-up tables-based circuit simulation, from

which it is concluded that a statistical description of transport in non-deterministic materials is

clearly associated with density of boundaries and charge density variations.

The comprehensive description of transport through a distribution function could prove to be

an important tool in designing applications based on polycrystalline films, whether as means to

understand macroscopic behaviors, such as in transparent conducting electrodes or polycrystalline

TFTs, or for functionality based on microscopically random structures, such as in physical un-

clonable functions. The inclusion of capacitive behavior of the boundary will open new avenues

for research in high-frequency response of polycrystalline semiconductor films.

SUPPLEMENTARY MATERIAL

See the Supplementary Materials for a detailed derivation of the electrostatics of grain bound-

aries and the resulting transport equations, a discussion of the Translated Weibull Distribution

and methodology used for determining its parameters, and an example SPICE netlist of a 2G:1B

system.
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