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Abstract. We consider random simple temporal graphs in which ev-
ery edge of the complete graph K, appears once within the time inter-
val [0, 1] independently and uniformly at random. Our main result is a
sharp threshold on the size of any maximum J-clique (namely a clique
with edges appearing at most ¢ apart within [0, 1]) in random instances
of this model, for any constant §. In particular, using the probabilis-
tic method, we prove that the size of a maximum J-clique is approxi-

mately 211251” with high probability (whp). We note that, even though the
og 5

random simple temporal graph contains Q(nZ) overlapping J-windows,
which (when viewed separately) correspond to different random instances
of the Erdgs-Rényi random graphs model, the size of the maximum -
clique in the former model and the maximum clique size of the latter
are approximately the same. Furthermore, we show that the minimum
interval containing a d-clique is 6 — o(d) whp. We use this result to show
that any polynomial time algorithm for -TEMPORAL CLIQUE is unlikely
to have very large probability of success.

Keywords: Simple random temporal graph - d-temporal clique - prob-
abilistic method.

1 Introduction

Dynamic network analysis, i.e. analysis of networks that change over time, is
currently one of the most active topics of research in network science and theory.
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Many modern real-life networks are dynamic in nature, in the sense that the
network structure undergoes discrete changes over time [21,25,27]. Here we
deal with the discrete-time dynamicity of the network links (edges) over a fixed
set of nodes (vertices), according to which edges appear in discrete times and
are absent otherwise. This concept of dynamic network evolution is given by
temporal graphs [18,22], which are also known by other names such as evolving
graphs [5,13], or time-varying graphs [1].

Definition 1 (Temporal Graph). A temporal graph is a pair G = (G, ),
where G = (V, E) is an underlying (static) graph and X\ : E — 2V is a time-
labeling function which assigns to every edge of G a set of discrete-time labels.
Whenever |A(e)| < 1 for every e € E, G is called a simple temporal graph.

Our focus is on simple temporal graphs (in which edges appear only once), as,
due to their conceptual simplicity, they offer a fundamental model for temporal
graphs and they prove to be good prototypes for studying temporal computa-
tional problems. More specifically, we consider simple temporal graphs whose
edge labels are chosen uniformly at random from a very large set of possible
labels (e.g. the label of each edge is chosen uniformly at random within [1, N]
where N — o00). This can be equivalently modeled by choosing the time labels
uniformly at random as real numbers in the interval [0, 1], which leads to the
following definition.

Definition 2 (Random Simple Temporal Graph). A random simple tem-
poral graph is a pair G = (G, ), where G = (V, E) is an underlying (static)
graph and {\(e) : e € E} is a set of independent random variables uniformly
distributed within [0, 1].

Note that, in definition 2, the probability that two edges lave equal labels is
zero. For every v € V' and every time slot ¢, we denote the appearance of vertex
v at time t by the pair (v,t). For Q C V, the restricted temporal graph (G, \)|g
is the temporal graph (G[Q)], {\(e) : e € E(G[Q])}.

In the seminal paper of Casteigts, Raskin, Renken, and Zamaraev [9], the au-
thors consider a related (essentially equivalent to ours) model of random simple
temporal graphs based on random permutation of edges. They provide a thor-
ough study of the temporal connectivity of such graphs and they provide sharp
thresholds for temporal reachability. Their work motivated our research in this
paper.

In many applications of temporal graphs, information can naturally only
move along edges in a way that respects the ordering of their timestamps
(i.e. time labels). That is, information can only flow along sequences of edges
whose time labels are increasing (or non-decreasing). Motivated by this fact,
most studies on temporal graphs have focused on “path-related” problems, such
as e.g. temporal analogues of distance, diameter, reachability, exploration, and
centrality [2,3,8,9, 11, 12, 16, 19, 20, 22, 26, 30]. In these problems, the most
fundamental notion is that of a temporal path from a vertex u to a vertex v,
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which is a path from u to v such that the time labels of the edges are increas-
ing (or at least non-decreasing) in the direction from u to v. To complement
this direction, several attempts have been recently made to define meaningful
“non-path” temporal graph problems which appropriately model specific applica-
tions. Some examples include temporal cliques, cluster editing, temporal vertex
cover, temporal graph coloring, temporally transitive orientations of temporal
graphs [4,6,10,14,15,17,23,24,28, 29].

What is common to most of the path-related problems is that their extension
from static to temporal graphs often follows easily and quite naturally from their
static counterparts. For example, requiring a graph to be (temporally) connected
results in requiring the existence of a (temporal) path among each pair of vertices.
In the case of non-path related problems, the exact definition and its application
is not so straightforward. For example, defining cliques in a temporal graph as
the set of vertices that interact at least once in the lifetime of the graph would
be a bit counter intuitive, as two vertices may just interact at the first time step
and never again. To help with this problem, Viard et al. [28] introduced the idea
of the sliding time window of some size §, where they define a temporal clique
as a set of vertices where in all § consecutive time steps each pair of vertices
interacts at least once. There is a natural motivation for this problem, namely
to be able to find the contact patterns among high-school students. Following the
idea of Viard et al. [28], many other problems on temporal graph were defined
using sliding time windows. For an overview of recent works on sliding windows
in temporal graphs, see [21].

In the next definition we introduce the notion of a d-temporal cliqgue in a
random simple temporal graph, and the corresponding maximization problem.

Definition 3 (§-TEMPORAL CLIQUE). Let (G,)\) be a random simple tem-
poral graph with n vertices, let § € [0,1], and let Q@ CV be a subset of vertices
such that G[Q)] is a clique. The restricted temporal graph (G, \)|qg is a -temporal
clique, if [\(e) — A(e')| < 4, for every two edges e, e’ which have both their end-
points in Q.

6-TEMPORAL CLIQUE

Input: A simple temporal graph (G, ).
Output: A §-temporal clique @ of (G, \) with maximum cardinality |Q)|.

Our contribution. In this paper, we consider simple random temporal graphs
where the underlying (static) graph is the complete graph on n vertices, and we
provide a sharp threshold on the size of maximum J-cliques in random instances
of this model, for any constant §. In particular, using the probabilistic method,

we prove that the size of a maximum J-clique is approximately %l(;—gf whp (The-
5

orem 2). We note that, even though the random simple temporal graph contains
©(n?) overlapping d-windows, which (when viewed separately) correspond to
different random instances of the Erd6s-Rényi model G,, s (in which edges ap-
pear independently with probability ¢), the size of the maximum J-clique and
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the maximum clique size of the latter are approximately the same [7]. Further-
more, we show that the minimum interval containing a d-clique is § — o(d) whp
(Theorem 3). We use this result to show that any polynomial time algorithm
for -TEMPORAL CLIQUE is unlikely to have very large probability of success
(Theorem 4). Finally, we discuss some open problems related to the average
case hardness of 6-TEMPORAL CLIQUE in the general case.

2 Existence of -TEMPORAL CLIQUE

We begin with a Lemma regarding the joint density function of the minimum
and maximum label.

Lemma 1. Let (G, )\) be a random simple temporal graph, where the underlying

graph has m = |E(G)| > 2 edges. Let also X af min{A(e) : e € E} and Y =

max{A(e) : e € E}. Then the joint density function of X,Y is given by

m(m—1)(y —z)" > 0<z<y<l1

Ixy(zy)= {0 otherwise. (1)

Proof. For 0 <z <y <1, we have that Pr(X > z,Y < y) = (y—z)™. Therefore,
for any 0 < x <y <1, we have

_82Pr(X > Y <y)

fX,Y(x7y) = 8$8y
_ aQ(y_x)m _ m—2

Similarly, we can prove the following:

Lemma 2. Let (G,\) be a random simple temporal graph. Let also X def
min{A(e) : e € E}. Then the density function of X is given by
fx(@)=m1—2)""10<z<1. (2)

We now prove the following auxiliary Lemma, which gives an exact formula
for the probability that a graph H appears as a subgraph within a §-window.

Lemma 3. Let (G,)\) be a random simple temporal graph. Let also H =
(V(H),E(H)) be a (not necessarily induced) subgraph of G, with h = |E(H)]
edges. For any § € [0,1], we have

Pr(|A(e) — A(¢/)| < 8,Ve, e’ € E(H)) = hé"1(1 - 68) + 6" (3)
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Proof. We assume that h > 0 (since the case h = 0 is trivially handled), and fix
eo € E(H). For any 6 € [0, 1], we have

Pr(|A(e) — A(e)| < 6,Ve, e’ € E(H), and A(eg) < A(e),Ve € E(H)\eo)

= /0 Pr(A(e) € (z,min{z + 0,1}],Ve € E(H)\eo|A(ep) = z) dz
1-6
= /0 Pr(A(e) € (z,z + d],Ve € E(H)\ep|A(eo) = z) dz

1
+/ Pr(\(e) € (z,1],Ve € E(H)\eo|A(eg) = ) dx
1-96

1-5 1
= / s tda —|—/ (1— )" tdx
0 1-5

1
=o"11 = 8) 4+ —o".
(1-8)+5

The proof is completed by taking the union over all ey € E(H). a

The following Theorem is a direct consequence of Lemma 3 (for h = (’2“)) and
linearity of expectation.

Theorem 1. Let (K,,,\) be a random simple temporal graph where the under-
lying graph is the complete graph with n vertices. For any § € [0,1], and k € [n],
the expected number of §-temporal cliques of size k in (K, \) is

(Z) ( (’;)5@)—1(1 o)+ 6@) .

By simple calculations and Theorem 1, we get the following:
Lemma 4 (First moment). Let (K,,\) be a random simple temporal graph
where the underlying graph is the complete graph with n vertices, and let § € (0, 1)
be a constant. For any integer k € [n], let X&) denote the number of 6-temporal

cliques of size k in (K,, \). Define kg & lezgl", For any constant € > 0 that can
5

be arbitrarily small, we have

(i) E[X<<1+6>’fo>l — 0, and
(ii) E[X((1=9ko)] 5 oo,

as n — 0.

Proof. By Theorem 1, for any 6 € [0,1), the expected number of é-temporal
cliques of size k in (K, \) is

E[X®)] = (Z) ((’;)5(5)—1(1 —5) +5(§)>
< @ @5(';)1 < (29) kg

2

:exp{klnn—gln(ls—@(klnk)}. (4)
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In particular, for any k > (1 + €)ko, by definition of kg, the above exponent is
at most k <lnn —(1+e)ko lng) = —ekInn, which implies that the RHS of (4)

-

2
goes to 0, for any k > (1 + €)ko, as n — oo. This proves part (i).
For part (ii), we note that similar calculations leading to (4) can also be used
to prove the following lower bound (except for a different constant hidden in the
O term in the exponent):

EX®)] > (%)k (];)2 5(2)1(1 = 6) = exp {klnn - %2111% — (kI k)} (5)

In particular, for any & < (1 — €)ko, the above exponent is at least
1

k (lnn —(1- e)/cohﬂ?3 —O(In ko)) = k(elnn — O(Inlnn)), by definition of ko,

which implies that the RHS of (5) goes to oo, for any k < (1 — €)kg, as n — co.

a

The following lemma concerns the variance of the number of §-temporal
cliques.

Lemma 5 (Second moment). Let (K,,\) be a random simple temporal graph
where the underlying graph is the complete graph with n vertices, and let § € (0, 1)
be a constant. For any integer k € [n], let X*) denote the number of §-temporal
cliques of size k in (K,,\). Define kg = 21:;7%’. For any constant € > 0 that can
5
E X<k>)2]

W%l,foranykg(l—e)ko, as n — co.

be arbitrarily small, we have

Proof. Set k = (1 — €)kg, and note that, by part (ii) of Lemma 4, we have
E[X®)] = w(1). Let Sy, S, ..., S(Z) be an arbitrary enumeration of all cliques

of size k in K,,. For any i € {1,2,..., (Z)}, denote by X; the indicator random
variable that is equal to 1 if S; is a §-temporal clique in (K, A) and 0 otherwise.

In particular, we have X(*) = Zfi)l X, and so (X(k))2 = Z” X;X;. Taking
expectations we get

E [(X<k>>2] = Y EX.X]
= Zk: > EXiX]

t=0 ,5:|S;NS; |=t

Observe that, by independence, the terms in the above sum
corresponding to ¢ = 0 are equal to Zi,j:meﬂ:@E[Xi]E[Xj] =
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k K\ 2
(Z) (";k) ((2)6(2)71(175)+5(2)) , where in the last equation we applied

Lemma 3 with h = (g) In particular, we have

Zz’,j:lS,;ﬂSﬂ:o E[XG]E[X] B (n;k) (n—Fk) - (n—2k+1)
] =

E2 [X®) )~ nn—kt1)

:(1_i>...(1_1HiH):1—o(1)7 (7)

where the last equation follows from the fact k = o(n). Furthermore, it is easy
to see that the terms in the sum of the RHS of (6) corresponding to ¢ = k is
equal to E[X(®)] = o(E2[X ®)]), since k = (1 — €)ko and so E[X *)] goes to oo as
n — oo. Therefore, by (6) and (7),

E (X(k))2 f:_l Zij: ins, =t EGIERXG|XG = 1]
]EL[XW]} =1+o(l)+ Lt Iéjz‘ [X®] - @

In view of the above, in what follows we will show that the sum in the RHS of
the above equation is o(1), which will prove the theorem. To this end, notice that
E[X,|X; = 1] is equal to the probability that S; is a J-temporal clique given that
S; is a d-temporal clique. By independence of label choices, when [S; N S;| =t
(i.e., S; intersects with S; on ¢ vertices), E[X;|X; = 1] is upper bounded by the
probability that all labels of edges that have both endpoints in S; but not both
endpoints in S; N S; are at most ¢ apart. Therefore, by applying Lemma 3 with

h=(8) - (2), we get
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i i = (%)s(e)-1 (2)
Using the bound (9), and noting that E[X;] = (5)6'2)7"(1 — 6) + 612/, for any
ie{l,2,..., (Z)}, we get

k—1
t=1 Zi,j:\smsj|:t]E[Xi]]E[XﬂXi = 1]
E2 [X (]

2 Sussinsime (598711 = 8) +90)) (§)s@-0)
() (a1 -5)+0))

k—1 (k: (n—k:)
S t k—t 3 _ Z k)
= oOGeeta-9  F@ePa-s)
— szt ?;::;e:: k-1 ek
= LN = t . (10)
s 1—6) S -ttt (1 - o)

By straightforward analysis on the function g(t) = %, for t € [1,k — 1],
we get that it is strictly decreasing and so it is maximized at ¢ = 1, namely
max{g(t),1 <t <k —1} = g(1) = (1 — 1) 7" < 1. Therefore, by (10),

t=1

k-1 _
Zi,j:|5,;ﬂ5j|:t]E[Xi]E[Xj‘Xi =1 =2 1 k2tek

< 7
E2 [X(k’)] P e(1—16) pts(s)
k—1
_ Z 1 e2t Ink+k—tIn n+% In %
N 1-9)
t=1 6(
k—1
1 kln 4
< 2t In k+k—t1nn+tT
<) e1-0)°
t=1
k—1 1
_ 2tlnk+k—etlnn __
= e =o0(1),
— e(l-9) S

where in the last equality we used the fact that & = (1—€)222 and Ink = o(Inn).

In 5

This completes the proof. a
By the probabilistic method, combining Lemma 4 and Lemma 5, we get the
following:

Theorem 2. Let (K,,,\) be a random simple temporal graph where the under-
lying graph is the complete graph with n vertices, and let 6 € (0,1) be a constant.

d )
Define kq Lef Qiizg%”. As n — co we have the following:

(1) With high probability, (K,,A) has no d-temporal clique of size (1 + o(1))ko.
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(ii) With high probability, (K, A) contains a d-temporal clique of size (1 —
o(1))kq.

Proof. Let € > 0 be an arbitrarily small constant. Let also X*) denote the
number of d-temporal cliques of size k in (K, A). By part (i) of Lemma 4 and
Markov’s inequality, we have that Pr(X((1+9)k0) > ) < E[X((1+9)k0)] = o(1), as
n — 0o, which proves the first part of the Theorem.

For the second part, we use the following well-known inequality

E*[x ()
PI‘(X(k) > 0) > W

. In particular, for £k = (1 — €)ko, by part (ii) of

E2[x((1=)k0)]

Lemma 5, we have that Pr(X((1=9%) > o) > 1= 1 — 1 o(1), as
E[(x(-ak0)) }

n — 0o, which proves the second part of the Theorem. a

We note that the above Theorem implies the following:

Theorem 3. Let (K,,,\) be a random simple temporal graph where the under-

lying graph is the complete graph with n vertices, and let § € (0,1) be a con-

stant. Let also ko = 218" and let Q be any d-temporal clique of size at least
5

log
(1—0(1))ko. Define the interval A(Q) = [min(A(e) : e € @), max(\(e) : e € Q)].

Then |A(Q)| = 6 — o(5) whp.

Proof. Since |A(Q)| < 4, by definition of a §-temporal clique, we only need to
prove that |A(Q)| > § —o(d). Suppose there is some §’" < § — ¢, for some positive
constant €, such that Pr(3Q : A(Q) < ¢') > €. This would imply that @Q is a
0’-temporal clique in (K, \), of size (1 —o(1))ko. However, Theorem 2, suggests
that the largest §’-temporal clique in (K, \) is at most (1 — 0(1))?0123", which
6/

is much smaller than (1 — o(1))ko, leading to a contradiction. O

Note 1. The above proofs also work for smaller values of 6 = o(1) (e.g. 6 =
mL but not too small (e.g. if § = O(1/n) the expected size of a d-temporal
clique becomes constant and concentration results do not hold).

3 Average case hardness implications and open problems

The threshold given in Theorem 2 on the size of the maximum J-clique reveals
an interesting connection between simple random temporal graphs (K, A) and
Erdés-Rényi random graphs Gy, 5. On one hand, notice that, if we only consider

edges with labels within a given d-window, then the corresponding graph is an

. . . . . . d
instance of G, s, which has maximum clique size asymptotically equal to kg ef

21(1;;—831" whp. On the other hand, the random simple temporal graph contains
)
O(n?) different instances of G, s, but the size of a maximum d-clique size is
asymptotically the same. One explanation why this happens is that the different

instances of G, ;s contained in the random simple temporal graph are highly
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dependent, even if these correspond to disjoint §-windows (indeed, edges with
labels appearing in one window do not appear in the other and vice versa).

It is therefore interesting to ask whether we can use the above connection
algorithmically. One direction is clearly easier than the other: If there is a poly-
nomial time algorithm Agpr(0) that can find a clique of size ¢ = O(ko) in a
random instance of G, s whp, then we can use this algorithm to find an asymp-
totically equally large d-clique in a random instance of (K, \) with the same
probability of success. We note that, finding a clique of size asymptotically close
to ko in G, 5 is believed to be hard in the average case and there is no known
algorithm for this problem that runs in polynomial time in n.

For the other direction, we conjecture that the following reduction may be
possible:

Congjecture 1. Suppose that, for any ¢ € [0,1] there is a polynomial time algo-
rithm Agpr(d) that finds an (1 — o(1))-approximation of a maximum J-clique
in a random instance of (K,,\) whp. Then Aggrr(d) can be used to design a
polynomial time algorithm that finds an (1 —o(1))-approximation of a maximum
in G, s whp.

It is clear that the probability of success of Agrr(d) in the above Conjecture
cannot be equal to 1 unless P = NP. In the following Theorem we also prove
that the probability of success is unlikely to be too large.

Theorem 4. Suppose that, for any constant § € (0, 1), the probability of success
of algorithm Asgr(0) is 1 — exp(—w(n?)). Then Asrr(6/2) can be used to find
a clique of size (1 — o(1))ko in G, s whp.

Proof. Let G, 5 be a random instance of the Erdés-Rényi random graphs model.
Let £ be the event that, for a random instance of the random simple temporal
graph (K,,A), all edges of G, s appear inside [0,d/2], while all other edges
appear inside [d, 1]. By definition we then have that

[E(Gn,s)l , B n2
Pr((‘:) = <g) (1—5)(%)_\E(Gn,5)| > (min{5/2,1 . 5})" > <6(125)) .

Furthermore, notice that, by Theorem 3, given £, any maximum g—clique belongs
to G,,,s and thus lies within [0, g] whp. Indeed, a maximum clique of G,, s has
size asymptotically equal to kg, and there is no g—clique of size (1—o(1))ko within
[0,1], whp. In particular, denoting by C the event that the maximum g—chque
lies within [0, §/2], we have

51—

Pr(ENC) = Pr(€) Pr(C|€E) > (1—0(1))( . 5)> = exp(—0(n2)). (11)

In view of the above, given G,, 5, we construct the input instance for Agpr
as follows: (a) select the labels of edges in E(G,, s) uniformly at random within
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[0,6/2] and (b) select the labels of all other edges independently, uniformly at
random within [6, 1].

Since the failure probability of Agsgr(0/2) is, by assumption, at most
exp(—w(n?)) (which is asymptotically smagller than the lower bound given in

(11)), the algorithm may only fail to find a §-temporal clique of size (1 —o(1))ko

in a vanishing fraction of input instances Z created. In particular, the g—temporal
clique constructed by Agrr(4/2) will be an (1 — o(1))ko clique of G,, 5 whp, as
needed. a

In view of the above proof, one possible approach for Conjecture 1
would be to examine the distribution of the minimum interval contain-
ing all labels of edges in a d-clique found by Asgr (namely A(Q) =
[min(A(e) : e € @), max(A(e) : e € Q)]), when the input instance Z = Z(Gy )
is constructed as follows: Given G,, 5, (1) select labels {A(e) : e € E(G,5)} in-
dependently, uniformly at random (i.u.a.r.) within [0, ¢], and (2) select the rest
of the labels {A(e) : e ¢ E(Gy5)} i.u.a.r. from [, 1]. In particular, we conjecture

the following:

Conjecture 2. Let Q* be the d-clique constructed by algorithm Aggr, on in-
stance Z(G,,,5). Then A(Q*) is distributed almost uniformly at random within
[0,1].
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