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ABSTRACT

Transport in novel materials, specifically those scaled up to wafer sizes, will be dominated by thermionic emission over charged, randomly
oriented grain boundaries. However, the challenges presented by random dopant fluctuation in lightly and moderately doped nano-
crystalline materials are yet to be addressed. Here, we present a self-consistent model to describe the transport in polycrystalline materials
with medium doping levels, where conductivity is governed by thermionic emission over low and wide barriers. We show that random
doping fluctuations contribute to a higher material resistivity, which is explained through a non-linear potential drop over the depletion
regions on both sides of the boundary. This leads to a decrease in the exponential slope at the onset of conductivity, down to values of
� exp �2:4 kTð Þ�1, as well as to asymmetry in the current–voltage characteristics. We demonstrate that the model can be scaled up to
several grains and their boundaries, by using commercially available circuit simulators, where non-linearity is realized through look-up
tables. We find that an increase in resistivity of up to 18% compared to the nominal, uniformly doped material can be explained simply by
the introduction of random dopant fluctuations.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0231350

I. INTRODUCTION

Transport in polycrystalline semiconductors is attracting wide
interest as new materials’ systems, such as van der Waals semicon-
ductors1 and transparent conductive oxides,2 show great potential for
the realization of two-dimensional electronic devices3 and photovolta-
ics,2 as well as in more conventional devices.4,5 Delivering on that
promise can only be realized using wafer-scale growth and processing,
which inevitably results in polycrystalline films3,6 where transport
properties are significantly different from the monocrystalline bulk.

The accepted theory of transport and electrostatics in poly-
crystalline media is underpinned by models introduced in the
seminal works of Seto7 and Martinez and Piqueras,8 following
earlier observations on the mobility in polycrystalline silicon.9 In
short, the formation of defect-rich grain boundaries10 results in the
immobilization of free charge carriers between the grains and a
decrease in the number of free carriers that can exceed 107 orders
of magnitude compared to the nominal doping levels for realistic
dispersion of interface state energies.11 The build-up of a surface
charge density depletes the grains, either wholly or partially,
causing a potential barrier for transport between them.

The potential barrier is a function of the doping levels, ND, the
grain length in the dimension normal to the boundary, L, and the
density of trapping states, NT . For cuboid grains, the potential
barrier will increase with doping up to a limit where ND ¼ NT=L,
under which the grains are fully depleted, and then decrease as
quasi-neutral regions begin to develop within the grains.7 For
spherical grains, ND ¼ 3NT=Rc, where Rc is the critical radius.

12

These considerations lead to an analytical electrostatic descrip-
tion of a typical grain, which is generalized to a bulk, but are based
on a uniform distribution of doping and grain sizes throughout the
material.13 However, the random nature of crystal formation14 as
well as random dopant fluctuations15 are inherent to the materials’
growth process and contribute to a non-negligible random distribu-
tion of the density of free carriers within grains in materials with
medium level doping and nanometer-sized grains.

Random distribution of doping and grain sizes significantly
impacts transport characteristics in polycrystalline thin film appli-
cations such as thin-film transistors (TFTs), as evidenced by the
efforts to derive expressions for the threshold voltage16 and
field-effect mobility17 in silicon TFTs. However, to date, most
approaches that address the challenges of incorporating an
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ensemble of grains into an analytical expression either assume
similar potential barriers at grain boundaries,18,19 which is incon-
sistent with random doping fluctuations, or treat polycrystalline
transport using percolation theory,20 which neglects contribution
from less conducting paths and crosstalk between paths.

Arguably the most significant factor in developing an accurate
understanding of transport through grain boundaries is the division
of potential drop between the two sides of the grain boundary. When
the two depletion regions on both sides of the barrier are placed
under bias, one contracts and its resistivity is reduced as if under
forward bias conditions due to the injection of charges of similar
polarity. The other extends due to the injection of opposite polarity
charges and its resistivity increases. Despite the two sides of the
boundary acting as a non-linear voltage divider, previous models
assumed an equal potential drop over both sides of the barrier, which
has been shown to be inconsistent with charge neutrality require-
ments.21 However, the model suggested in Ref. 21 requires knowledge
of the current, rendering it incompatible with simulations where mul-
tiple dissimilar boundaries are considered.

Here, we develop a general self-consistent statistical model of
the electrostatic structure and transport properties through grain
boundaries with dissimilar doping. The model supports local varia-
tions in the density of free charges, consistent with a uniform
random distribution of doping atoms under the assumption of
established equilibrium, for example, that charge trapping has
taken place. The presented model is valid for a wide range of
doping densities; however, our focus here is on low- to medium-
doping where charge redistribution through diffusion is hindered
by the energy barriers at the grain boundaries.

The model is then scaled up to one-dimensional chains and
two-dimensional networks, using large area circuit simulation meth-
odology that has been demonstrated before for random RC net-
works22 and porous conductors.23 The material is “reconstructed” in
LTspice, a commercial circuit simulator by Analog Devices, with linear
resistors emulating regions of the materials away from the grain
boundaries, whereas grain boundaries and the quasi-neutral grains in
their immediate vicinity are modelled as non-linear resistors using
look-up tables constructed from the proposed model. We demon-
strate that the transport properties in realistic polycrystalline materials
can be accurately represented by a Weibull distribution, which scales
with the number of grains and grain boundaries in the system.

II. SELF-CONSISTENT MODEL OF POLYCRYSTALLINE
TRANSPORT

A. Statistics of charge distribution

When considering moderately doped nanocrystalline films,
care must be given to the statistical distribution of dopant atoms
per grain associated with low- to medium-level doping. For doping
levels of 1015 or 1016 cm�3, the mean distance between atoms is in
the order of 125 and 60 nm, respectively. This implies that a spheri-
cal nano-crystallite with a radius of 100 nm and nominal doping
levels of 1015 or 1016 cm�3 should contain on average 4 and 42
doping atoms, respectively. Thus, fluctuations of a few single atoms
have large implications on the inter-crystallite doping levels.

It is important to highlight here the fundamental difference
between chemical doping concentration, i.e., the density of doping

atoms in lattice sites, and the resulting density of free charge carri-
ers in polycrystalline materials. For doping levels below 1019 cm�3,
the density of free charge carriers is many orders of magnitude
below the chemical doping concentration, due to significant levels
of charge trapping in interface states at the grain boundaries, and
changes in a non-linear fashion as was shown, e.g., in Ref. 7. This
is a well-understood phenomenon that is not critical for the model
presented here. Therefore, our focus will be on the effective carrier
density, nD, which is lower, possibly by a significant margin, from
the chemical doping levels, ND.

For a monocrystalline as well as highly doped polycrystalline
systems and in the absence of external excitation, localized varia-
tions such as these are insignificant, as the charge carriers rearrange
through local diffusion to reach uniform distribution. However, in
low- to medium-doped polycrystalline materials, where diffusion is
hindered by the potential barriers at grain boundaries, variations in
distribution remain localized and, as will be shown here, affect the
conductance characteristics of the film.

To better understand the expected distribution of carrier den-
sities, a cuboid bulk of material with a side length of 10 μm is simu-
lated where 107 point-carriers are uniformly distributed,
representing an effective density of 1016 cm�3. Crucially, this distri-
bution represents not only the initial arrangement of charge
density but is valid for any subsequent redistribution of charges fol-
lowing excitation where non-zero current is passed through
the system, and the resulting distribution is non-uniform due to
the obstructions for diffusion posed by the potential barriers at the
grain boundaries. This charge density was chosen as it is in agree-
ment with the assumptions discussed in Sec. II B, namely, that
grains with radii ranging between one hundred and a few hundreds
of nanometers will not be fully depleted. The bulk cuboid is then
sampled 8000 times by choosing random points within the bulk,
which are at least 500 nm from its edge, and counting the number
of point carriers within a radius rg ranging between 100 and
500 nm. A histogram of the results of the simulation with rg ¼
300 nm is shown in Fig. 1(a).

FIG. 1. (a) Distribution of the number of doping “atoms” in a spherical grain
with a radius of rg ¼ 300 nm. The population number is 8000, and the solid red
line shows a fit to normal distribution. (b) The standard deviation as a function
of grain size. The solid red line shows a fit to r�3=2

g .
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The histogram displayed here fits a normal distribution with
a mean value of 1130.6 and a standard deviation of 33.8
atoms per sphere, which translate to mean effective density of
μs ¼ 1:00� 1016 and standard deviation of σs ¼ 0:03� 1016 cm�3

when normalized to the grain volume vg ¼ (4=3)π � r3g . A
Kolmogorov–Smirnov goodness of fit test confirmed the fit of the
data to the distribution with a P-value of 0.1983, which is significantly
larger than the critical value of 0.0182 for 0.01 significance level.

The results for 100 � rg � 500 nm24–26 follow a similar pattern
with a normalized mean effective density of 1:00� 1016 cm�3 and
a normalized standard deviation that decreases like a square root
of the grain volume or σs / r�3=2

g . The standard deviation values
for grain sizes ranging from 100 � rg � 500 nm are displayed in
Fig. 1(b), along with their fit. These results will be utilized in the
subsequent treatment of systems that consist of multiple grains.

B. Electrostatic of the boundary of dissimilar grains

The electrostatic model of a grain boundary and its depletion
regions on both sides follows the same considerations used in
Refs. 7 and 8. The underlying assumptions are that (1) the deple-
tion approximation is a good description of the grain, i.e., the grain
is completely depleted within the depletion width xi, where i ¼ 1
or 2 are the two grains that form the boundary; (2) that the surface
density of trapped charges nT is constant due to the small potential
drop over individual grains and under steady-state conditions when
transient process has ended; and (3) that the grain is not fully
depleted, i.e., that the effective doping nD,i satisfies nD,i . nT=L,
where L is the grain length.

These assumptions translate to a space charge distribution
across a two-grains 1-boundary (2G:1B) system given by ρi ¼ qnD,i,
within the ith side depletion region, and zero outside of it. Charge
neutrality requires that the sum of depletion charges on both sides
of the grain boundary balance the trapped surface charge at the
boundary:

x1nD,1 þ x2nD,2 ¼ nT : (1)

Solving the Poisson equation for the two depletion regions
yields expressions for potential across the boundary region,

ψ1 ¼
qnD,1(x þ x1)

2

2ε
þ K1, (2a)

ψ2 ¼
qnD,2(x � x2)

2

2ε
þ K2, (2b)

where K1 and K2 are reference levels that depend on the boundary
conditions. If ψ i is chosen to describe the conduction band poten-
tial, it can be shown that its value at the left edge (i ¼ 1) of
the depletion region is ψ1(� x1) ¼ kT ln NC=nD,1ð Þ, where k is the
Boltzmann constant, T is the absolute temperature, and NC is
the effective density of states in the conduction band. Similarly,
the potential on the right edge of the depletion region is
ψ2(x2) ¼ kT ln NC=nD,2ð Þ � VA, where an arbitrary external bias
VA has been added as a boundary condition, such that the

application of positive bias lowers the potential of the conduction
band on the right hand side.

The requirement for potential continuity at the boundary
(x ¼ 0) provides the second equation required to determine the
location of the depletion edges,

qnD,1x21
2ε

¼ qnD,2x22
2ε

þ kT ln
nD,1
nD,2

� �
� VA, (3)

where the logarithm terms have been grouped on one side for
simplicity.

Solving Eqs. (1) and (3) allows the determination of the deple-
tion widths, x1 and x2. When VA ¼ 0, the solution yields the equi-
librium depletion width, from which both built-in potentials, V (1)

bi
and V (2)

bi can be evaluated using

V (1)
bi ¼ qnD,1x21

2ε
, (4a)

V (2)
bi ¼ qnD,2x22

2ε
: (4b)

The resulting band structure is shown in Fig. 2(a) where
nD,1 , nD,2, and so the value of the conduction band in the RHS
quasi-neutral region is lower by kT ln nD,1=nD,2ð Þj j, and the built-in
potential differs by the same value. The parameters used to con-
struct this band structure are those of silicon, with a band gap of
1.12 eV and εr ¼ 11:7.

When VA is set to a non-zero bias, the magnitude of the band
bending on either side will change, and Eq. (4) yields the band
bending values ΔV (1) and ΔV (2), which is shown in Fig. 2(b). In
this band diagram, it is clear that the LHS depletion region is sig-
nificantly shorter, causing a smaller band bending as expected in
forward bias. The RHS is further depleted, and the band bending is
larger.

C. Potential distribution across the boundary

Equations (1) and (3) fully describe the potential drop over
the grain boundary without any approximations and reveal asym-
metry in the distribution of potential even for a symmetrically
doped system. Keeping with the polarity of VA described in Eq. (3),
a positive bias will inject electrons into the left-hand side grain,
reducing its depletion width and effectively inducing forward bias
conditions, while the depletion region on the right-hand side
expands as it enters a “reverse” mode. The system, thus, can be
viewed as two resistive components in series analogous to a voltage
divider, where the majority of the voltage drop occurs over the
larger resistor, i.e., the side of the boundary that is in reverse bias.

Nevertheless, since the total potential difference over the two
components must amount to the applied value, the potential distri-
bution can be described via a fraction, α, so that the potential drop
on the LHS is V (1) ¼ αVA and, correspondingly, V (2) ¼ (1� α)VA
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on the RHS, and

α ¼ V (1)
bi � ΔV (1)(VA)

VA
: (5)

And it is schematically demonstrated in Fig. 2(b).
Figures 2(c)–2(e) show the values of α as a function of the

RHS charge density for LHS densities of 0:8 (c), 1:0 (d), and 1:2�
1016 cm�3 (e) and for external bias values ranging from VA ¼ �0:5
to þ0:5V. The value α ¼ 0:5 is indicated as a gray dashed line. In
all the panels, the value of α increases with the RHS charge density
and decreases with LHS values. This is justified through the
balance of depletion widths, as the LHS depletion width is propor-
tional to the square root of the ratio of doping, x1 / ND2=ND1ð Þ1=2,
as well as the total doping (see supplementary material for further
details). When this ratio increases, i.e., when the RHS is more con-
ductive than the LHS, the potential distribution will skew to the
LHS to compensate for the imbalance and vice versa.

Figure 2(f ) shows calculated α as a function of charge density
on the RHS for different nD,1 levels and values of externally applied
bias, ranging between VA ¼ �0:5 (black traces), 0:005 (red traces),
and 0:5V (blue traces). Within each group, the effective doping of
the LHS grain monotonously ranges between nD,1 ¼ 0:8 at the top
and 1:2� 1016 cm�3 at the bottom, as indicated by the curved
arrows. The decreasing values of α with increased VA is consistent
with the qualitatively discussed model of the junctions, where a

larger applied bias renders a less resistive LHS component, which
incurs a smaller fraction of the potential drop.

D. Transport through grain boundaries

The divergence of α from the expected value of 0:5 has signifi-
cant implications for the proposed model, as the current is expo-
nentially dependent on α. In developing the current equation for a
grain boundary, we consider the case of a wide depletion region,
through which the dominant conduction mechanism is thermionic
emission.27,28 For brevity, the main considerations in developing
the model are presented before discussing the resulting current
equation. The full derivation can be found in the supplementary
material. Following the reasoning presented by Schottky in the der-
ivation of the metal–semiconductor current equation, the current
from each side of the interface is considered separately. The current
from the LHS is given by

I1!2 ¼ A
ð1
FN ,1þfB,1

qvxdn, (6)

where A is the grain cross-sectional area, vx is the electron velocity
in the positive x direction, and dn ¼ gc(E)fFD(E)dE is the density of
electrons per energy within the conduction band, where gC(E) is
the density of states in the conduction band, fFD(E) is the Fermi–
Dirac distribution function, and E is the energy.

FIG. 2. (a) and (b) Band structure of a grain boundary and its immediate vicinity, for a dissimilar charge density profile where nD,1 , nD,2. The bands are shown in equilib-
rium conditions (a) and under bias (b). (c)–(e) Values of the potential drop fraction, α, as a function of RHS charge density levels for varying levels of LHS charge density
(indicated on each panel) and applied external bias. The bias increases monotonously from �0:5 to þ0:5 V from the top to the bottom, as indicated by the arrow. The
line for VA ¼ 0 V is not shown as α is not defined for zero bias. (f ) Values of α as a function of RHS charge density for different levels of applied bias, indicated on the
panel, and LHS charge density monotonously varying from 0:8 to 1:2� 1016 cm�3 in the direction indicated by the arrow.
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The minimal electron velocity that allows it to traverse across
the boundary is

1
2
m*

nv
2
x,min ¼ q V (1)

bi � αVA

� �
: (7)

Expressed in Eq. (6) through the lower integration limit, which is the
height of the potential barrier taken from the electron quasi-Fermi
reference level, fB,1 ¼ EC � FN ,1 þ q(V (1)

bi � αVA) ; f�
B,1 � qαVA.

The solution for Eq. (6) is

I1!2 ¼ AA*T2 exp �f�
B,1 � qαVA

kBT

� �
, (8)

where A* is the modified Richardson constant. Equivalently, the
RHS current is

I2!1 ¼ AA*T2 exp �f�
B,2 � q(1� α)VA

kBT

� �
: (9)

And so, the net current is

I ¼ AA*T2 exp �f�
B,1 � qαVA

kBT

� ��

� exp �f�
B,2 � q(1� α)VA

kBT

� ��
: (10)

Figure 3 shows current–voltage and resistance–voltage plots
for a symmetric 2G:1B system with nD,1 ¼ nD,2 ¼ 1016 cm�3 (black
curve) and for an asymmetric system, where the effective charge
density levels, nD,1 ¼ 0:9� 1016 cm�3 and nD,2 ¼ 1:1� 1016 cm�3

(red curve), represent the extreme percentiles of the normal distri-
bution, while maintaining an overall equal densities between the
systems. For both curves, as the externally applied bias increases,
the depletion region on the LHS grain becomes progressively
narrow and the potential barrier decreases, as was demonstrated in
Fig. 2(b), whereas the RHS depletion extends and the current tra-
versing from right to left becomes negligible, resulting in an expo-
nentially increasing net current. However, it is important to note
here that the slope of the current increase is smaller than the slope
observed in an ideal Schottky junction. While for the latter, the
potential drop is entirely on the semiconductor side of the junction,
resulting in a semi-logarithmic slope of (kT)�1 seen as a dashed
gray line in Fig. 3(b), the split of the applied potential in the 2G:1B
system means that some of the potential is “lost” on increasing the
RHS depletion width, resulting in a lower semi-logarithmic slope of
S � (2:4kT)�1 for the symmetric system.

E. Asymmetry in transport properties of dissimilar
grains

While the transport properties of the symmetric and asym-
metric systems are qualitatively similar, it is clear from Fig. 3(a)
that the current in the asymmetric system reaches a higher magni-
tude at positive bias and lower (absolute) magnitude at negative
bias. The asymmetry here is such that the RHS has higher doping,
and so, in positive bias, when the RHS is driven into reverse condi-
tions, smaller extension of the depletion width is required to
balance the reduction on the LHS, and so a larger fraction of the
bias is left to reduce the potential barrier on the LHS, which deter-
mines the current. In negative bias conditions, the situation is
reversed, where larger fraction of the bias is required to extend the
depletion on the LHS, and the reduction in the RHS potential
barrier is of a smaller magnitude. This is also manifested through
the semi-logarithmic slopes of the system that are jSj � (2:2 kT)�1

and �(2:5 kT)�1 for positive and negative bias, respectively.
These observations are further emphasized by the resistivity

traces shown in Figs. 3(c) and 3(d), where the maximal resistivity
for the asymmetric system is larger by 3.5%, despite having an
overall equivalent density of carriers. Interestingly, the resistivity
plot for the asymmetric system is skewed to the (lesser doped)
LHS, resulting in a shift in the bias at which the maximal resistivity
occurs, with the maximal (interpolated) resistivity for the symmet-
ric system at VA ¼ 0mV and for the asymmetric system at
VA � �7:5mV. This behavior can be traced back to the split in
potential drop, as manifested in α, when we consider the grain
boundary resistivity as ρ/ dI=dVAð Þ�1. The significant terms for
positive and negative bias are shown in Eq. (11),

ρ/ qα
kT

exp �f�
B,1 � qαVA

kT

� ��

� q(1� α)
kT

exp �f�
B,2 � q(1� α)VA

kT

� ���1

:

(11)

Keeping in mind that αasym . αsym for all bias values in systems
where N(1) , N(2), it is clear that the resistivity is expected to be

FIG. 3. (a) and (b) Current–voltage plots in linear (a) and semi-logarithmic (b)
scales for 2G:1B systems with similar (black) and dissimilar (red) systems. (c)
and (d) Resistivity–voltage plots in linear (c) and semi-logarithmic (d) scales for
the same system.
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lower on positive bias that is governed by the first exponent term
and vice versa (see supplementary material for further discussion).

III. NUMERICAL ANALYSIS

A. The 3G:2B system

For the proposed model to be of practical value, it must be
able to describe realistic materials where many grains are con-
nected, in series and in parallel, to other grains via non-linear
boundaries. However, extending the model to three grains and two
boundaries (3G:2B) increases the number of degrees of freedom in
the system to 5, namely, the depletion width on each side of each
boundary, and the fraction of the overall applied bias falling on
each grain. For increased accuracy, the system must be described by
8 degrees of freedom, as the potential drop over the quasi-neutral
grains cannot be neglected, or for a general case of (mG:(m� 1)B),
a system is fully described by 4(m� 1) degrees of freedom.

It is clear that such a set of equations can be formulated as a
sparse matrix, if the model developed in the previous section can
be codified, analytically or otherwise. Here, LTSpice by Analog
Devices, which is in ubiquitous use and is free to use, is utilized. To
demonstrate the implications of random charge density across the
system, a 3G:2B system is considered first. A detailed explanation
to our approach for simulating this system follows, and larger more
complex systems will largely follow the same methodology. The
model system consists of three grains of equal size, rg ¼ 300 nm,
for which the distribution of effective charge density has been dis-
cussed in Fig. 1. The level of complexity in evaluating Eqs. (1) and
(3) in situ during the solution renders this approach as ineffective.
Instead, look-up tables (LUTs) are constructed for every combina-
tion of charge density levels, which have a reasonable probability of
being chosen. Since the grain charge densities will be randomly
chosen from a Gaussian distribution of doping levels, we must con-
sider the very extreme cases of this distribution. In this case, the
extreme values were chosen to be μs + 1:5� 1015 cm�3, for which
the cumulative distribution is 2:9� 10�7, i.e., less than one in
every 1� 106 grains.

The LUTs are built with a charge density resolution of 5�
1013 cm�3 and with a constant surface charge density at the grain
boundary of nT ¼ 4� 1011 cm�2, which satisfies the conditions
stated in Sec. II B. Without loss of generality, dielectric and trans-
port parameters matching those of polycrystalline silicon are used
for the simulation. The external bias values range from �0:5 to
þ0:5V, with a step resolution of 0:5mV. It is important to note
here that the voltage considered in building the LUTs is the local
potential drop over the specific boundary; the overall applied
voltage will be considered via the netlist in a later stage.

The LUTs are constructed iteratively, by solving Eqs. (1) and
(3) with the relevant parameters. The overall potential drops on
each side of the boundary, fB,1 ¼ f�

B,1 � qαVA and
fB,2 ¼ f�

B,2 þ q(1� α)VA, are evaluated directly from the resulting
depletion width, without the need to assess α explicitly. The
current is calculated from Eq. (10), and subsequently, the resistance
of the boundary is assessed from RB ¼ VA=I. The LUTs store both
the depletion width and the resistance as a function of the applied
bias.

When the library of LUTs is complete, a netlist can be gener-
ated. A general schematic of the netlist represented as a circuit dia-
grams is shown in Fig. 4(a). Self-consistent treatment of the model
dictates that the expansion and contraction of the depletion region
will affect the resistance of the quasi-neutral regions of the grains
as well as the boundaries. Hence, each grain is represented as two
resistors, with the resistance of each determined by its adjacent
boundary. For example, if the depletion width, x1 of a boundary
expands by δx ¼ x1(VA)� x1(0), the resistance of its adjacent grain
components is reduced by ΔRG ¼ �ρGδx=A, where the resistivity
is determined by ρG ¼ qμnnDð Þ�1.

FIG. 4. (a) Schematics of the circuit diagram used to simulate a 3G:2B system,
where white shaded resistors are static, gray shaded resistors are the quasi-
neutral regions for which resistance is a function of the potential drop over the
near grain boundary, and black are the grain boundary elements. (b) Resistivity–
voltage traces of 103 simulations of the 3G:2B system (solid blue). The red line
indicates the mean resistance, and the shaded yellow area indicates the part of
the distribution within one standard deviation from the mean, bordered by the
dashed red lines. (c) The distribution of resistivities just over zero bias. The
solid red line indicates the probability density function of a fitted translated
Weibull distribution, for which the parameters are noted on the panel. The
dashed blue line indicates the expected resistivity of a uniformly distributed
(1016 cm�3) system.
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Figure 4(b) shows the resistivity as a function of applied bias
for 103 randomly sampled 3G:2B grains. The shape of each trace in
Fig. 4(b) is qualitatively similar to the single boundary trace shown
in Fig. 3(c); however, the spread of magnitudes shows that the small
variations in microscopic properties, i.e., the individual grain charge
density introduced through the sharp (σs ¼ 0:03 μs) Gaussian distri-
bution, result in a large variance in the macroscopic observables.

Figure 4(c) shows a histogram of the resistivities just over zero
(VA ¼ 0:5mV). The distribution is clearly skewed to higher values,
which is in agreement with our previous observation [Fig. 3(c)]
that deviation from uniform charge density levels result in
increased resistivity. To account for the arbitrary skewness
observed, the distribution is fitted with a translated Weibull distri-
bution, the probability distribution function (PDF) of which is
shown by the solid red line in Fig. 4(b). The translated Weibull
PDF is given by

f (x) ¼ β

θ

x � δ

θ

� �β�1

exp � x � δ

θ

� �β
 !

, (12)

for x � δ. Here, β is the shape parameter, θ is the scale, and δ is
the shift parameters. The methodology used to estimate the three
fitting parameters, as well as the extraction of parameters is dis-
cussed in the supplementary material.

The results of the 3G:2B sample are compared here with a
uniformly doped 3G:2B, where nD ¼ 1:00� 1016 cm�3 for all three
grains. The Weibull mean estimated from this analysis is
μW ¼ 10:5 kΩ cm, which is a 7% increase over the uniform bench-
mark system where ρ ¼ 9:8 kΩ cm. The standard deviation is
σW ¼ 2:4 kΩ cm, which amounts to σW ¼ 0:23 μW.

B. Statistics of larger systems

Interestingly, when assessed at any other voltage point across
the resistance plot, the Weibull shape parameter, β, remains the
same with βW ¼ 2:35+ 0:02, suggesting that the distribution
describes inherent properties of the system that stem from its
charge density variations, rather than effects that relate to the oper-
ating point displayed in the figure. Likewise, the normalized stan-
dard deviation remains σW=μW ¼ 0:226+ 0:002 across the whole
voltage span. This is demonstrated visually by the solid red line
that follows μW(VA) and the area highlighted in yellow that follows
μW(VA)+ σW(VA).

Extending the one-dimensional chain system up to 10G:9B
shows that the results largely follow a similar pattern with a few
minor differences. First, the positive skew of the distribution slowly
vanishes, decreasing from sk(β ¼ 2:32) ¼ 0:44 for a 2G:1B system,
as seen in Fig. 5(a), down to sk(β ¼ 3:33) ¼ 0:07 for 10G:9B, as
seen in Fig. 5(b). The transition to a symmetric distribution is
caused by the prevalence of chains with larger density fluctuations
that have higher resistivity. This can be demonstrated by the dis-
tance of the mode of the distribution from the nominal resistivity
of a uniform chain. For 2G:1B, the mode of the distribution is
7:44 kΩ cm, which is 1.2% higher than the uniform chain. Here,
the long tail to the right of the mean is generated by those chains
that have large density variations. In contrast, for the 10G:9B
chains, the mode is 14:3 kΩ cm, which is 7.8% higher than the

uniform chain. In this case, it is no longer a minority of chains that
contribute higher resistivity values and the distribution is shifted to
larger resistivities.

An increase in resistivity with growing chains is detailed in
Fig. 5(c). The increase follows

ρ(m) ¼ mLgρg þ (m� 1)Lbρb
mLg þ (m� 1)Lb

: (13)

It is shown by the red line and is attributed to the apparent increase
in line-density of grain boundaries across the chain. The fitted
parameters are Lg ¼ 670 and Lb ¼ 52 nm and ρg ¼ 0:9 and
ρb ¼ 2:2� 105 Ω cm. Critically, Eq. (13) saturates at very large m

numbers to ρ(1) ¼ Lgρg þ Lbρb
� �

= Lg þ Lb
� 	

, which here has a

value of 15:6 kΩ cm, an increase of 18% compared to the uniformly
doped material. Interestingly, a decrease in the normalized standard
deviation occurs in conjunction to the increase in resistivity and
σ(m)=μ(m)/m�1=2, in agreement with the central limit theorem,
suggesting that a reliable representation of the material as a bulk,
emerges, where microscopic fluctuations balance out. This analysis
demonstrates the significant advantage of representing a polycrys-
talline semiconductor through a distribution function, which is size
dependent, as it fully describes the behavior of non-deterministic
conductors and is able to hedge the uncertainty associated with
them, which is usually perceived as a hindrance to incorporating
these materials into functional devices.

FIG. 5. (a) and (b) Probability densities for the resistivities of the 2G:1B (a) and
10G:9B (b) systems. The solid red line is a fitted translated Weibull distribution,
for which the parameters are discussed in the main text. The dashed blue line
indicates the expected resistivity of a uniformly distributed (1016 cm�3) system.
(c) The mean resistivity of mG:(m-1)B chains. The solid red line is a fit to
Eq. (13) discussed in the main text. (d) The normalized standard deviation for
the systems described in (c). The solid red line is the fit to m�1=2.
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Finally, the model is extended to a two-dimensional film, mea-
suring 15 � 15 grains, as shown schematically in Fig. 6(a). Here, a
single bias point, denoted by V1 at the bottom left corner of the
diagram, is sourcing the film with 15V, and a single outlet,
denoted by G at the top right corner, acts as a ground. The non-
uniform cascade of potential caused by local variations of charge
density is seen in Fig. 6(b), where each data point shows the poten-
tial drop over an individual circuit element. The microscopic irreg-
ularities seen in the figure mean that the potential drop is not
uniform, even in larger systems. This, in turn, means that charge
transport through a polycrystalline film propagates in unique per-
colation paths, enabling the realization of devices based on physical
random values, such as encryption keys and position sensors.

IV. CONCLUSIONS

We developed a self-consistent model for electrostatics and
transport across grain boundaries in polycrystalline films, where no

a priori knowledge of observable transport properties is required.
The model yields a potential drop fraction, α, which is instrumental
for the accurate description of transport and was not considered in
earlier works. The behavior of α in systems with different doping
levels and under bias is explained through charge balance require-
ments within microscopic grains. The model is then extended to
bulk using look-up tables-based circuit simulation, from which it is
concluded that a statistical description of transport in non-
deterministic materials is clearly associated with density of bound-
aries and charge density variations.

The comprehensive description of transport through a distri-
bution function could prove to be an important tool in designing
applications based on polycrystalline films, whether as means to
understand macroscopic behaviors, such as in transparent conduct-
ing electrodes or polycrystalline TFTs, or for functionality based on
microscopically random structures, such as in physical unclonable
functions. The inclusion of capacitive behavior of the boundary will
open new avenues for research in high-frequency response of poly-
crystalline semiconductor films.

SUPPLEMENTARY MATERIAL

See the supplementary material for a detailed derivation of the
electrostatics of grain boundaries and the resulting transport equa-
tions, a discussion of the translated Weibull distribution and meth-
odology used for determining its parameters, and an example
SPICE netlist of a 2G:1B system.
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