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Abstract

We study classical lattice simulations of theories of electrodynamics coupled to charged
matter at finite temperature, interpreting them using the higher-form symmetry formula-
tion of magnetohydrodynamics (MHD). We compute transport coefficients using classical
Kubo formulas on the lattice and show that the properties of the simulated plasma are
in complete agreement with the predictions from effective field theories. In particular,
the higher-form formulation allows us to understand from hydrodynamic considerations
the relaxation rate of axial charge in the chiral plasma observed in previous simulations.
A key point is that the resistivity of the plasma – defined in terms of Kubo formulas for
the electric field in the 1-form formulation of MHD – remains a well-defined and pre-
dictive quantity at strong electromagnetic coupling. However, the Kubo formulas used
to define the conventional conductivity vanish at low frequencies due to electrodynamic
fluctuations, and thus the concept of the conductivity of a gauged electric current must
be interpreted with care.
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1 Introduction

Essentially any interacting system at finite temperature is described at long distances and times
by hydrodynamics, i.e. by a classical theory describing the evolution of coarse-grained degrees
of freedom (e.g. the fluid velocity or charge density) close to thermal equilibirum. As it is
typically only conserved charges that evolve slowly on such time scales, any discussion of
hydrodynamics invariably involves a careful understanding of the symmetry principles that
underly these conserved charges. In this work we will study the hydrodynamic limit of lattice
U(1) gauge theory close to finite temperature.

In fact, recent developments in quantum field theory have resulted in new generalizations
of the very idea of symmmetry itself. One such generalization is a higher-form symmetry [1].
Just as a conventional symmetry is generally associated – through Noether’s theorem – with
the conservation of a density of particles, a higher-form symmetry can be understood as the
symmetry principle associated with the conservation of a density of extended objects, such as
strings.1

Many very familiar theories exhibit such a global symmetry. One such system is conven-
tional electrodynamics in four dimensions, coupled to electrically charged matter; the con-
served strings in question are simply magnetic field lines, and the higher-form symmetry can
be understood as the dynamical principle that ensures that magnetic field lines do not end.

This provides a novel and practical perspective on the phases of electrodynamics. In par-
ticular, in recent work this symmetry principle was used to provide a new formulation of rela-
tivistic magnetohydrodynamics (MHD) in terms of the realization of a higher form symmetry
in thermal equilibrum [9]. We will briefly review the key ideas below, but we note here that the
key advantage of this formalism is that it allows a formulation of MHD that is constrained only
by principles of symmetry and effective field theory (EFT), and thus works perfectly well even

1See [2–8] for recent reviews on this rapidly expanding field.
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when the underlying microscopic electrodynamic theory is strongly coupled. Importantly, in
this formulation it is the resistivity of the plasma – and not the electrical conductivity – that is
a natural transport coefficient in the effective theory.

In this work we study classical lattice simulations of finite-temperature scalar quantum
electrodynamics as a representative of the MHD universality class. We measure the resistivity
of this system and show that it usefully characterizes the long-range physics. We also show
that within our simulations, there is no meaningful ways of defining the electric conductivity:
in particular we explicitly show that the standard Kubo formula relating the conductivity to
the two point function of the electric current always gives zero, being suppressed by the fluc-
tuations of dynamical electromagnetic fields. We discuss this subtle point further and explain
how a well-defined conductivity, inverse to the resistivity, can arise within the EFT framework
at weak electromagnetic coupling and for long-lived electric field.

We conclude by showing that these considerations have the potential of being phenomeno-
logically relevant. In particular, we focus on a theory where axial charge is not conserved due
to an Adler-Bell-Jackiw (ABJ) anomaly [10, 11]. The effective description of a dynamically
electromagnetic plasma with such an anomaly is usually called chiral magnetohydrodynam-
ics (see e.g. [12–14]) Recent developments in generalized symmetry have led to advances in
formalizing our understanding of anomalous transport from the point of view of EFTs and
hydrodynamics [15, 16]. We show that this progress can be used to explain curious features
of simulations of the chiral decay rate [17,18] from MHD, using the resistivity determined in
this work.

The manuscipt is organised as follows. In Section 2, we provide a brief background in-
formation on the symmetry-guided EFT construction of a theory with ordinary (0-form) and
1-form symmetry as well as a short introduction to the classical lattice simulation. In Section 3
we analyse relations, or lack thereof, between the conductivity σ and resistivity ρ that appear
in effective description of a theory with 0-form and 1-form symmetry respectively. More specif-
ically, Section 3.1 focus on the lack of meaningful relation among them as illustrated in the
lattice simulation in a strong coupling regime while Section 3.2 illustrated on how the usual
relation among them emerges when the electric field is long-lived. In Section 4, we employ the
above insight to analyse the chiral decay rate of a lattice simulation with addition chiral U(1)
that suffers from a ABJ anomaly. This is also where we show that such decay rate is controlled
by the resistivity ρ and not σ in a regime away from the weak electromagnetic coupling.

2 Background

2.1 Higher-form symmetries and hydrodynamics

In this section we briefly review the formulation of relativistic magnetohydrodynamics from
the point of view of higher-form symmetry [9]. We take a somewhat leisurely route to highlight
the parallels with conventional hydrodynamics; the reader who is in a hurry may skip quickly
to Section 3.

2.1.1 Brief review of ordinary hydrodynamics

We begin by noting that modern hydrodynamics can be usefully framed as an effective field
theory. A central role in hydrodynamics is played by the conserved currents, as these evolve
slowly compared to microcopic scales. The structure of the hydrodynamic theory is generally
completely dictated by the global symmetries and their realization at finite temperature (see
e.g. [19] for a review). To orient ourselves, we briefly recall how this works for a the familiar
example of a relativistic system – e.g. an interacting complex scalar field – with a conventional
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U(1) global symmetry. A microscopic Lagrangian for the system might take the form:

S =

∫

d4 x
�

−(∂ µφ)∗(∂µφ) + V (|φ|)
�

. (1)

The hydrodynamic regime can be thought of as a late time limit where the dynamical
evolution are governed entirely by the conserved charges or densities. The hydrodynamic
description can be obtained by expressing these densities in a gradient expansion of the tem-
perature and the canonical conjugate of the conserved current. Using this scheme, we can
write the conserved current jµ(x) as

j t = χµ+ · · · , j i = −σ
�

∂iµ− Eext
i

�

+ · · · . (2)

In this expression we have neglected stress energy fluctutations, thus freezing the temperature
T . µ(t, x⃗) is the local chemical potential, and is the basic degree of freedom. χ – the charge
susceptibility – is a thermodynamic quantity. The expression for j i in terms of gradients of
the chemical potential is sometimes called Fick’s law. Eext

i is an external applied electric field,
and σ is a transport coefficient called the conductivity, which will play two important roles
in what follows. First, it determines the diffusion constant of the system: imposing current
conservation ∂µ jµ = 0 and setting Ei = 0, we find the following dispersion relation for the
diffusion of charge:

µ(t, x)∼ µ0e−iωt+ikx , ω= −iDk2 , D =
σ

χ
. (3)

It also determines the amount of current flow in response to an applied electric field. This leads
to the Kubo formula which allows one to compute σ in terms of a real-time current correlation
function:

σ = lim
ω→0

�

1
−iω

G jx , jx

R (ω, k⃗ = 0)
�

. (4)

It is familiar yet non-trivial statement about hydrodynamics that the quantity obtained from
the Kubo formula in (4) determines real-time dynamics as in (3).

2.1.2 Relativistic magnetohydrodynamics and higher-form symmetry

We now turn to the question of interest in this work, the description of relativistic mag-
netohydrodynamics in terms of symmetry principles. For an illustrative microscopic description
consider the quantum field theory of Maxwell electrodynamics in four dimensions, coupled to
electrically charged matter, as described e.g. by the following action:

S =

∫

d4 x
�

−(Dµφ)∗(Dµφ) + V (|φ|)−
1

4e2
FµνFµν

�

, (5)

with Dµφ = ∂µφ − iAµφ and Fµν = ∂µAν − ∂νAµ.
Now we place this theory at finite temperature. The degrees of freedom of a thermally

excited plasma are electrically charged particles, interacting via electric and magnetic fields.
We would like to understand the universal hydrodynamic theory describing the infrared finite-
temperature physics. This framework is usually called relativistic magnetohydodynamics (see
e.g. [20] for a review). It is traditionally constructed by considering Maxwell’s equations
coupled to a charge current that is assumed to be in thermal equilibirum as in the previous
section, i.e. we write an equation of motion of the form

1
e2
∂µFµν = jνdyn , (6)
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where jµdyn is a conventional dynamical electric charge current determined from an expression
such as (2).

Note however that such a construction relies on knowledge of the microscopic equations
of motion, and implicitly requires the existence of a separation between the electromagnetic
degrees of freedom Aµ and the thermalized φ degrees of freedom. Such a separation may be
well-justified if the electromagnetic coupling e is weak; however in this work we would like to
study systems where e is generally O(1), and is not parametrically small in any sense.

More generally, it would be conceptually satisfying to have a construction of MHD that
relies only on global symmetries and does not require any access to microscopic degrees of
freedom such as Aµ. Such a formulation is made possible by the understanding of higher-
form global symmetries [1]. Indeed, as mentioned above, the global symmetry of Maxwell
electrodynamics is a higher-form symmetry associated with the conservation of magnetic flux
lines. This global symmetry results in a conserved current Jµν:

∂µJµν = 0 , Jµν =
1
2
εµναβ Fαβ . (7)

In the language of [1] this is a 1-form symmetry. (Conventional symmetries associated with
conserved particle numbers as in (2) are 0-form symmetries.) This 1-form symmetry is the
true global symmetry of electromagnetism, and is a useful starting point for an understanding
of the phases of electrodynamics.2

In particular, it was shown in [9]3 that indeed one can reformulate MHD using this higher-
form symmetry – i.e. magnetic flux conservation – as the organizing principle, resulting in a
framework constrained only by thermodynamic consistency and the global symmetries. Here
we present only the results of the construction, directing readers to [9] for a detailed discus-
sion. The basic idea is to treat Jµν on the same footing as the ordinary one-index current jµ

discussed in the previous section. For example, it is useful to consider coupling an external
2-form source bµν to (5) as

S→ S +

∫

d4 x bµνJµν . (8)

If we consider fluctuations about the thermal state with no background magnetic field as in
[28], then we can expand the magnetic flux current in constitutive relations in a higher-form
analogue of (2):

J t i = Ξµi , J i j = −ρ
�

∂iµ j − ∂ jµi + (d b)0i j

�

. (9)

Here we have worked only to linear order in the magnetic field, and have ignored the stress-
energy tensor; the full construction can be found in [9].

The notation here has been picked to highlight the parallel with conventional hydrody-
namics in (2), and we now unpack it. First, from (7) we see that in terms of the conventional
electric and magnetic fields, we have

J t i = Bi , J i j = εi jkEk . (10)

Here µi is a vector-valued “chemical potential” which can be thought of as the thermo-
dynamic variable conjugate to magnetic flux.4 Ξ is a thermodynamic parameter that relates
the conserved density Bi to its chemical potential: in conventional language it is the magnetic

2For example, the regular massless 4d photon can be understood as a Goldstone mode for the spontaneous
breaking of this 1-form symmetry [1,21,22].

3See earlier work formulating magnetohydrodynamics in terms of strings in [23], as well as some further de-
velopments in [24–27].

4In fact, in elementary electrodynamics µi is often called Hi , i.e. the object whose curl is given by the free
charge current. This is further explained in Appendix B. Here we choose to use the notation µi here to highlight
the analogy with a conventional chemical potential.
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permeability µ. As pointed out in [9] that the field strength d b of an applied source b in (8)
can be understood as an applied external electric charge current

jµext = ε
µαβγ∂αbβγ . (11)

This applied source is often called the “free charge current” in elementary electrodynamics.
Finally, ρ is a transport coefficient – it is precisely the resistivity. Note that it plays two

distinct roles. First, ρ determines the response of the electric field to an applied external
current density as in (11). Indeed, it can be obtained from the following Kubo formula:

ρ = lim
ω→0

�

1
−iω

GJ x y ,J x y

R (ω, k⃗ = 0)
�

(12)

(This is a correlation function for the electric field, as we have J x y = Ez). Also, if we consider
the equation of motion ∂µJµν = 0, then (setting the source d b = 0) we find the following
diffusive dispersion relation for the magnetic field

Bz(t, x)∼ B0e−iωt+ikx , ω= −iDk2 , D =
ρ

Ξ
. (13)

This is the familiar expression for magnetic diffusion in a plasma. It is a non-trivial statement
about hydrodynamics that the quantity obtained from the Kubo formula in (12) determines
real-time dynamics as in (13).

We stress that in this formalism it is the resistivity which is the correct transport coefficient
to consider in a hydrodynamic theory involving dynamical electromagnetism. Note also that
the current j i associated with the U(1) phase rotations of φ is no longer associated with a
global symmetry, and thus does not obviously play a role in this discussion.

2.2 Classical lattice simulations

As described above, MHD ought to emerge from the sole existence of local thermal equilib-
rium together with magnetic flux conservation, and a simple example of such a theory is given
by quantum electrodynamics coupled to some matter sector close to thermal equilibrium. Of
course, studying the full quantum dynamics of such a system directly from its microscopic
description is not tractable to this date. Fortunately, the corresponding classical theory, regu-
lated on a lattice, can also be in local thermal equilibrium and has magnetic flux conservation
built-in. As a result, its IR dynamics is expected to be described by MHD. It can crucially be
directly studied non-perturbatively through the use of classical lattice simulations.

Concretely, we consider an interacting classical theory of a complex scalar field φ coupled
to an Abelian gauge field Aµ with the continuum action (5). The universal dynamics that we
will discuss does not depend on the precise form of the potential, at least as the field is massive
and so that we stay outside the Higgs phase. For the rest of this work, we use

V (φ) = m2 |φ|2 +λ |φ|4 , (14)

with real m and λ.
As is well known, classical field theory in thermal equilibrium is UV divergent. In the

real world, this “UV catastrophe” is regulated by (and gave birth to) quantum field theory.
An alternative way of regulating these divergences is to discretize space and introduce a UV
cutoff in the form of the lattice spacing a (see appendix D for more details). These theories
are different in the UV but have the same global symmetries and are described by the same
effective theory of MHD at long distances, and are thus in the same dynamic universality
class. In particular, this means that the long distance physics of both theories will be the same
at the qualitative level. For instance, they both exhibit the same kind of transport phenomena,
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magnetic flux diffusion, etc. which are described by the same Kubo formulas. The differences
between the two theories manifest themselves as different matching coefficients, i.e. a priori
different numerical values for the transport coefficients, which are determined in a complicated
manner by the UV definition of the theory and the couplings in the potential.

To take advantage of this fact, we consider the following lattice Hamiltonian

H =
∑

n∈Λ

�

|πn|
2 + (Diφn)

∗Diφn + V (φn) +
1

2e2

�

E⃗2
n + B⃗2

n

�

�

. (15)

We denote our lattice by Λ and make it consist of N3 points. The continuous field φ(x) is
replaced by a discrete version φn. The same goes for its conjugate momentum π(x), which
is discretized to πn. We introduced the notation (Bi)n = εi jk∆+j (Ak)n to denote the discrete

equivalent of the magnetic field and ∆+i fn =
1
a

�

fn+î − fn

�

is a finite difference version of
the continuum derivative in the i th direction, characterized by the unit vector î. Similarly,
E⃗n = (Ex , Ey , Ez)n is the electric field, canonical conjugate to A⃗n. The discrete covariant
derivatives are realized thanks to the introduction of discrete parallel transporters (“links”)
(Ui)n = e−iae(Ai)n , Diφn =

1
a

�

(Ui)nφn+î −φn

�

. We use periodic boundary conditions for the
fields φn,πn and En. In the absence of external magnetic field, An also has periodic boundary
conditions. In the cases where we consider a background magnetic field – which is only in
Section 4.2 – we implement it through twisted boundary conditions for the An fields. We refer
the interested reader to Appendix A of [29] for technical details. Note that by writing down
this Hamiltonian we decided to work in temporal gauge A0 = 0. In particular, it represents a
constrained Hamiltonian system and needs to be supplemented by Gauss law

∆+i E i
n = 2e2Im(πφ∗)n , (16)

which selects the gauge invariant subspace in field space. Note also that, crucially, this dis-
cretization automatically imposes Bianchi’s identity. this discretization automatically imposes
Bianchi’s identity.

Classical thermal equilibrium in this system at temperature T is described by the statistical
partition function

Z[β] =

∫

∏

nΛ

dφndπndE⃗ndA⃗ne−H/T , (17)

〈O〉T =
∫

∏

nΛ

dφndπndE⃗ndA⃗nOe−H/T , (18)

with O some operator and we denote by 〈O〉T its thermal average. In practice, all thermal aver-
ages of interest are computed by sampling field configuration from the Boltzmann distribution
e−H/T using a standard Metropolis algorithm.

Our motivation to study this classical system is that unequal time correlation functions can
directly be computed. To do so, we evolve our sampled field configurations along classical
trajectories specified by the Hamiltonian dynamics

∂tπn = −
∂ H
∂ φn

, ∂tφn = πn , (19)

∂t E⃗n = −
∂ H

∂ A⃗n
, ∂t A⃗n = E⃗n . (20)

Note that here we are solving the pure classical theory. Only the IR modes have a chance of
being in some thermal equilibrium state. An alternative approach would be to use an effective
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Langevin theory with hard modes integrated out as stochastic noise. These trajectories give
us access to classical-statistical correlators of the type GOO

cl (t, n⃗) ≡



O(t, n⃗)O(0, 0⃗)
�

T for any
given operator O. In particular, they give us access to the classical counterparts of the Kubo
formulas (12) and (4):

ρ =
1
3

∑

i=x ,y,z

∫ ∞

0

dt
∑

n⃗∈Λ

GEi Ei
cl (t, n⃗)≡
∫ ∞

0

dtGEE
cl (t) , (21)

σ =
1
3

∑

i=x ,y,z

∫ ∞

0

dt
∑

n⃗∈Λ

G
jdyn
i jdyn

i
cl (t, n⃗)≡
∫ ∞

0

dtG jdyn jdyn

cl (t) . (22)

Where we introduced the shorthand notations GEE
cl (t) =

1
3

∑

i=x ,y,z

∑

n⃗∈Λ GEi Ei
cl (t, n⃗) for the

isotropized version of the electric field two-point function at zero spatial momenta, and simi-
larly for the electric current. GOO

cl (t, n⃗) is the classical limit of the statistical propagator, which
is related to the retarded one near equilibrium by the KMS relation, whose expression in the
classical limit reads

GOO
cl (ω, n⃗)≈ −

2T
ω

Im
�

GOO
R

�

. (23)

More details on this correspondence are given in App. A.
In practice, and for the rest of this work, we work in units where the lattice spacing a = 1,

and we set the temperature to T = 1/a = 1, i.e. our temperature is at the lattice scale. Let us
briefly explain how to restore units to the dimensionless numerical results presented. Consider
an observable O with mass dimension ∆. On general grounds its functional dependence on
all parameters will be given by

O = T∆ f (Ta, ma, · · · ) , (24)

where f is a dimensionless function of all physical quantities measured in units of the lattice
scale. Our results should be interpreted as determining the dimensionless function f at a
particular value of its arguments; the appropriate power of T can be restored by dimensional
analysis if required – e.g. if we restore units to the bottom panel of Figure 1 it would be
interpreted as a plot of ρT against tT – but as we are not in a continuum limit we stress that
the dependence on the UV cutoff a appearing in the scaling function f can never be removed.

We also wish to fix the scalar mass m and the coupling λ. For our problem, the only
important consideration is that the parameters land the model in its unbroken phase. In order
to ease comparison with Ref. [18], we adopt the same choice, namely5 m2 = e2T2/4 and
λ= e2

2 . This choice is motivated by phenomenological considerations and further discussed in
Ref. [18].

While we defer the details of equations (19)-(20) and a recap of our numerical schemes
in App. C, we want to emphasize a feature of our discretization. First, by solving for the real-
valued gauge fields Ai (and not the parallel transporters or links), we study a non-compact
U(1) gauge theory. This means that there are no dynamical magnetic monopoles in the model
and the continuous 1-form symmetry associated with the conservation of magnetic flux is pre-
served on the lattice, as manifested in Bianchi’s identity. Indeed, one has, as in the continuum,

∑

i

∆+i Bi =
∑

i jk

εi jk∆
+
i ∆

+
j Ak = 0 , (25)

∂tAk = Ek =⇒ ∂t Bi − εi jk∆
+
j Ek = 0 . (26)

These relations are together equivalent to the local conservation of the 2-form current
∂µJµν = 0 as in (7). This conservation law leads to the diffusion of the associated charge,

5We also use the improved lattice mass of [30], see [18] for more discussions.

8

https://scipost.org
https://scipost.org/SciPostPhys.17.3.085


SciPost Phys. 17, 085 (2024)

namely magnetic flux, as we will verify explicitly in Section 3.1.3. Note however that with
periodic boundary conditions the total magnetic flux threading the system is zero; hydrody-
namics describes the local diffusion of magnetic flux.

3 Of resistivity and conductivity

To recap, when given a microscopic description of an electromagnetic plasma (5), it would
appear that two points of view coexist to describe the long-distance dynamics. The “conven-
tional” approach to MHD is based on electric charge conservation. It studies the dynamics
of the electric charge current – which is subsequently gauged – and thus introduces the con-
ductivity σ as a transport coefficient, telling us how electric charges move in response to an
electric field. It couples the electric charge to matter by assuming Ohm’s law j⃗dyn = σE⃗ and
builds dynamics around this point of view, explicitly imposing Maxwell’s equations with an
electromagnetic coupling e.

Another approach is based on the conservation of magnetic flux, and is thus directly con-
nected to the global 1-form symmetry of dynamical electromagnetism. It directly describes the
dynamics of electric and magnetic fields, and thus directly introduces resistivity ρ as a trans-
port coefficient as in (12). This describes how dynamical electric fields move in response to
an external charge current. Importantly, the equations of motion for MHD close by themselves
with no choice needed for dynamics of j i or explicit mention of Maxwell’s equations.

As argued above, when the electromagnetic coupling e is weak, these points of view are
equivalent and should agree. Indeed on elementary grounds one expects a relationship of
the form ρ = σ−1. The precise nature of this agreement is however somewhat subtle: the
definition we gave for σ was in terms of a low-frequency limit in (4). However the low fre-
quency limit clearly does not commute with the weak coupling e→ 0 limit in a theory with a
hydrodynamic description.

Here we will show from direct simulations that when the electromagnetic coupling e is
strong – as it is in our lattice simulations – the “conventional” point of view is not practical
anymore. In particular, a useful non-perturbative notion of conductivity appears to be lost, in
a sense that we will make precise. On the other hand, the organization around magnetic flux
conservation and in terms of resistivity ρ still provides practical predictions.

In more detail, we study the classical equilibrium (15) described in the previous section and
focus on its long-range dynamics. In this section we will simultaneously describe numerical
results in parallel with their theoretical explanation.

3.1 ρ and σ from lattice simulation

We begin from the point of view of magnetic flux conservation and compute the resistivity ρ
from the Kubo formula (12). To this end, we need a reliable estimation of the zero momentum
electric correlator. We show the results for e2 = 1, N = 200 in the upper panel of Fig. 1. The
correlator is obtained from an average of 500 simulations see App. C for more information
about the simulation parameters. By the Kubo formula (21), the resistivity is the integral of
this correlator. In practice, we define the quantity

ρt =

∫ ∞

0

dt ′GEE
cl (t

′) . (27)

As shown in the bottom panel of Fig. 1, it saturates to a constant value. Our final estimate of
ρ is obtained by averaging ρt at late time t > 200.

We can already note that ρ|e2=1 = 1.06± 0.03. has a finite value that can be accurately
determined. We also see oscillations in the propagators. They are of a non-universal origin.
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Figure 1: Electric correlator (upper panel) and extraction of resistivity ρ (lower
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Figure 2: Left: Electric current correlator (upper panel) and extraction of σgauged

(lower panel). The correlator integrates to zero within statistical uncertainties, of
order of a part in 103 (note the rescaled axis). Right: Frequency dependent gauged
conductivity (Fourier transform of left hand side). As argued in the main text,
Maxwell’s equations predicts that σgauged goes to zero like ρω2. This is what is
shown as a dashed line on the picture, with ρ|e2=1 determined above.

They are plasmon-like oscillations generated by our classical lattice equivalent of hard thermal
loops. We discuss this further in Appendix D.

3.1.1 On extracting the conductivity when the gauge field is dynamical

In our system, we have access to the microscopic electric charge current j⃗dyn. It thus al-
lows us to directly compute an associated electric conductivity. We proceed in the same

way as with the resistivity: we compute the current-current correlator G jdyn jdyn

cl and define

σ
gauged
t =
∫∞

0 dt ′G jdyn jdyn

cl (t ′). The superscript indicates that this quantity is calculated in
the gauged theory from the Kubo formula (4). We show the results in the left panel of
Fig. 2. We find that the conductivity, defined from the Kubo formula, vanishes in this sys-
tem σgauged|e2=1 = −000010± 0.00014.

The vanishing of the conductivity might seem surprising but can easily be explained. It is
a direct consequence of Maxwell’s equations. The current reads

e2 jdyn
i = ∂t Ei + (∇× B)i . (28)
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Figure 3: Left: Mean electric field along the z direction subject to an external electric
field quench in the z direction. The quench we implement simply corresponds to a
change in the initial conditions of the electric fields. As a result of electric screening,
it quickly relaxed to the external field value. Right: Mean dynamical electric current
subject to an external electric field quench in the z direction. As the electric current
is sourced by the time derivative of the electric field which is constant at late time, it
is not possible to source a non-zero steady current in this way. We observe the emer-
gence of an approximately steady current at intermediate times. For less strongly
interacting systems, this intermediate regime is the one giving rise to well-defined
electric conductivity.

This implies the following relation between the electric and electric current correlator at zero
spatial momentum

G jdyn jdyn

cl (ω, k = 0) = −
ω2

e4
GEE

cl (ω, k = 0) . (29)

The left-hand side determines the resistivity through the Kubo formula (12). We see that
as long as the resistivity is non-zero and finite, the extra factors of ω on the right-hand side
mean that the Kubo formula for conductivity necessarily vanishes in the presence of dynamical
electromagnetic fields.

Physically, this is a consequence of electric screening. The conductivity measures the linear
response to an applied external electric field. If electromagnetism is dynamical, there is no
precise meaning to the concept of an “external electric field”, indeed any putative external
electric field will always be screened by a dynamical one, resulting in a vanishing jdyn at late
times. This is illustrated in Fig. 3, where we attempt to add an external electric field. There
is no completely canonical way to do this in a theory of dynamical electromagnetism, but in
Appendix C we demonstrate a physically reasonable scheme.

Note that the dynamical electric field asymptotes to a constant value which precisely can-
cels the external one. Recalling Maxwell’s equations, the time derivative of the dynamical
electric field sources the electromagnetic current. An electric current is then produced while
the dynamical electric field readjusts to screen the external one but vanishes eventually, in the
steady state.

Given these results, one may be confused about the meaning of the conductivity that is
often computed from the current-current two point function in a theory of dynamical elec-
tromagnetism, e.g. as in [31, 32]. It seems that giving a precise meaning to σ involves an
order of limits. The Kubo formula for conductivity assumes that the probe electric field is
non-dynamical, and that the electric field is decoupled. This notion of decoupling acquires
meaning in the dynamical theory only if the electric field evolves on a timescale τE that is
sufficiently long that the electric field can be thought of as being fixed over the timescale of
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the conductivity measurement. In Section 3.2 we will estimate τE and show that it depends
on the electromagnetic coupling; the required hierarchy of scales does not exist if e is large.

Operationally, this can be thought of in light of linear response and Fig. 3. A transient
current appears for the time it takes to screen the external electric field. If the electric field
is sufficiently long-lived, the linear response regime can be reached. The dynamical electric
field slowly varies to screen the external one. This in turns creates an approximately constant
current and the conductivity could in principle be extracted from this transient current. It is
also clear from Fig. 3 that this separation of scales does not happen in our current system. The
external field is swiftly quenched and no current is produced.

3.1.2 Linear response and resistivity

Before moving on to this, we explore further the consequence of magnetic flux conservation. In
particular, it is interesting to consider the meaning of resistivity from the point of view of linear
response theory. As recalled in (12)-(11), ρ measures the linear response of the electric field
to an external charged current. Physically, from the point of view of magnetic fluxes, a current
of probe charges rearranges magnetic field lines, which in turns produce some electric field by
induction. This phenomenon is illustrated in Fig. 4, where we study the time evolution of our
system in the presence of a constant external current jext of charges along the third direction
as defined in (11); see App. C for further details.

On the left, we show the mean value of the electric field along the third direction. As
expected, the field quickly reaches some constant value. The dashed line is the prediction of
linear response, using the resistivity from the Kubo formula (27). The agreement is impressive.

On the right-hand side, we show the average value of the dynamical electromagnetic cur-
rent. To create a stable steady state, it has to cancel the applied external one, and it does.
Note also that in this way one effectively recovers a version of Ohm’s law, whereby

〈 jdyn
i 〉= − jext

i = −
1
ρ
〈Ei〉 . (30)

In this sense, one can always define conductivity as the inverse of resistivity, computed from
the Kubo formula of the electric field (21). However, as discussed above and in section 3.2, it
acquires a meaning of its own as the response of charged matter to an external electric field
only at weak coupling.

3.1.3 Magnetic diffusion

Finally, we also examine magnetic diffusion, as predicted by Eq. (13). This is illustrated in
Fig. 5, where we consider the time-dependence of the magnetic field correlator at different
values of spatial momentum k. While the k2 dependence of the exponent is clear, and the
qualitative behavior of the correlator is the one expected and compatible with ρ ≈ 1.06, a
quantitative analysis proves harder to conduct. The main limiting factor is that an independent
extraction of the magnetic susceptibility Ξ – which measures fluctuations of magnetic flux
which wraps the whole system – is hard in the presence of periodic boundary conditions.
While the local fluctuations of magnetic fluxes are unconstrained, the total fluxes in the box
are frozen to zero as a result of the local nature of our Monte Carlo updates. While in principle
it is possible to extract the susceptibility from local measurements – see for instance [33] for
related discussions in the context of the QCD topological susceptibility – it is beyond the scope
of this work and of no intrinsic value per se. We see that using the bare value of Ξ = e2 = 1
describes the data fairly well, suggesting that this parameter is only weakly renormalized if
at all.
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Figure 4: Left: Mean electric field along the z direction in the presence of an external
electric current along the z direction. As predicted by linear response, a nonzero
electric field is generated, whose magnitude is perfectly predicted by the resistivity
determined above from its Kubo formula. Right: Mean dynamical electric current
along the z direction in the presence of an external electric field along the z direction.
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By

cl ∼ e−Dk2 t with D = ρ/Ξ, ρ is extracted from
the left-hand side. As explained in the text, Ξ is difficult to extract independently with
periodic boundary conditions. It does appear that it is only weakly renormalized from
the bare value Ξ= 1 which we use in this plot. The k2 dependence is clear.

3.2 Electric field relaxation at weak coupling

As discussed in the previous section, a key role in interpreting the conductivity is played by
the relaxation time of the electric field. Here we study this phenomenon quantitatively by
introducing a generalization of the effective theory of MHD and comparing it to weak coupling.

The required formalism is a modification of magnetohydrodynamics that allows for a finite
electric field lifetime, as discussed in [34] (see also [35]). Following that work, we have an
expression for the slightly broken conservation of the electric field, which is a generalization
of (9).

∂t J
t i + ∂ jJ

ji = 0 , ∂t J
i j +

ρ

τE

�

∂iµ j − ∂ jµi +Ht i j

�

= −
1
τE

J i j . (31)

The new parameter τE controls the decay rate of the electric field via J i j(t)∼ e−t/τE . The
universal formulation of MHD in terms of 1-form global symmetry reviewed in Section 2.1.2
corresponds to an effective description for long times t ≫ τE; in this case the term in ∂t J

i j
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may be neglected, and J i j has no independent dynamics, being fully determined by gradients
of µi . Note that τE is an independent parameter and there is no a priori relation between the
coefficient ρ and the decay rate 1/τE .

On the other hand, the equations of motion of the conventional formulation of plasma, in
e.g. [20] where the electromagnetic field is weakly coupled to the matter sector – can be cast
precisely in the form (31). In Appendix B we perform a careful matching and find the relations

τE =
1
σe2

, ρ =
1
σ

(32)

(In this expression σ is defined in the conventional way, as the quantity apearing in Ohm’s law
that relates the dynamical current jdyn to the dynamical electric field E; see Appendix B for
details).

We see that the basic differentiating ingredient in a “conventional” formulation of the
plasma is that the electric field is introduced as a degree of freedom, with its relaxation time
τE determined by the microscopic coupling e. Note that hydrodynamics is valid for t ≫ τE ,
and that as expected this timescale diverges as we take the coupling to zero.

Within the theory defined by (31) we can compute various two-point functions. We find
that the resistivity ρ can be written6 as

ρ = lim
ω→0

1
ω

ImGJ x y J x y

R (ω, k⃗ = 0) , GJ x y J x y

R (ω, k⃗ = 0) =
ωρ(i −ωτE)

1+ω2τ2
E

. (33)

It is instructive to compute the dynamical current-current correlation function for the conduc-
tivity of jdyn

i defined from (11). Using ∂t n
dyn + ∂i jdyn i

= 0 and nel = e−2∂i Ei , from (31) we
find that

G jdyn
z jdyn

z
R (ω, k⃗ = 0) = lim

kz→0

ω2

k2
z

Gndynndyn

R (ω, kz) =
1
e4

ρω3

i +ωτE
. (34)

We can use this to define the conductivity σgauged of the electric charge current in a theory of
dynamical electromagnetism as

σgauged(ω)≡
1
ω

ImG jdyn
z jdyn

z
R (ω, k⃗ = 0) =

1
e4

ρω2

1+ω2τ2
E

. (35)

The vanishing of this quantity at low frequencies was previously shown in (29) and seen
numerically in Figure 2. Here we have included the effects of a finite electric field lifetime τE .
Indeed if we now match τE to a microscopic description using (32) (and further assume that
the electric field is the only longest-lived nonconserved operator), then we can extrapolate
ω≫ 1/τE and find the expression

σgauged(ω≫ 1/τE) =
1
e4

ρ

τ2
E

= σ , (36)

where in the last equality we have used (32).
Thus the effects of dynamical electrodynamics soften the correlator, but if one goes to

higher frequencies, in this simple framework with one timescale one can extract a finite result
for the conductivity. This regime exists only over intermediate frequency scales τ−1

E ≪ω≪ Λ,
where Λ denotes a microscopic scale in the theory beyond which hydrodynamics is not valid.
Thus the existence of the regime requires a hierarchy of scales, which is indeed expected to
exist in weakly coupled electrodynamics due to (32).

6On the other hand, the parameter 1/τE can be obtained from G∂t J x y ∂t J x y

R (ω, k⃗ = 0) via the memory matrix
formalism [34] with no prior relation to ρ.
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It seems that the classic perturbative (in e) calculations of σ in a plasma of dynamical
electromagnetism (see e.g. [31, 32]) should be interpreted as extracting σ in this regime.
We are not aware of any perturbative calculation that explicitly shows the crossover to the
vanishing value of σgauged. Note that through (32) the value of σ in this regime is indeed
numerically equal to ρ−1, and thus – provided the hierarchy of frequency scales exists – this
approach should correctly provide a characterization of the plasma.

We attempted to investigate this crossover in our simulations. However we found that the
presence of a sharp gapped resonance, which we interpret as a plasmon – as shown in the
right panel of Figure 2 – made it impossible to enter a regime where the correlation function
of jdyn saturates to a constant as in (36). In the language above the plasmon frequency plays
the role of Λ and the required hierarchy does not exist.

4 Application: Chiral transport

We conclude this work with a concrete application where these considerations may have an
impact: chiral transport. We start by briefly discussing chiral transport from the point of
hydrodynamics before presenting our numerical results.

4.1 Background: Chiral magnetohydrodynamics

Consider the theory of electrodynamics coupled to massless Dirac fermions, i.e.

S =

∫

d4 x
�

ψ̄ /Dψ−
1

4e2
FµνFµν

�

+ Sφ (37)

(The inclusion of a charged scalar field in Sφ does not modify the universality class, and we
include it for later convenience). This theory now has extra structure compared to (5): in
particular its 0-form axial current jµA ≡ ψ̄γ

5γµψ is not conserved at the quantum level because
of the Adler-Bell-Jackiw anomaly:

∂µ jµA = κε
µνρσJµνJρσ , (38)

where κ = 1
16π2 is an anomaly coefficient. Note that we have chosen to express the non-

conservation in terms of the 2-form symmetry current in (7). This highlights that the breaking
of the symmetry due to this anomaly is in fact a kind of intertwining of the 0-form axial sym-
metry and the 1-form magnetic flux symmetry. Indeed, it was recently explained that the most
precise characterization of this structure is in terms of a non-invertible symmetry [36, 37],7

which lets one construct conserved axial charge operators that are deformed by the anomaly
to obey a composition law which is not that of a normal U(1) group.

One can now place this theory at finite temperature and ask about the long distance hydro-
dynamic behavior. The resulting framework is called chiral magnetohydrodynamics. Despite
intense study due to its phenomenological importance – see e.g. [14, 40–42] – questions re-
main. Much of the literature predates the recent refined understanding of symmetry structure
and is not framed in the discussion of effective field theory, leading to potential confusion
about the domain of validity of the resulting theory.

We briefly review the conventional approach to this problem; one splits the theory into a
Maxwell sector and a matter sector, and imposes Maxwell’s equations in the form (2), assuming
that the the gauged U(1) current jdyn takes the form

jdyn
i = σEi + 8κµABi , (39)

7For an alternative way to write the non-invertible symmetry generator, see [38, 39]. See also [8] for a recent
review on the non-invertible symmetry of this type.
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where the second term in the axial chemical potential µA arises due to the anomaly in the
ungauged theory (see e.g. [43] for a review).

As explained extensively above in the context of ordinary MHD, one may expect difficulties
with this framework if the electromagnetic coupling is large and σ is difficult to define.

For example, a basic quantity of interest is the axial charge relaxation rate. Due to the
anomaly, the axial charge density nA is no longer conserved, and instead decays with a rate
ΓA. One can attempt to obtain an expression for ΓA from elementary hydrodynamic arguments
[17], relating it to the electric conductivity (4) of the ungauged theory. See Section 4.2 for
more discussion. Fasciatingly, previous real-time simulations [17,18] appear to disagree with
this formula; in particular, a reasonable estimate for the electric conductivity results in a decay
rate that is off from the hydrodynamic prediction by about an order of magnitude.

We now turn to more recent work an effective field theory framework, including [15,16].
These theories allow for the computation of various observables: In particular, [15] obtained
an expression for ΓA in terms of the resistivity ρ. This leads to a universal formula for this
decay rate at small magnetic field:

ΓA =
64κ2

χA
B2ρ . (40)

Importantly, here the resistivity ρ is expressed in terms of the Kubo formula (12).
Though to the best of our knowledge this relation was first expressed in this form following

hydrodynamic considerations in [15], the Kubo formula (40) is not a surprise. It can also be
obtained from a more microscopic point of view as consequence of the fluctuation-dissipation
theorem which relates the chiral decay rate to the Chern-Simons diffusion rate – see Appendix
B of [18] for a derivation. The Kubo formula follows from equation (B.17) there, where the
input from hydrodynamics is in the interpretation of the correlation function of the electric
field in terms of the resistivity.

A holographic study in the same universality class was performed in [44], and demon-
strated agreement with this relation. In this work we demonstrate that (40) is in perfect
agreement with observations of the axial charge decay rate in real-time simulations, thus re-
solving the discrepancy noted in [17,18].

4.2 Numerical results on the chiral decay rate

Direct computations of anomalous transport using semiclassical methods from a microscopic
theory are possible [45–49] but computationally very challenging. Ref. [18] follows a differ-
ent approach. An anomalous sector is added in an effective way to the microscopic action
(5), leading to a hybrid microscopic-effective model. An additional homogeneous degree of
freedom a(t) is added to the theory as follows

Sa = S +

∫

dx3
�χA

2
∂t a∂t a+κaεµνρσFµνFρσ

�

. (41)

The time derivative of a plays the role of the axial chemical potential ∂t a = µA. In particular,
Ref. [18] takes κ = 1

16π2 and χA =
T2

3 as motivated by QED.8 We use the same parameters
in the subsequent analysis. The homogenous dynamics of the axial charge is expected to be
described by the anomalous MHD framework of [15].

8We use slightly different notations from Ref. [18] in order to make more direct contact to Ref. [15]. In particular,
writing a,u5 the “axion” and the chemical potential of [18], we have a = a

2Λ , µA =
u5
2 and indeed χA = 4Λ2 = T2

3 ,
with Λ the axionic coupling of [18].
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Figure 6: Chiral decay rate as a function of the external magnetic field. The linear
response prediction in terms of the resistivity is shown as a dashed line; the agree-
ment is impressive. We also show the dependence of the rate for stronger field and
see a departure from the B2 dependence.
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Figure 7: Left: Ratio of the dynamical current generated by the decay of the chiral
chemical potential to the chiral chemical potential. While both jdyn

z and µA are time
dependent, their ratio is constant. Right: Ratio of the electric field to the chiral
chemical potential. We see that it also well described by linear response theory and
simply related to the chiral magnetic current by the resistivity determined in the
previous section.

The effective chiral chemical potential is conjugate to the chiral charge density in the full
microscopic theory nA = χAµA. Indeed, its dynamics is dictated by the following “anomaly”
equation

χAµ̇A = κFµν F̃µν . (42)

The backreaction into the gauge fields equations happens through the generation of a chiral
magnetic current− 1

2π2µAB⃗. The scalar sector is not affected by these modifications. Its role is
to simply provide a microscopic implementation of a electrically charged matter sector.

This theory allows us to directly check the Kubo formula (40). We start by computing again
ΓA by fitting the exponential decay of the chemical potential µA, see [18] for more information.
After checking that our results are in agreement, we extent the determination of ΓA to larger
magnetic fields. We show the results in Fig. 6. The dashed line corresponds to the prediction of
the Kubo formula (40), using the resistivity computed in Fig. 1. The agreement up to moderate
values of B is impressive. The deviations at larger values of B2 simply signal the breaking of
linear response.
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It also allows us to illustrate a simple physical insight coming from these considerations.
The decay of the axial charge is easily explained once the presence of a chiral magnetic current
is known. Equation (40) is immediate if one assumes that the electric field is related to the
chiral magnetic current through linear response E⃗ = ρ jdyn

C M E = ρ
1

2π2µAB⃗ and inserts it in the
anomaly equation (42). The elementary derivation mentioned in Section 4.1 proceeds in the
same way except it assumes Ohm’s law jdyn

C M E = σE⃗ and predicts ΓσA =
64κ2

χA

1
σB2. The conceptual

difference between the two is whether linear response should be applied to the electric field
or the current. Our results simply show that when σ cannot be unambiguously defined, the
universal approach is to consider the electric field as being sourced from the chiral magnetic
current.

We confirm that this is what happens in our system on the left-hand side of Fig. 7, where
we plot the ratio of the mean electric current to the chemical potential. We see that this ratio is
well described by the CME prediction. More to the point, we see that it then induces a constant
response electric field E⃗ = ρ jdyn

C M E .
To conclude, we verify that these results hold for different values of the electromagnetic

coupling e. Concisely, we compare the e-dependence of ρ obtained through three different
methods: from the ΓA data of [18], by fitting the linear response of E to an external current
and from the Kubo formula (12).

We demonstrate the results in Fig. 8. Let us start by commenting that the extraction using
the Kubo formula is much more costly than the linear response extraction. It requires averages
over hundred of samples to extract a signal, compared to a single sample. This explains why
we generated more charges for the “quench” data. Second, the extraction from ΓA and the
direct linear response are in alsmost perfect agreement. This further supports the above ex-
planation; the electric field created from the chiral decay is a response to the chiral magnetic
current. The agreement with the Kubo formula is also very good. The few percent discrepancy
at larger charges can be taken as an assessment of our systematic errors. For instance, the lin-
ear response regime decreases at larger charge, making the extraction of ρquench and ΓA less
controlled. We illustrate this on the right-hand side of Fig. 8, where we showed the response
of the electric field to a small external current. We see that even for e2 = 1, deviation from
linear response are seen for small external currents. Note also discretization artefacts are also
expected to be stronger for larger charges [17].

The precision of our data allows us to look at the coupling- dependence of the resistivity.
For simplicity, we fit only the data obtained from the quenches, as they are more numerous.
We observe the dependence close to being quadratic but with clear subleading corrections. As
shown on the figure, they are compatible with logarithmic corrections (our range of data is not
large enough to distinguish it from a fractional power). This behavior, already reported in [18]
for ΓA is interesting, as it is of the same functional form as the known subleading correction
to 1

σ .

5 Conclusion

In this work we performed a study of classical lattice simulations of electrodynamics coupled
to charged matter (and – in the last section – an effective axial dynamics). We have shown
that the dynamics of the plasma are in agreement with a recent formulation of MHD organized
around the 1-form symmetry associated with the magnetic flux conservation.

A key point here is that the resistivity of the plasma – as determined from Kubo formulas
arising from 1-form symmetry – remains finite and correctly predicts dynamical quantities such
as the rate of magnetic field diffusion and axial charge relaxation.
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Figure 8: Left: Charge dependence of the resistivity for different methods. Black
dots corresponds to extracting the resistivity from the chiral decay rates of [18]. The
red dots are obtained by applying a constant external current to the system and fit
the linear response of the electric field. The purple dots are obtained from the Kubo
formula. The chiral decay rate data are indistinguishable from the linear response ex-
traction. This is not surprising as both methods have similar systematics. The Kubo
formula results are in good agreement a small charges but display a few percent
tension at larger charges. We attribute this small discrepancy to small uncontrolled
systematics (small region of validity of linear response and potential remaining finite
volume effects). Right: Example of the extraction of the resistivity from the linear
response to an external current. We perform simulations for different external cur-
rents and extract the linear response of the electric through a polynomial fit. We
also note that the regime of validity of linear response seems relatively limited in this
system.

A conventional formulation of the plasma would normally use the conductivity instead;
here some care must be taken, as in a theory of dynamical electromagnetism, if the plasma
is fully thermalized then the conductivity cannot be non-perturbatively defined in terms of
its usual Kubo formula, as electrodynamic fluctuations drive the low-frequency limit of this
formula to zero.

However if one can arrange a hierarchy of scales so that the electric field relaxation rate
τ−1

E is much slower than any other time-scale in the problem, then the appropriate correlation
function for the electric current saturates at a constant value over an intermediate range of fre-
quencies τ−1

E ≪ω≪ Λ and can be used to define the conductivity, which is then numerically
equal to the inverse resistivity. Such a hierarchy is not present in the lattice simulations pre-
sented in this work. This hierarchy is however in principle present in weakly-coupled electro-
magnetism, and existing perturbative calculations of the conductivity in a theory of dynamical
electromagnetism should presumably be interpreted in this context.

Indeed, if the electromagnetic coupling is small enough, we expect it to have little effect
in the intermediate range of frequencies above, and the conductivity of the ungauged theory
would then be essentially equal to the inverse resistivity in the gauged theory, as schemati-
cally illustrated in Figure 9, and implicitly assumed in much of the literature. We believe a
completely convincing argument to this effect would require explicitly incorporating dynami-
cal long-range electromagnetic fields in a microscopic transport calculation to show from first
principles the crossover exhibited on hydrodynamic grounds in Eq (35).

Such considerations can have consequences on predictions for anomalous transport in sys-
tems with dynamical electromagnetic fields. We discussed the example of the chiral decay
rate. Due to the presence of the chiral magnetic current induced by the anomaly, the chiral
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Dynamical EM

Ungauged
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Figure 9: Schematic illustration of effect on current-current correlation function of
weakly coupling dynamical electromagnetism to U(1) global symmetry current. As
shown in Section 3.2, correlator in theory with dynamical EM vanishes at low fre-
quencies ω≪ τ−1

E . If e is sufficiently small, the effect at intermediate frequencies is
expected to be small, and then the conductivity of the ungauged theory will deter-
mine the inverse resistivity of the gauged theory.

charge exponentially decays into gauge fields. We showed in this work that the rate previously
measured in [17, 18] is completely consistent with hydrodynamic expectations, provided the
transport coefficients are obtained from the Kubo formula derived in [15], thus resolving a
previous confusion.

One might wonder whether we could also make a similar statements for axial charge re-
laxation in non-Abelian gauge theories. Here it is helpful to note that the key expression (40)
is in fact a special case of the more general expression

ΓA = lim
Ω→0

k2

χAΩ
Im GR

QQ(Ω, p⃗ = 0) , (43)

where GR
QQ(Ω, p⃗) is the retarded correlation function of the topological density Q(x), which

is Q = Fµν F̃µν in the Abelian case (see [50] for more details9) and Tr(F a
µν F̃ aµν) in the non-

Abelian case. In this work we exploited the continuous 1-form U(1) symmetry in Abelian gauge
theory to relate the above observable to a transport coefficient ρ. However in a non-Abelian
plasma there is generally at most only a discrete ZN 1-form symmetry, with no corresponding
transport coefficient or universal hydrodynamic description, and we do not expect to be able
to make any universal statements.10

One interesting direction for future research is the study of fluctuation effects in MHD. It
is well-known that generically in hydrodynamics fluctuations can result in long-time tails in
hydrodynamic observables [55, 56]. These are suppressed by loop factors and are not visible
in classical calculations, and can result in non-analyticities in the ω-dependence of various
correlation functions. Numerically we do not currently see any smoking-gun evidence for such
non-analyticity: e.g. the ω-dependence of the gauged conductivity in Figure 2 appears to be
well approximated by the classicalω2 dependence, though a small shift in the exponent would
likely not be visible numerically. Theoretically we are not aware of much study of long-time
tails in the relativtistic MHD context. One recent result is [50] in the context of chiral MHD,
essentially showing that hydrodynamic loop corrections to the decay of the axial charge at zero

9 [50]was released by a subset of the current authors after the first version of this work was placed on the arXiv.
10In the non-Abelian context the quantity computed in (43) is generally called the Chern-Simons diffusion rate,

and represents the topologically induced axial charge dissipation stemming from the axial anomaly in non-Abelian
theories. This quantity has been extensively studied both at weak-coupling [51–53] and from holography [54].

20

https://scipost.org
https://scipost.org/SciPostPhys.17.3.085


SciPost Phys. 17, 085 (2024)

magnetic field result in non-analytic behavior in ω that is nevertheless irrelevant, consistent
with the numerical results exhibited here. It would be very interesting to systematically study
long-time tails in MHD using the techniques of [55, 56] and confront the results with more
detailed numerics at low frequencies.

Finally, the fact that the conductivity is a useful dynamical quantity only for weakly cou-
pled matter is not well appreciated in the literature. As we have shown, this can have quan-
titative consequences. Our results suggest that it may make sense to reevaluate current de-
scriptions of chirally assisted phenomena in cosmology, see for instance [40, 41, 57, 58] and
references therein for a few examples. Similarly, recent developments considered the interplay
of the chiral dynamics discussed in this work and on non-Abelian topology changing processes
(sphalerons) [59]. The precise value of the chiral decay rate also impacts any resulting pre-
dictions.
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A Correlators and the classical limit

We use this appendix to collect our conventions regarding correlators and make elaborate how
classical correlators are related to the quantum ones. We will mostly follow the discussion
presented in [60]. Out of equilibrium, two independent unequal time two-point functions can
be defined for each operator O. They can be chosen as the statistical correlator GO

s (x; y) and
the spectral correlator GO

ρ (x; y)

GOO
s (x; y) =

1
2
{O(x)O(y)} , (A.1)

GOO
ρ (x; y) = −i[O(x), O(y)] . (A.2)

At the level of two-point functions, thermal equilibrium is expressed by the KMS relation,
which relates the two correlators

GOO
s (k) =
�

1
eω/T − 1

+
1
2

�

ρ(k) , (A.3)

with k = (ω, k⃗) and
ρ(k) = iGOO

ρ (k) , (A.4)

the spectral function of the operator O, which is real and positive definite.
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Transport properties are usually expressed in terms of the retarded correlator GOO
R

GOO
R (x; y) = θ (x0 − y0)G

OO
ρ (x; y) . (A.5)

More precisely, transport can be read from the imaginary part of GOO
R , which is nothing

less than the spectral function itself

Im(GOO
R (k)) = −

ρ(k)
2

. (A.6)

In the classical limit, the classical correlator is a good approximation to the statistical one
GOO

cl (x) ≈ GOO
s . It also captures transport properties, as the classical spectral function can be

recovered through the KMS relation (A.3) in the classical limit

GOO
cl (x)≈

T
ω
ρ(k) . (A.7)

Plugging this into (4)–(12), one gets the classical Kubo formula (21)-(22) (note that a factor
of two is absorbed in the symmetric integration from zero to infinity).

B A global symmetry interpretation of weak coupling

Given a system with a conserved magnetic flux, when is it useful to think of it as Maxwell
electrodynamics weakly coupled to charged degrees of freedom?11

In this Appendix we seek to give a universal definition of the concept of “weak electromag-
netic coupling”, relating it to emergent hydrodynamic timescales discussed in the main draft.
We take a somewhat leisurely exposition here, taking opportunities to connect to elementary
electrodynamics.

To orient ourselves, let us consider pure Lorentz-invariant electrodynamics, i.e. the action

S =

∫

d4 x
�

−
1

4e2
FµνFµν + bµνε

µνρσFρσ

�

. (B.1)

Here bµν is the coupling to the external source for the 2-form magnetic flux current
Jµν = 1

2ε
µνρσFρσ. To interpet this source, write Fµν = ∂µAν−∂νAµ and note that the coupling

now takes the form
∫

d4 x jµextAµ, where as in (11) we have

jµext ≡ ε
µνρσ∂νbρσ . (B.2)

In other words, the natural source for the 2-form current can be understood as a fixed external
electric charge current. In conventional electrodynamics, this external source is often called
the free charge current. In textbooks we often consider the 3-vector fields H and D, which
the reader might (grudgingly) recall are defined as the objects who obey the bare Maxwell’s
equations sourced by the free charge current, i.e.

∇×H= jext +
∂D
∂ t

, ∇ ·D= ρex t . (B.3)

Comparing (B.3) with (B.2) we see that the components of the 2-form source bµν are actually
precisely H and D:

bt i = Hi , bi j =
1
2
εi jkDk . (B.4)

11We are grateful to S. Hartnoll for discussions related to the content of this section.
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This identification involves derivatives and so is actually ambiguous up to the following trans-
formation parametrized by an arbitrary 1-form:

bµν→ bµν + ∂µΛν − ∂νΛµ , (B.5)

which leaves invariant jext. It will nevertheless turn out to be helpful in relating the universal
higher-form language with elementary concepts in textbook electrodynamics.

Now let us examine a slightly more general situation: consider a Coulomb phase of electro-
dynamics in a medium that is no longer Lorentz-invariant, and is expected to be characterized
by two parameters ε and Ξ (i.e. the electric and magnetic permeabilities). The Maxwell action
is then modified to be:

S =

∫

d4 x
�

−
1

4Ξ
Fi j F

i j −
1
2
εFt i F

t i +
1
2

bµνε
µνρσFρσ

�

. (B.6)

It is instructive to write the general expression for the 2-form current Jµν in the presence of b.
After a short computation we find

J t i = Ξ
�

bt i + ∂ t Ãi − ∂ iÃt
�

, J i j =
1
ε

�

bi j + ∂ iÃj − ∂ jÃi
�

. (B.7)

We obtained this expression by varying the action with respect to the ordinary photon A and
then parametrized the solution to the resulting equation of motion in terms of a new dynamical
vector field Ã – one can think of this as the dual magnetic photon.

The form of the currents that one obtains from here should be familiar: it is precisely the 1-
form version of a spontaneously broken symmetry, with Ã being the 1-form Goldstone mode.
Indeed it is well-known that the ordinary Coulomb phase of electrodynamics is the phase
where the 1-form magnetic flux symmetry is spontaneously broken [1, 21, 22]. Comparing
this to an ordinary (0-form) spontaneously broken symmetry, we see that Ξb is the 1-form
charge susceptibility, whereas 1

ε plays the role of the 1-form superfluid stiff-ness.
Let us now connect to elementary electrodynamics. Using (B.3) and expressing the two-

form current Jµν in terms of the regular E and B12 fields we find:

B= ΞH , E=
1
ε

D , (B.8)

which are the usual relations relating the magnetic and electric fields to D and H. The main
point to note here is that the macroscopic electric and magnetic permeability ε and Ξ have a
precise meaning in terms of the thermodynamic parameters characterizing the spontaneous
breaking of 1-form symmetry in a material. Indeed the speed of the gapless photon is

c2 =
1
εΞ

, (B.9)

which can now be re-interpeted as the usual expression for the speed of the Goldstone mode in
a conventional symmetry broken phase with stiffness ε−1 and susceptibility Ξ (see e.g. [61]).

Now, let us consider what it means to add dynamical charges to this system. We can
consider modifying the action as follows:

S =

∫

d4 x
�

−
1

4Ξ
Fi j F

i j −
1
2
εFt i F

t i +
1
2

bµνε
µνρσFρσ + jdyn

µ Aµ
�

, (B.10)

where here jdyn
µ is an extra density of dynamical charges. In their absence the system is in

a Coulomb phase; once they are present the system may be in a different phase. Thus in a

12Note that the shift of bµν by ∂[µÃν] is exactly the ambiguity (B.5).
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universal sense one can simply imagine that adding charges has the effect of disordering the
spontaneous breaking of 1-form symmetry in the Coulomb phase.

To proceed we need a choice for their dynamics. We now specialize to the choice that is
relevant for plasma, i.e. we assume that there exists a parameter σ such that the following
relation is true:

j i
dyn =

1
2
σεi jkJ jk . (B.11)

This is stating that if the gauge potential A is frozen, then the electrical charge current j i
dyn

responds to the application of an electric field with 0-form conductivity σ. The equation of
motion that one finds from here is now simply:

1
Ξ
εi jk∂ jJtk + ε∂tε

i jkJ jk = j i
dyn . (B.12)

This is simply the in-medium Maxwell equation, which we have written in terms of Jµν so that
it may be related to (31), which we recall made no mention of any microscopic description.
We find the following matching of parameters:

τE =
ε

σ
, ρ =

1
σ

. (B.13)

In other words, by viewing the plasma as a deformation of a phase where the 1-form symmetry
is spontaneously broken (i.e. the free photon phase), we have obtained information about an
extra non-universal scale τE , expressed in terms of thermodynamic data ε characterizing the
spontaneously broken phase. At times t ≫ τE we obtain a description in terms of MHD alone.

Finally, let us note that for a system where the electrodynamic sector alone (i.e. in the
absence of jdyn) is Lorentz-invariant, then from (B.9) we find ε= Ξ−1, and the electrodynamic
number is characterized by a single number, the electromagnetic coupling e; further comparing
(B.6) to (B.1) we see that Ξ= e2, and we find

τE =
1
σe2

, ρ =
1
σ

. (B.14)

Note in particular that as the electromagnetic coupling e is taken to zero, τE grows and the
MHD description’s range of validity t ≫ τE is smaller, as one might expect.

C Numerics

We summarize briefly here our numerics, more information can be found in [17,18]. See for
instance [29] for a review on classical lattice techniques. The thermal initial conditions for
the system are sampled thanks to a standard Metropolis algorithm applied to (15). At this
stage, Gauss law is only mildly satisfied. We remedy this situation by cooling the system. The
configuration generated by the Monte-Carlo is brought to the closest configuration satisfying
Gauss law through steepest descent. For simulations with a background magnetic field, we
impose non-zero fluxes by using the twisted boundary conditions described in [18]. The ex-
ternal electric current and electric fields scenario described in the main text are realized as
quenches; they are turned on at the beginning of the time evolution. The same is true for the
chiral chemical potential.
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Concretely, we solve the following discretized set of equations

∂tϕ = π , ∂tπ=
∑

i

D−i D+i ϕ − V,ϕ∗ , (C.1)

∂tAi = Ei + Eex t
i , ∂t Ei = 2e2Im{ϕ∗D+i ϕ} −

∑

j,k

εi jk∆
−
j Bk −

1
2π2

µAB(8)i + jex t
i , (C.2)

µ= ∂t a , ∂tµ=
3

2π2

1
T2

1
N3

∑

n⃗

1
2

∑

i

E(2)i

�

B(4)i + B(4)i,+0

�

, (C.3)

with ∆±µ f = ± 1
dx( f±µ − f ), D±µ f = ± 1

dx(e
∓iedxµAµ(n±

1
2 ) f±µ − f ) the forward/backward finite

difference operator and covariant derivatives, Bi =
∑

jk εi jk∆
+
j Ak, and

E(2)i ≡
1
2
(Ei + Ei,−i) , (C.4)

B(4)i ≡
1
4
(Bi + Bi,− j + Bi,−k + Bi,− j−k) , (C.5)

B(8)i ≡
1
2

�

B(4)i + B(4)i,+i

�

, (C.6)

as composite operators necessary to have a proper discretization E⃗ · B⃗ as a total derivative.
The external sources Eex t

i and jex t
i are used for our linear response analysis. As already

mentioned in the main text, adding an external current jex t
i is unambiguous. On the other

hand, the meaning of an external electric field Eex t
i in the dynamical system is less clear. We

implement it as a shift in the momentum operator. Its effect is to effectively change the initial
conditions for the gauge field and force the system out of thermal equilibrium. It is worth
nothing that when Eex t

i is applied the 1-form symmetry current J i j is proportional to E− Eex t .
To perform the time evolution, we use a simple leapfrog scheme, detailed in [17].

D More on classical field theory in thermal equilibrium

We use this appendix to clarify the meaning of a classical thermal equilibrium for the reader
not used to thinking about this problem.

A standard classical field theory cannot be in thermal equilibrium in the continuum, this is
the standard Rayleigh-Jeans UV-catastrophe of classical field theory. The full quantum theory is
regulated by generating the Bose-Einstein/Fermi-Dirac distribution instead of the Boltzmann.
Technically, this can be seen in Euclidean time as the periodicity in time.

While this is the way nature appears to regulate thermal states, this is not unique. A
classical field theory on a lattice with lattice spacing a is also UV finite, even though the UV
cutoff a cannot be removed in a meaningful way.

Table 1: Lattice parameters.

e2 # confs. Kubo

0.5 50

1 500

1.5 250

2 249
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To illustrate these ideas, let us compute the thermal mass of a massless scalar field in a
quartic potential. From Chapter 3 of [62], we have the thermal correlator at finite temperature
for the λφ4 theory, in momentum space, as:

∆(iωn, k) =∆(F)(iωn, k)

�

1−
�

λT
2

∑

n

∫

d3k′

(2π)3
∆(F)(iωn, k′)

�

∆(F)(iωn, k)

�

, (D.1)

where ωn are Matsubara frequencies and k denotes the spatial 3-momentum. The above can
be readily derived from a Feynman diagram of the following form,

= + + O(λ2) , (D.2)

where the term on the left hand side is the full propagator, the first term in the right hand side
is the free propagator and the second term is the O(λ) correction to it.

The correction to the self-energy is Π(iωn, k) using, ∆−1(iωn, k) =
�

∆(F)
�−1
+Π(iωn, k).

From (D.1) we obtain,

∆(iωn, k)−1 =
�

∆(F)(iωn, k)
�−1
�

1+
�

λT
2

∑

n

∫ d3k′

(2π)3∆
(F)(iωn, k′)
�

∆(F)(iωn, k) +O(λ2)
�

, (D.3)

which in position space becomes,13

∆−1 =
�

∆(F)
�−1
+
λT
2
∆(F)(z = 0) , (D.4)

where z = 0 is the point where the loop intersects the line, the black dot, as shown in the
second term on the RHS of (D.2).

Now we put the above theory on a lattice with lattice spacing ‘a’ and compute the self-
energy from above as, upto O(λ2),

Π=
λT
2
∆(F)(z = 0) =

λT
4π2

∫ kmax

0

dk
k2

k2 +m2

m→ 0
=

λT
4π2

kmax =
λT
4π2

2π
a
=
λT
2πa

. (D.5)

We see that now the UV cutoff, which should be in this case interpreted as some scale
in the problem, enters the results. Instead of the expected “quantum” T2 dependence, we
obtain T/a.

The plasmon peak we observe in the right side of Fig. 2 is conceptually of the same charac-
ter; the lattice cutoff induces “classical” hard thermal loop. They can in principle be computed
analytically. We abstained as it did not have direct relevance to our results.
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