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Abstract

Satellite galaxies can be used to indicate the dynamic mass of galaxy groups and clusters. In this study, we apply
the axisymmetric Jeans Anisotropic Multi-Gaussian Expansion (JAM) modeling to satellite galaxies in 28 galaxy
clusters selected from the TNG300-1 simulation with halo masses of  >M Mlog 14.310 200 . If using true bound
satellites as tracers, the best constrained total mass within the half-mass radius of satellites, M(<rhalf), and the virial
mass, M200, have average biases of −0.01 and 0.03 dex, with average scatters of 0.11 dex and 0.15 dex. If selecting
companions in the redshift space with a line-of-sight depth of 2000 km s−1, the biases are −0.06 and 0.01 dex,
while the scatters are 0.12 and 0.18 dex for M(<rhalf) and M200. By comparing the best-fitting and actual density
profiles, we find that ∼29% of the best-fitting density profiles show very good agreement with the truth, ∼32%
display over/underestimates at most of the radial range with biased M(<rhalf), and 39% show under/overestimates
in central regions and over/underestimates in the outskirts, with good constraints onM(<rhalf); yet most of the best
constraints are still consistent with the true profiles within 1σ statistical uncertainties for the three circumstances.
Using a mock DESI Bright Galaxy Survey catalog with the effect of fiber incompleteness, we find DESI fiber
assignments and the choice of flux limits barely modify the velocity dispersion profiles and are thus unlikely to
affect the dynamical modeling outcomes. Our results show that with current and future deep spectroscopic surveys,
JAM can be a powerful tool to constrain the underlying density profiles of individual massive galaxy clusters.

Unified Astronomy Thesaurus concepts: Galaxy dark matter halos (1880); Galaxy clusters (584); Hydrodynamical
simulations (767)

1. Introduction

Galaxy clusters in our Universe, which contribute to the
most luminous end of galaxy distribution and are hosted by the
most massive populations of dark matter halos, are essential
objects to study (e.g., Yang et al. 2007, 2021; Rykoff et al.
2014). They provide suitable environments to examine the
quenching of star formation in both the central massive
galaxies and other smaller member satellite galaxies (e.g.,
Kimm et al. 2009; Wetzel et al. 2013; Boselli et al. 2016; Wang
et al. 2018; Pintos-Castro et al. 2019), investigate the hot gas
distribution through X-ray and Sunyaev–Zeldovich (SZ)
observations (e.g., Arnaud et al. 2010; Planck Collaboration
et al. 2013; Lim et al. 2018), study the connection between
galaxies, hot gas, and the host dark matter halos (e.g., Planck
Collaboration et al. 2013; Anderson et al. 2015; Wang et al.
2016), look for missing baryons (e.g., Hernández-Monteagudo
et al. 2015; De Graaff et al. 2019; Lim et al. 2020), and even
serve as promising standard rulers in cosmology (e.g., Wagoner
et al. 2021).

In the era of precision cosmology, accurate determination of
the total mass of galaxy clusters, which is dominated by
invisible dark matter, is a very important prerequisite for robust
scientific conclusions in these different fields. Observationally,

there are a few different approaches to constrain the mass of
galaxy clusters. This includes nonkinematical methods of weak
gravitational lensing (e.g., Rasia et al. 2012; Han et al. 2015;
Sun et al. 2022) and modeling of the redshift distortions (e.g.,
Li et al. 2012). Other kinematical methods include, for
example, mass estimates based on the overall line-of-sight
velocity (LOSV) dispersion of member satellite galaxies
through calibrations with numerical simulations (e.g., Sales
et al. 2007) and through the Halo Occupation Distribution
framework (e.g., More et al. 2009a, 2009b, 2011), caustic
method (e.g., Diaferio & Geller 1997; Diaferio 1999; Gifford
et al. 2013), dynamical modeling of the observed hot gas
distribution (e.g., Rasia et al. 2012; Foëx et al. 2017), virial
theorem (e.g., Biviano et al. 2006), Jeans or another more
sophisticated dynamical modeling (e.g., Mamon et al. 2013;
Old et al. 2014), and machine learning (e.g., Kodi Ramanah
et al. 2021) approaches to recover the cluster mass from the
projected phase-space distribution of satellite galaxies, and
more recently, a combination of the satellite kinematics and
luminosity functions under a hierarchical Bayesian inference
formalism (van den Bosch et al. 2019).
Among the different satellite kinematic-based methods

above, the virial mass estimator and the machine learning
approach usually give a single estimate of the total cluster
mass. The machine learning approach, the empirical relation
deduced by Sales et al. (2007), and the modeling of redshift
distortion (Li et al. 2012) often rely on external numerical
simulations. Compared with the other methods, dynamical

The Astrophysical Journal, 973:82 (15pp), 2024 October 1 https://doi.org/10.3847/1538-4357/ad64cf
© 2024. The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

1

https://orcid.org/0000-0001-7404-3706
https://orcid.org/0000-0001-7404-3706
https://orcid.org/0000-0001-7404-3706
https://orcid.org/0000-0002-5762-7571
https://orcid.org/0000-0002-5762-7571
https://orcid.org/0000-0002-5762-7571
https://orcid.org/0000-0001-7890-4964
https://orcid.org/0000-0001-7890-4964
https://orcid.org/0000-0001-7890-4964
https://orcid.org/0000-0002-8005-0870
https://orcid.org/0000-0002-8005-0870
https://orcid.org/0000-0002-8005-0870
https://orcid.org/0000-0002-3712-6892
https://orcid.org/0000-0002-3712-6892
https://orcid.org/0000-0002-3712-6892
https://orcid.org/0000-0002-5954-7903
https://orcid.org/0000-0002-5954-7903
https://orcid.org/0000-0002-5954-7903
https://orcid.org/0000-0003-0771-1350
https://orcid.org/0000-0003-0771-1350
https://orcid.org/0000-0003-0771-1350
https://orcid.org/0000-0002-8010-6715
https://orcid.org/0000-0002-8010-6715
https://orcid.org/0000-0002-8010-6715
mailto:wenting.wang@sjtu.edu.cn
http://astrothesaurus.org/uat/1880
http://astrothesaurus.org/uat/584
http://astrothesaurus.org/uat/767
http://astrothesaurus.org/uat/767
https://doi.org/10.3847/1538-4357/ad64cf
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ad64cf&domain=pdf&date_stamp=2024-09-20
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ad64cf&domain=pdf&date_stamp=2024-09-20
http://creativecommons.org/licenses/by/4.0/


modeling of satellite galaxies can in principle constrain a
parameterized mass or potential model and does not require
external simulations, but it requires a relatively large sample of
satellite galaxies as dynamical tracers.

There are many deep spectroscopic surveys, such as the
Sloan Digital Sky Survey V (SDSS-V; Kollmeier et al. 2017),
the Subaru Prime Focus Spectroscopy (Takada et al. 2014), the
Dark Energy Spectroscopic Instrument (DESI; DESI Colla-
boration et al. 2016; Myers et al. 2023), and future Stage-5
spectroscopic instruments such as MegaMapper (Schlegel et al.
2022) and the Maunakea Spectroscopic Explorer. For the most
massive galaxy clusters in our local Universe, it is very
promising to obtain the LOSVs for >∼ 100 member satellite
galaxies, hence enabling the modeling of the parameterized
mass/potential profiles, instead of only a single value of the
total mass.

However, like the virial theorem, dynamical equilibrium has
to be assumed for almost all dynamical modeling approaches.
Since massive galaxy clusters assemble late, they may deviate
more from equilibrium than less massive galaxy groups. The
modeling outcome may be biased from the truth. In order to
understand the amount of biases in the dynamical modeling of
galaxy clusters, we first adopt realistic galaxy cluster systems
from the Illustris-TNG300 simulations (Springel et al. 2018) to
test the model performance with the axisymmetric Jeans
Anisotropic Multi-Gaussian Expansion modeling method
(JAM; Cappellari 2008; Watkins et al. 2013). In our work, we
directly know the true density profiles from the simulations,
and we apply JAM to the kinematics of simulated satellite
galaxies, to recover the mass density profiles. In this way, we
are capable of evaluating the model performances and biases,
before applying the method to real data in our planned future
studies. In addition to the Illustris-TNG300 simulation, we also
adopt a mock DESI bright galaxy survey (BGS) catalog (Smith
et al. 2017), to investigate observational effects including the
fiber incompleteness and the dependence on the survey flux
limit.

The layout of this paper is as follows. We introduce the TNG
suites of simulations, our selections of galaxy clusters, satellite
galaxies as tracers, and the creation of mock galaxy images and
multi-Gaussian expansion in Section 2. Section 3 provides an
introduction to the dynamical modeling method. Results are
presented in Section 4, including demonstrations of the model
performance based on bound satellites and satellites selected in
the redshift space with contaminations. We also discuss the
impact of fiber incompleteness and the effect of flux limits on
our analysis. We conclude in Section 5.

2. Data

2.1. The IllustrisTNG Simulation

The sample of galaxy clusters is constructed from the
TNG300-1 simulation of the IllustrisTNG Project (Pillepich
et al. 2018; Springel et al. 2018). The IllustrisTNG simulations
are a suite of hydrodynamical simulations incorporating
sophisticated baryonic processes, carried out with a moving-
mesh code (Springel 2010) to solve the equations of gravity
and magnetohydrodynamics. They include comprehensive
treatments of various galaxy formation and evolution pro-
cesses, such as metal line cooling, star formation and evolution,
chemical enrichment, and gas recycling. For more details about

TNG, we refer readers to Marinacci et al. (2018), Naiman et al.
(2018), and Nelson et al. (2018, 2019).
The TNG300 suite of simulations adopts the Planck 2015

ΛCDM cosmological model with Ωm= 0.3089, ΩΛ= 0.6911,
Ωb= 0.0486, σ8= 0.8159, ns= 0.9667, and h= 0.6774
(Planck Collaboration et al. 2016). TNG300-1 is the simulation
with the highest resolution in its suite (compared with
TNG300-2 and TNG300-3), and hereafter we refer to it as
TNG300. It has a periodic comoving box with 302.6Mpc on
each side that follows the joint evolution of 25003 dark matter
particles and approximately 25003 baryonic resolution ele-
ments (gas cells and star particles). Each dark matter particle
has a mass of 5.9× 107Me, while the baryonic mass resolution
is 1.1× 107Me. Collisionless particles, such as dark matter and
stars, have a softening length of 1.5 kpc, whereas gas particles
have variable softening scales with a minimum of 370 pc.

2.2. Galaxy Cluster Systems in TNG

Dark matter halos in TNG are identified with the friends-of-
friends (FoF) algorithm (Davis et al. 1985). In each FoF group,
substructures (subhalos/galaxies) are identified with the
SUBFIND algorithm (Springel et al. 2001). The most massive
subhalo in each group, together with its baryonic component, is
called the main subhalo and the central galaxy. All other
subhalos/galaxies in the halo are referred to as satellites.
In our study, we first select massive galaxy clusters with

M200> 1014.3Me
6 from the redshift zero snapshot of TNG300.

There are 86 galaxy clusters falling within this mass range in
TNG300. Most of these massive clusters withM200> 1014.3Me
can have more than 100 bound satellites7 with a stellar mass
threshold of Me> 109Me

8 and projected within 2Mpc. At the
lower boundary of M200∼ 1014.3Me, the minimal number of
bound satellites is ∼70. The number of satellites is enough for
dynamical modeling. We further select cluster systems by
requiring the central galaxies of these clusters to be at least two
magnitudes brighter in the r band than the brightest
companions projected within 4Mpc and with LOSV differ-
ences with respect to the central galaxies smaller than
2000 km s−1. These selections result in 28 clusters that meet
these requirements.
In Figure 1, we show the distribution of the number of bound

satellites and M200 for these galaxy clusters. In particular, we
show in the right panel of Figure 1 the distribution of middle-
to-major axis ratios (b/a) for our selected galaxy cluster
systems (black) and all galaxy clusters with the same mass
threshold of M200> 1014.3Me in TNG300. Here b/a is
calculated by using all bound star particles within R200 in
these cluster systems, including those in bound satellite
galaxies. Our selected clusters have b/a> 0.45.
We choose the Z-axis9 of the TNG300 simulation box as the

line-of-sight direction. We define, for the observing frame, the

6 The virial mass, M200, is defined as the mass enclosed in a radius, R200,
within which the mean matter density is 200 times the critical density of the
universe.
7 Bound satellites are defined as those companion galaxies around each
galaxy cluster system that have total energy smaller than zero in the simulation.
8 This mass threshold is chosen to ensure that the satellites can have more
than ∼100 star particles in TNG300.
9 In this paper, we will have three different coordinate systems. The first one
is the X-, Y-, and Z-axes of the simulation box, which we denote using capital
letters. The observing frame is defined using letters with a prime symbol, i.e.,
¢x , ¢y , and ¢z . In Section 3.1 below, we will define another intrinsic coordinate

system centered on the central galaxy, which we denote using x, y, and z.

2

The Astrophysical Journal, 973:82 (15pp), 2024 October 1 Shi et al.



¢z -axis as aligned with the line-of-sight direction, and the
¢ - ¢x y plane to be perpendicular to the line-of-sight direction.

Here the ¢x -axis is defined as the image major axis of the
galaxy cluster in projection. Notably, the observing frame is a
left-handed system.

The central coordinate of each galaxy cluster is defined as
the potential minimum of the main subhalo, and the velocity of
each cluster is defined as the mass-weighted and averaged
velocity based on all particles in the main subhalo. The velocity
of each satellite is calculated relative to the velocity of the
cluster after considering the Hubble flow. Explicitly, the
LOSVs of satellites in galaxy clusters from TNG300 are
calculated as vlos=H0(Z− Zcen)+ (vZ− vZ,cen). Here Zcen and
vZ,cen are the Z coordinate and the velocity along the Z-axis of
the simulation box for the cluster center, while Z and vZ are the
corresponding coordinate and velocity for the satellite. H0 is the
Hubble constant at redshift zero.

For results based on TNG300 in this study, we select
dynamical tracer satellite galaxies in two different ways. We
first select only true bound satellite galaxies projected within
2Mpc and more massive than 109Me as dynamical tracers.
Then, to mimic real observation, satellites are selected as those
projected within 2Mpc, within 2000 km s−1 along the line-of-
sight direction, and also more massive than 109Me. Our choice
of the line-of-sight depth is based on a natural boundary of dark
matter halos revealed around the minimum bias and maximum
infall locations, and this boundary is very close to twice the
virial radius of dark matter halos, which is close to 2000 km s−1

along the line of sight for our massive galaxy cluster systems
(e.g., Fong & Han 2021; Fong et al. 2022; Gao et al. 2023). We
find the completeness of satellites selected in this way is ∼88%
on average, and the contamination is ∼11%. In our analysis,
we will test how the dynamical modeling outcome changes
with the contamination.

2.3. The DESI BGS Mock Catalog

In addition to TNG galaxy cluster systems, we use a mock
DESI BGS catalog (Smith et al. 2017) to investigate
observational effects including fiber incompleteness and flux
limits. The DESI BGS survey is expected to cover an area of
∼14,000 square degrees in four passes of the sky, with a depth
approximately two magnitudes deeper than that of the SDSS,

hence providing more spectroscopically observed satellite
galaxies in galaxy clusters (Hahn et al. 2023).
The BGS mock catalog we adopted in this study is based on

the Millennium-XXL (MXXL) simulation (Angulo et al. 2012),
which adopts the WMAP1 cosmological parameters of
Ωm= 0.25, ΩΛ= 0.75, σ8= 0.9, n= 1, and h= 0.73. It is a
light-cone mock catalog (Smith et al. 2017), which covers the
full sky and extends to redshift 0.8 with a mass resolution of
∼1011.14Me. The light cone is created with interpolation
between different snapshots (Merson et al. 2013).
Satellites are randomly positioned following a Navarro–

Frenk–White (Navarro et al. 1996, 1997) density profile, with
randomly assigned velocities following the Maxwell–Boltz-
mann distribution. A Monte Carlo method is used to assign an
r-band magnitude and a g− r color to each galaxy to build a
galaxy catalog whose luminosity function of galaxies is in
agreement with the SDSS (Abazajian et al. 2009) and the
Galaxy and Mass Assembly survey (Driver et al. 2009, 2011).
The galaxy catalog has a flux limit of r< 20 and a median
redshift of z∼ 0.2. The flux limit of r< 20 is faint enough for
the DESI BGS bright sample, as the BGS bright sample has a
flux limit of r< 19.5. The fiber assignment algorithm has been
run on the mock (Smith et al. 2019), enabling us to quantify the
impact of fiber assignment in galaxy surveys.
Note, however, that the fiber assignment algorithm of Smith

et al. (2019) is currently being updated with the progress of the
DESI observation. The mock BGS catalog we are currently
using in this study (Smith et al. 2017) is based on three passes,
and it is now being updated to four passes. Moreover, the DESI
BGS survey has a faint sample down to a flux limit of
r< 20.175, in order to increase the overall BGS target density
and enable small-scale clustering measurements (Hahn et al.
2023). Thus the flux limit is being updated from r< 20 to
r< 20.175 in the latest DESI BGC mock under construction.
Nevertheless, we think these improvements and modifications
will not affect our conclusions (see Section 4.5 for details).
We select tracer satellites from the DESI BGS mock as those

companions that are projected within R200 and with LOSV
differences with respect to the central galaxy smaller than twice
the virial velocity of the host halos. After applying DESI
masks, we find that there are 84 galaxy clusters with redshifts
lower than 0.2 within the DESI Year 5 footprint, which can
have more than 100 satellite galaxies with r< 19.5 selected in
this way. The LOSVs (vlos) of the satellite galaxies in the BGS

Figure 1. Distribution of the number of bound satellites in each cluster (left), the virial mass (M200, middle), and the middle-to-major axis ratio (b/a, right) for our
mock galaxy clusters from TNG300. In the right panel, the black and blue histograms refer to our selected galaxy clusters and all clusters with the same halo mass
threshold in TNG300, respectively.
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mock catalog are calculated based on the following equation:

=
-

+
v

c redshift redshift

1 redshift
, 1los

cen

cen

( ) ( )

where c is the speed of light, redshift− redshiftcen is the
difference between the redshifts of the satellite galaxy and the
central galaxy of the galaxy cluster.

The mock DESI BGS catalog is based on different
cosmological parameters from those of TNG, with satellites
populated in dark matter halos in different ways. In principle, it
is better to focus on the same simulation, but TNG does not
have realistic light-cone mocks. We thus checked the average
distribution of the LOSV, velocity dispersion, and surface
number density profiles of satellite galaxies in the two
simulated data sets (TNG and DESI BGS catalog), and we
found consistent spatial and velocity distributions of satellites,
which ensures a fair usage of the mock DESI BGS catalog.

2.4. Mock Galaxy Cluster Images and Multi-Gaussian
Decomposition

In our study, we aim to constrain the underlying potential
using satellite galaxies as dynamical tracers. The potential is
contributed by both luminous and dark matter. JAM directly
infers the potential formed by the luminous matter distribution
from the deprojected “optical” image. Hence we need to create
mock galaxy cluster images for our analysis. For the mock
images of galaxy clusters, we simply adopt the projected stellar
mass density or surface density to create the images, i.e., the
reading in each pixel is in units of Me pc−2 based on all bound
star particles associated with the galaxy cluster. Note the mock
images of galaxy clusters are contributed by all star particles
bound to the cluster and also those star particles in satellite
galaxies bound to the cluster. In real observations, however, the
observed diffuse light in the outskirts of the clusters depends on
the surface brightness limit of the optical survey but can be well
measured for individual galaxy clusters in modern deep
photometric surveys (e.g., Huang et al. 2018; Wang et al.
2019).

The projected number density distribution of tracer satellites
plays a critical role in solving the Jeans equation (see
Section 3.1 for more details). Therefore, we also create the
projected satellite number density maps for each galaxy cluster

system, based on the projected positions of selected tracer
satellite galaxies, with each satellite contributing the same
weight, regardless of its actual stellar mass or luminosity in the
simulation.
Once the mock images or maps are made, the projected

luminous stellar mass distributions and the projected satellite
number distributions will be decomposed to multiple Gaussian
elements (MGEs; Emsellem et al. 1994; D’Souza & Rix 2013),
in order to enable the analytical deprojection for each MGE
component to three dimensions and to bring analytical
solutions for any arbitrary matter distribution (see Section 3
for more details).
In practice, we execute the MGE decomposition with the

Sherpa software (Freeman et al. 2001; Doe et al. 2007), which
is a modeling and fitting module integrated with CIAO to fit the
mock images and optimize the solutions of each MGE.
The surface density distribution is shown for one example

galaxy cluster from TNG300 in the left plot of Figure 2. Note
JAM requires the major axes of the mock galaxy and tracer
images to align with the ¢x -axis of the image plane, and thus the
galaxy cluster has been rotated to meet the requirement.
In the middle panel, we show each individual Gaussian

element of the stellar component with different colored curves
for this cluster. The combined surface density profile of all
MGEs is represented by the black curve, and the true surface
density profile of the stellar component is shown by red dots.
From this plot, we can see the red dots agree well with the
black line from ∼100 kpc to R200, indicating a good overall
performance of the MGE decomposition. In the innermost
region (<100 kpc), the black line tends to be slightly higher
than the red dots, and such a bias is primarily caused by the
lower number of pixels in such central regions. The right panel
of Figure 2 is similar to the left one, but it shows the MGE
decomposition for the projected satellite/tracer number density
profile. The error bars of the red dots are based on 100
bootstrap samples of satellites in projection. In detail, we
perform multiple bootstrap samples by randomly selecting a
subset of these satellites each time with repeats and calculating
the 1σ scatters of the projected satellite number density profiles.
Because of the limited number of satellites, the error bars are
significantly larger in the right plot, and the MGE decomposi-
tion is not as good as in the middle panel, especially in the very
inner region and the outer region close to R200.

Figure 2. Left: surface density map for the stellar component of one representative galaxy cluster system from TNG300. The red circle corresponds to R200. Middle:
the red dots with error bars are the true surface density profile of the total stellar mass distribution. This is calculated from elliptical isophotes and reported as a function
of the major axis length ( ¢ax ) for the same representative galaxy cluster in the left plot. The error bars are the 1σ scatters based on 100 bootstrap samples of all star
particles in TNG300, which are comparable to the symbol size. We show each individual MGE component with a different colored curve, and the black solid curve is
the total best-fitting surface density profile, contributed by the combination of all MGEs. The red vertical dashed line marks R200. Right: similar to the left panel, but
comparing the true projected satellite number density profile and the MGE decompositions. The error bars are the 1σ scatters among 100 bootstrap satellite samples.
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3. Methodology

3.1. The Jeans Equation and Potential Model

JAM modeling is a powerful dynamical modeling tool that
can be used to constrain the luminous and dark matter
distributions of globular clusters, dwarf galaxies, and distant
galaxies with integral field unit observations. In this study, we
investigate the performance of JAM when it is applied to galaxy
clusters, with satellite galaxies in the cluster as dynamical
tracers. A detailed description of JAM can be found in
Cappellari (2008) and Watkins et al. (2013). Here we only
give a brief introduction.

The Jeans equation for an axisymmetric system ( =
f
¶
¶

0) in

steady state ( =¶
¶

0
t

) can be written in cylindrical coordinates
as

n n n
n

-
+

¶
¶

+
¶

¶
= -

¶F
¶

fv v

R

v

R

v v

z R
, 2

R R R z
2 2 2

tot( ) ( ) ( ) ( )

n n n
n+

¶
¶

+
¶
¶

= -
¶F
¶

v v

R

v v

R

v

z z
, 3R z R z z

2
tot( ) ( )

( )

where ν is the satellite number density distribution, which has
been decomposed into a few different MGEs (see Section 2.4
for details). Φtot is the total gravitational potential.

JAM models the total potential, Φtot, with two different
components: (1) the stellar component, as we have mentioned
in Section 2.4, which is deprojected and evaluated from
the surface density distribution;10 and (2) the dark matter
component.11 To model the dark matter component, we simply
adopt the following the double-power-law model:

r
r

=
+g a

r
r r r r1

, 4s

s s
( )

( ) ( )
( )

in which ρs and rs are the scale density and scale radius, and α

is the outer power law index. In this study, due to the
significantly lower number of satellite galaxies in central
regions of the galaxy clusters, we find that our constraints on
the inner density slope, γ, are very weak, so we fix γ to be 1
throughout this paper.

As we have mentioned in Section 2.4, JAM determines the
potential contributed by the stellar mass distribution from the
deprojected optical images of galaxy clusters. Since the pixel
units of our mock images are Me pc−2, we simply fix the
stellar-mass-to-light ratio (M*/L) to unity in our analysis. We
decompose the stellar mass distribution into MGEs. Each
component enables fast deprojections and leads to quick
analytical solutions to the Jeans equation. Given a model dark
matter density profile, we also decompose it into a few different
MGEs (see Section 2.4 for details). In this way, we have MGE

components for the luminous and dark matter potential, and
tracer number density distribution, ν. We can thus have
analytical solutions for each MGE component. The final
solution to the above Jeans equation (Equations (2) and (3)) is
the summation of all different components.
To ensure that the Jeans equation has unique solutions of the

first and second velocity moments, the velocity ellipsoid is
further assumed to be aligned with the cylindrical polar
coordinate system ( =v v 0R z ). In addition, a constant aniso-

tropy parameter, λ, is introduced as l=v vR z
2 2 . A rotation

parameter, κ, is introduced as k= -f fv v vR
2 2 1 2( ) , with the

calculation of it modified according to Zhu et al. (2016), though
for galaxy clusters, which are not rotation-dominated systems,
κ is not expected to be significantly different from zero. In
principle, κ can be either positive or negative, depending on the
direction of rotation, i.e., clockwise or counterclockwise seeing
from the positive z-axis in the intrinsic frame (see the definition
below for the intrinsic frame). With the boundary condition set
to n =v 0z

2 as z→∞ , the Jeans equation can be summarized
as

⎡

⎣
⎢
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Given a model potential, the velocity first and second
moments are solved in an intrinsic frame defined on the cluster
system. The intrinsic frame is a right-handed system, and we
use the quantities without the prime to denote the intrinsic
frame, i.e., x, y, and z. In our analysis, the z-axis is chosen to be
the minor axis of the cluster system, with the minor axis
calculated from the spatial distribution of satellites. The x-axis
is chosen to be aligned with the ¢x -axis of the observing frame
(see Section 2.2 above), with the ¢x -axis being the projected
major axis of the galaxy cluster in the image plane. The y-axis
is determined according to the x-axis and z-axis to form the
right-handed cartesian coordinate system. The intrinsic frame
can be linked to the left-handed observing frame (see
Section 2.2) through the following equations:
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where incl is the inclination angle, defined as the angle between
the z-axis of the intrinsic frame and the ¢z -axis of the observing
frame.
The first and second moments of LOSVs, solved from the

Jeans equation mentioned above, can be compared with the
actual velocity moments of tracer satellites. Then the best
potential model parameters can be inferred by maximizing the
likelihood function, which will be introduced in the next
section.

10 The stellar component is subdominant compared with dark matter in galaxy
clusters, and throughout this paper, we focus our discussions on the constraints
of the total matter distribution.
11

JAM does not model the gas component separately, because in real
observation, the spatial distribution of hot and cold gas in distant galaxies is
often difficult to be directly observed with high resolution. In principle, we can
modify JAM to model the gas component separately. However, we have
checked that the hot gas component is distributed over the whole halo and has
similar radial distributions as that of dark matter. Even if we model the gas and
dark matter components separately, JAM would fail to distinguish them. So for
our analysis throughout this paper, the gas component would be modeled
within the dark matter component. Since our main conclusions are based on the
total matter distribution, whether the gas component is modeled separately or
not is not important.
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3.2. Likelihood Function

We model the posterior probability distribution of our model
parameters by Bayes theorem:

Q Q Q
=D

D
D

p
p p

p
. 8( ∣ ) ( ∣ ) ( )

( )
( )

Our list of model parameters is Θ= (λ, κ, ρs, rs, α) (see
Section 3.1 above or a summary of free parameters near the end
of this subsection). p(Θ) is the prior, and p(D|Θ) is the
distribution of the velocities by assuming that the prediction of
the velocity distribution obeys the multivariate Gaussian
distribution. p(D) is a factor required to normalize the posterior.

The likelihood of the satellites in each cluster system can be
written as
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where vi represents the velocity solved by JAM at the position
of the observed tracer satellite, ¢ = ¢ ¢x x y,i i i( ), and μi is the
observed velocity of the tracer satellite.

The covariance matrix Ci is defined through the first and
second velocity moments:
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and Si is the error matrix of the observed velocity of a tracer
satellite
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Notably, in our work, we only use the LOSVs, so we simply
set = =¢ ¢v v 0x i y i, , and input very large values for s
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. This is equivalent to only fitting the observed first and

second moments of LOSVs.

¢ =
S ¢

S ¢ + S
x

x

x
m

0, 0
, 12i i

i

i 
( ) ( )

( ) ( )
( )

where S ¢xi( ) is the surface density at ¢xi and Σ(0, 0) is the
central surface density.

The likelihood of the fore/background satellites, Li
bkgd, can

be calculated by assuming a tri-variate Gaussian distribution
with a given mean velocity and velocity dispersion of a fore/
background model. In our case, the mean velocity and velocity
dispersion of the fore/background model are directly calcu-
lated from unbound satellite galaxies in the simulation. Then

the likelihood becomes

= ¢ + - ¢
=

x xL m L m L1 . 13
i

N

i i i i i i
1

sat bkgd
sat

( ) [ ( )] ( )

We summarize the list of our model parameters as follows:

1. λ, the velocity anisotropy;
2. κ, the rotation parameter;
3. rºd rlog ;s s1 10

2 3( )
4. rºd log ;s2 10( )
5. α, the outer density slope;
6. ò, the background fraction;
7. incl, the inclination angle.

Here d1 and d2 are constructed to reduce the strong
degeneracy between ρs and rs. The logarithmic transformation
converts the original units of 

-M pc2 3 and Me pc−3 into
dimensionless logarithmic values. After taking the logarithm,
they cover a smaller range in the log space. ò is fixed to zero
when we only consider bound satellites as tracers. To obtain the
best-fitting model parameters, we set a flat prior of Θ and use
the Markov chain Monte Carlo approach12 to maximize the
likelihood function.
In our analysis, we will try two different cases by either

fixing incl or allowing it to be a free model parameter. When
fixing incl, its value is chosen as the angle between the line-of-
sight direction of the mock observer and the minor axis
calculated from the spatial distribution of bound satellites.
However, since our galaxy cluster systems are not rotationally
dominated and the minor axes of realistic galaxy cluster
systems differ for different components, the definition of incl is
not straightforward. For example, if we calculate the minor axis
according to the spatial distribution of the central galaxy, the
angle between this minor axis and the line-of-sight direction
would be different. For individual systems, fixing incl
according to different minor axes definitions or treating incl
as a free parameter can lead to different constraints, though for
most of the time, they are still consistent within 1σ due to our
small number of tracer satellites. For all 28 cluster systems, we
will show later that the amounts of overall biases and scatters of
either fixing incl or treating it as a free parameter do not show
significant differences. Setting incl as a free parameter leads to
slightly smaller scatters. Note in real observation, the constraint
on incl for galaxy cluster systems is weak and incl is chosen to
be fixed (e.g., Li et al. 2020).
We fix the stellar-mass-to-light ratio, M*/L, to their true

values in the simulation. In our analysis, the true value ofM*/L
is unity. We do not test the uncertainties in M*/L in this study.
In real observations, M*/L can be determined through stellar
population synthesis modeling and fixed upon dynamical
modeling. The uncertainties of M*/L by population synthesis
modeling, however, depend on many different factors, includ-
ing the number of available bands adopted for the synthesis
modeling, the adopted stellar libraries, initial mass functions,
dust models, and so on (e.g., Conroy 2013), which might have
significant systematic uncertainties but these are hard to be
directly tested for real galaxies.
Nevertheless, we find the stellar component is more

subdominant than the dark matter component for our galaxy

12 When fitting the double-power-law function to the true density profiles, we
use EMCEE (Foreman-Mackey et al. 2013) to sample the posterior distribution
of parameters.
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cluster systems from TNG. Moreover, throughout our analysis
in this paper, we focus on discussing the total mass profiles, so
we believe uncertainties in M*/L would not significantly affect
the generality of the main conclusions about the total mass
profile in this paper. In fact, in a previous study, Wang et al.
(2022) found that if M*/L is fixed to a significantly high value,
JAM would decrease the contribution by dark matter, which
maintains almost the same best-constrained total matter
distribution. In principle, we can modify JAM to let it directly
model the total matter distribution for our sample of galaxy
clusters, instead of modeling the stellar and dark matter
components separately, but this is not incorporated for our
analysis in this current paper.

4. Results

In this subsection, we investigate the accuracy and bias of
the mass profiles predicted by JAM.

4.1. The Overall Performance with Massive Galaxy Clusters
from TNG300

Figure 3 shows the JAM-predicted masses versus the truth in
the simulation, for all 28 galaxy clusters selected from
TNG300. Here the results are based on the case when the
inclination angle, incl, is fixed. We will discuss the case when
incl is a free parameter later in Section 4.3. We show the
comparisons between the best-fitting and the truth for the total
mass enclosed within the half-mass radius of tracer satellites,
rhalf, and for the virial mass, M200. Here rhalf is defined as the
projected radius, within which it contains half of the total
bound tracer satellites projected within 2Mpc. We denote the
masses enclosed within rhalf as M(<rhalf). Note the enclosed

masses are defined in three dimensions rather than in
projection, according to the best-fitting potential model and
the actual particle distributions in the original simulations. The
best-fitting virial mass is calculated according to the best-fitting
model density profile by JAM. We first calculate the
corresponding R200 according to the best-fitting profile and
then calculate the integrated mass within R200.
In general, the orange squares and the blue dots roughly

distribute symmetrically around the red diagonal line, indicat-
ing reasonable and approximately ensemble unbiased mass
constraints. There are small biases of −0.02 and 0.01 for
M(<rhalf) and M200. The mean scatters are ∼0.09 dex for
M(<rhalf) and 0.15 dex for M200. The readers can refer to the
top row of Table 1 for a summary of these values.
According to the amounts of scatter, we can see the

constraint on M(<rhalf) is better than that of M200. This is
consistent with the argument in many previous studies, which
find that the mass within the half-mass radius of tracers is a
sweet point, which can be constrained better than the masses
within other radii (e.g., Wolf et al. 2010; Walker &
Peñarrubia 2011; Wang et al. 2015; González-Samaniego
et al. 2017; Wang et al. 2020). This is mainly due to the
degeneracy between the two halo parameters (d1 and d2, ρs and
rs, or M200 and the concentration c200). Perpendicular to the
degeneracy direction, the constraint is the tightest, which
corresponds to the amplitude of the potential at approximately
the median radius of the tracer population. On the other hand,
the constraint is the weakest along the degeneracy direction,
which corresponds to the shape of the potential (e.g., Han et al.
2016; Li et al. 2021, 2022).
Figure 4 shows the error contours of different combinations

of five model parameters (λ, κ, d1, d2, α) for one randomly
selected galaxy cluster. The black, dark gray, and gray regions
show the 1, 2, and 3σ confidence intervals. As we have
mentioned above, d1 and d2 are defined from the two halo
parameters as rºd rlog s s1 10

2 3( ) and rºd log s2 10( ), and thus
they are dimensionless and cover a much smaller range in the
log space than the original ρs and rs. The units we adopt for ρs
and rs are Me pc−3 and parsec in our calculations, and d2 can
be negative. The degeneracies between d1, d2, and α are
prominent. The degeneracies between the rotation parameter, κ,
and halo parameters (d1, d2, and α) are very weak or absent,
while there also exist some correlations between λ and the three

Figure 3. The blue dots with error bars show the best-fitting M200 by JAM vs.
the true masses for 28 galaxy clusters from TNG300. Here we adopt true bound
satellites as tracers, and the inclination, incl, is fixed to the angle between the
line-of-sight direction of the mock observer and the minor axes defined through
the spatial distribution of bound satellite galaxies in the simulation. The orange
squares represent the best-fitting vs. true mass within the half-mass–radius of
tracer satellites, M(<rhalf). The red dashed diagonal line marks “y = x” to guide
the eye. Overall, JAM gives a reasonable prediction of both M200 and M(<rhalf).
The error bars are calculated from the boundaries defined by those models
whose log-likelihood ratios are within 1σ to the log-likelihood value of the best
model, assuming χ2 distribution for the twice log-likelihood variable.

Table 1
Summary of Biases and Scatters in M(<rhalf) and M200

Mass Bias Mass Scatter

M(<rhalf) M200 M(<rhalf) M200

bound satellite
incl fixed −0.02 0.01 0.09 0.15

bound satellite
incl free −0.01 0.03 0.11 0.15

with contamination
incl free −0.06 0.01 0.12 0.18

Note. Throughout this paper, we first investigated the case when only bound
satellites are used as tracers, with fixed incl (Section 4.1). We then moved on
with the case of treating incl as a free model parameter, but still using bound
satellites as tracers (Section 4.3). In the end, we select satellite galaxies in the
redshift space as tracers, with free incl (Section 4.4). The three cases refer to the
three rows of the table (see the text in the left column).
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halo parameters, though not as strong as those among the halo
parameters. Note that for this galaxy cluster, κ is positive but
still close to zero, indicating weak rotations. For most of our
galaxy clusters, the values of κ are close to but not exactly zero,
indicating galaxy clusters can have weak rotations, but they are
not rotationally dominated systems. In the next subsection, we
move on to investigate a few example density profiles and
perform more detailed discussions.

4.2. Example Density and Velocity Dispersion Profiles

In this subsection, we further compare the best-fitting and
true density and velocity dispersion profiles. Figure 5 shows the
true and best-fitting matter density profiles for the dark matter
+ gas (orange) components and for the total matter distribution
(blue). This is shown for three representative galaxy clusters.
At most of the radii, the blue crosses and solid curves are very
close to the orange dots and dotted curves, except for the very
inner regions, which is due to the contribution of the stellar
component. Note again in our JAM modeling, the gas
component is not modeled separately. Instead, the hot gas is
largely included in the dark matter component of the model,
because they have similar distributions as the underlying dark
matter in the simulation. In our analysis, the stellar component
is directly deprojected from the stellar surface density
distribution and is subdominant, and hence are not shown in
Figure 5.

In the left panel of Figure 5, the difference between the blue
crosses and the blue solid line is significantly smaller than the
shaded errors, indicating the total density profile is very well
recovered over the whole radial range. As we have explicitly
checked, 8 out of the 28 systems (∼29%) in our galaxy sample
belong to this case, i.e., the density profiles are very well
constrained at almost all radii within R200.

In the middle panel, the best-fitting total profile more
prominently deviates from the true total density profile at most
of the radial range, and the total mass within the half-mass
radius of tracer satellites, M(<rhalf), is less well recovered.
Though given the large statistical errors, the best-constrained
model and the truth still marginally agree with each other.
About nine galaxy clusters (∼32%) show similar trends as this
middle panel, among which five show overestimates over most
of the radial range, and four show underestimates over most of
the radial range.
In the right panel of Figure 5, the best-constrained total mass

density profile is underestimated in the inner region, while
overestimated in the outskirts. The best-constrained and true
profiles cross at approximately the half-mass radius of tracer
satellites, as marked by the vertical red dashed line, leading to a
good constraint on M(<rhalf). There are about 11 (∼39%)
galaxy clusters in our analysis having their best-fitting inner
and outer densities biasing from the truth in different directions
while maintaining a good recovery of M(<rhalf). Among them,
seven have underestimated inner densities and overestimated
outer densities, while four have overestimated inner densities
and underestimated outer densities.
In previous studies, we have applied JAM to dwarf galaxies

in numerical simulations to recover their dark matter distribu-
tions (Wang et al. 2022, 2023). We find that contraction or
infalling motions can cause deviations from steady states. Such
infalling motions reduce the velocity dispersions in inner
regions, resulting in underestimated inner densities, and to
maintain a good constraint on M(<rhalf), the outer densities are
overestimated. On the other hand, global expansion motions
such as gas outflows can cause overestimated inner densities
and underestimated outer densities.
Moreover, we have discussed in another study (Li et al.

2022) that galaxy cluster systems having overestimated
M(<rhalf) often have large virial ratios.13 Clusters with the
highest virial ratio values are usually unrelaxed systems with
high kinetic energy, which may be caused by major mergers or
active mass accretion, and thus the kinetic energy is increased
within a short time. Li et al. (2022) showed a tight correlation
between the bias in M(<rhalf) and the system virial ratios.
In our current study, we have also investigated whether

galaxy cluster systems with under/overestimated inner den-
sities and over/underestimated outer densities have infalling/
expansion motions in the tracer satellite population and in the
gas and dark matter components. Unfortunately, we fail to see
prominent correlations as in Wang et al. (2022). Moreover, we
have looked at the correlation between the bias inM(<rhalf) and
the virial ratio and failed to see prominent correlations. We
think this is mainly limited by our small number of tracer
satellite galaxies and the associated large statistical errors. Note
in our current analysis, the number of tracer satellites ranges
from 70 to slightly more than 350, whereas Wang et al. (2022)
used at least 6000 member star particles as tracers, and Li et al.
(2022) in fact adopted dark matter particles in their simulations
as tracers, instead of satellites or subhalos. The average number
of tracers in galaxy clusters used by Li et al. (2022) is on the
order of 105.
We note that the contraction/infalling or expansion/outflow

motions are not the only ways of causing the systems to deviate
from steady states. The deviation from steady states can be

Figure 4. Error contours for one randomly selected galaxy cluster from
TNG300. The black, dark gray, and gray contours are 1σ, 2σ, and 3σ
confidence levels, respectively. The histograms on the right of each row show
the one-dimensional marginalized posterior distributions. The x- and y-axis
ranges displayed here are chosen to be the same as in Figure 8 below.

13 The virial ratio is defined as twice kinematical energy versus the potential
energy of the system, calculated using all bound particles.

8

The Astrophysical Journal, 973:82 (15pp), 2024 October 1 Shi et al.



caused by many other factors, such as the existence of massive
and dynamically cold streams post-major mergers, the
perturbation by a massive companion satellite galaxy, and the
time evolution of the underlying gravitational potential. For the
case shown in the middle panel of Figure 5, we discovered a
massive companion located behind the cluster along the line of
sight but passed our selection criterion along the line-of-sight
direction. This is likely the reason causing the overestimate in
M(<rhalf) for this system. For the other three systems having
overestimated M(<rhalf), we have identified one system having
a massive companion projected just beyond 2Mpc, but we fail
to see the similar existence of massive companions for the other
two. However, we have tested our results by varying the
magnitude gap when selecting our galaxy cluster systems. We
find that a smaller magnitude gap in the selection, which means
the possible existence of more massive companions, would end
up with more cases corresponding to the middle panel of
Figure 5.

Moreover, JAM assumes axisymmetry, whereas realistic
galaxy cluster systems from TNG300 are not ideally axisym-
metric. The deviation from the axisymmetric assumption is also
responsible for the biases in the mass profiles. We find that
different choices of line-of-sight direction with respect to the
minor axis of our cluster systems can lead to different results
for individual systems. For one system belonging to the
classification in the middle panel of Figure 5, its major axis is
more aligned with the line of sight, which is likely the cause for
overestimated masses at most of the radii.

So far we have demonstrated a few typical cases of how the
best-fitting density profiles deviate from the truth. However,
what we directly fit are the velocity moments, instead of the
density profiles. We thus show in Figure 6 the true (symbols)
and best-fitting (lines) velocity dispersion profiles in projected
radial bins along the major (green) and minor (black) axes of
three galaxy clusters, which correspond exactly to the three
systems we show in Figure 5.

In all three panels, the best-fitting models agree with the
truth reasonably. However, the true velocity dispersion profiles

are not perfectly axisymmetric, with prominent differences
between the left- and right-hand sides. However, JAM is an
axisymmetric model. As a result, some of the asymmetric
features are not possible to be ideally fit. For example, if
looking at the velocity dispersion profiles in the left panel, the
model tends to be higher than the actual velocity dispersions on
the positive side of the x-axis and at large radii, and the
difference is greater than the error bars, while the negative side
is a better fit. We do not expect the axisymmetric JAM model to
have an ideally good fit for this case.

4.3. Constraints on the Inclination Angle

Our analysis in the previous subsections is achieved by
fixing the inclination angle, incl, to the angle between the line
of sight and the minor axis calculated from the spatial
distribution of tracer satellites in TNG300. In real observation,
we do not know incl in advance. Thus from now on, we treat
incl as a free parameter in our modeling. Figure 7 shows a
comparison between the cases when incl is fixed or set free. For
most of the cases, fixing incl or setting it free leads to
differences in the best-constrained M(<rhalf) and M200 smaller
than the error bars. With incl as a free parameter, the biases in
M(<rhalf) and M200 become −0.01 and 0.03 dex, and the
scatters become 0.11 and 0.15 dex. The biases are not
significantly different from the values when fixing incl to the
truth (−0.02 and 0.01 dex; see Section 4.1). The scatter in
M(<rhalf) gets slightly larger, as compared to the value of
0.09 dex in M(<rhalf) of Section 4.1. The readers can also refer
to the top and middle rows of Table 1 for a summary of these
values.
Figure 8 shows the error contours for the same system as

Figure 4. The constraint on incl is not tight, with a 1σ
uncertainty of about 30 deg. Most of the other parameters do
not show strong correlations with incl, except for λ, which
shows some positive correlations with incl. As a result, the
best-constrained values of λ differ more significantly between
Figures 4 and 8. The best constraints on the other model

Figure 5. Comparison between the real and JAM-predicted density profiles for three example galaxy clusters from TNG300 and the three examples are shown in three
different panels. The density profiles are calculated in three dimensions, and r in the x-axis label is the radius from the cluster center in three dimensions. The true total
density profile is represented by blue crosses with error bars (comparable to the symbol size), and the blue solid curve is the JAM prediction. The blue-shaded region
corresponds to the 1σ error by JAM. The true dark matter + gas density profiles are shown by orange dots, while the corresponding JAM predictions are shown by the
orange dotted curves. Note JAM does not model the gas component separately, which is largely modeled within the dark matter component, so for fair comparisons,
the orange dots correspond to the actual dark matter + gas density profiles in the simulation. The true total mass density profile corresponds to everything in the
simulation, including stellar, dark matter, and gas, whereas the JAM-predicted total profile is the summation of the best-constrained dark matter and stellar components,
with the stellar component directly inferred by deprojecting the stellar surface density distribution. Error bars of the true density profiles are calculated from the 1σ
scatters of 100 bootstrap subsamples of particles in the galaxy clusters. The red and gray dashed vertical lines mark the half-mass radii of the tracer satellites and R200.
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parameters agree well within 1σ either fixing incl or setting
incl free.

The frequencies corresponding to the cases in the three
panels of Figure 5 remain largely similar when incl is a free
parameter. So we do not repeatedly show the examples.

4.4. The Effect of Foreground and Background Contamination

The results presented so far are based on using bound
satellites as tracers. However, in real observation, satellite
galaxies are selected in the redshift space, which may suffer

from contamination by foreground and background galaxies
(purity), and true satellite galaxies might be missing
(completeness).
In order to better mimic the selection of satellite galaxies in

real observations, we project the TNG300 simulation box along
the Z-axis, i.e., the line of sight, also defined as the ¢z -axis in
the observing frame. Tracer satellites are selected as those
companions that are projected within 2Mpc and with LOSV
differences with respect to the central galaxy smaller than
2000 km s−1. By selecting companion galaxies in this volume,

Figure 6. Line-of-sight ( ¢z component) velocity dispersion profiles of member satellites in three galaxy clusters, binned within sectors of ±45° to the major (green)
and minor (black) axes of the cluster systems. Each bin contains 15 satellites. ¢R indicates the projected distances to the cluster center in the corresponding sectors
along the major or minor axes in the image plane. The x and y errors indicate the bin width and the 1σ scatters, respectively. Green and black solid curves show the
best model predictions along the major and minor axes. The three galaxy clusters correspond exactly to the three clusters shown in Figure 5.

Figure 7. Left: best-fitting mass within the half-mass–radius of tracer satellites (M(<rhalf)) vs. truth for 28 galaxy clusters from TNG300. Here we set the inclination,
incl, as a free model parameter, and the results are shown as gray squares with error bars. Empty orange circles are repeats of the measurements in the previous
Figure 3 when incl is fixed to the truth in the simulation. Error bars for the red circles are comparable to those for the orange squares and are hence not repeatedly
shown. Right: similar to the left panel, but for the virial mass (M200). The blue circles are exactly the same as those in Figure 3.
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we find on average 88% of true satellite galaxies in the
simulation can be included, while there is only ∼11%
contamination by unbound galaxies. Note for results in this
subsection, we treat incl as a free parameter.

Figure 9 shows a comparison of the best-recovered masses,
based on true bound satellite galaxies and based on companions
selected in projection as described above. Perhaps because of
the reason that the fraction of contamination is as low as
∼11%, the results before and after considering the contamina-
tion do not show significant differences for most systems. The

associated biases and scatters for M(<rhalf) and M200 are shown
in the bottom row of Table 1. Compared with the middle row
when only bound satellites are used (no contamination), the
biases and scatters only become slightly larger.
Our results in Figure 9 suggest that with the selection of

companions projected in 2Mpc and within 2000 km s−1 along
the line of sight, the contamination of fore/background can be
controlled to be as low as 11%, and the dynamical modeling
outcome has slightly larger biases and scatters than using true
bound satellites as tracers.

Figure 8. Similar to Figure 4, but now the inclination angle, incl, is treated as a free model parameter.

Figure 9. Left: best-fitting mass within the half-mass radius of tracer satellites (M(<rhalf)) vs. truth for 28 galaxy clusters from TNG300. Gray squares are exactly the
same as those in Figure 8. After selecting tracer satellites according to the LOSV differences, we include ∼10% contamination, and the corresponding results are
shown as red empty circles. Error bars for the red circles are comparable to those for the orange squares and are hence not repeatedly shown. Right: similar to the left
panel, but for the virial mass, M200. The purple dots are exactly the same as those in Figure 3. The inclination angle, incl, is set as a free model parameter for results in
both panels. We do not see prominent differences between the results before and after including contaminations.
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4.5. Fiber Incompleteness and the Dependence on Flux Limit

In addition to the projection effects and the contamination by
foreground or background galaxies, real spectroscopic observa-
tions also suffer from fiber incompleteness and failures in
redshift measurements; hence not all photometrically observed
satellites would have spectroscopically measured LOSVs. The
so-called fiber collision effect, in which two fibers cannot be
placed closer than a certain angular separation, is more severe
in dense cluster regions. As having been evaluated by Smith
et al. (2019), with the DESI Bright Galaxy Survey fiber
assignment strategy, the completeness fraction may be as low
as 20% for the worst cases in dense cluster regions. It is thus
important to consider the effect of fiber incompleteness.

In JAM, the possible effects of fiber incompleteness come
from two aspects: (1) the projected number density profile of
tracer satellites is modified; (2) fiber incompleteness may
change the velocity and velocity dispersion profiles. For (1), if
one knows about the exact completeness fraction as a function
of the projected distance to the cluster center (selection effect),
corrections can in principle be made. For (2), the essential point
is whether the subsample of satellites that have successful
spectroscopic redshift measurements would alter the velocity
and velocity dispersion profiles, compared with the full set of
companion satellites.
In order to check point (2) above, we look into a mock DESI

BGS catalog based on the MXXL simulation (Smith et al.
2017). The readers can check Section 2.3 for details. Using the

Figure 10. Top: LOSV profiles based on satellites of two randomly selected galaxy clusters from the mock DESI BGS catalog, denoted as Cluster1 and Cluster2. The
mean velocities are binned and calculated in projected circular annuli, and we use rp to denote the projected distance to the cluster center. The blue solid curves
represent the mean velocity profiles based on the full set of bound companion satellites, and the orange dashed curves show the mean velocity profiles based on a
subset of satellites with successful spectroscopic redshift measurements after incorporating fiber assignment and the redshift success rate in the mock. The blue crosses
and orange dots correspond to individual satellites before and after accounting for fiber assignment. The profiles are derived from the mean of 32 times different fiber
assignment tests and the error bars represent the 1σ scatters. The errors of the blue solid curves are based on the 1σ scatters of 100 bootstrap subsamples, while they are
calculated as the 1σ scatters of the 32 different fiber assignment tests for the orange dashed curves. Bottom: curves similar to the top panels, but showing the LOSV
dispersion profiles for Cluster1 and Cluster2. All panels are based on the flux limit of r < 19.5.
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mock catalog, we investigate whether the velocity dispersion
profiles are changed before and after considering the effect of
fiber incompleteness.

Figure 10 shows the LOSVs and velocity dispersions as a
function of the projected distance, rp, to the cluster center, for
two example galaxy clusters. We compare the velocity and
velocity dispersion profiles before and after considering the
effect of fiber incompleteness. The profiles are derived from the
mean of 32 different random realizations of the fiber assign-
ment algorithm, and the error bars represent the 1σ scatters.
The differences between the blue and orange curves are very
small at all radii. Compared with the errors, we do not see any
significant differences between the velocity dispersion profiles
before and after incorporating the fiber incompleteness,
indicating fiber incompleteness in DESI is unlikely to modify
the velocity dispersions of observed satellite galaxies compared

with the full sample of satellites; hence the dynamical modeling
results are not likely to be affected either.
In addition to the effect of fiber incompleteness, we also

examine the impact of flux limit on our analysis. The DESI
BGS mock catalog includes 84 galaxy cluster systems within
the DESI Year 5 footprint with a halo mass range of

< <M M14.3 log 1510 halo at z< 0.2, that can have more
than 100 satellites brighter than r= 19.5 assigned with fibers.
r< 19.5 is the flux limit for the DESI BGS bright sample. The
flux limit for the less complete BGS faint sample is r< 20.175.
Since the flux limit of the current version of the DESI BGS
mock we are using is r< 20 and if the flux limit is adjusted to
r< 20, there would be 165 galaxy clusters that can have more
than 100 satellites above the flux limit. We perform tests to
assess whether the exclusion of faint objects would affect the
velocity and velocity dispersion profiles.

Figure 11. Similar to Figure 10, but now we compare the velocity (upper panels) and velocity dispersion (lower panels) profiles for two different flux limits (r-band
flux limit of r < 20.0 and r < 19.5, in blue and orange as shown by the legend). The mean velocities and velocity dispersions are binned and calculated in projected
circular annuli, and we use rp to denote the projected distance to the cluster center All curves in all panels are based on the fiber-assigned satellite galaxies. The profiles
are derived from the mean of 32 times different fiber assignment tests and the error bars represent the 1σ scatters of these tests.
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In Figure 11, we present the radial velocity and velocity
dispersion profiles for two representative clusters, subject to
different flux limit cuts of their satellites (r< 19.5 and
r< 20.0). The upper panels show the velocity profiles, where
the blue and orange curves correspond to the flux limits of
r< 20.0 and r< 19.5, respectively. We can see the orange
curves are within the error bars of the blue curves. The blue
crosses and orange dots behind the curves represent the
velocities of individual satellites with r< 20.0 and r< 19.5,
respectively. The =¢V 0z line goes well through both symbols,
based on which we do not see significant selection biases. The
lower panels show the velocity dispersion profiles. It can be
seen that the orange curves are closely aligned with the blue
curves. The results are thus unlikely to be significantly affected
by the different choices of flux limits in DESI.

Our results indicate that the velocity and velocity
dispersion profiles are not sensitive to the choice of flux
limit in the DESI survey. Note as we have mentioned in
Section 2.3, the mock DESI BGS catalog we are using is by
Smith et al. (2017). The fiber assignment algorithm, the flux
limit for the BGS faint sample, and the number of passes are
currently being updated for the latest version of the DESI
BGS mock. These updates are not yet fully fixed, so we are
focusing on the DESI BGS mock by Smith et al. (2017).
However, we expect these changes will not have a significant
impact on the results presented in our analysis.

5. Conclusions

In this study, we investigate the performance of the JAM
method, when it is applied to satellite galaxies in galaxy
clusters to recover the underlying matter distribution. Twenty-
eight galaxy cluster systems are selected from the cosmological
and hydrodynamical TNG300-1 simulation (TNG300 in short),
with a halo mass of  >M Mlog 14.310 200 .

The best-constrained total matter density profiles by JAM
deviate from the truth in different ways. We divide the
deviations into three different categories: (1) very good
overall agreement with the true density profiles at all radii
(29%), with the deviations smaller than the errors of the true
profiles; (2) over/underestimates at most radii (32%) and (3)
under/overestimates within the half-mass radius of tracer
satellites (rhalf) and over/underestimates outside rhalf, which
maintains a good prediction of M(<rhalf) (39%). Most of the
best-constrained models are still consistent with the true
profiles within 1 σ statistical uncertainties of the model.

If only using true bound satellites as tracers and fixing the
inclination parameter to the angle between the line of sight and
the minor axis of satellite spatial distributions, the best-
constrained total mass within the half-mass radius of satellites,
M(<rhalf), and the virial mass, M200, have average biases of
−0.02 and 0.01 dex, with average scatters of 0.09 dex and
0.15 dex. If treating the inclination as a free model parameter,
the biases become −0.01 and 0.03 dex for M(<rhalf) and M200,
with mean scatters of 0.11 and 0.15 dex. The constraint on
M(<rhalf) is tighter than that of M200.

If selecting tracer companions in the redshift space, by
requiring that their LOSV differences are within±2000 km s−1

to the cluster central galaxy, we can maintain a high
completeness of 88%, with the fraction of contamination by
foreground and background galaxies as 11%. The average
biases are then −0.06 dex for M(<rhalf) and 0.01 dex for M200,
with mean scatters of 0.12 and 0.18 dex.

We look into a mock DESI BGS light-cone catalog and find
within the DESI Year 5 footprint, 84 galaxy cluster systems at
redshift z< 0.2 can have more than 100 satellite galaxies
brighter than r= 19.5 and with fiber assignments. If the flux
limit is changed to r< 20, there are 165 galaxy clusters that
satisfy the selection. Hence it is promising to constrain the
mass of galaxy clusters using satellite dynamics with future
DESI data. Based on the mock DESI catalog, we test the effect
of fiber incompleteness and the dependence on the survey flux
limit and see no significant changes in the velocity and velocity
dispersion profiles within R200. Thus selection effects brought
in by fiber assignments and survey flux limits are unlikely to
affect the dynamical modeling outcomes.
We conclude it is promising to apply JAM to satellite

galaxies in galaxy clusters in ongoing and future deep
spectroscopic surveys, to constrain the underlying density
profiles and total mass of individual cluster systems. Our
quoted amounts of biases and scatters can be used as
corrections to future observational constraints.
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