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Outlier Detection in Auditing: Integrating Unsupervised Learning within a Multilevel 

Framework for General Ledger Analysis 

ABSTRACT 

 Auditors traditionally use sampling techniques to examine general ledger (GL) data, which 

suffer from sampling risks. Hence, recent research proposes full-population testing techniques, 

such as suspicion scoring, which rely on auditors’ judgment to recognize possible risk factors and 

develop corresponding risk filters to identify abnormal transactions. Thus, when auditors miss 

potential problems, the related transactions are not likely to be identified. This paper uses 

unsupervised outlier detection methods, which require no prior knowledge about outliers in a 

dataset, to identify outliers in GL data and tests whether auditors can gain new insights from those 

identified outliers. A framework called the Multilevel Outlier Detection Framework (MODF) is 

proposed to identify outliers at the transaction level, account level, and combination-by-variable 

level. Experiments with one real and one synthetic GL dataset demonstrate that the MODF can 

help auditors to gain new insights about GL data.  

I. INTRODUCTION 

 The General Ledger (GL) is an essential element in accounting. In the GL, financial 

transactions are consolidated to generate updated account balance, which are subsequently used in 

the preparation of financial statements. Any errors in the postings related to changes in account 

balances within the GL could be carried through to the final financial statement, resulting in 

material misstatements. Hence, it is an auditor’s interest to ensure that the postings are free from 

material errors.  

 Traditionally, auditors rely on sampling techniques to select records for investigation. 

However, prior research finds that sampling techniques are poor at detecting low-frequency, high-
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risk events in large populations (Teitlebaum and Robinson 1975; Beck and Solomon 1985). 

Sampling can also suffer from targeting bias due to the selective nature of judgment-based 

sampling methodology (Blocher and Bylinski 1985; Elder and Allen 1998; Hall, Hunton, and 

Pierce 2000). Moreover, the investigation capacity of auditors restricts the sample size to a small 

proportion of the whole population, such as a few hundred out of millions of records. These 

arguments indicate that sampling cannot provide sufficient evidence to assure the accuracy of the 

records. To overcome sampling issues, recent studies propose full-population testing (Issa 2013; 

Li, Chan, and Kogan 2016; No, Lee, Huang, and Li 2019). Techniques, such as suspicion scoring 

and exception weighting, are used to test the risk of misstatement for each record based on a list 

of risk factors, and a suspicion score presents the assessed risk level. Higher scores indicate records 

with higher risk. If auditors find that the high-risk records are free of errors after investigation, 

they can conclude that the accounts in the GL do not contain material errors with respect to the 

test criteria, resulting in a greater level of confidence in the quality of the GL.  

 The effectiveness of full-population testing techniques significantly depends on auditors’ 

knowledge and expertise, which are essential for creating a detailed list of risk factors and 

assigning appropriate weights (i.e., weighted-risk-filter techniques). Although auditors’ judgment 

is often effective – for instance, auditors can implement a filter to detect transactions occurring on 

weekends, recognizing them as frequently associated with fraudulent activities – there is a risk that 

auditors may overlook certain risky records if they fail to identify potential underlying issues. To 

explore potential risks in the GL, we introduce unsupervised outlier detection methods to identify 

records that deviate from the normal patterns in a population. The outlier detection process is 

independent of human guidance, defining the normal patterns through the method itself rather than 
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auditors’ judgement. Thus, there is a chance that the method uncovers underlying abnormality in 

the GL that auditors do not expect. 

Since no knowledge from auditors guides the outlier detection process, they must conduct 

an ex-post examination of these outliers to understand whether the outliers result from errors or 

acceptable fluctuations. Auditors rely on original variables in the records, such as dates and 

amounts, to assess the risk of misstatements. By contrast, outlier detection methods usually 

consider interaction between variables by projecting them onto a multi-variate space where the 

normal patterns are identified and the degree of deviation for each record is determined. When the 

dimensionality of the space is high, the cause of outliers would not be interpretable to humans, and 

examining the identified outliers directly is the only way to gain new insights.  

In an attempt to encompass different types of outliers in a GL dataset, we propose a 

Multilevel Outlier Detection Framework (MODF) that identifies outliers at three levels: 

transaction level, account level, and combination-by-variable level with each level representing a 

specific mechanism for outlier detection. We then test the effectiveness of the framework using 

both real and synthetic GL datasets. For the real GL dataset, an external audit team from one of 

the world’s largest audit firms partnered with our research team to provide the data and conduct 

risk assessment on the identified outliers. The risk assessment results are presented as a risk level 

(either low, medium, or high) for each identified outlier. Additionally, to examine whether new 

risk is identified by the MODF, we compare the risk levels of the identified outliers to the suspicion 

scores that the audit team has calculated using a weighted-risk-filter methodology. The 

methodology involves the development of a list of risk filters and the assignment of weights for 

each filter to calculate a suspicion score. Through the comparison, we find that some identified 



 6 

observations receive higher risk levels when the risk assessment is based on the identified outliers, 

as opposed to when it is based on the suspicion scores.  

The synthetic GL dataset1 is from a case study created by Ernst & Young Academic 

Resource Center (EYARC). The dataset contains no fraud. We test the ability of the MODF in 

complementing auditors’ scope by simulating a specific type of seeded errors that may elude 

auditors’ knowledge. Particularly, the variable values of the seeded errors fall into the same ranges 

as the records in the dataset, but the relation between the variables is changed. Since the relation 

is not directly observable, it is difficult to identify the abnormal relation with risk filters, which are 

derived from observable abnormal scenarios (e.g., transactions occurred during weekends). 

Nevertheless, the MODF exhibits promising performance at detecting those seeded errors. This 

experiment aims to demonstrate the MODF’s capability in uncovering abnormalities within GL 

data that are typically overlooked by existing full-population techniques. The findings from both 

the real and synthetic datasets demonstrate that auditors can employ outlier detection methods to 

identify suspicious records within GL data. Through examination of the suspicious records, 

auditors may gain new insights regarding the risks of the GL data. 

  This paper contributes to audit research and practice in several ways. First, it demonstrates 

the feasibility, through the MODF and its implementation, of applying outlier detection methods 

to selecting suspicious observations in GL data. Second, we compare the MODF to existing full-

population testing techniques that mainly rely on auditors’ knowledge and illustrate that outlier 

detection methods can help auditors identify unexpected risks in GL data. 

The paper is organized as follows: Section II reviews prior research in outlier detection 

applications and audit analytics. Section III introduces the MODF. Section IV demonstrates the 

 
1 Available at https://eyus.sharepoint.com/sites/EYARC/SitePages/AM-Case-Studies.aspx 

https://eyus.sharepoint.com/sites/EYARC/SitePages/AM-Case-Studies.aspx
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framework with both real and synthetic datasets and reports the results. Section V discusses the 

potential uses and limitations of the MODF. Section VI concludes the paper. 

II. LITERATURE REVIEW 

Assessing the risk of material misstatement is a fundamental task for auditors. Analytical 

procedures must be performed to enhance auditors’ understanding of the client and to identify 

areas that represent certain risks for further investigation (AS 2110.46, 2016). Auditors’ 

knowledge is generally effective in identifying risk factors. However, research shows that auditors’ 

reaction to fraud cues may sometimes be flawed due to the strategic nature of fraud (Wilks and 

Zimbelman 2004; Asare and Wright 2004; Hoffman and Zimbelman 2009). Unsupervised outlier 

detection, which emerged from computer science, aims to distinguish abnormal data patterns from 

normal ones with no prior knowledge about the abnormality. Thus, it could offer a chance for 

auditors to gain new knowledge about their clients from the outliers that exhibit abnormal 

characteristics. Despite the demonstrated effectiveness of various outlier detection methods in 

fields such as chemistry, medicine, and finance, limited research has examined their application in 

an audit context. This paper contributes to both the outlier detection and the audit analytics 

literature by illustrating the effectiveness of outlier detection methods in auditing.  

Outlier Detection 

Grubbs (1969) defines an outlier as an observation “that appears to deviate markedly from 

other members of the sample in which it occurs.” Analyzing the outliers may reveal weakness in 

the generation system from which the sample was derived.  

One of the most fundamental outlier detection models is k-nearest neighbors (KNN), which 

calculates the distance of each point to its k-nearest neighbors. Points with a significantly large 

distance from all other points are global outliers (Ramaswamy, Rastogi, and Shim 2000). However, 
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such obvious outliers are not always present in real data. More commonly, outliers are not very far 

from a main clusters but are surrounded by fewer similar points. Such outliers are called local 

outliers, which are close to a main cluster but in a low-density space. Breunig, Kriegel, Ng, and 

Sander (2000) propose Local Outlier Factor (LOF), a density-based model to identify both global 

and local outliers by comparing the local density of a given point to the average density of its k-

nearest neighbors, which produces an LOF value (i.e., an outlier score). A higher LOF value 

represents a higher likelihood that the point is an outlier.   

As a simple but effective detector model, LOF has been applied to various outlier detection 

problems and used as a benchmark in outlier detection research. For example, Mokua, Maina, and 

Kiragu (2021) apply the LOF algorithm to detect anomalies in water quality data, and Alghushairy, 

Alsini, Soule, and Ma (2020) discuss the potential of LOF algorithms for outlier detection in big 

data streams. 

Other well-known outlier detection approaches include probabilistic models and univariate 

methods. Probabilistic models first infer the distribution of the majority of data and then identify 

points that are not likely to belong to it. The most common probabilistic model is Gaussian Mixture 

Model (Zhuang, Huang, Palaniappan, and Zhao 1996). Univariate methods instead focus on a 

variable’s extreme values and are usually applied together with visualization methods (e.g., z-

scores, boxplots, and/or histograms). Probabilistic and univariate models are more effective when 

data is generated from a single activity.  

Research demonstrates the diverse range of domains where outlier detection algorithms are 

utilized to identify outliers with significant implications. The primary application domain is 

intrusion detection. In this scenario, malicious activities in networked computer systems are 

identified via outlier detection (e.g., Davis and Clark 2011). Another application domain is fraud 
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detection, where log data is used to detect suspicious records indicating fraud, such as unusual 

transaction amounts that might suggest credit card fraud. Srivastava, Kundu, Sural, and Majumdar 

(2008) use k-means clustering to create spending profiles for individual cardholders’ spending 

amounts. An alarm is reported when a new transaction deviates from a cardholder’s existing 

spending profile. Cynthia and George (2021) implement two unsupervised algorithms, Local 

Outlier Factor and Isolation Forest, and two supervised algorithms, Support Vector Machine and 

Logistic Regression, on a credit card dataset to observe their ability to identify fraudulent 

transactions. Their results show that unsupervised algorithms are “more suitable for practical 

applications of fraud and spam identification.” Another example of fraud detection is finding 

fraudulent accounting in financial transactions (Debreceny and Gray 2010; Khan, Corney, Clark, 

and Mohay 2010; Thiprungsri and Vasarhelyi 2011; Khan, Clark, Mohay, and Suriadi 2014). For 

instance, Thiprungsri and Vasarhelyi (2011) apply k-means clustering to an insurance dataset and 

define outliers as (1) observations that are far from a main cluster, and (2) observations in small 

clusters. By checking those outliers, they find some suspicious insurance claims.  

Overall, unsupervised outlier detection is a well-studied field that comprises a diverse 

range of methods to identify outliers with various abnormal characteristics. Furthermore, the 

application studies that show the ability of unsupervised outlier detection methods to identify 

meaningful outliers motivates this paper to examine what these techniques will find when used in 

an auditing scenario.  

Advanced Data Analytics Techniques in Auditing  

Audit data analytics (ADA) is defined as “the science and art of discovering and analyzing 

patterns, identifying anomalies, and extracting other useful information in data …for the purpose 

of planning or performing the audit” (AICPA 2017). The analysis of large datasets using various 
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analytical tools is the focus of many studies where the objective is to achieve a comprehensive 

understanding of the data. For example, Issa and Kogan (2014) apply a logistic regression model 

for quality reviews of internal controls. Similarly, Zhaokai and Moffitt (2019) develop a novel 

Contract Analytics Framework (CAF) to help auditors conduct analyses on full populations of 

contracts, which are traditionally examined manually on a sample basis. Visualization is another 

powerful tool that can be used to analyze data and generate new insights. While visualization is 

commonly used as a complementary tool to illustrate data, Alawadhi (2015) describes how 

visualization benefits auditors throughout the audit cycle. Nevertheless, choosing the most 

appropriate type of information representation for a given task can be challenging, as noted by 

Dilla, Janvrin, and Raschke (2010). Process mining is another analytical tool to evaluate the 

effectiveness of internal control by scrutinizing data from event logs. These logs record computer 

system activities chronologically and automatically, providing valuable data that is independent of 

the auditee’s manipulation (Jans, Alles, and Vasarhelyi 2013).  

Although their data and analytical approaches vary, these studies share a common ADA 

objective, which is obtaining sufficient evidence to form opinions based on large datasets. The 

ADA can be further categorized into two groups depending on what the auditors know about the 

problem’s characteristics. If auditors know the possible risk factors and use ADA for testing, then 

it is a confirmatory data analysis (CDA), whereas if auditors use ADA to “develop new hypotheses 

or refine current hypotheses” about their clients, then it is an exploratory data analysis (EDA) 

(Tukey 1977). Most ADA studies fall into the first category since guidance from auditors is 

provided to the ADA model to obtain the output. However, this study designs its framework with 

the EDA mind and demonstrates how it helps to identify new risks. Research that also focuses on 

EDA includes studies by Thiprungsri and Vasarhelyi (2011) and Liu (2014). 
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The idea of full-population examination of GL data has drawn much recent attention from 

researchers. Li et al. (2016) assign suspicion scores to each transaction based on violation of 

predefined expert rules and set a threshold for these scores to select transactions to be investigated. 

No et al. (2019) suggest that weighted filters be developed based on risk factors for suspicion 

scoring. The resulting suspicion scores serve as a proxy for auditors’ judgments, and their study 

uses exception prioritization to further select “exceptional exceptions (Issa 2013)”. In a more 

recent study, Freiman, Kim, and Vasarhelyi (2022) apply the MADS methodology to a real-world 

GL dataset and demonstrate its effectiveness. While most studies propose full-population 

examination methodologies within a CDA context, our study is focused on an EDA context. The 

new insights gained through EDA can benefit CDA by complementing its testing objectives. 

III. METHODOLOGY 

 We propose a Multilevel Outlier Detection Framework (MODF), shown in Figure 1, to 

identify outliers in GL data at three different levels. For each level, a detection method is 

introduced to identify the target outliers. The framework incorporates four steps: data 

preprocessing, outlier detection, two-stage prioritization, and investigation.  

Step 1: Data Preprocessing 

 The data used comprises all postings associated with changes in account balances within a 

GL, readily exportable from a firm’s ERP system. The records typically require conversion into a 

suitable format for outlier detection. First, variables containing missing values should be 

eliminated during data cleaning. Furthermore, if the information contained in a particular variable 

can be derived from another variable, it should be omitted to prevent redundancy. Second, new 

variables can be created to capture specific and targeted information. The process of variable 

engineering should align with the objectives set by auditors. For instance, if auditors are concerned 
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about backdating, they can create a variable by computing the discrepancy between the event date 

and the corresponding bookkeeping date. Third, numerical variables should be normalized to 

ensure their comparability. Otherwise, extreme variable values would dominate the outlier 

detection results. Finally, the records are reconstructed into three different datasets to detect target 

outliers. The first dataset consists of individual records containing all relevant variables, from 

which the transaction-level outliers are identified. The second dataset involves all accounts in the 

GL with their balances. The target outliers in this dataset are account-level outliers. The third 

dataset involves all individual records, but only the categorical variables are retained. The 

numerical variables are removed to specifically identify combination-by-variable-level (CBVL) 

outliers. For each observation, its categorical variable values form a combination-by-variable. The 

CBVL outliers aim to uncover the condition in which the variable values are frequent, but specific 

combinations of those variables are infrequent.  

Step 2: Outlier Detection Process 

After constructing the three dataset, an outlier detection model is applied to each. The 

model used to detect transaction-level outliers is Local Outlier Factor (LOF), in which 

observations that are not closely surrounded by their neighbors are outliers (Breunig et al. 2000). 

An outlier score is assigned to each observation, which represents its outlying degree. A necessary 

parameter to execute the model is the number of observations to be considered as “neighbors” for 

each observation. Given the fact that the optimal value is not observable, Breunig et al. (2000) 

recommend running the model multiple times, each with a different parameter value applied.2 

Among the multiple outlier scores for each observation, the maximum value becomes its final 

score.   

 
2 A range of 10 to 20 is often used as a rule of thumb according to Breunig et al. (2000).  
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The Z-score model is used to detect account-level outliers, which are accounts with 

extreme balances in the GL. The function to calculate the Z-score is as follows: 

𝑍 =
𝑥 − 𝜇
𝜎  (1) 

where 𝑥 is an account balance, 𝜇 is the average account balance of the GL, and 𝜎 is the standard 

deviation of the account balances in the GL. Higher Z-scores indicate higher deviation from the 

average.  

 The CBVL outliers are identified by K-Modes Clustering (Huang 1998), which is designed 

to cluster data with categorical variables only. The number of clusters, k, is a necessary parameter 

to execute the model. As a rule of thumb, an effective way to obtain the optimal k value is the 

elbow method. Initially, the model selects k frequent combinations to be the centers of k clusters 

(i.e., k modes). Subsequently, the distance between each observation and the center of each cluster 

is calculated with a dissimilarity measure3 to determine the nearest cluster that the observation 

belongs to. The k modes are updated until the within-cluster difference reaches the minimum. After 

ranking the k clusters according to their cluster sizes, observations in the smallest clusters carry 

infrequent combinations.  

Step 3: Two-Stage Prioritization   

 To select observations for further investigation, each dataset is ranked in a descending 

order by the output of the applied detection model, either outlier scores, Z-scores, or cluster sizes. 

The investigation should focus on the top observations in each dataset. Since auditors have limited 

investigation capacity, the number of selected observations should not be overwhelming. Another 

concern is that many observations selected have immaterial dollar values. To address these 

 
3 For each categorical variable, if an observation has the same value as the mode, the distance is zero; otherwise, the 
distance is one. The sum of all the categorical variable distances is the distance of an observation to a mode. 
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concerns, we apply a two-stage filtering process to prioritize outliers to be investigated. At stage 

one, a threshold for the outlying degree above which observations are notable outliers is set as a 

percentile for the outlier scores, Z-scores, and cluster sizes. At stage two, a dollar value serves as 

another threshold to filter out notable outliers with immaterial amounts. The notable outliers with 

amounts above this threshold are exceptional outliers at the transaction-level, account-level, and 

CBVL, which will be investigated in the next step. Auditors should determine the two thresholds 

in terms of their general understanding of the client’s risk. 

Step 4: Investigation 

 After investigating the exceptional outliers, auditors can draw a conclusion about their risks. 

Auditors can either use a binary label (e.g., whether the outlier is a misstatement or not) or a risk 

level (e.g., low, medium, or high), depending on their judgment during the investigation.  

 Another analysis is conducted to test whether additional insights are gained through the 

investigation of the outlier detection results. We argue that when auditors identify unexpected 

misstatements or assign an increasing risk level to an observation, they gain new risk-related 

insights through the outliers. In the second condition, a full-population testing technique based on 

auditors’ judgment (e.g. the weighted-risk-filter technique) needs to be applied first so that we can 

compare risk assessment results based on the auditors’ judgment and the MODF. When the newly 

assigned risk level for a given outlier is greater than the existing one, it indicates that auditors have 

obtained new, useful knowledge during the investigation of exceptional outliers. Moreover, if the 

new knowledge is applicable to other audit engagements, new risk factors may be recognized to 

identify similar records in the future.   
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IV. EXPERIMENT 

 This study uses two entry datasets to demonstrate the effectiveness of the framework. The 

first dataset is all journal entries and their associated postings to the GL for a real company for FY 

2019, provided by the firm’s external audit team. In total, there are 521,283 observations. The 

Appendix shows examples of journal entry data. After the framework identifies the exceptional 

outliers, the audit team investigated them and provided the risk assessment results. Additionally, 

the audit team also has the risk assessment results based on a full-population testing technique 

using weighted risk filters. Hence, we can compare the risk assessment results for the same dataset 

based on the auditors’ judgment and the exceptional outliers.  

  Another dataset is synthetic and created by EYARC for a case study. It contains 37,869 

journal entries of a university hotel. There are two versions of this dataset: with and without 

fraudulent entries. The clean version is used in this study. In order to form a better understanding 

of the condition where the MODF outperforms the weighted-risk-filter techniques, we contaminate 

the clean data with seeded errors created in a way that their variable values fall into the same ranges 

as the observations in the dataset, but the relation between the variables is changed. Since the 

relation is not directly observable, such seeded errors are difficult to identify based on auditors’ 

judgment which focuses on observable abnormal scenarios (e.g., violation of segregation of duties). 

Real-World Dataset 

 The 521,283 journal entries result in changes in the balances of 1,479 unique accounts. 

Table 1 outlines the nine variables in the data.  

Step 1: Data Preprocessing  

 During data cleaning, we exclude the Line Description variable because all observations 

have missing values, and the Transaction ID variable is also dropped because that information can 
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be derived from the other variable in the data. For variable engineering, we create a new variable 

called Day Difference by calculating the discrepancy between Effective Date and Created 

Date/Time. Such a variable is created to capture observations with abnormal lags between the two 

dates, indicating a delay in recording transactions. Another new variable, Keyword Count, is 

created based on the Journal Description variable, which is aligned with the audit team’s risk 

assessment procedures for journal descriptions. Particularly, the team compiles a list of keywords 

deemed risky in descriptions, and auditors review each description containing the keywords to 

assess the need for further investigation (e.g., to ascertain if a description is vague). Given that the 

latter part of the risk assessment heavily relies on auditors’ judgment, we concentrate on the initial 

phase of their procedure aimed at identifying journal descriptions with potential risks. Drawing on 

prior studies in textual analysis, which suggest that more negative words indicate a more negative 

sentiment (Antweiler and Frank 2004; Tetlock 2007; Loughran and McDonald 2011), we argue 

that a greater presence of keywords in a description signals a higher risk level. Thus, we established 

the Keyword Count variable to count the risky keywords in each journal description for outlier 

detection. An observation with a substantial keyword count is more likely to receive a high outlier 

score, identifying it as a significant outlier. Finally, the absolute values of Net, Day Difference, 

and Keyword Count columns are normalized, while the categorical variables, Account Code, 

Document Type, and User ID, are converted into binary variables through one-hot encoding. Table 

2 provides a summary of the variable preprocessing. 

 For data restructure, we first separate the accounts based on their GL categories, which are 

generally established to divide transactions generated from different business activities, and then 

construct the three datasets used for outlier detection within each category. Such separation ensures 

that the outliers are identified in a population comprising records derived from similar business 
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activities. Otherwise, the outliers would be less meaningful if the population is composed of 

records from heterogeneous business activities. A GL category can have multiple accounts, and 

the transactions involved in each account all belong to that category. The GL category that each 

account (and the transactions in it) belongs to can be obtained from the trial balance of the company. 

In total, there are 31 categories. The audit team selected six categories for us to apply the 

framework, within which most records are low-risk with respect to their risk-filter-based technique. 

Table 3 lists the six categories and their indices. For the three datasets constructed within each 

category, Table 3 also presents the numbers of transaction records (hereafter records), accounts, 

and unique variable combinations.  

Step 2. Outlier Detection 

 LOF, Z-score, and K-Modes Clustering are applied to the three datasets in each primary 

category, yielding outlier scores, Z-scores, and k clusters as the respective outputs. The Python 

code to run LOF and K-Modes Clustering is available at scikit-learn4 and Github5, respectively.  

Step 3. Two-Stage Prioritization 

 At stage one, the threshold for identifying notable outliers is set at the 75th percentile of the 

outlying degree, which echoes the threshold used by the audit team for the suspicion scores 

calculated by a weighted-risk-filter technique. The auditors set the suspicion score at the 75th 

percentile as the threshold for identifying high-risk records, which produced a sample of 79 records. 

While the threshold yields a reasonable sample size in this scenario, it may identify a large number 

of notable outliers that overwhelm the auditor’s investigation capacity, especially when there are 

 
4 https://scikit-learn.org/stable/auto_examples/neighbors/plot_lof_outlier_detection.html  
5 https://github.com/nicodv/kmodes 

https://scikit-learn.org/stable/auto_examples/neighbors/plot_lof_outlier_detection.html
https://github.com/nicodv/kmodes
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very few observations with the same outlying degree.6 Hence, an upper limit of 100 records is 

applied to the sample size. When the sample size with the 75th percentile threshold is less than 100, 

all the observations above it are considered notable outliers. However, if the sample size exceeds 

100, only the top 100 observations are designated as notable outliers. For this study, the auditors 

agree that 100 is a reasonable sample size for investigation. 

 Regarding the stage-two threshold, the audit team suggested $10,000 as an amount below 

which they would consider an outlier to be immaterial for this client. Table 4 outlines the two-

stage prioritization results for the three levels. The 75th percentile threshold is applied as the stage-

one threshold for all account-level observations and the CBVL observations in Categories A-D), 

whereas the top-100 limit becomes the threshold for all transaction-level observations and the 

CBVL observations in Categories E-F. As Table 4 shows, there are a total of 41 exceptional records, 

50 exceptional accounts, and 43 exceptional combinations to be investigated in next step.  

Step 4. Investigation 

 The auditors first investigated the exceptional records, accounts, and combinations, and 

then categorized them as being at a low, medium, or high-risk level. These newly assigned risk 

levels are the risk assessment results based on the exceptional outliers. Table 5 summarizes the 

number of exceptional observations that fall into each risk level. As the auditors only spend 

investigation budget on medium or high risks, we considered an observation risky only when it 

receives a medium or high-risk level. According to Table 5, observations with medium or high 

risks are identified in all the three outlier detection levels. Particularly, 17.1 percent exceptional 

records, 82 percent exceptional accounts, and 69.8 percent exceptional combinations receive 

 
6 For instance, if LOF assigns a unique outlier score to each observation, the 75th percentile threshold will select 
exactly 25 percent of the population as notable outliers, which will be an overwhelming sample for auditors to conduct 
investigation. 
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medium or high risks. It indicates that the three detection methods in the MODF are more effective 

in identifying risky accounts and combinations with respect to auditors’ criterion.  

 The risk levels of the exceptional observations are then compared to the risk assessment 

results based on the auditors’ weighted-risk-filter technique. The audit team already developed an 

analytical routine prior to this study, which involves a list of risk filters and a weight to each filter. 

For example, one of the risk filters is transactions that occurred during weekends. For each record, 

auditors calculated a suspicion score using the following formula: 

𝑠! ="𝑥!"𝑤"

#

"$%

 (2) 

where 𝑥!"  is a binary variable that equals one if the record 𝑖 violates the risk filter 𝑗 and zero 

otherwise, 𝑤"  is the weight of risk filter 𝑗, and 𝑛 is the total number of risk filters. After the 

population was ranked from the largest to the smallest by the suspicion scores, the auditors set two 

thresholds to determine high-risk (at or above the 75th percentile), medium-risk (between the 75th 

and 60th percentiles), and low-risk (below the 60th percentile) records.  

 The existing risk assessment results based on the weighted-risk-filter technique are only 

available to individual records. Hence, to obtain the existing risk assessment results of the accounts 

and the variable combinations, we aggregate the records by their account or combination and take 

the maximum risk level among the records in that category to be the existing risk assessment result 

for that account or combination. For each exceptional observation (i.e., record, account, or 

combination), the newly assigned risk level is compared to the existing one. We argue that when 

the new level is higher than the existing one, auditors gain new risk-related insights about the GL 

data.  
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Table 6 presents the comparison results. No higher new risk level is found in the 

exceptional records, whereas five (10 percent) of the exceptional accounts and 29 (67 percent) of 

the exceptional combinations received a higher risk level using the MODF. These results indicate 

that auditors can gain additional insights about the GL data through our analysis of exceptional 

outliers, which may affect their risk assessment results. A possible explanation of the MODF 

identifying no additional risk in the exceptional records is that the auditors are unaware of the 

reason why those records are flagged by LOF. Unlike exceptional accounts and combinations that 

are identified as outliers due to extreme balances and infrequent combinations of categorical 

variable values, the exceptional records are identified in a multi-variate space in which the 

interaction between the numerical and the categorical variables are considered. Given the complex 

working mechanism of LOF, the auditors do not have an intuition about why those records are 

identified and can only assess the risk of the records based on their existing knowledge, resulting 

in identifying no additional risk.  

Synthetic dataset 

 The EYARC dataset contains 37,869 journal entries for the fiscal year of a university hotel, 

which involves changes to the balances of 73 GL accounts. Table 7 lists the 15 variables in the 

dataset.  

Seeded Error Generation 

 In the demonstration with the real dataset, the auditors evaluate the identified exceptional 

records and combinations without understanding the factors that contribute to their outlying status7 

because the mechanisms inherently employed by LOF and K-Modes clustering are not observable. 

 
7 Although we have a general understanding of why CBVL outliers are identified, the exact process to get the outliers 
is still unclear. For instance, whether a given CBVL outlier in the real dataset it is due to an infrequent combination 
of Account Code and User ID, User ID and Document Type, or all of these is not known.  
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As a result, it is still uncertain what types of misstatements can be more effectively detected by 

LOF and K-Modes than the weighted-risk-filter technique. To resolve this concern, we generate 

seeded errors that, by their nature, are difficult to identify using the weighted-risk-filter techniques 

to test whether LOF and K-Modes can identify such errors. Particularly, those errors have 

individual variable values close to the normal observations’, but when the relation between those 

values is analyzed, the errors and the normal observations will produce different dependency 

structures. We estimate the probability density function of each variable in the dataset to ensure 

the variable values of the errors are comparable to the original observations. Meanwhile, we utilize 

a vine copula to describe the relation between the variables. Vine copulas are graphical models 

that build a dimensional dependency structure for an arbitrary number of variables, and changing 

the dependency structure generates dependency outliers. This generation mechanism is introduced 

by Steinbuss and Böhm (2021). The full multivariate probability density function can be written 

as follows: 

𝑓(𝑥%, … , 𝑥&) = 𝑓%(𝑥%) ∙ … ∙ 𝑓&(𝑥&) ∙ 𝑐(𝐹%'%(𝑥%), … , 𝐹&'%(𝑥&)) (3) 

where 𝑓!(∙) is the probability density function of variable 𝑖, 𝐹!'%(∙) is the cumulative distribution 

of variable 𝑖, and 𝑐(∙) is the copula model.  

 We do not modify estimates for the individual variable density functions. Instead, we set 

the dependency structure as complete independence using the rvinecopulib R package.8 After 

synthetic observations are generated from the modified full density function, we remove 

observations with variable values that do not fall into the range of the corresponding variable in 

the dataset. This generation process allows us to produce seeded errors that have normal variable 

 
8 Available at https://CRAN.R-project.org/package=rvinecopulib. 

https://cran.r-project.org/package=rvinecopulib
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values but different variable structures from the original observations in the dataset. The 

percentages of seeded errors are set at 1 percent, 3 percent, and 5 percent.  

Step 1: Data Preprocessing  

 During data cleaning, we exclude seven of the 15 variables from examinations because 

they either (1) are derived from another variable in the dataset, (2) have a 1-to-1 relationship with 

another variable in the dataset, (3) have same values for all observations, or (4) require additional 

but unavailable information to be used. At the variable engineering step, the difference between 

Effective Date and Entry Date is computed and used as a new variable named Day Difference. The 

absolute values of Amount and Day Difference columns are normalized, while the categorical 

variables, Business Unit, GL Account Number, Preparer ID, and Source, are converted into binary 

variables by one-hot encoding. Table 8 provides a summary of the variable preprocessing.  

 To reconstruct the data, the accounts are separated based on the Account Class column to 

ensure that the population in which outliers are identified only contains records from similar 

business activities. In total, the dataset has 18 account classes. We select seven account classes 

that contain over 1,000 records for the experiment in order to have sufficient observations to 

estimate the full density function. The numbers of records, accounts, and variable combinations in 

each account class are listed in Table 9. Based on the seeded 1-percent, 3-percent, and 5-percent 

errors added to each account class, two datasets are constructed for the detection of transaction-

level and CBVL outliers. The numbers of records and the unique combinations after the seeded 

errors are added are also shown in Table 9. The seven account classes involve 34,257 original 

records, representing over 90 percent of the dataset.  
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Step 2: Outlier Detection 

 We apply LOF and K-Modes to each of the account classes to identify transaction-level 

and CBVL outliers. Account-level outliers are omitted for two reasons: First, as a univariate 

method, Z-score employs a straightforward operational principle to identify outliers, so auditors 

could fully understand why an account is identified as an outlier. Second, except for SG&A, each 

of the account classes used contains only few accounts, a population too small for outlier detection.  

Step 3: Prioritization 

 In this experiment, we only implement a one-stage prioritization because the materiality 

amounts for a stage-two prioritization are not available. Two different stage-one thresholds are 

utilized to select outliers for investigation: top 100 observations and top 200 observations. To 

simulate a more realistic application scenario, we do not use the actual number of seeded errors as 

the threshold since auditors typically have no access to that information. At the transaction level, 

the outliers selected are the top 100 (or 200) records with the highest outlier scores. At the CBV 

level, the outliers are the top 100 (or 200) combinations in the smallest clusters. 

Step 4: Investigation 

 Table 10 exhibits the accuracy rates that are calculated by dividing the number of actual 

seeded errors in an investigation sample by the sample size. We also determine the potential 

maximum accuracy rate for each investigation sample by dividing the total number of seeded errors 

added by the sample size (either 100 or 200) and present the results below the actual accuracy rate 

in Table 10. By comparing the two rates, we can implement a more precise evaluation because the 

actual number of seeded errors can be less than the threshold. For instance, if the total number of 

seeded errors is 20, then an accuracy rate 0.18 under the 100 threshold is high. As Panel A shows, 

the inclusion of an additional 100 observations in the investigation sample does not lead to a higher 
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accuracy rate for LOF. Furthermore, for the four account classes that have an actual accuracy rate 

that is close to the potential maximum rate at the 1-percent setting (Accrued Payroll, Inventory, 

Sales-Dining, and Sales-Other), the difference between the two rates increases at the 5-percent 

setting. These results indicate that LOF may not be an effective option to identify dependency 

outliers. In contrast, Panel B shows that the accuracy rates for all account classes are high. The 

largest difference between the actual rate and the potential maximum rate (1 – 0.65 = 0.35) occurs 

in the account class Sales-Hotel with the 3-percent setting and the top-100 threshold. However, as 

with LOF, increasing sample size in K-Modes has only slight impact on capturing more actual 

seeded errors.  

 We further examine overlaps between the actual seeded errors identified by LOF and K-

Modes in each account class and find that, although LOF has a relatively poor performance, it still 

captures some seeded errors that are not identified by K-Modes. This finding illustrates the 

desirability of utilizing various outlier detection methods instead of relying on one method. By 

using both methods, auditors can attain a more comprehensive understanding of the data at hand.    

V. EVALUATION OF MODF 

Potential of the Framework 

The Experiment section illustrates the effectiveness of the Multilevel Outlier Detection 

Framework (MODF) with a real-world and a synthetic GL dataset. In the experiment with the real-

world GL data, the comparison of the risk assessment results based on the MODF and the auditors’ 

weighted-risk-filter technique suggests that the MODF, as a full-population testing technique that 

has no mandatory requirement for auditors’ judgement to identify unusual observations, can serve 

as a valuable tool for auditors to acquire new useful insights into GL data and clients, which may 

be transferred to future audit engagements. In contrast, in the experiment with the synthetic GL 
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data, we create seeded errors, called dependency outliers, that are less likely, by their nature, to be 

identified by the weighted-risk-filter techniques to test the performance of the MODF to identify 

them. The accuracy rates suggest that the MODF can detect this type of outliers. Particularly, K-

Modes is more suitable than LOF. Additionally, actual outliers identified by LOF and K-Modes 

do not fully overlap, which illustrates the importance of employing a variety of outlier detection 

methods in the MODF. This study provides a specific condition where the MODF outperforms the 

weighted-risk-filter technique.  

Although the MODF was built in an audit context, it has the potential to be generalized to 

tax accounting or managerial accounting. For instance, the MODF can be utilized to detect tax 

refund fraud. We chose the external audit setting and the GL data to illustrate the MODF because 

managers typically have more detailed knowledge about the company than external auditors who 

need to identify material misstatements in a relatively short period from an overwhelmingly large 

number of financial transactions. Thus, outlier detection methods that require only limited 

knowledge about the data to identify unusual transactions would benefit external auditors more 

than other parties, such as internal auditors. Furthermore, the audit-related decision-making in each 

step allows the MODF to be easily customized to a specific audit engagement and to provide 

relevant outliers to auditors. For example, the thresholds in the prioritization step can be adjusted 

to a desired level of materiality. 

Another advantage of using machine-learning-based outlier detection methods to identify 

unusual observations is that a client is less likely to be able to predict which transactions are 

considered normal (i.e., outlier scores are low) in an algorithm, making it more difficult to hide 

fraud. If a client produces fraudulent entries, attempts to mask them by making them similar to 

non-fraudulent entries will be complicated by the unpredictable and opaque mechanism used by 
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an outlier detection method, increasing the chance for auditors to flag the fraud. As a result, the 

use of an outlier detection method could either identify fraudulent entries or deter clients from 

taking the risk to produce them. However, one drawback is that the client could produce many 

fraudulent entries that are similar to the non-fraudulent entries, which would increase the 

proportion of certain patterns in the population and make them more likely to be identified as 

normal. However, it is not a serious issue in most cases because those entries would be easily 

noticed by auditors. 

Limitations of the Framework 

Although the MODF aims to flag noticeable, audit-related observations in GL data, it may 

also produce false alerts, where are exceptional outliers that are shown to have no misstatement 

after examination by auditors. To mitigate this concern, auditors should apply the MODF to a 

client’s prior engagement GL data and test whether it captures valuable observations. Additionally, 

future research can also explore internal evaluation of unsupervised outlier detection methods, 

which solely relies on data and output, the outlier scores, to evaluate a detector method. Internal 

evaluation will allow auditors to predict the performance of a detector method before examination. 

Another limitation of the MODF methodology is that auditors may have difficulty in 

satisfying the requirement for audit documentation due to the machine-learning-based outlier 

detection methods employed. According to audit standards, audit documentation must enable an 

experienced auditor to understand “the procedures performed, evidence obtained, and conclusions 

reached (AS 1215.06, 2016).” However, the lack of interpretability of most machine learning 

methods poses a challenge for auditors to explain the reasoning underlying the method’s outputs. 

Although research has proposed visualization and other techniques to understand how inputs are 

mathematically mapped to outputs in machine learning models, a general approach is still not yet 

available. Future research can focus on understanding the results of machine learning models, 
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especially for unsupervised learning approaches like outlier detection. This will facilitate the 

inclusion of machine learning-based analytical methods, including this framework, into auditing 

procedures.  

VI. CONCLUSION AND FUTURE RESEARCH 

In this paper, we propose a framework called the Multilevel Outlier Detection Framework 

to explore risks in GL data. The framework involves three outlier detection processes to identify 

transaction-level, account-level, and CBV-level outliers. We demonstrate the framework using a 

real-world and a synthetic GL dataset. The investigation results indicate that outlier detection 

methods can be utilized to gain new insights regarding risk of material misstatements in the GL.  

This paper contributes to both outlier detection and audit analytics literature by proposing 

a framework that systematically applies outlier detection methods to GL data. In addition, the two 

experiments in this paper provide evidence that auditors’ knowledge and judgment may not always 

be sufficient to identify all risk factors related to errors and material misstatements.  

The primary limitation of this paper is that the framework is tested with only two datasets. 

It is possible that new insights cannot always be acquired by examining the outliers from the 

MODF. Hence, we argue that it is more reasonable to position the framework as an additional 

defense against the risk of material misstatements. Specifically, if the internal controls are effective 

and the auditors have sufficient client-specific knowledge, then it is likely that the framework will 

find nothing new. Thus, auditors can issue their opinion report based on their existing risk 

assessment results with sufficient confidence. By contrast, if the internal controls are less effective 

and auditor’s reaction to fraud cues is flawed, the MODF provides an additional way to search for 

abnormality in data, which may aid auditors to obtain new audit evidence.  
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Future research may test the framework with other data sources. It would also be interesting 

to understand how the application of such a framework affects auditor’s judgment through 

behavioral research.  

 

 
  



 29 

REFERENCES 
 

Alawadhi, A. 2015. The application of data visualization in auditing. Doctoral dissertation, Rutgers, 
The State University of New Jersey, Newark. https://doi.org/doi:10.7282/T3GQ70MD. 

Alghushairy, O., R. Alsini, T. Soule, and X. Ma. 2020. A review of local outlier factor algorithms for 
outlier detection in big data streams. Big Data and Cognitive Computing 5(1):1. 
https://doi.org/10.3390/bdcc5010001. 

American Institute of Certified Public Accountants (AICPA). 2017. AICPA Guide to Audit Data 
Analytics. Durham, NC: AICPA. Available at: 
https://us.aicpa.org/interestareas/frc/assuranceadvisoryservices/auditdataanalyticsguide. 

Antweiler, W., and M. Z. Frank. 2004. Is all that talk just noise? The information content of Internet 
stock message boards. The Journal of Finance 59 (3): 1259-1293. https://doi.org/10.1111/j.1540-
6261.2004.00662.x. 

Asare, S. K., and A. M. Wright. 2004. The effectiveness of alternative risk assessment and program 
planning tools in a fraud setting. Contemporary Accounting Research 21 (2): 325–52. 
https://doi.org/10.1506/L20L-7FUM-FPCB-7BE2. 

Beck, P. J., and I. Solomon. 1985. Sampling risks and audit consequences under alternative testing 
approaches. The Accounting Review 60 (4): 714-723. https://www.jstor.org/stable/247467.  

Blocher, E., and J. H. Bylinski. 1985. The influence of sample characteristics in sample evaluation. 
Auditing: A Journal of Practice & Theory 5 (1): 79-90.  

Breunig, M. M., H. P.  Kriegel, R. T. Ng, and J. Sander. 2000. LOF: Identifying density-based local 
outliers. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of 
Data, 93-104. https://doi.org/10.1145/342009.335388. 

Cynthia, P. C., and S. T. George. 2021. An outlier detection approach on credit card fraud detection 
using machine learning: A comparative analysis on supervised and unsupervised learning. In 
Intelligence in Big Data Technologies—Beyond the Hype, edited by J. D. Peter, S. L. Fernandes, 
and A. H. Alavi, 1167:125–135. Advances in Intelligent Systems and Computing. Singapore: 
Springer Singapore. https://doi.org/10.1007/978-981-15-5285-4_12. 

Davis, J. J., and A. J. Clark. 2011. Data preprocessing for anomaly based network intrusion detection: 
A review. Computers & Security 30 (6–7): 353–375. https://doi.org/10.1016/j.cose.2011.05.008. 

Debreceny, R. S., and G. L. Gray. 2010. Data mining journal entries for fraud detection: An 
exploratory study. International Journal of Accounting Information Systems 11 (3): 157–181. 
https://doi.org/10.1016/j.accinf.2010.08.001. 

Dilla, W., D. J. Janvrin, and R. Raschke. 2010. Interactive data visualization: New directions for 
accounting information systems research. Journal of Information Systems 24 (2): 1–37. 
https://doi.org/10.2308/jis.2010.24.2.1. 

Elder, R. J., and R. D. Allen. 1998. An empirical investigation of the auditor’s decision to project 
errors. Auditing: A Journal of Practice & Theory 17(2): 71-87.  

Freiman, J. W., Y. Kim, and M. A. Vasarhelyi. 2022. Full population testing: Applying 
multidimensional audit data sampling (MADS) to general ledger data auditing. International 
Journal of Accounting Information Systems 46: 100573. 
https://doi.org/10.1016/j.accinf.2022.100573. 

Grubbs, F. E. 1969. Procedures for detecting outlying observations in samples. Technometrics 11 (1): 
1–21. https://doi.org/10.1080/00401706.1969.10490657. 

Hall, T. W., J. E. Hunton, and B. J. Pierce. 2000. The use of and selection biases associated with 
nonstatistical sampling in auditing. Behavioral Research in Accounting 12: 231-255.  

https://doi.org/doi:10.7282/T3GQ70MD
https://doi.org/10.3390/bdcc5010001
https://us.aicpa.org/interestareas/frc/assuranceadvisoryservices/auditdataanalyticsguide
https://doi.org/10.1111/j.1540-6261.2004.00662.x
https://doi.org/10.1111/j.1540-6261.2004.00662.x
https://doi.org/10.1506/L20L-7FUM-FPCB-7BE2
https://www.jstor.org/stable/247467
https://doi.org/10.1145/342009.335388
https://doi.org/10.1007/978-981-15-5285-4_12
https://doi.org/10.1016/j.cose.2011.05.008
https://doi.org/10.1016/j.accinf.2010.08.001
https://doi.org/10.2308/jis.2010.24.2.1
https://doi.org/10.1016/j.accinf.2022.100573
https://doi.org/10.1080/00401706.1969.10490657


 30 

Hoffman, V. B., and M. F. Zimbelman. 2009. Do strategic reasoning and brainstorming help auditors 
change their standard audit procedures in response to fraud risk? The Accounting Review 84 (3): 
811–37. https://doi.org/10.2308/accr.2009.84.3.811. 

Huang, Z. 1998. Extensions to the k-means algorithm for clustering large data sets with categorical 
values. Data Mining and Knowledge Discovery 2: 283-304. 
https://doi.org/10.1023/A:1009769707641.  

Issa, H. 2013. Exceptional exceptions. Doctoral dissertation, Rutgers, The State University of New 
Jersey, Newark. https://doi.org/doi:10.7282/T32J68V1. 

Issa, H., and A. Kogan. 2014. A predictive ordered logistic regression model as a tool for quality 
review of control risk assessments. Journal of Information Systems 28 (2): 209–229. 
https://doi.org/10.2308/isys-50808. 

Jans, M., M. Alles, and M. A. Vasarhelyi. 2013. The case for process mining in auditing: Sources of 
value added and areas of application. International Journal of Accounting Information Systems 
14 (1): 1–20. https://doi.org/10.1016/j.accinf.2012.06.015. 

Khan, R., A. Clark, G. Mohay, and S. Suriadi. 2014. Detecting fraud using transaction frequency data. 
Information Technology in Industry 2 (3). Available at: http://www.it-in-
industry.org/index.php/itii/article/view/18.  

Khan, R., M. Corney, A. Clark, and G. Mohay. 2010. Transaction mining for fraud detection in ERP 
systems. Industrial Engineering and Management Systems 9 (2): 141–156. 
https://doi.org/10.7232/iems.2010.9.2.141. 

Li, P., D. Y. Chan, and A. Kogan. 2016. Exception prioritization in the continuous auditing 
environment: A framework and experimental evaluation. Journal of Information Systems 30 (2): 
135–157. https://doi.org/10.2308/isys-51220.  

Liu, Q. 2014. The application of exploratory data analysis in auditing. Doctoral dissertation, Rutgers, 
The State University of New Jersey, Newark. https://doi.org/doi:10.7282/T3CC129J. 

Loughran T., and B. McDonald. 2011. When is a liability not a liability? Textual analysis, 
dictionaries, and 10-Ks. The Journal of Finance 66 (1): 35-65. https://doi.org/10.1111/j.1540-
6261.2010.01625.x. 

Mokua, N., C. W. Maina, and H. Kiragu. 2021. Anomaly detection for raw water quality – A 
comparative analysis of the local outlier factor algorithm and the random forest algorithms. 
International Journal of Computer Applications 174 (26): 47–54. 
https://doi.org/10.5120/ijca2021921196. 

No, W. G., K. Lee, F. Huang, and Q. Li. 2019. Multidimensional audit data selection (MADS): A 
framework for using data analytics in the audit data selection process. Accounting Horizons 33 
(3): 127–140. https://doi.org/10.2308/acch-52453. 

Public Company Accounting Oversight Board (PCAOB). 2016. Auditing Standards (AS 1215.06). 
Retrieved from https://pcaobus.org/Standards/Auditing/Pages/ReorgStandards.aspx.  

Public Company Accounting Oversight Board (PCAOB). 2016. Auditing Standards (AS 2110.46). 
Retrieved from https://pcaobus.org/Standards/Auditing/Pages/ReorgStandards.aspx.  

Ramaswamy, S., R. Rastogi, and K. Shim. 2000. Efficient algorithms for mining outliers from large 
data sets. ACM SIGMOD Record 29 (2): 427-438. https://doi.org/10.1145/335191.335437. 

Srivastava, A., A. Kundu, S. Sural, and A. K. Majumdar. 2008. Credit card fraud detection using 
hidden Markov model. IEEE Transactions on Dependable and Secure Computing 5 (1): 37–48. 
https://doi.org/10.1109/TDSC.2007.70228. 

https://doi.org/10.2308/accr.2009.84.3.811
https://doi.org/10.1023/A:1009769707641
https://doi.org/doi:10.7282/T32J68V1
https://doi.org/10.2308/isys-50808
https://doi.org/10.1016/j.accinf.2012.06.015
http://www.it-in-industry.org/index.php/itii/article/view/18
http://www.it-in-industry.org/index.php/itii/article/view/18
https://doi.org/10.7232/iems.2010.9.2.141
https://doi.org/10.2308/isys-51220
https://doi.org/doi:10.7282/T3CC129J
https://doi.org/10.1111/j.1540-6261.2010.01625.x
https://doi.org/10.1111/j.1540-6261.2010.01625.x
https://doi.org/10.5120/ijca2021921196
https://doi.org/10.2308/acch-52453
https://pcaobus.org/Standards/Auditing/Pages/ReorgStandards.aspx
https://pcaobus.org/Standards/Auditing/Pages/ReorgStandards.aspx
https://doi.org/10.1145/335191.335437
https://doi.org/10.1109/TDSC.2007.70228


 31 

Steinbuss, G., and K. Böhm. 2021. Benchmarking unsupervised outlier detection with realistic 
synthetic data. ACM Transactions on Knowledge Discovery from Data 15 (4): 1–20. 
https://doi.org/10.1145/3441453. 

Teitlebaum, A. D., and C. F. Robinson. 1975. The real risks in audit sampling. Journal of Accounting 
Research 13: 70–91. https://doi.org/10.2307/2490480.  

Tetlock, P. C. 2007. Giving content to investor sentiment: The role of media in the stock market. The 
Journal of Finance 62 (3): 1139-1168. https://doi.org/10.1111/j.1540-6261.2007.01232.x. 

Thiprungsri, S., and M. Vasarhelyi. 2011. Cluster analysis for anomaly detection in accounting data: 
An audit approach. The International Journal of Digital Accounting Research 11. 
https://doi.org/10.4192/1577-8517-v11_4. 

Tukey, J. W. 1977. Exploratory Data Analysis. Reading, Massachusetts: Addison-Wesley. 
Wilks, T. J., and M. F. Zimbelman. 2004. Using game theory and strategic reasoning concepts to 

prevent and detect fraud. Accounting Horizons 18 (3): 173–84. 
https://doi.org/10.2308/acch.2004.18.3.173. 

Zhaokai, Y., and K. C. Moffitt. 2019. Contract analytics in auditing. Accounting Horizons 33 (3): 
111–126. https://doi.org/10.2308/acch-52457. 

Zhuang, X., Y. Huang, K. Palaniappan, and Y. Zhao. 1996. Gaussian mixture density modeling, 
decomposition, and applications. IEEE Transactions on Image Processing 5 (9): 1293–1302. 
https://doi.org/10.1109/83.535841. 

 
  

https://doi.org/10.1145/3441453
https://doi.org/10.2307/2490480
https://doi.org/10.1111/j.1540-6261.2007.01232.x
https://doi.org/10.4192/1577-8517-v11_4
https://doi.org/10.2308/acch.2004.18.3.173
https://doi.org/10.2308/acch-52457
https://doi.org/10.1109/83.535841


 32 

 

  

Figure 1. Multilevel Outlier Detection Framework  
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Table 1. Variable Descriptions – Real Data 

Variable Name Type Description 

Account Code Categorical General ledger account ID (corresponding to the “Account Number” in Trial Balance) 

Transaction ID Categorical Journal entry transaction ID (not unique) 

Net Numerical Net debit/ credit amount posted by the journal line 

Effective Date Date Date the transaction occurred 
Created Date/ 
Time Date Date the transaction was processed into the system 

Document Type Categorical Type of transaction and source that was posted 

User ID Categorical Individual or System ID that entered the transaction 
Journal 
Description Textual Narration for the journal 

Line Description Textual Specific narration of the line of the journal 
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Table 2. Summary of Variable Preprocessing – Real Data 

Variable Name Description 

Account Code Converted into binary variables by one-hot encoding.   

Transaction ID Dropped because the information can be derived from the other variables. 

Net The absolute values are normalized.  

Effective Date Replaced by a new variable called Day Difference. 
Created Date/ 
Time Replaced by a new variable called Day Difference. 

Document Type Converted into binary variables by one-hot encoding.  

User ID Converted into binary variables by one-hot encoding.  
Journal 
Description Replaced by a new variable called Keyword Count.  

Line Description Dropped because all records have missing values.  
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Table 3. Number of Records, Accounts, and Unique Variable Combinations in Six GL 
Categories – Real Data 

 

GL Category Index # of Records # of Accounts 
# of Unique 
Variable 
Combinations 

Cash and Cash Equivalents A 6,034 13 56 
Creditors, Accruals, and Settlement Accounts B 1,341 24 80 
Depreciation and Amortization  C 2,577 18 72 
Derivative Assets Held for Hedging Purposes  D 40,285 10 20 
Employee Compensation and Benefits E 10,198 193 1,256 
Fee, Commission, and Other Income F 60,743 158 733 
Total NA 121,178 416 2,217 
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Table 4. Two-Stage Prioritization Results – Real Data 

Panel A. Transaction Level 
GL Category 
Index 

# of Records # of Notable 
Records by the 
75th Percentile 
Threshold 

Stage-One 
Threshold 
Applied 

Stage-Two 
Threshold 
Applied 

# of 
Exceptional 
Records 

A 6,034 1,508 Top 100 $10,000 10 
B 1,341 335 Top 100 $10,000 22 
C 2,577 644 Top 100 $10,000 1 
D 40,285 10,071 Top 100 $10,000 8 
E 10,198 2,549 Top 100 $10,000 0 
F 60,743 15,185 Top 100 $10,000 0 
Total 121,178 30,292 NA NA 41 

Panel B. Account Level 
GL Category 
Index 

# of Accounts # of Notable 
Accounts by the 
75th Percentile 
Threshold 

Stage-One 
Threshold 
Applied 

Stage-Two 
Threshold 
Applied 

# of 
Exceptional 
Accounts 

A 13 3 75th Percentile $10,000 2 
B 24 6 75th Percentile $10,000 6 
C 18 5 75th Percentile $10,000 2 
D 10 3 75th Percentile $10,000 3 
E 193 48 75th Percentile $10,000 18 
F 158 40 75th Percentile $10,000 19 
Total 416 105 NA NA 50 

Panel C. Combination-by-Variable Level 
GL Category 
Index 

# of Clusters # of Notable 
Unique Combos 
by the 75th 
Percentile 
Threshold 

Stage-One 
Threshold 
Applied 

Stage-Two 
Threshold 
Applied 

# of Unique 
Exceptional 
Combos 

A 20 47 75th Percentile $10,000 11 
B 40 47 75th Percentile $10,000 13 
C 25 41 75th Percentile $10,000 8 
D 4 3 75th Percentile $10,000 1 
E 900 699 Top 100 $10,000 1 
F 500 458 Top 100 $10,000 9 
Total 1,489 1,295 NA NA 43 

Note: For each level of observations, if the number of notable outliers based on the 75th percentile 
threshold does not exceed 100, the 75th percentile threshold is applied. Otherwise, the top-100 
threshold will override. The threshold used is listed in the “Stage-One Threshold Applied” column. 
The stage-two threshold is the same for all the three levels, which is $10,000. The last column lists 
the number of exceptional outliers at each level.  
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Table 5. MODF Risk Assessment Results of Exceptional Records, Accounts, and 
Combinations – Real Data 

Panel A.  Risk Levels of Exceptional Records 

GL Category Index # Of Exceptional 
Records Low Risk Medium Risk High Risk 

A 10 7 
(70%) 

1 
(10%) 

2 
(20%) 

B 22 19 
(86.4%) 

3 
(13.6%) 

0 
(0%) 

C 1 0 
(0%) 

1 
(100%) 

0 
(0%) 

D 8 8 
(100%) 

0 
(0%) 

0 
(0%) 

E 0 0 
(0%) 

0 
(0%) 

0 
(0%) 

F 0 0 
(0%) 

0 
(0%) 

0 
(0%) 

Total 41 34 (82.9%) 5 (12.2%) 2 (4.9%) 
Panel B. Risk Levels of Exceptional Accounts 

GL Category Index # of Exceptional 
Accounts Low Risk Medium Risk High Risk 

A 2 2 
(100%) 

0 
(0%) 

0 
(0%) 

B 6 4 
(66.7%) 

2 
(33.3%) 

0 
(0%) 

C 2 1 
(50%) 

1 
(50%) 

0 
(0%) 

D 3 2 
(66.7%) 

1 
(33.3%) 

0 
(0%) 

E 18 0 
(0%) 

18 
(100%) 

0 
(0%) 

F 19 0 
(0%) 

19 
(100%) 

0 
(0%) 

Total 50 9 (18%) 41 (82%) 0 (0%) 
Panel C.  Risk Levels of Exceptional Combinations 

GL Category Index # Of Exceptional 
Combinations Low Risk Medium Risk High Risk 

A 11 6 
(54.5%) 

5 
(45.5%) 

0 
(0%) 

B 13 5 
(38.5%) 

5 
(38.5%) 

3 
(23.0%) 

C 8 1 
(12.5%) 

7 
(87.5%) 

0 
(0%) 

D 1 1 
(100%) 0 0 

E 1 0 
(23.1%) 

1 
(100%) 

0 
(0%) 

F 9 0 
(0%) 

4 
(44.4%) 

5 
(55.6%) 

Total 43 13 (30.2%) 22 (51.2%) 8 (18.6%) 
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Table 6. Comparison of Risk Assessment Results Between MODF and Weighted-Risk-Filter 
Technique 
 

Panel A. Exceptional Records 

Number of Exceptional Records Number of Exceptional Records with Higher 
Newly Assigned Risk  

41 0 (0%) 

Panel B. Exceptional Accounts 

Number of Exceptional Accounts Number of Exceptional Accounts with 
Higher Newly Assigned Risk 

50 5 (10%) 

Panel C. Exceptional Combinations 

Number of Exceptional Combinations Number of Exceptional Combinations with 
Higher Newly Assigned Risk 

43 29 (67%) 
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Table 7. Variable Descriptions - Synthetic Data 

Variable Name Type Description 

Account Class Categorical Specific classification of account (e.g., payroll expenses). 

Account Type Categorical Type of account (e.g., asset, liability). 

Amount Numerical Total amount of the journal entry line item (may be positive or negative).  

Business Unit Categorical The business unit (e.g., hotel, food and beverage) of the journal entry. 

Credit Numerical Credit amount of the entry. 

Debit Numerical Debit amount of the entry.  

Effective Date Date Date the entry was posted to the GL as occurring.  

Entry Date Date Date that the entry was entered into the subsystem or GL, depending on the type 
of transaction. 

GL Account Name Categorical Name of the GL account. 

GL Account Number Categorical GL account number. 

JE Description Textual Description of the transaction. May include vendor or guest name, etc. 

JE Identifier Categorical Unique identifier for each journal entry. 

Period Date Indicates which month within the fiscal year the transaction occurred.  

Preparer ID Categorical The employee ID for the employee who initiated the transaction.  

Source Categorical Describes the payment type or other source type of the transaction (e.g., CASH 
RECEIPT). 
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Table 8. Summary of Variable Preprocessing - Synthetic Data 

Variable Name Description 

Account Class Dropped because all records in an account class have the same value.  

Account Type All records have the same value as the accounts are separated based on Account Class.  

Amount The absolute values are normalized. 

Business Unit Converted into binary variables by one-hot encoding.   

Credit Dropped because it has a 1-to-1 relationship with Amount.  

Debit Dropped because it has a 1-to-1 relationship with Amount. 

Effective Date Replaced by a new variable called Day Difference. 

Entry Date Replaced by a new variable called Day Difference. 

GL Account Name It has a 1-to-1 relationship with GL Account Number.  

GL Account Number Converted into binary variables by one-hot encoding.   

JE Description Dropped because a keyword dictionary is not available for variable engineering.  

JE Identifier Dropped because the information can be derived from the other variables.  

Period Dropped because the information can be derived from the other variables. 

Preparer ID Converted into binary variables by one-hot encoding.   

Source Converted into binary variables by one-hot encoding.   
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Table 9. Number of Records and Unique Variable Combinations in Seven Account Classes 
(Original and with Seeded Errors) – Synthetic Data 
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Table 10. Outlier Detection Results – Synthetic Data 

Panel A. Accuracy Rate of LOF with Top 100 and 200 Threshold 

  
Seeded Error Rate 

1% 
Seeded Error Rate 

3% 
Seeded Error Rate 

5% 

Account Class 

Accurate 
Rate-
Top 100 

Accurate 
Rate-
Top 200  

Accurate 
Rate-
Top 100 

Accurate 
Rate-
Top 200  

Accurate 
Rate-
Top 100 

Accurate 
Rate-
Top 200  

Accrued Payroll 
0.18 
(0.20) 

0.09 
(0.10) 

0.34 
(0.63) 

0.28 
(0.32) 

0.38 
(1.00) 

0.36 
(0.54) 

Cash 
0.13 
(1.00) 

0.11 
(0.85) 

0.30 
(1.00) 

0.21 
(1.00) 

0.42 
(1.00) 

0.33 
(1.00) 

Inventory 
0.17 
(0.28) 

0.11 
(0.14) 

0.44 
(0.88) 

0.29 
(0.44) 

0.56 
(1.00) 

0.41 
(0.76) 

SG&A 
0.14 
(0.40) 

0.11 
(0.20) 

0.32 
(1.00) 

0.23 
(0.62) 

0.41 
(1.00) 

0.31 
(1.00) 

Sales-Dining 
0.22 
(0.29) 

0.13 
(0.15) 

0.47 
(0.89) 

0.27 
(0.45) 

0.63 
(1.00) 

0.43 
(0.76) 

Sales-Hotel 
0.07 
(0.39) 

0.04 
(0.20) 

0.13 
(1.00) 

0.07 
(0.60) 

0.19 
(1.00) 

0.10 
(1.00) 

Sales-Other 
0.13 
(0.17) 

0.09 
(0.09) 

0.22 
(0.54) 

0.19 
(0.27) 

0.23 
(0.92) 

0.22 
(0.46) 

 
Panel B. Accuracy Rate of K-Modes with Top 100 and 200 Threshold 

  
Seeded Error Rate 

1% 
Seeded Error Rate 

3% 
Seeded Error Rate 

5% 

Account Class 

Accurate 
Rate-
Top 100 

Accurate 
Rate-
Top 200  

Accurate 
Rate-
Top 100 

Accurate 
Rate-
Top 200  

Accurate 
Rate-
Top 100 

Accurate 
Rate-
Top 200  

Accrued Payroll 
0.20 
(0.20) 

0.10 
(0.10) 

0.63 
(0.63) 

0.32 
(0.32) 

0.66 
(1.00) 

0.54 
(0.54) 

Cash 
0.64 
(1.00) 

0.38 
(0.85) 

0.92 
(1.00) 

0.76 
(1.00) 

0.93 
(1.00) 

0.86 
(1.00) 

Inventory 
0.24 
(0.28) 

0.12 
(0.14) 

0.63 
(0.88) 

0.35 
(0.44) 

0.74 
(1.00) 

0.60 
(0.76) 

SG&A 
0.34 
(0.40) 

0.17 
(0.20) 

0.70 
(1.00) 

0.51 
(0.62) 

0.76 
(1.00) 

0.75 
(1.00) 

Sales-Dining 
0.23 
(0.29) 

0.12 
(0.15) 

0.66 
(0.89) 

0.33 
(0.45) 

0.96 
(1.00) 

0.57 
(0.76) 

Sales-Hotel 
0.32 
(0.39) 

0.17 
(0.20) 

0.65 
(1.00) 

0.47 
(0.60) 

0.74 
(1.00) 

0.77 
(1.00) 

Sales-Other 
0.15 
(0.17) 

0.09 
(0.09) 

0.51 
(0.54) 

0.27 
(0.27) 

0.80 
(0.92) 

0.45 
(0.46) 

 
Note: The table shows the accuracy rates of LOF and K-Modes with the top-100 and top-200 
thresholds, which are calculated as the number of actual seeded errors identified among the top 
100 (200) observations divided by 100 (200). The rates in bold are the possible highest rates with 
the top-100 and top-200 thresholds, which are calculated by the total number of actual seeded 
errors divided by 100 (200). If the number is over 100 (200), the possible highest rate is 1.0. 
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 Appendix A. Example of Journal Entry Data 

GL Category Account 
Code 

Transaction 
ID Net Effective 

Date 

Created 
Date / 
Time 

Document 
Type 

User 
ID 

Journal 
Description 

Line 
Description 

Cash and Cash 
Equivalent 

10.1011.
30944 PCARD 88 6/6/18 17/09/18 PCSTAT User 1 Cyber 

Resilience  

Employee 
Compensation 
and Benefits 

10.3000.
60408 46174 10182.56 18/12/18 19/12/18 APJNL User 2 Staff Pays 

WE  

Derivative 
Assets Held 
for Hedging 
Purposes  

10.1014.
10220 42860 -11.18 24/7/18 01/08/18 APJNL User 3 

GST ADJ 
JUN 18 
QTR BAS 

 

 
Note: The three entries are selected from different GL categories to illustrate of the entry data used 
in the experiment. Variable values include confidential information have been removed.  
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