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Abstract

Recently, deep learning has been increasingly applied to global mapping of land-use

and land-cover classes. However, very few studies have addressed the problem of

separating lakes from rivers, and to our knowledge, none have addressed the issue of

mapping fluvial sediment bars. We present the first global scale inventory of fluvial

gravel bars. Our workflow is based on a state-of-the-art fully convolutional neural

network which is applied to Sentinel-2 imagery at a resolution of 10 m. We use Goo-

gle Earth Engine to access these data for a study site that covers 89% of the Earth’s

surface. We count 8.9 million gravel bars with an estimated area of 41 000 km2. Cru-

cially, the workflow we present can be executed within a month of highly automated

processing and thus allows for global scale, monthly, monitoring of gravel bars and

associated rivers.
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1 | INTRODUCTION

Our capacity to map river systems globally and our ability to recon-

struct their geomorphological trajectories of the recent past (last

decades/years) will determine our ability to detect freshwater biodi-

versity losses, associated ecosystem services availability, such as

water resources for energy and food production, as well as flood miti-

gation strategies (Fryirs, 2017; Tickner et al., 2020). Over the last

decade, emerging remote sensing technologies have boosted this

capacity to observe river systems from local to global scales (Piégay

et al., 2020). Global databases of river features such as river order,

slope, discharge and width have been derived indirectly by integrating

globally available digital elevation models (Altenau et al., 2021; Grill

et al., 2019; Lehner et al., 2008), hydrological modelling, hydraulic

geometry relationships and, more rarely, satellite observations

(Frasson et al., 2019). These global databases have demonstrated their

value allowing us, for instance, to explore the role of major dams glob-

ally affecting the natural flow of rivers. Additionally, databases of

global estimates of water, sediment and nutrient river fluxes have

highlighted the significant roles of human activities of altering such

fluxes over the last century (Syvitski et al., 2022). However, these

global databases do not yet rely on image-based information or direct

observations of landforms but on topographic information used to

derive fluxes and river network characteristics. Direct forms of river

mapping from space at global scale have been mostly limited to

identifying water surface extent as part of comprehensive land-use

classifications (e.g., Karra et al., 2021; Zanaga et al., 2022) or its

changes over the last decades (e.g., Pekel et al., 2016). However,

these studies are not yet able to distinguish lakes and wetlands from

rivers and streams. Even more importantly, we have not yet mapped

river sediment bars at global scales. This is probably due to the fact

the water is easier to classify and isolate using multispectral informa-

tion whereas fluvial landforms such as sediment bars have a very simi-

lar spectral signature when compared with bare soil and agriculture

crops bordering river systems. Moreover, identifying water is achiev-

able by using spectral information (Gao, 1996; Xu, 2006), whereas dis-

tinguishing rivers from lakes would require an analysis of the shape of

the water surface and its interpretation. These tasks require a step

forward from a simple pixel-based classification approach to more

sophisticated methods based, for instance, on AI, which are able to

include in their predictive power information on object shape and tex-

ture. This technology is already advanced in other disciplines of com-

puter vision (Long et al., 2015), but it is still not fully exploited in river

system mapping where such advances are needed in order to gener-

ate novel river geomorphic information capable to advance our under-

standing of river systems and to better support management needs.

Specifically, the use of AI-based monitoring could track the extent riv-

ers, lakes, wetlands, oxbows and so on and associated sedimentary

deposits thus delivering novel information on change at global scales.

Low flow channels together with sediment bars composed the active
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channel and together with vegetated islands and the riparian corridor

composed the river corridor (Ham & Church, 2002). Being able to map

these fluvial landforms and their dynamics over time at the global

scale would open to a new era in our ability to explore river forms and

processes. Recently Nyberg et al. (2023) proposed a convolutional

neural network (CNN) approach to identify the river channel belt,

defined as the corridor of river channel migration formed during one

river avulsion cycle, followed by the use of spectral indices across

multiple years to inventory rivers (water inside channel belts) and

lakes (water outside channel belts). They present a global map of the

extent of river channel belts and distinguish between single versus

multi-threaded river channels. This is indeed a river mapping contribu-

tion going beyond water surface extent mapping and which starts to

provide more geomorphologically informed data. However, this

approach does not explicitly map sediment bars. Failing to observe

sediment bar presence and their spatial configuration over time, we

neglect the possibility to generate basic information to understand

river behaviours (Brierley et al., 2013).

In this letter, we present an operational workflow capable of

semantic classification of streams, rivers and exposed fluvial sediment

bars. For the purpose of this work, gravel bars are defined as any

subaerial and unvegetated sediment deposit adjacent to a river. This

workflow uses Sentinel-2 data at 10 m spatial resolution downloaded

from Google Earth Engine (Gorelick et al., 2017). The core classifica-

tion task is carried out with a fully convolutional network (FCN)

dubbed Tiramisu (Jégou et al., 2017), a type of deep learning architec-

ture capable of pixel-level semantic class predictions that preserve

the resolution of the input image. Notably, the trained model and

classification workflow separates rivers and streams from lakes with a

commission error of 8%, and it separates fluvial bars from other types

of bare soil with a commission error of 16%. We deploy this

workflow at global scale on a study site equivalent to 89% of the

Earth’s land area. This allows us to present maps of global river den-

sity and, for the first time, global densities of fluvial sediment bars.

The workflow can be executed in less than a month meaning that

monthly monitoring of rivers and associated changes becomes possi-

ble at global scale.

2 | METHODS

2.1 | Model objectives and semantic classes

Our aim is to produce global scale maps that can identify rivers dis-

tinctly from lakes and associated fluvial sediment deposits and thus

highlight spatial and temporal patterns. We choose the following

semantic classes. Class 0 is the background. The type of deep learn-

ing model we intend to use requires a background class which is in

essence the non-detections. In our case, this will include vegetation,

urban areas and barren areas. Class 1 is rivers. Here, we require the

presence of water, and we include artificial canals. Dry ephemeral

channels will not be classified as rivers. Class 2 is lakes. Mapping

lakes is considered beyond the remit of this work. However, in order

to teach the model to distinguish rivers from lakes, the lakes need to

be in a separate semantic class. In this class, we include abandoned

meanders (Oxbow lakes). One challenging scenario is where rivers

emerge from lakes and reservoirs and where a boundary needed to

be set between the classes. In such cases, the user made a somewhat

subjective decision based on a qualitative criteria of seeing the begin-

ning of fluvial forms emerging from the lake. This usually corresponds

to the development of curved banks and sometimes of gravel bars.

Class 3 covers all forms of fluvial deposits, but we limit this to those

deposits adjacent to a river. These are the four classes actually

predicted by the model. We also add four so-called ‘inherited’ clas-
ses because they will be determined at a later stage using external

data. Class 4 is the ocean. Class 5 is glaciated terrain. Class 6 is not

used in the paper but is set aside for snow. Class 7 is clouds, and

Class 8 is a no-data class for cases where no satellite imagery is

available.

2.2 | Google Earth Engine

Our workflow is based on Sentinel-2 data, and we use Google Earth

Engine as a download tool (Gorelick et al., 2017). We download

Sentinel-2 Bands 8 (Near-Infrared), 4 (Red) and 3 (Green) to an

expanded Google Drive cloud storage space. We keep the native spa-

tial resolution of 10 m. In addition to the image layers, we add a cloud

mask derived from the s2cloudless product (Skakun et al., 2022) as an

extra band. Spatially, the download process is organised as per the

Military Grid Reference System (MGRS) that further divides each

UTM zone of 6� in longitude into zones with 8� of latitude. The down-

load area is composed of the 468 MGRS zones that constitute the

non-polar world (89% of the Earth’s landmass, see the outline of

Figure 1). Given that 1� is equivalent to 110 km at the equator but

only 55 km at latitudes of ±60�, imagery and all derived products are

projected to the appropriate UTM coordinate system in order to pre-

serve the constant, latitude-invariant, 10 m spatial resolution of the

original Sentinel-2 imagery. Temporally, we choose a sample duration

of 1 month in order to capture changes at smaller time scale

recognising that such a short temporal window is not capable of deliv-

ering global imagery which is 100% cloud free. The choice of the exact

monthly period is the result of a compromise. We discounted boreal

winter given that snow can cover as much as 45 000 000 km2

(Déry & Brown, 2007). We also found that tropical areas of South

America and Africa have persistent high levels of cloud at any time of

the year. We also noted that boreal summer months with their longer

days gave a better overall global coverage of low-cloud data given

that most of the Earth’s landmass is in the Northern Hemisphere.

Consequently, we chose the month of July for the year 2021. We

acknowledge that this will leave data gaps in the tropics and in the

area of the Indian Monsoon. Over this period, Google Earth Engine

will composite all available images with less than 20% cloud cover by

using the median value of available pixels.

2.3 | External data

We also use several global databases at various stages of this work.

We use HydroSHEDS vector products (Lehner et al., 2008) to define

the ocean area and inform post-processing algorithms that correct

errors in large lakes and large rivers. We also use the Randolph Glacier

Inventory (RGI Consortium, 2017) and define glaciated terrain as a

5 km buffer extending around glaciers.
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2.4 | Deep learning and image processing pipeline

Deep learning is rapidly establishing itself as the de facto method for

water mapping at large scales (e.g., Isikdogan et al., 2017, 2020;

Moortgat et al., 2022). We use a FCN that can deliver pixel-level

semantic classifications (Long et al., 2015). Within this family of

models, several architectures exist. We have chosen to use a fully

convolutional DenseNet architecture proposed by Jégou et al. (2017)

and dubbed ‘Tiramisu’. This architecture delivers state-of-the-art

results that outperform other models (e.g., SegNet, Badrinarayanan

et al., 2017; DeepLab, Chen et al., 2018) against established bench-

marks (Brostow et al., 2009), while having a low number of trainable

parameters and corresponding training times. Crucially, fully open-

source implementations of the model are readily available. We use

this architecture with the common image chip size of 224 � 224

pixels because (1) this results in models that are cross-comparable

with a wider range of other models (e.g., VGG16, Simonyan &

Zisserman, 2015 and ResNET, He et al., 2016) and (2) the final models

are more transferable and can be run on more modest GPUs with

8 GB of memory. Our final model is the result of two training phases.

First, we use a large, but more error-prone, training dataset of

740 000 samples derived from an automated labelling of ESRI 2020

land-cover data (Karra et al., 2021). Second, we fine-tune the model

with another training phase that uses the manually labelled data from

293 randomly selected locations of Figure 1, the remaining 50 loca-

tions are set aside for validation. For each of these sites, we extract

an image of 15 � 15 km and manually label these images. We then

use data augmentation in order to get 59 000 very high quality sam-

ples of 2.24 by 2.24 km. These data are used to train and validate the

model (see the Supporting Information for more detail). A key step of

our workflow is a set of novel image post-processing filters. Deep

learning semantic classification models produce prediction probabili-

ties for each class with each pixel being assigned to the class of

highest probability. However, we find the value of the second highest

probability can be combined with contextual and external information

to improve our predictions. We postulate that if two adjacent pixels

have a different class, there could be a classification error. An exami-

nation of the probabilities for the most-likely class (the attributed

class) and the second most-likely class is then used to determine if an

error has occurred. Additionally, we use vector datasets from the

HydroSHEDS database to provide further contextual corrections for

large lakes in excess of 5 km2 and large rivers with widths potentially

in excess of 2.24 km. Full code and details on the post-processing fil-

ters can be found in Carbonneau (2023a). Figure 2 summarises our

deep learning workflow.

2.5 | Validation

First, we use 50 manual validation sites set aside before the training

process. The data from these tiles have 112 million background pixels,

six million river pixels, nine million lake pixels and 770 000 bar pixels.

These data are used to produce confusion matrices and estimate the

user’s and producer’s accuracies. They are also used to produce vali-

dation results for some intermediate processing steps (see the

Supporting Information). We also merge the river and lakes classes for

both truth and model data in order to produce error estimates for a

‘water body’ class that are more comparable to existing work. Second,

we build a validation dataset with 10 000 randomly selected river

locations across the full study site. We repeat this random selection

for the lakes class and bar class (30 000 locations in total). We then

use Google Earth Engine to extract an image for each of these sam-

ples. We edit the pixel values at the sample location to create a blue

cross composed of five 4-connected pixels, and we save the image in

a folder corresponding to the class. We then examine each image

in each class folder and assess if the predicted classification of the

point marked by the blue cross was correct or incorrect. This proce-

dure will estimate the user’s accuracy for the river, lake and bar clas-

ses at global scales.

3 | RESULTS

3.1 | Validation

Table 1 gives the validation outcomes for the manually labelled data.

Table S1 gives validation results for the intermediate steps in our

processing pipeline. Accuracy metrics for the background class are in

F I GU R E 1 Study area. Green points show the location of the 343 labelling sites, distributed in catchments that exceed 500 000 km2 (blue).
The full study area is the combined blue and black outlines and represents 89% of the earth’s landmass. [Color figure can be viewed at
wileyonlinelibrary.com]
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excess of 98%. Any averaging of the accuracy statistics across classes

would be artificially high, especially if weighted by pixel counts, and it

is therefore important to consider class accuracies individually. The

confusion matrices show that the main source of error for the river

class is confusion with lake pixels with producer’s and user’s accura-

cies of 95% and 92%, respectively. In the case of bars, user’s accuracy

is 84% with a lower producer’s accuracy of 61%. Here, the main

source of confusion is the background class. This means that pixels

predicted as bars are reliable, but overall, we can expect a significant

portion of global bar area to be absent from the survey. Our bar

results should therefore be seen as a lower bound accounting for a lit-

tle over half the global population of bars. Validation results for inter-

mediate stages of our workflow are available in the Supporting

Information.

In the case of a merged water body class, we find user’s accuracy

of 87% and producer’s accuracy reaching 95%. Specifically for the

water body class, Zanaga et al. (2022) report user’s accuracy of 89%

and producer’s accuracy of 86% for the latest version of the

WorldCover product. Karra et al. (2021) report user’s accuracies of

83% and producer’s accuracies ranging from 86% to 94%. Isikdogan

et al. (2017) report commission errors of 8% (92% user’s accuracy)

and omission errors of 13% (producer’s accuracy of 87%). However,

we stress that none of these comparators studies present data where

lakes and rivers constitute distinct semantic classes. Nyberg et al.

(2023) do provide a semantic class product with distinct rivers and

lakes, but they only validate the channel belt and active channel width

predictions resulting from their CNN model. User’s and producer’s

accuracies, or any other form of accuracy assessment (e.g., F1 scores

and kappa scores), are not available for their global semantic class

product.

At larger scales, we found that a global random check of

10 000 samples from the fine-tuned filtered predictions resulted in

slightly lower user’s accuracies of 85%, 78% and 77% for rivers,

lakes and bars, respectively. We followed up this validation by a full

visual inspection of all the data. For rivers, the main source of error

remains confusion with lake pixels, most often occurring with elon-

gated lakes or reservoirs. For lakes, the main source of error is

shadows. In the case of bars, we observe two sources of error

worth noting: (1) faint clouds that have not been detected by

s2cloudless and occurring over rivers and (2) arid areas adjacent to

F I G U R E 2 Deep learning workflow
chart. We use a main training phase with
740K medium-quality, automatically
generated samples followed by a fine
tuning training phase with 59K high-
quality samples. The final model is then
used for inference (i.e., prediction)
followed by our post-processing filters.
The model predicts three classes: rivers,
lakes and bars. External is then used to
define the ocean and glaciated terrain.
[Color figure can be viewed at
wileyonlinelibrary.com]

T AB L E 1 Confusion matrices, producer’s accuracy and user’s accuracy for the manually labelled validation data.

Background River Lake Bar Producer’s accuracy (%)

Background 110 828 808 309 448 1 563 293 53 938 98

River 206 589 5 543 802 63 103 33 273 95

Lake 403 899 114 083 8 507 836 140 94

Bar 233 256 60 752 7811 465 477 61

User’s accuracy (%) 99 92 84 84

18 CARBONNEAU and BIZZI

 10969837, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/esp.5739 by T

est, W
iley O

nline L
ibrary on [26/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://wileyonlinelibrary.com


rivers and canals with the same spectral characteristics as bars but

not of fluvial origin.

Figure 3 shows four examples of local results. In these four loca-

tions, we also show the equivalent WorldCover 2021 data (Zanaga

et al., 2022), the HydroRIVERS vectors (Lehner et al., 2008) and the

SWORD v2 vectors (Altenau et al., 2021). In the case of Hydro-

RIVERS, we used the Strahler order in the attributes data and the esti-

mated widths from Downing et al. (2012) to buffer the vector lines. In

the case of the SWORD v2 data, we used the channel width informa-

tion present in the attributes. Figure 3 illustrates our final model’s abil-

ity to effectively detect rivers and bars. However, we also note some

issues. In row B, we can see that our model has falsely classified small

clouds as bars. Also, some very small channels are detected as water

bodies in WorldCover data but as background (undetected) in our

data. In the case of the vector data, the rightmost column of Figure 3

shows reasonable correspondence and highlights the challenges of

using these vector databases in combination with raster-based seman-

tic classifications. Even if these vectors have information in their attri-

butes that relates to local channel widths, this information was never

intended to accurately map channel boundaries. It is therefore not

possible to perform a direct quality estimation of our results based on

these data.

The compressed global set of classification rasters at full 10 m

resolution requires 10 GB of storage (Carbonneau, 2023b). Figure 4

shows resulting global maps for the surface densities for rivers and

bars. On the top, we show River and Stream Surface Area (RSSA)

expressed in ppm of the surface area (10 000 ppm = 1%). The map

further divides the study area in grid squares of 2��2�. Within each

square, we used Python to extract and inventory the semantic classes.

If we consider the total inventory of river area, we observe a total

river area of 433 544 km2. If we assume that cloudy areas in a given

2��2� square have the same river density as the non-cloudy area, and

if we include cloud-driven no-data values, then we can correct for

clouds and we find an estimated total river area of 562 925 km2. On

the bottom of Figure 4, we show the global densities of bars. This

reveals a high concentration of bars at high northern latitudes with

additional hotspots South-West of the Amazon, in South East Africa

and on either side of the Himalayas. Visual examination revealed that

these observations are valid. However, it also confirmed that apparent

bar density hotspots around the Nile valley and North of the Arabian

F I GU R E 3 Result examples of our
data from July 2021 with comparison to
ESA WorldCover 2021, HydroRIVERS and
SWORD v2 data. (a) River McKenzie,
Canada; (b) Jacaré River (Amazon Basin),
Brazil; (c) Po River, Italy; and (d) Popigay
River, Russia. Greyscale background is
Band 8 (NIR) of Sentinel 2. [Color figure
can be viewed at wileyonlinelibrary.com]

CARBONNEAU and BIZZI 19

 10969837, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/esp.5739 by T

est, W
iley O

nline L
ibrary on [26/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://wileyonlinelibrary.com


Peninsula are in fact arid lands adjacent to canals falsely classified as

bars. In total we find 8.9 million gravel bars. Total bar area is estimated

as 41 165 and 33 665 km2 with and without cloud correction,

respectively.

Figure 5 shows global scaling relationships for the bars mapped in

Figure 4 (bottom). In Figure 5a, we show the magnitude frequency

distribution of global bar sizes in pixels. The relationship is close to a

log-linear power law decay with a slope of �1.59 with a slight

F I G U R E 4 Global maps of River and
Stream Surface Area (RSSA, top) and
Exposed Sediment Bar Surface Area
(ESBSA, bottom) for July 2021 and
expressed as parts per million of surface
area (104 ppm = 1%) for each 2� � 2�

area of the study area. Areas left blank
have more than 20% cloud coverage.
[Color figure can be viewed at
wileyonlinelibrary.com]

F I GU R E 5 Global scaling relationships for bar sizes. (a) Magnitude frequency plot of bar objects. (b) Scatter plot in log scale of River and
Stream Surface Area versus Exposed Sediment Bar Area for all 2� � 2� squares with non-zero bar densities.

20 CARBONNEAU and BIZZI
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upwards curvature, likely caused by errors in the range of 10 to 1000

pixels. Figure 5b shows a direct plot of RSSA and ESBSA on logarith-

mic axes. This shows a scattered relationship. However, we can see a

central cluster of points showing rapid increase of bar densities

upwards of river densities of 1000. However, we note that this graph

does not include 2��2� areas with no bars or no rivers due to the

logarithmic axes.

4 | DISCUSSION

Using a deep learning and remote sensing workflow, we have pro-

duced the first global survey of fluvial bars. We find patterns that

match large-scale areas of erosion and subsequent transport. The

largest high density zone of gravel bars is found to be in Siberia and

Northern Russia with sediment produced in the Siberian uplands

transported north to the Laptev, East Siberian and Chukchi seas.

Next, we see a high density area in Alaska where sediment is sou-

rced in the Brooks and Alaska mountain ranges and transported to

the Beaufort Sea. We also see high concentrations of sediment in

Nunavut likely sourced in the Arctic cordillera mountains. The area

south-west of the Andes known for high precipitation from the

highest gravel densities in South America transported to the Pacific

Ocean. In Africa, we note concentrations of gravels around the

Licungo and the Zambezi rivers debouching into the Mozambique

channel. Finally, we find high concentrations of gravels in the rivers

draining the Himalayas. We estimate the total number of bars as 8.9

million, covering a total area of �41 000 km2. These are the first

such estimates. Considered in relation to our errors, these are likely

an under-estimate. However, the slight data departure from linearity

in Figure 5a suggests a large number of false positives at medium

scales. At higher scales, the presence of very large bars, in excess of

10 000 pixels with a single count (100) suggest large patches of false

positives. From the point of view of simple inventory, a false posi-

tive can compensate a false negative. Large-scale inventories can be

accurate if false positives are as frequent as false negatives. There-

fore, the false positives seen in our data (excess bar pixels) may

compensate for the low producer’s accuracy (missing bar pixels) of

the bar class in Table 1. We argue that despite the relatively low

producer’s accuracy, our results provide an order-of-magnitude

starting point for global scale gravel bar inventories. In terms of riv-

ers, our analysis of Sentinel-2 imagery with a spatial resolution of

10 m finds, after correcting for clouds, a total river area of

562 925 km2 which is broadly in agreement with other published

works. Based on Landsat data with a resolution of 30 m, Allen and

Pavelsky (2018) report a total RSSA of 468 000 km2 through direct

observation and 773 000 km2 from extrapolations down to sub-pixel

sizes. Downing et al. (2012) provide estimates of RSSA per river

order along with an estimated width. For rivers with an averaged

width above 8.3 m (fourth Strahler order), they estimate a coverage

of 546 000 km2. Raymond et al. (2013) propose a figure of

536 000 km2 for all sizes of channels. Nyberg et al. (2023)propose

472 000 km2.

Another finding of this work is the sensitivity of validation out-

comes to the validation method. The practice of setting aside a por-

tion of labelled data for the purpose of validation is common

(e.g., Isikdogan et al., 2017, 2020; Nyberg et al., 2023). However, we

argue that the selection data sites for labelling leads to an implicit bias

towards more favourable and useful sites for the model even when

the validation sites are spatially distinct from the training sites. In con-

trast, when we chose locations randomly across the entire globe, our

validation statistics dropped as the model was confronted with envi-

ronments further removed from its training. Similarly, when validating

the ESA WorldCover product, Zanaga et al. (2022) used a labour

intensive validation approach with a very large number of scattered

validation sites. As a result, their overall validation accuracy is cited as

74.4%. A fundamental issue is the absence of common benchmark

datasets that could allow us to cross compare models and results. In

computer vision, there are several high-quality benchmark datasets

such as ImageNet (Deng et al., 2009) and COCO (Lin et al., 2015) that

can be used to evaluate model performance. There is an urgent need

to establish such benchmarks for Earth Observation.

5 | CONCLUSION

Overall, this work shows the potential of deep learning when applied

to global scale studies of fluvial systems. Of particular importance is

the fact that the workflow presented here required 4 weeks of com-

putation with a very high level of automation. This means that

monthly monitoring of river systems at global scale is now possible

with 10 m resolution Sentinel-2 data. On this basis, future models that

distinguish sedimentary features based on their formation mechanism

such as point bars, alluvial fans and ephemeral channels are now

within reach.
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