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Abstract— The evolution of natural life is guided by a perpet-
ually adaptive set of rules, encompassing natural laws, human
policies, and game mechanics. Automated game design, through
the creation of simulated environments populated by Al agents,
embodies these rules, aligning with the objectives of artificial
life research that seeks to replicate the dynamics of biological
life through computational models. This paper presents a com-
prehensive framework, the Rule Generation Networks (RGN),
devised for automated rule design, evaluation, and evolution
in line with controllable expectations. We refine and formalize
three cardinal elements - rules, strategies, and evaluation - to
elucidate the intricate relationships inherent in rule generation
tasks. The RGN integrates generative neural networks for rule
design and a suite of reinforcement learning models for rule
evaluation. To exemplify rule evolution and adaptation across
varying environments, we introduce a controllability metric to
gauge game dynamics and evolve the rule designer accordingly.
Furthermore, we develop two game environments, Maze Run and
Trust Evolution, modelling human exploration and societal trade
dynamics, to gamify and evaluate the generated rules.

Index Terms— Rule generation, procedural content generation,
artificial life, generative networks, reinforcement learning, auto-
mated game design.

I. INTRODUCTION

N DIVERSE contexts, ‘rules’ are delineated as explicit or
Iimplicit directives that regulate conduct or outline a proce-
dural blueprint within a specific activity domain. This scope
can range from the operational guidelines governing games
[1], to the functional principles directing machinery operation
[2], and extend to societal laws that influence our collective
behaviour [3]. Rules are typically manifested through alter-
ations in values or the instantiation and annihilation of objects
[4]. Carefully constructed rules can nurture equitable envi-
ronments, fostering cooperation and trust, whereas inefficient
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ones can undermine societal productivity [5]. The task of
rule generation is ubiquitous, featuring prominently in areas
such as game development [6], rulemaking processes [7], and
legislative procedures [8]. Within the scope of game creation,
rule design is considered one of the six core elements [9]. Pre-
vious research related to rules in the field of machine learning
has primarily focused on rule-based learning [10]. Contrary
to formulating new rules, the majority of Al-related research
prioritizes training models to address specific problems within
the constraints of established rules, with applications such
as game map generation [6] and elucidation of elementary
reactions in chemical kinetics [11]. In well-structured games
that accurately reflect real-world scenarios, the potential of
automated rule design extends to realms beyond mere game-
play, notably in the fields of medical and electrical engi-
neering. Examples include the automated design of person-
alized cancer treatment protocols [12] and efficient cooling
power modules [13]. Automated rule design can enhance the
adaptability of products, increase the efficiency of design
processes, and optimize design parameters, materials, and
configurations.

Artificial life constitutes the study that explores systems
analogous to natural life and evolutionary processes, employ-
ing simulations via computer models, robotics, and biochem-
istry [14], [15], [16]. This discipline has investigated living
systems through a synthetic approach, essentially constructing
life to gain a deeper understanding of it [17]. Examples
of such endeavours include cellular automata [18], machine
aquariums [19], and neural MMOs [20]. These projects strive
to emulate the evolution of life, aquarium systems, and societal
resource changes, thereby augmenting our comprehension of
the inherent rules or patterns governing our world.

The metaverse has gained significant interest in indus-
try and academia as a research and technological explo-
ration of the immersive future of the internet. Especially in
the gaming domain, it allows users to create avatars and
engage in various activities within online virtual worlds,
including social interactions, customized environments, and
virtual economies [21], [22]. The metaverse encompasses
four significant domains: content creation, access and social
connectedness, identity and representation, and assessment,
validation, and user research [23]. The sustenance of metaverse
user experiences depends on two aspects: content experience
and content creation. Gamification bridges the gap between
content experience and creation, facilitating the construction
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Fig. 1. Given a conceptual description. Linguistic form rules are translated

into a set of rule vectors and implemented in a digital game environment.
Players develop strategies based on the current rules and their experience,
and the rules are evaluated within the game environment.

of virtual worlds
access [24].

Procedural content generation (PCG) represents an algorith-
mic method for creating elements automatically, leveraging
a confluence of human-generated assets, computer-mediated
randomness, and computational processing power [25]. It has
found extensive application in game design, such as No Man’s
Sky [26], Minecraft [27], and RimWorld [28]. Within the
realm of the gaming industry, a multitude of applications of
procedural content generation (PCG) can be categorized as
“constructive” techniques, sequentially employing grammar or
noise-based algorithms to generate content devoid of eval-
uation. It also enhances the diversity of game experiences
and mitigates the repetitive workload typically associated with
design tasks [29]. However, the efficacy of PCG is significantly
contingent upon the design and execution of sophisticated
algorithms, which often necessitate substantial effort to design
and evaluate. While it is common to examine existing game
content for inspiration, machine learning methods have far
less commonly been used to extract data from existing game
content in order to create more content.

Game generation lies at the intersection of a multitude
of creative domains, from art and music to rule systems
and architecture [4]. Distinct from conventional Al, artifi-
cial general intelligence (AGI) is premised on the idea that
machines could potentially mimic human cognitive processes
in the future [30]. The establishment of General Video Game
Artificial Intelligence (GVGAI) was motivated by a desire to
steer Al researchers away from an over-reliance on specific
tasks or algorithms in game engineering [29]. The use of
generative models to construct not only game entities such
as maps, characters, audio, and level systems, but also game
rules, demonstrates significant potential within the context of
GAGALI. Generative models play a vital role in unsupervised
learning, offering an efficient means to analyze and compre-
hend unlabeled data [31]. These models, through learning from
the data, develop an understanding of the internal probabilistic
distribution necessary for content generation [32]. Significant
improvements have been made in generative models such as
Variational Autoencoders (VAE) [33], [34], Generative Adver-
sarial Networks (GAN) [35], [36], and flow-based models
[37], [38]. Despite these strides, a preponderance of research
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on generative tasks remains concentrated within the domains
of computer vision and natural language processing.

Reinforcement learning (RL) is a mathematical framework
for experience-driven autonomous learning [39]. They are
designed to learn decision-making and have been employed to
address challenges posed by Atari games [40]. Additionally,
Multi-Agent Reinforcement Learning (MARL) represents a
subfield of reinforcement learning. Multi-agent reinforcement
learning concentrates on studying the behaviours of mul-
tiple learning agents co-existing in a shared environment
[41]. Deep learning facilitated the scalability of reinforcement
learning (RL) to address decision-making challenges that
were previously deemed intractable, specifically in settings
characterized by high-dimensional state and action spaces.
Moreover, popular algorithms within deep RL, such as the
deep Q-network (DQN) and trust region policy optimization
(TRPO), have garnered extensive utilization in the realm of
game design.

This project aims to establish a framework for rule gener-
ation, evaluation, and evolution. To achieve this, two digital
environments, Maze Run and Trust Evolution, are developed.
We outline a series of rules that could be translated within
these environments. Both environments serve as games for
Al non-player characters (NPCs), and humans. We also dis-
tinguished the rule generation task in three aspects: 1. There
is no pre-existing dataset for model training; all data are
generated and collected by the environment during training.
2. The generated rule vector must be translated into rules that
the environment can comprehend. 3. Rule design requirements
might be impractical and can affect the model’s performance.
In response to these challenges, we proposed our rule genera-
tion framework and summarized our contributions as follows:

o Three core elements, including rule, strategies, and eval-
uation, are refined and symbolized to clarify relationships
inherent in the automated rule generation task. These
elements serve as a structured framework for organizing
the rule generation process, and they facilitate a deeper
understanding of the different components within the
RGN framework. Furthermore, this analytical approach
has helped us identify three significant challenges associ-
ated with rule generation: no dataset, rule translation, and
unreasonable requirements, and enlightens us to introduce
the controllability for the system evaluation.

o A rule generation framework is proposed based on gen-
erative models, digital environments, and reinforcement
learning models. This framework integrates neural net-
works with automated game design and introduces con-
trollability for both rule designers and game environment
evaluation. This framework is initialized with default
rules and accepts expected results as input. It evaluates the
generated rules based on agents’ strategies and refines the
rule design process by comparing the expectations with
the evaluation outcomes.

« Two digital environments, Maze Run and Trust Evolution,
are established using Python and Unity as platforms for
the demonstration of automated game design. Translators
are employed to connect the generated rules to the
games. These environments showcase the multi-platform
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adaptability of the proposed framework, provide oppor-
tunities for human participation in rule design, and effec-
tively incorporate both cooperative and competitive social
modes, which are vital for game rule evolution.

The remainder of the paper is structured as follows.
Section II reviews existing methods for generative models,
reinforcement learning, automated game design, and procedu-
ral content generation. In Section III, we present details for the
proposed methodology, including environment creation, RGN
framework, rule implementation and translation. After that,
we demonstrate details about our digital environment and the
experimental results in Section IV. Finally, we place important
conclusions and discuss possible future works in Section V.

II. RELATED WORK
A. Related Tasks and Applications

The concept of Artificial Life (ALife) was first introduced
by Langton in 1989, described as life made by man rather
than by nature [14]. It is occasionally considered synonymous
with open-ended skill learning [42]. Present ALife research
spans across 14 themes, including computational biology,
artificial societies, and adaptation ecology [17], [43]. Suprama-
niam et al. have primarily focused on the microfluidics method,
honing in on the molecular and cellular biology domain [44].
Environmental task-driven approaches have also flourished
in ALife, often achieved through multi-agent reinforcement
learning (RL) [45]. A notable contribution in social modelling
is the Neural MMO, a large-scale game environment designed
for RL [20]. This research attempts to use Al to simulate social
patterns based on the environment or specific tasks, rather than
exploring the impact of rule changes. This paper introduces the
concept of artificial life into the game environment, offering
the potential to apply automated game design methodologies
to real-world scenarios.

Metaverse, a digital twin to the real world, embodies a
symbiotic relationship with the gaming industry, modelling
technologies, and social computing. The modelling of the
Metaverse is supported by the utilization of game engines
such as Cry Engine, Unity Engine, and Unreal Engine [46],
[47], [48]. These engines simplify the development process by
reducing the requirement from code, thus cultivating a milieu
that closely mirrors the real world [49]. In addition, the inher-
ent interactive modalities and scene rendering technologies
in games furnish immersive and engaging user experiences,
emphasizing the significance of gaming in the formulation
of user engagements within the Metaverse. Furthermore, the
reliance of the Metaverse on modelling technologies becomes
evident in the digital transposition of physical realities and
the generation of digital identities via digital twins, identity
modelling, and identity addressing [50]. The two environments
presented in this paper serve as representations of the real
world, while the evaluator forecasts outcomes as digital twins.

Automated game design can be categorized into two focus
areas: generation of game stages, levels, and structures, and
generation of game rules, mechanics, and dynamics [51].
Notwithstanding, other facets like visuals, audio, and narrative
also play a key role in game design. Procedural content gen-
eration (PCG) has been pivotal in creating game structure, for
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instance, generating levels or puzzles for existing games [52].
A shift towards procedural content generation via machine
learning (PCGML) has been observed recently, leveraging
existing game content to train models that produce new game
content, thus eliminating the need for expert design knowledge
[53]. On the other hand, the generation of game rules has
seen applications of grammars, optimization, and constraints
to create new rule sets for existing level designs [54], [55],
[9], [56], [57], [58]. Competitions like the general video
game rule generation track have spurred advancements in this
area, demonstrating the effectiveness of both constructive and
genetic algorithm approaches [59]. Our automated rule design
study begins with identifying key elements of general rule
design, and establishes a machine learning-based framework,
demonstrating the potential for complex rule creation.

Procedural content generation via machine learning
(PCGML) has garnered significant attention for its versatil-
ity in autonomous generation, co-creative design, data com-
pression, and more, offering innovative solutions in game
design [25]. PCGML minimizes the need for human input
during generation by leveraging representative content for
autonomous generation, making it ideal for online content
generation, such as in rogue-like games [60]. Moreover,
PCGML facilitates co-creation, enabling efficient collaboration
between human designers and algorithms in content creation
[61], [62]. Notably, PCGML supports content repair by iden-
tifying unplayable areas and offering corrective suggestions
[63], [64]. In terms of critique and analysis, PCGML outper-
forms other PCG approaches by providing in-depth analysis
and critique of game content [65]. PCGML is also effective
in data compression, particularly with autoencoders, allowing
for efficient storage of game content [26]. The versatility and
efficiency of PCGML in these domains highlight its potential
for shaping the future of game design. The proposed frame-
work takes advantage of PCGML to improve the efficiency of
designer training and result evaluation.

B. Related Learning Paradigms

Deep generative models constitute a framework that repre-
sents the distribution of generative models using deep neural
networks. Recent advancements, such as ChatGPT, BERT,
and DALL-E 2 [66], have demonstrated significant potential
in recent years. These models can generate text and images
based on textual descriptions. Wang et al. demonstrated the
performance of generative models in image segmentation [67],
[68], [69] and noise removal [70]. Ho et al. have also validated
the performance of diffusion models in video generation [71],
[72]. Some research teams have explored causality and rela-
tionships using generative models [73], [74], [75]. Addition-
ally, generation tasks in the game domain mainly involve game
content generation, such as assets [76] or textual elements [77].
The deep generative neural networks are introduced into the
designer for rule creation.

Reinforcement learning has evolved based on Markov deci-
sion processes, wherein the selection of actions focuses on the
current state and potential reward [39]. Recent advancements
in RL demonstrate significant progress in multi-agent [41],
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reward-free [78], and generation tasks [79]. The essence of RL
models lies in acquiring experience based on rewards obtained
from various situations. Well-trained models exhibit reliable
performance when participating in games, which can assist
in evaluating the game environment. Multiple reinforcement
learning agents are utilised in the environments to explore
strategies and evaluate created rules in this paper.

The proposed Automated Rule Generation (ARG) will be a
new machine learning task in the generative model category.
The implementation of the ARG involves deep neural networks
as the backbone models. The Deep Generative Model is used
for the rule-generation purpose. Reinforcement Learning is not
a part of ARG but a learning algorithm paradigm to stimulate
Al agent behaviour so that the rule and generated environment
can be evaluated and evolve. We do not particularly address
the shortcomings of specific models. Instead, the paper aims
to propose a new paradigm and machine learning task.

III. METHODOLOGY

The rule generation task aims to comprehend the relation-
ship between input rule parameters and game outcomes, and
subsequently train a generative model to formulate rules for
specific objectives. This necessitates, at a minimum, a rule
designer and an environment capable of implementing rules
and recording statistics for rule evaluation. Given that the
environment functions as a black box, the establishment of an
evaluator, acting as digital twins, can facilitate the designer’s
optimization. Gamified rules within a digital environment can
be engaged by RL models, NPCs, and humans.

As depicted in Fig. 3, our system framework mainly
comprises three primary processes: environment development,
rule designer training, and rule generation. The environment
development involves creating a game with predefined rules
represented by a vector. The rule designer training process
strives to construct models for rule generation and train
them according to the target evaluation metrics. In the rule
generation process, the pre-trained generative model designs
a set of rules that align with the expected outcomes.

A. Preliminaries

Extensive-form rule generation tasks involve three critical
components: rule, strategy, evaluation. This section presents
and explains the definitions and notations of them below.

1) Rule: Rules can be regarded as a set of principles in a
game, such as players, maps, nodes, functions, natural acts,
and decisions [80]. Let R = [rnq] € RV *Pr represent a
set of rules in a digital environment. Here, N, denotes the
quantity of rules and D, represents the dimension of each
rule. The set includes creation, deletion, and modification of
rules. Rule creation increments N, to N, + 1, adds it to R,
and increases the rule quantity. Conversely, deletion involves
removing r; where i € {1, ..., N,} from R, reducing N,. Rule
modification updates r; 4 € R where i € {I,..., N} to ri4'.
The evolved rules can be represented by R'.

2) Strategies: Game strategies are a series of complete
algorithms selected by players according to the situation,
in compliance with rules, and determining the result [81],
such as the strategy of the prisoner’s dilemma. We assume
S = [s,,,d] € RVs*Ds to be strategies developed by players.
Here, Ny is the strategy number and Dy is the dimension of
each strategy. As each game may have more than one strategy
and each strategy may have different stages, Ds may vary.
If the game is a complete information game, all strategies
can be enumerated and N can be a specific number, whereas
Ns can be infinite in an incomplete information game. Both
humans and Al can play and develop strategies based on the
reward.

3) Evaluation: Game evaluation is associated with high-
level heuristics, including spontaneity, interruptability, and
continuity [82]. These heuristics are determined by a series of
specific game parameters. Let the evaluation result be denoted
by E = [ena] € RNe*Pe, where N, and D, represent the
evaluation metric quantity and dimension, respectively. All
rules can be assessed using a set of evaluation criteria f to
obtain the result E. Each e € E represents an assessment
perspective of the evaluation. Furthermore, the nature of the
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rule designer.

evaluation is determined by the game rules, while the actual
results are demonstrated and recorded by agents’ strategies
during gameplay in the digital environment. This process
can be represented as £ = f(R,S), where f denotes the
evaluation metrics.

4) Automated Rule Design: Automated rule design begins
with an initial rule set, R, foundational to the game envi-
ronment. Players or agents then formulate strategies, denoted
as S, which are essentially algorithms or behaviours tailored
to optimize outcomes within the confines of R. Subsequent
evaluations expressed as E = f(R,S), represent gameplay
metrics such as efficacy and fairness. Drawing from &, the
system discerns areas for rule modification in R to enhance
gameplay or meet specific objectives. This cycle of strategy
formulation, evaluation, and rule refinement iteratively pro-
gresses until the system meets predetermined performance or
balance benchmarks.

B. Frameworks

Figure 3 demonstrates that the system consists of three
primary components: rule designer, evaluator, and digital envi-
ronment. Additionally, the digital environment incorporates a
set of reinforcement learning agents, non-player characters,
and human players. The expectation is a set of linguistic
descriptions embedded as a vector ¢. The rule designer
generates a set of rule vectors R based on embedding ¢.
Generated rules are then translated into accessible vectors
for game platform implementation. Subsequently, the game is
made available to Q-learning agents, NPCs, and human players

for strategy exploration. The game, featuring experienced
players, simulates the evolution of society under the generated
rules. All statistics recorded during gameplay are gathered for
rule evaluation. The evaluator serves as a digital twin of the
environment, simulating output statistics and sharing the same
raw rule vector, created by the rule designer, as input. The
evaluation results are utilized to compute controllability, which
is then employed to upgrade the rule designer.

The objective of generative tasks is to train a generative
model, such as a variational autoencoder (VAE), generative
adversarial network (GAN), or diffusion model, to create
content according to specific requirements. These models are
represented by a function denoted as g : Z — X, which is
designed to map random noise vectors Z to high-dimensional
output X. Prior to training, it’s crucial to curate a labelled
dataset, where the labels serve as the model’s ground truth.
Unlike a traditional generative model, this framework doesn’t
require a pre-prepared dataset. The rule generation process
aims to train a designer d : E — R to create rules R. As a
data-free training task, the designer takes the expected result
E as input, and the output rules are R = d(E). The created
rules R will be implemented in the environment and the output
can be represented as E' = Env(d(E), S), where Env is the
evaluation criteria. The training of d is formulated as follows:

nbin V(d, Env) =log(1—Env(d(E), S)). @))]

Although Env(d(E),S) represents the ground truth,
an evaluator, functioning as a digital twin, aids the designer
during the backward process. The objective of the evaluator is
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to emulate the environment and predict evaluation outcomes.
It accepts R as input, analogous to the environment, and
learns to score rules as E” = p(d(E)), which is denoted by
p: R — E”. Throughout training, the evaluator is refined by
minimizing the discrepancy between its own output E” and
the ground truth E’.

min L(E’, E") = min L(p(d(E)), Env(d(e))). 2)

Reinforcement learning is based on access to the
Markov Decision Process that can be defined as the
tuple {S, A, 7, R, p(so), y}. These elements represent states,
actions, transition probabilities, rewards, initial state proba-
bilities, and discount factors, respectively. This paper utilizes
Q-learning models as RL agents. They share the same action
list, reward map, and perceptual field as other players. The
actions of well-trained agents can be considered objective,
as they maximize the reward. The goal of strategy exploration
is to train players P : State — Action according to the
reward.

C. Environment and Task

This paper presents two digital game environments for
rule demonstration, referred to as Maze Run (MR) and Trust
Evolution (TE), purposed to demonstrate the practicability
of rule generation with judicious utilization of computational
resources. These environments aim to demonstrate the feasi-
bility of rule generation while utilizing minimal computing
resources. TE serves as a fusion of artificial life and rule-
generation tasks, as it simulates cooperative behaviour among
individuals in a society.

1) Maze Run: The maze run provides a 2D map with
variable height and width. It is full of reward points and traps
that can be modified according to different evaluation metrics.
The goal of the game is to survive as long as possible. All
agents, including human players and Q-learning agents, try to
find a strategy that gets more food and avoids traps. As the
MR environment aims to match the rule generation task with
minimising parameters, here we fix the number of agents as 2,
both height and width are 6 grid, and the initial locations are
the left bottom and right top corner separately.

Let M be the set of 2D maps, H be the set of heights, W
be the set of widths, G be the set of grid cells, and A be the
set of agents. Let h : M — H be the height function that
maps each map to a height. Let w : M — W be the width
function that maps each map to a width. Let [ : A — G be
the location function that maps each agent to a grid cell. Let
f 1 M x G — reward point, trap be the contents function that
maps each map and grid cell to the contents of the cell. Let
t : M x A — R be the time function that maps each map
and agent to the time they survived. The following constraints
hold: (1) For all m € M, h(m) = 6 and w(m) = 6. (2) For
all m € M and a € A, [(a) is either the left bottom or right
top corner of the map m. (3) Forallm e M, g € G, f(m, g)
is either a reward point or a trap. (4) All agents, including
human players and Q-learning agents, try to find a strategy that
maximizes their time function #(m, a) by collecting reward
points and avoiding traps. The goal of the game is to survive
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as long as possible, so the objective is to maximize the time
function ¢ (m, a) for all agents a € A.

2) Trust Evolution: In the Trust Evolution environment,
the rules can be characterized by parameters such as payoff,
population size, the round number, reproduction rate, and
mistake probability. The mistake probability represents the
likelihood of a player choosing the opposite action, while the
round number indicates the number of trades each agent con-
ducts. Throughout each game, players attempt to acquire more
coins by engaging in trade with others, choosing between two
possible actions: cheat or cooperate. The payoff maps agents’
actions to trade outcomes. Six types of NPCs represent various
personalities: random, cheater, cooperator, copycat, grudger,
and detective. The first three types consistently choose ran-
dom, cheat, and cooperation, respectively. Copycats initiate
cooperation and subsequently mimic others’ last actions, while
grudgers always cooperate until betrayed. Detectives start with
a sequence of cooperation, cheat, cooperation, and cooperation
actions; if others never reciprocate cheating, they continue
cheating, otherwise, they adopt the copycat strategy. At the
conclusion of each match, a selection process eliminates low-
performing players and reproduces top performers.

Let R be the set of rounds, N be the set of players, and
A be the set of actions (cheating or cooperation). Let p be
the mistake rate such that 0 < p < 1. Let f: N xR — A
be the action function that maps each player and round
to an action. Let g : A x A — R be the payoff function
that maps each pair of actions to a reward. Let T : N —
random, cheater, cooperator, copycat, grudger, detective  be
the type function that maps each player to their personality.
Let k be the reproduction number, such that k is a positive
integer. The following constraints hold: For all n € N
and r € R: (1) If T(n) = random, then f(n,r) is chosen
randomly. (2) If T(n) = cheater, then f(n,r) = cheating.
(3) If T(n) = cooperator, then f(n,r) = cooperation. (4)
If T(n) = copycat, then f(n,r) = f(m,r — 1) for some
player m € N such that f(m,r — 1) is the action of m
in the previous round. (5) If T(n) = grudger, then: if
there exists a player m € N and a round s < r such that
f(@m,s) = cheating, then f(n,r) = cheating; otherwise,
f(n,r) = cooperation. (6) If T(n) = detective, then:
if r = 1, then f(n,r) = cooperation; if r = 2, then
f(n,r) = cheating; if r = 3, then f(n,r) = cooperation; if
r = 4, then f(n,r) = cooperation; if there exists a player
m € N and a round s < r such that f(m, s) = cheating, then
f(n,r) = f(m,r — 1); otherwise, f(n,r) = cheating. At the
end of each game, the k players who won the highest reward
are selected for reproduction and the same quantity of lowest
players are eliminated.

3) Rules Translation: Demonstrating game rules in a virtual
environment is a cross-platform task. The rules are structured
as a set of parameters which can not be understood or
accessed by neural networks directly. One potential solution
is extensible markup language (XML) which encodes arbi-
trary information into human-readable and machine-readable
formats [83]. It has been introduced into some black-box
optimization tasks as it can be easily translated to inputs [84],
[85]. However, the description of the rule includes not only
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Fig. 4. An illustration of the rule translation progress. The blue vector is
generated by the rule designer and subsequently divided into smaller vectors,
each representing a distinct rule. These smaller vectors are then encoded as
executable parameters for the environment.

objects but also relationships. To convert the generated rule
vector into accessible game mechanisms within the environ-
ment, we employ rule maps. Owing to the relative simplicity
of the Maze Run (MR) environment, the rule vector generated
by the rule designer merely contains the reward information
for each grid cell in the map. This vector takes the form of a
tensor with dimensions corresponding to the map size.

The TE environment is relatively complex as the gen-
erated rule vector contains multiple rules. TE’s rule is a
15-dimensional vector. The first 6 dimensions of the vector
represent the population of each personality, and the total
number of people is fixed. The following 7th to 12th dimen-
sions map to the trade payoff: cheat-cheat, cheat-cooperate,
cooperate-cooperate. The 13th dimension is related to the
round number, and the last two dimensions represent the
reproduction number and mistake possibility, respectively.

4) Ethical Analysis: In the realm of automated game design,
the generation of rules through artificial intelligence introduces
the possibility of inadvertently embedding biases into the gam-
ing experience. This paper presents an ethical examination of
our Rule Generation Network. Throughout the development of
the RGN structure, we incorporated two game environments:
MR and TE. It is important to highlight that players’ roles
within these games are devoid of any attributes related to
sex, age, race, or similar socio-cultural factors. In MR, traps
and rewards are solely tied to reinforcement learning rewards,
eliminating potential subjective biases. Similarly, in TE, the
six distinct personalities are purely representative of various
NPC behavioral patterns, further emphasizing our commitment
to unbiased game design.

5) Unreasonable Expectation: In the process of testing
the RGN framework, which leverages external expectations
to formulate rules, in multiple expectations for future work.
We discovered challenges associated with certain expectations
that proved to be unreasonable. An illustrative example is the
contradiction of expecting both a cheater and a cooperator to
win in the same trust evolution game. The contradiction of
such unreasonable expectations not only diminishes training
efficiency but also adversely impacts the evaluation score of
the rule designer within the RGN. Consequently, we high-
light the identification of these unreasonable expectations as
a hurdle in rule generation. Addressing this challenge may
require the application of logical reasoning and structured
methodologies.

D. Controllability

To ensure the rules generated rules of the designer during
training are consistent with the input expectation, here we
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introduced controllability from information theory for designer
evolution. The controllability matrix is a fundamental concept
in control theory, serving as an essential tool for evaluating the
controllability of linear and non-linear systems. Controllability
represents the ability to guide a system from any initial
state to any target state within a finite period using available
control inputs. By mathematically assessing this property, the
controllability matrix enables researchers and engineers to
analyze the efficacy of control inputs in directing a system’s
state and informs the design of control strategies for various
applications in engineering, robotics, and other fields.

Proposition: The linearized system, exemplified by the
player’s movement, can be expressed as:

x(t) = Ax(1) + Bu(1), 3)
y() =Cx (), “4)

where x(t) € R"” denotes the state vector, u(t) € R™ signifies
the control input vector, A € R"*" is the system matrix, B €
R™™ represents the input matrix, and C € RP*" is the output
matrix. The controllability matrix is defined as:

C=[B,AB,A’B, ..., A" 'B], (5)

where C € R and AKB corresponds to the k-th power
of matrix A multiplied by matrix B. The non-linear system is
characterized by the following state-space equation:

X(t) = f(x(0) + gx@)u(), (6)

where x(1) € RY is the 15D rule vector, u(f) € R represents

the 1D win rate input, and f(x) and g(x) are non-linear vector

functions. The Lie derivatives of vector fields f(x) and g(x)

can be computed as:

9g(x) af(x)
0x Fx) 0x
Construct the Lie algebra £ generated by the Lie derivatives

of vector fields f(x) and g(x):

L=fglfgl.Lf Lf gl g Lfgll ... ®)

At a specific point x¢, create the distribution matrix D(xp)
using the vectors in the Lie algebra:

D(x0) = [ f(x0) g(xo0) [f. 81 -] (€))

If the rank of the distribution matrix D(xg) is equal to the
dimension of the state-space (rank(D(xp)) = 15), then the
system is locally controllable at the point xq.

Lemma: Let N denote a set of players, and A represent
actions (cheating or cooperation). To investigate the control-
lability of the system, we must first define the state-space
and action-space. The controllability matrix is a matrix that
associates the players’ actions with alterations in the system’s
state. Let C be the controllability matrix, with C; ; signifying
the impact of player i’s action on player j’s state. The entries
in the controllability matrix can be computed as follows:

Cij= D, D PGsjlsj, a),

a€As;eN

Ly L= g(x). (7

(10)

where s’; is the state of player j after player i takes action
a;, and P(s}|s j»a;) is the transition probability from state s;
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Algorithm 1 RGN Training Algorithm

Input:

Linguistic description for rule expectation E;
Number of training epochs Ep.

Game environment Env.

Output:

Well-trained rule designer model: D : E — R.
Well-trained Q-learning model: Q : § — A.

1: Initialization: Embed the rule expectation as ¢.
2: Add noise z to the expectation E, resulting in ¢ = ¢ + 2.
3: fort=1:Ep do
4:  Rules generation: designer create rules R = D(E).
5 Train reinforcement learning model: translate R into
R’ = T(R), learning strategies S = Env(R');
6:  Train evaluator: use E' = Env(R’) to train the evalua-
tor;
7:  Train designer: use the evaluator’s result E’ and input
E to upgrade designer;
8: if E'—FE == 0 then
: break;
10:  end if
11: end for
12: Save the well-trained designer model D for rule genera-
tion.
13: Save the well-trained Q-learning model Q for action
selection.

to state s} given action a;. By calculating the controllability
matrix, one can determine the degree to which the players
can control the outcome of the game and whether the game
is balanced or not. This can help to improve the design of
the rule generator and ensure that the generated games are
academically sound and enjoyable for players.

As for the designer networks, it provides a mapping from
the 1D input to the 15D output space, represented as:

x(u) = Wio (Wao (Wiu + by) + b2) + bs. (1)

IV. EXPERIMENT
A. Settings

The experiments focus on three primary objectives:
(1) implementing the RGN model across multiple environ-
ments; (2) Demonstrating and gamifying the generated rules;
(3) generating rules according to specific evaluation metrics.
It requires the RGN model to be capable of generating
rules that can be instantiated within diverse environments,
allowing Al agents, NPCs, and humans to play. Training the
rule designer based on various evaluation metrics, with the
expectation that a well-trained designer will produce rules that
align with the desired outcomes. It also aims to showcase the
generated rules within an environment that provides accessible
operations and visual representations of the associated statis-
tical data. This comprehensive experimental approach seeks
to validate the effectiveness of the proposed RGN model in
generating engaging and meaningful game experiences.
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1) Evaluation Criteria: The evaluation framework for the
RGN model is multifaceted, encompassing a rule designer,
an evaluator, Q-learning models, and two distinct virtual envi-
ronments. Consequently, a diverse array of evaluation method-
ologies and criteria are implemented. For the rule designer and
evaluator, qualitative evaluation is undertaken by integrating
the generated rules into the two virtual environments (MR
and TE). Quantitatively, Mean Squared Error (MSE) loss
and cross-entropy loss functioned as training criteria for the
rule designer and evaluator, respectively. Additionally, con-
trollability is employed to gauge the performance of the rule
designer and game platform. The distribution of potential game
outcomes, ascertained by the random sampling of rules, served
as a dataset during RGN training.

In establishing a baseline for the RGN, we separate it into
three distinct segments, each according to its specific role and
utility in the rule design continuum: the designer, evaluator,
and tester. For the RGN designer, the baseline is drawn from
both human and random designers. The evaluator’s baseline
is anchored to actual game results, ensuring an empirical
point of reference. Meanwhile, the RGN tester’s baseline
encompasses a comparative assessment of performances across
Q-learning, deep Q-learning (DQN), double DQN, categorical
DQN, human participants, and NPCs. This stratified base-
line approach provides a comprehensive and multifaceted
reference for evaluating the efficacy and robustness of the
RGN system. Moreover, the assessment of automated game
design systems presents a persistent challenge for scholars in
the discipline. The comparisons between individual systems
remain infrequent, often limited to qualitative expositions in
sections dedicated to related literature. This is primarily due
to the distinct nature of each automated game design system,
characterized by their unique game engines, technological
infrastructures, and design philosophies [86].

2) Implementation Details: The MR and TE environments
are developed using PyPlot and the Unity engine, respec-
tively. In the MR environment, the generated rule vectors
encompassed the reward map, whereas in TE, the rule com-
prised various game parameters such as population distribu-
tion, payoff structure, round count, reproduction quantity, and
mistake probability. Essential metrics in the TE environment,
including the Cooperation Rate (CR), Average Coin Increment
(ACI), and Cooperator Proportion (CP), represented players’
actions, resource fluctuations, and game trends. To maintain
consistency and reliability in the TE environment, we drew
upon ‘The Evolution of Trust’ by Nicky Case, excluding
Q-learning and human players for demonstration purposes.
The rule designer and evaluator are implemented as models
with three fully connected layers. Q-learning models func-
tioned as our RL agents, while a fixed response algorithm,
providing specific responses to distinct inputs, is utilized for
NPCs.

B. Qualitative Evaluation

The training of the RGN is conducted across multiple
game environments, including MR and TE. Due to the single
rule accessibility in the MR environment, we will focus on
the variations in rule design within the TE environment.

Authorized licensed use limited to: University of Durham. Downloaded on September 30,2024 at 08:57:36 UTC from IEEE Xplore. Restrictions apply.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 34, NO. 8, AUGUST 2024

Fig. 5. Illustration of the different rule designs. The entities encompass
six distinct character roles, with different appearances representing unique
personalities. The rules are generated by humans, random generation, and
RGN. (a) Human design. (b) Random design. (c) RGN design (payoff).
(d) RGN design (population).

Fig. 6. Illustration of the created rules from the MR during training. The
red circles denote the Q-learning agent, the yellow circles indicate reward
points, and the black squares represent traps. The red dotted line highlights
the primary changes of rule during training. (a) Expected win rate = 0%:
epoch 0. (b) Expected win rate = 0%: epoch 10. (c) Expected win rate =
0%: epoch 100. (d) Expected win rate = 100%: epoch 0. (e) Expected win
rate = 100%: epoch 10. (f) Expected win rate = 100%: epoch 100.

The implementation of the designed rules is depicted in
Fig. 5. The primary design objective sought to encourage a
higher survival rate for cooperators. Human-designed rules
are easily distinguishable due to their orderly arrangement of
roles, as the human designer strategically adjusted the payoff
structure to achieve this goal. In contrast, the untrained model
generated rules at random. Regarding the rules designed by
the well-trained RGN model, a certain level of disorder is
apparent in the placement of roles. Both rules designed by the
RGN tend to prioritize the initial population over payoff or
other parameters. Thus, the proportion of cooperators shows
a significant increase, which means the rules are inclined to
augment the initial quantity of target winners as a means to
ensure they fulfil the expectation.

Fig. 6 illustrates the performance evolution of the rule
designer for the MR task during the training process. The RGN

(d) (e) (f)

Fig. 7. Illustration of six game scenarios with varying player numbers,
specifically containing 15, 30, 45, 60, 100, and 150 Q-learning agents as
players, respectively. Apart from the player numbers, all other rules remain
consistent across the games. (a) 15 agents. (b) 30 agents. (c) 45 agents.
(d) 60 agents. (e) 100 agents. (f) 150 agents.

rule designer’s aim is to manipulate the win rate by creating
additional traps or rewards in the map, while the Q-learning
players attempt to maximize the survival rate and reward coin
number. The first row presents the training progression for
creating MR game rules where both players have a 0% win
rate, whereas the second row focuses on the creation of a
game with a 100% win rate. As depicted in Fig. 6a, the
untrained designer in the MR environment generated rules
randomly. However, during training, it started generating more
traps around agents’ spawn points and increased trap damage
as shown in Fig. 6b to Fig. 6¢. In contrast, as illustrated in
Fig. 6d, Fig. 6e, and Fig. 6f, the upper right and lower left
corners players began to host more reward points, replacing the
traps. In summary, the rule designer evolved the rules during
training to align with the expected win rate.

In the rule evaluation phase, players, including humans,
NPCs, and Q-learning models, endeavoured to devise strate-
gies to maximize their game rewards. Fig. 7 presents the
environment’s capability to handle multi-agent tasks at varying
player count levels. As each agent is required to identify their
target trading role and execute trading actions, the complexity
increases at a rate of O(n?). Current experiments in TE have
supported up to 150 agents learning rules and developing
strategies within the game. Furthermore, as the number of
agents increased from Fig. 7d to Fig. 7f, we observed a pattern
emerging among agents. As agents tend to trade with those
who benefit them the most, some roles exhibit a preference
for trading with agents who share the same personality.

Strategies developed by Q-learning players in a structured
Maze Run game can be visualized as a map, provided that the
learning process is driven by rewards. Figure 8§ delineates three
distinct games, each aiming for distinct win rates of 0%, 50%,
and 100%, respectively. The first row of illustrations portrays
the reward map, while the second row demonstrates the
movement dynamics of two Q-learning agents. The rewards
are governed by transitions in states, implying that different
cells within the map may not necessarily exhibit continuity or
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Fig. 8. Visualization of the rules and agents’ strategies in the maze run game.
The blocks coloured in shades of orange and yellow denote regions associated
with high rewards, whereas areas signified by grey and blue correspond to
relatively lower rewards. The arrows coloured in yellow indicate the potential
movements of the agent that start at the bottom left, while the green arrows
exemplify the prospective manoeuvres of the agent positioned at the upper
right. (a) Reward map: win rate = 0%. (b) Reward map: win rate = 50%.
(c) Reward map: win rate = 100%. (d) Agents’ strategy: win rate = 0%.
(e) Agents’ strategy: win rate = 50%. (f) Agents’ strategy: win rate = 100%.

linearity, despite analogous color representations. As can be
observed from Figures 8e, 8f, and 8d, the players investigate
regions adjacent to their initiation points, and intermittently
retrace their trajectories to maximize rewards. Interestingly,
during the training phase, the players also venture into areas
associated with lower rewards but display rationality in for-
mulating their ultimate strategies, as depicted in Figure 8.
Table I presents a record of players’ strategies encompassed
within a series of game rules in the trust evolution. These rules
have been generated by an adept designer utilizing the RGN
designer with the objective of achieving a 100% cooperation
rate. Each trade involves two players, each of whom has the
option to choose at least one other player with whom to trade,
with the outcome contingent on the payoff outlined in the
rules. As the goal is complete cooperation, the designer has
amplified the rewards for cooperation while penalizing deceit,
as demonstrated in the table. Consequently, the majority of
players incline towards cooperation, with the exception of
those within the ‘random’ category. Additionally, it has been
observed that those who consistently cooperate are widely
favoured among players of various personality types.

C. Quantitative Evaluation

Figure 9 represents the evolution of rules during designer
training, the objective of which is to formulate rules that
align with the anticipated increase in the cooperation rate to
100%. As depicted in Figure 9a, the designer tends to expand
the population of cooperators while reducing the number of
cheaters and random players. The population of detectives also
decreases, caused by their consistent inclination to scrutinize
others. Figure 9b portrays modifications in tradeoffs where,
regardless of the scenarios being cheat-cheat, cheat-cooperate,
or cooperate-cooperate, the designer primarily intensifies the
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Fig. 9. Ilustration of rules evolution in the TE during training. The
population figure employs six colours to represent six distinct personalities.
The symbols A, B, and C in the payoff figure correspond to the ‘cheat-cheat,’
’cheat-cooperate,” and ‘cooperate-cooperate’ scenarios, respectively. The last
figure reveals alterations in the round number, reproduction number, and
mistake possibility throughout the training process. (a) Population. (b) Payoft.
(c) Other parameters.
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Fig. 10. The quantity and proportion of each personality of role win in five
random samplings. In the histogram, columns of the same colour correspond
to the same round of sampling, while in the pie chart, circles of the same
colour represent the same round of sampling. (a) Size. (b) Ratio.
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Fig. 11. Comparison of designers’ and evaluators’ loss change in multiple
environments. Each line chart records five individual results of the same
experiments. The first row presents the cross-entropy loss change in the trust
evolution environment, while the second row displays the MSE loss change in
the maze run environment. The first column represents the designer, followed
by the evaluator. (a) Designer cross-entropy loss. (b) Evaluator cross-entropy
loss. (c) Designer MSE loss. (d) Evaluator MSE loss.

rewards associated with cooperative behaviour. Concerning
other parameters in figure 9c such as the number of repro-
ductions, round numbers, and the probability of mistakes,
the oscillation visible in their respective curves suggests a
relatively minor correlation with the design expectation.

We also demonstrate the distribution of gaming outcomes,
which serve as real-time data for training the designer and
evaluator. The Monte Carlo method is employed to separately
sample 1000 data points 5 times as depicted in Fig. 10. Rules
within the TE environment are encoded in a 15-dimensional
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TABLE I

STRATEGIES’ RECORDS OF TRUST EVOLUTION GAME GENERATED BY WELL-TRAINED RGN NETWORKS BASED ON 100% COOPERATION
RATE EXPECTATION. THE POPULATION FOR S1X PERSONALITIES ARE FIXED TO 4, AND ONE OF THE ROLES
CAN CHOOSE A TRADE TARGET EACH TIME

Trade id 00 01 02 03 04 05

Player id Al F3 BI C2 Cl C3 D1 C2 El E4 F1 C3

Operation cheat cooperate cheat cooperate | cooperate  cooperate | cooperate  cooperate | cooperate  cooperate | cooperate  cooperate
Result win lose win lose win-win win-win win-win win-win win-win win-win win-win win-win
Coin +1.32 -0.34 +1.32 -0.34 +0.87 +0.87 +0.87 +0.87 +0.87 +0.87 +0.87 +0.87

Trade id 06 07 08 09 10 11

Player id A2 A5 B2 F2 Cc2 Cl D2 D1 E2 C2 F2 C4

Operation cheat cheat cheat cooperate | cooperate  cooperate | cooperate  cooperate | cooperate  cooperate | cooperate  cooperate
Result lose-lose lose-lose win lose win-win win-win win-win win-win win-win win-win win-win win-win
Coin -0.21 -0.21 +1.32 -0.34 +0.87 +0.87 +0.87 +0.87 +0.87 +0.87 +0.87 +0.87

Trade id 12 13 14 15 16 17

Player id A3 F1 B3 Al C3 C2 D3 D4 E3 El F3 C2

Operation cheat cooperate cheat cheat cooperate  cooperate | cooperate  cooperate | cooperate  cooperate | cooperate  cooperate
Result win lose lose-lose lose-lose win-win win-win win-win win-win win-win win-win win-win win-win
Coin +1.32 -0.34 -0.21 -0.21 +0.87 +0.87 +0.87 +0.87 +0.87 +0.87 +0.87 +0.87

TABLE II

PERFORMANCE COMPARISON OF FOUR RULE DESIGN METHODS FOR VARIOUS DESIGN REQUIREMENTS. FOUR DISTINCT RULE EXPECTATIONS,
INCLUDING CR=100%, ACI=30, CP=100%, AND CP=80%, ARE FULFILLED BY FOUR TYPES OF DESIGNERS: HUMAN, RANDOM, UNTRAINED
RGN, AND WELL-TRAINED RGN. THREE METRICS ARE COMPARED IN THE TABLE. THE BEST-PERFORMING DESIGN IS BOLDED

Expectation CR = 100% ACI = 30 CP = 100% CP = 80%
Metrics CR ACI CP CR ACI CP CR ACI CP CR ACI Ccp
Human designed rules | 100% 17 100% 78% 67 64% 60% 41 100% | 100% 23 52%
Random rules 55% 5 32% 23% -5 44% 25% 4 0% 42% 11 0%
Untrained RGN 63% -15 0% 54% 58% 0% -5 0% 68% 8 0%
Well-trained RGN 100 % 17 100% | 100% 24 82% | 100% 25 100% 76% 15 64 %

vector, capable of decoding into rules encompassing approx-
imately 3.56265 x 10! unique cases. As Fig. 10a illustrates,
there is a preponderance of random game results favouring
cheaters, cooperators, and randoms as winners. In comparison,
grudgers only possess a 4.764% chance of victory against
cheaters. Surprisingly, copycats did not perform better, despite
their potential highlighted in Case’s model. The pie chart in
Fig. 10b supports this finding, indicating that it is easier to
design rules favouring the victory of cheaters, cooperators,
and randoms, which aligns with experimental observations.

The rule designer is flexible in creating rules of varying
dimensions, such as the one-dimensional win rate in the MR
and the 16-dimensional parameter in the TE. Both MSE loss
and cross-entropy loss are applicable to the rule designer and
evaluator. Fig. 11a and Fig. 11b illustrate the progression
of cross-entropy loss during the training phase in the TE
environment, while Fig. 11c and Fig. 11d concentrate on the
MSE loss in the MR. The decline in all curves attests to
the improved performance of both evaluators and designers
throughout the training process. Typically, the decrease in
evaluators’ losses precedes that of designers’ losses due to
the former’s involvement in the backward pass of the designer.
In essence, designers’ performance is contingent on that of the
evaluators. The MSE loss in the MR environment undergoes a
more substantial change compared to the cross-entropy loss
in the TE environment during training, primarily because
the designer evolves the rules based solely on the win rate.
Consequently, the rule evolution process can be considered
a black-box optimization task. Increasing rule complexity
exacerbates the challenge faced by designers in discerning the
appropriate rule-generation strategies.

Comparing the performance of human and RGN designers,
we established fixed game result expectations in the TE as
the design criterion and evaluated their well-designed rules.
As evident in Table II, the RGN designer consistently out-
performs random generation and untrained models. However,
human designers occasionally produce comparable results, and
can even surpass the RGN designer, particularly when they
iteratively test their rules. Increasing the cooperation rate log-
ically entails a decrease in the presence of cheaters, randoms,
and grudgers. Designers can also manipulate the payoff value
to incentivize cooperation over cheating by offering more coins
as rewards. A subtle alteration in the design requirement from
100% to 80% cooperator proportion at the game’s conclusion
distinguishes the last two sections in the table. This led to
the RGN designer emerging victorious. We conclude that the
Al designer excels when design requirements are not extreme,
more abstract, or when the causality between input rules and
output game results is obfuscated.

The performance of RL agents is evaluated in a fixed game
rule, which was generated by the well-trained RGN designer.
Fig. 12a illustrates the efficiency of these agents during
the training phase. Notably, the categorical DQN emerges
as the most efficient, followed by the double DQN, deep
Q-learning, and Q-learning. However, this performance gap
diminishes after 10 training epochs. After that, the agents
exhibit comparable performance within the game. As evident
from Fig. 12b, during the game testing phase, the agents’
performance converges to a similar value. Because the game
environment proposed in this paper involves only a few rules,
even Q-learning agents can achieve reliable performance when
testing the generated rules.
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Fig. 12. Comparison of testers’ coin changes in a well-designed MR environ-
ment. Four reinforcement learning algorithms participate in the comparison:
Q-learning, deep Q-learning, double DQN, and categorical DQN. The first
figure records the agents’ coin numbers during the training, and the second
figure records the testing stage. (a) Tester comparison in training. (b) Tester
comparison in testing.
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V. CONCLUSION

This paper proposed an innovative rule generation frame-
work RGN that leverages generative models, reinforcement
learning models, and game environments to address the chal-
lenges of no dataset, rule translation, and unreasonable expec-
tations in automated rule design, evaluation, and evolution,
in accordance with controllable expectations. We initially
refined and notated three fundamental elements of the rule
generation task and established two digital environments, maze
run and trust evolution, for implementation and demonstra-
tion. A well-trained rule designer can generate rules aligned
with expectations, except in some unreasonable circumstances.
By utilizing the environments, Al and NPC, as well as human
players, can engage in the generated game rules. Moreover,
we observed the rule evolution pattern during training and the
competition among Q-learning agents within the game.

For future work, we intend to explore deeper into unreason-
able expectations, which were discovered during the research.
Unreasonable expectations, such as requiring two different
personality groups to win at the same time in TE, can confuse
RGN in both the training and evolving stages. It also leads
to an unfair evaluation result during the test. We also aspire
to investigate the causality between each dimension within
the vector and its corresponding rule. Additionally, we are
intrigued by the potential effects of sampling data from the
environment and pretraining the designer to generate certain
unique conditions. Moreover, we intend to scrutinize the
relationships among different categories of rules, such as those
pertaining to population dynamics and payoff distribution.
By introducing some seemingly extraneous rules into the
system, we aim to enhance our understanding of the causality
at play.
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