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Abstract: Surgical wound infection is a global postoperative issue adding a significant clinical
burden and increasing healthcare costs. Early detection and subsequent diagnosis of infection is
vital for accurate, early, and effective treatments. In this paper, we report a pilot study exploring
spatial frequency domain imaging (SFDI) to monitor, in-vivo, a biopsy wound in human skin.
The reduced scattering coefficient, µ′s, absorption coefficient, µa and the oxygen saturation,
StO2, were measured using a SFDI system at 617 and 850 nm. We found the µ′s was better
capable of monitoring structural changes, possible pus within the wound, re-epithelialization,
and collagen fiber remodeling, than with the eye alone. The µa map is capable of revealing the
total hemoglobin distribution in the wound area but was limited in some regions due to the scab
covering. This case study indicates SFDI’s potential for monitoring and quantifying the process
of surgical wound healing and infection.

Published by Optica Publishing Group under the terms of the Creative Commons Attribution 4.0 License.
Further distribution of this work must maintain attribution to the author(s) and the published article’s title,
journal citation, and DOI.

1. Introduction

In the UK, surgical site infections (SSI) account for up to one in seven hospital patient acquired
infections [1]. Patients with SSI are required to stay on average 7 - 11 days longer than patients
without such wound infections. Currently 98% of wound infections are detected using visual
inspection and patient-reported symptoms at a point where significant clinical work is required to
resolve the infection [2–4]. Since infection is acknowledged as an impediment in wound healing
[5], early diagnose is clinically vital as well as relieving a patient’s distress and discomfort
during surgical recovery. The gold standard [6,7] for diagnosis is through a wound culture
developed from a swab or biopsy. These methods are invasive and take several days to culture,
frequently making it too late for early treatment. A non-invasive and early diagnosis method is
urgently needed to observe the wound healing process including structural changes and indicators
for metabolic changes and possible infection signs. To enable such diagnosis and aid with a
worldwide health care problem, an imaging method is required that is cost-effective, simple to
operate and rapid.

Non-contact imaging techniques can provide greater information than the naked eye [8].
Though previous research works applied to wound imaging were not specifically to investigate
post-surgical wound cases, they may have potential for use in this application. Optical coherence
tomography (OCT) uses the optical scattering properties of the tissue via point-by-point scanning
imaging with a spatial resolution of between 1-15 µm. [9] It has been used to monitor tissue
structural changes including burn wound depth [10], epidermis migration [11–13] and collagen
denaturation [14]. However, scanning time is relatively long and OCT cannot measure the
chromophores in the wound. Hyperspectral imaging (HSI) [15–17] has been applied to assess
tissue pathophysiology including open wounds [18], diabetic foot ulceration [19,20], burn wounds
[21] and skin perfusion [22,23]. The main biological tissue indicators for hyperspectral wound
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imaging include water, hemoglobin, oxygenation map and melanin concentration which can be
extracted from the reflectance data cube [24]. However, HSI instrument is very expensive [25] to
build which adds a significant barrier for the potential users and it is not available to measure the
structural information of the skin. Laser Doppler imaging (LDI) [26,27] is capable of measuring
the blood perfusion for burn wounds [28,29] based on the Doppler effect. However, LDI cannot
provide structure information and chromophore concentration in the tissue. Optoacoustic imaging
(OA) is advanced in detecting the chromophores through the human skin and reconstructing
capillary and lipid structures with high resolution (laterally 4 µm) based on the photoacoustic
effect [30,31]. It has been applied to detect and quantify burn wound depth [32–34], burn collagen
fiber anisotropy with polarization and ulcers. [35]. However, the field of view is limited to a
couple of millimeters [36] while the scanning time is relatively long.

Spatial frequency domain imaging (SFDI) is a non-contact, rapid and wide field of view skin
imaging technique [37,38]. It has been applied in the assessment of burn wounds, initially with
porcine and rat models [39–41], diabetic foot ulcers [42], pressure ulcers [43] and scleroderma
[44]. It can indicate the structural change via reduced scattering coefficient measurements whilst
map absorption coefficients for the chromophore concentration in the wound. It is a cheap
instrument to build costing around $2000 [45]. The trade off is the 1 mm spatial resolution which
is still significantly small compared to the size of the surgical wound which is typically a few
centimeters in the length. Therefore, the SFDI method here matches our purpose best to explore
surgical wound diagnosis.

During the SFDI imaging process, three phases of a sinusoidal illumination pattern are projected
separately onto the tissue. By capturing the returned diffuse reflectance, the reduced scattering
coefficient, µ′s, and the absorption coefficient, µa, can be calculated for the target area. SFDI has
not only been explored for use in clinical assessment for wound and skin complications SFDI is
also capable of detecting early signatures of disease, for example, detecting demineralization in
dental enamel prior to dental caries [46], and endoscopic screening for gastrointestinal cancers
[47].

However, these previous SFDI applications typically assume the tissue has a homogeneous
horizontal structure. SFDI has not previously been extended to surgical wound site monitoring
which have a specific heterogeneous vertical structure due to the surgical incision. There has
been research discussing SFDI’s spatial resolution in vertical structures for breast cancer margins
[48] and tumor resection [49,50]. SFDI has been proved numerically to characterize a vertical
heterogeneous structure in wounds [51–54].

In this paper, we firstly review the wound healing knowledge and the protocol for wound
measuring. The reduced scattering and absorption result from SFDI are analyzed with the VIS
image of the wound.

2. Wound healing process and infection

There are four overlapping phases [55,56] in the wound healing process: early response,
inflammation, proliferation and remodeling. A diagram demonstrating the physiological process
is shown in Fig. 1.

Early response: Hemostasis appears immediately when blood starts to leak [58]. The blood
clot is formed from insoluble fibrin which fills the wound bed as a provisional wound matrix.

Inflammation: Immediately after hemostasis, the injured blood vessels leak transudates
leading to local swelling which appears as inflammation. The soluble fragment of the degraded
collagen recruits immune cells whilst acting as a signal to promote the development of new blood
vessels [56,62]. Visually, a scab is formed to protect the wound and provide an ideal moisture
rich environment for wound healing.

Proliferation: Here, granulation tissue replaces the fibrin clot in the wound with capillary-rich
fibroblastic tissue [63,64] by fibroblast synthesis and collagen production. As a result, the wound
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Fig. 1. (a) Timeline for the four sequential and overlapping wound healing phases. [56–59].
(b) Four phases of the wound healing and their mechanisms. [60] (c) Detailed wound
contraction process during the proliferation phase [61]: the wound contraction happens from
the edge to the center shown by horizontal arrows. The red block represents the wound area
and the brown block presents the wound margin can be seen from the surface.

contracts due to the granulated tissue gradually filling the wound gap [65] from the edge to the
center as shown in Fig. 1(b). In parallel with this, the re-epithelialization takes place where
keratinocytes migrate from the edge to the center of the wound.

Remodeling: In this phase, the new epithelium and final scar are developed. The capillaries
stop growing and blood flow to the wound area decreases [66,67]. The collagen matrix in the
dermis is remodeled from type 3 to type 1 [62,68] forming a more stable collagen structure and
then the tissue increases in tensile strength.

3. Method

3.1. Wound information and protocol

A 57-year-old male underwent an incision biopsy on his right hand due to a suspicion of skin
cancer. The biopsy wound was closed with non-absorbable sutures after the lesion had been
sampled. The surgery took place 14 days before we started the imaging experiment. We undertook
a 42 day observation of the volunteer’s wound healing progress until his wound was visibly
healed for 3 weeks. The wound was suspected of becoming infected on day 0 of our observation
and our volunteer was prescribed oral antibiotics for 5 days.

We wished to observe the structural changes in the wound through the reduced scattering
coefficient, µ′s, and hemodynamic profiles via the absorption coefficient, µa. The timeline for the
surgery and the SFDI monitoring is shown in Fig. 2. The protocol in this paper was approved
by the Ethics Committee of the Department of Physics in Durham University. The wound area
and the same region on left hand were imaged at each visit as a reference and calibration for
daily fluctuations in skin condition [69]. Two wavelengths were selected at 617 nm and 850
nm to assess wound optical properties at different depths (longer wavelength can reach deeper)
and to measure the relative ratio of deoxy-hemoglobin (Hb) and oxy-hemoglobin (HbO2) in
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order to calculate the oxygen saturation (StO2) [70]. The µa value at 617 nm indicates the total
hemoglobin concentration.

skin biopsy
wound sealed by 

suture

Infection 
diagnosed + 
start taking 
antibotics

Suture 
removed

0-14 4 7 10 14 19 26 42-1 2

[day]

Infection

Scab on

Looks recovered

34

Fig. 2. Timeline for the wound healing and monitoring. The wound was monitored every
three or four days before the scab came off as the wound condition changed. The healed
wound area was then imaged with a seven day interval as the tissue reformation phase takes
place more slowly.

3.2. Instrumentation

The geometry of the SFDI system follows the openSFDI design [45] and is shown in Fig. 3. Here,
two LEDs at 617 nm (Thorlabs, M617D2) and 850 nm (Thorlabs, M850D2) are utilized for the
illumination. The digital mirror device (DMD) encoded the collimated beam from the LEDs
with sinusoidal pattern and then an achromatic lens (focal length 50 mm) was used to magnify
the pattern from the DMD on to the skin. To enable the two wavelengths to be projected onto the
same area of skin a dichroic mirror was placed between two the LEDs to reflect the 850 nm light
beam on to DMD, whilst passing the 617 nm light beam through in the original direction. Two
orthogonally aligned polarizers were placed between the focusing lens and camera to eliminate
the surface reflection from the skin.

M
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CL
DCM
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Fig. 3. The geometry using dual wavelength LEDs to image the biopsy wound on volunteer’s
hand. CL = collimating lens focal length 16 mm, DCM = dichroic mirrors, AL = achromatic
lens focal length 50 mm, PL = polarizer, M = mirror, CAM = camera (with 35 mm focal
length lens).

Three phases of the sinusoidal pattern were sequentially projected onto the skin surface with
relative phases 0, 2π

3 and 4π
3 rad. A USB camera (BFS-U3-13Y3M-C, Blackfly Camera, Edmund

Scientific) collected the diffuse reflectance image with a 35 mm lens. A spatial frequency of
0.1 mm−1 was used to give sufficient penetration depth to evaluate the wound underneath the
epidermis. (The estimated penetration depth of the sine pattern is 1.38 mm at 617 nm and 1.57
mm at 850 nm for the healthy skin area.) To calibrate the system for the scattering coefficients
a sample was made with epoxy resin and TiO2 powder with the optical properties of reduced
scattering coefficient µ′s = 1.2 mm−1, absorption coefficient µa = 0.004 mm−1 at 617 nm and
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reduced scattering coefficient µ′s = 0.8 mm−1, absorption coefficient µa = 0.004 mm−1 at 850 nm
[51].

3.3. Data processing

The alternating component (AC) image is obtained with Eq. (1) [37],

IAC =

√
2

3
√︁
(I1 − I2)2 + (I1 − I3)2 + (I2 − I3)2 (1)

where I1, I2 and I3 are the three-phase diffuse reflectance images. The AC images were first
binned with a 5 × 5 window to reduce the noise whilst maintaining the required spatial details
of the wound. Then a Scale-Invariant Feature Transform (SIFT) [71] and a Random Sample
Consensus (RANSAC) [72] were applied to remove any motion artifacts in the AC images during
the dual wavelength measurement. The absorption and reduced scattering maps were recovered
from the registered AC images with the look-up-table method provided by appSFDI [73] software.

4. Results

4.1. Infection observation

The biopsy wound was suspected of becoming infected at day 0 of the observation. As illustrated
in Fig. 4(a), the wound site image shows the pus as white spots with additional redness near the
suture sites. In Fig. 4(b) and (c), the pus sites demonstrate a higher µ′s value at both wavelengths.
However, the redness around the wound had no significant effect on the µ′s map indicating that
the µ′s is not sensitive to the blood flow and vessel changes which clinically cause the redness in
the image. This indicates the µ′s is capable of detecting the structural changes caused by the pus,
a by-product of body’s defense mechanisms against infection.

1 2

visible image, day 0
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Fig. 4. Visible image and scattering maps at day 0 (a) The visible image of the wound, day
0. (b) The reduced scattering µ′s map at 617 nm for the wound at day 0. (c) The reduced
scattering µ′s map at 850 nm for the wound at day 0. The red arrows show the potential area
with pus, which is hard to see in the conventional visible image but can be seen from the µ′s
maps. The yellow arrows show the pus indicated by the high reduced scattering coefficients
and just visible in the conventional image. The black arrows point out the area believed to
have pus pooling more deeply in the tissue clearly seen in the 850 nm µ′s map but hard to
notice in the 617 nm µ′s map and visible image.

As indicated by the red arrows, pus can be seen pooling with a higher value in both µ′s maps
but only showing redness in the conventional visible image. Comparing the areas indicated by
the yellow arrows highlights the pus sites in the µ′s maps and visible image, with the area of
the pus always appearing larger in the µ′s maps than in the visible image, i.e. the condition of
infection was more severe than the naked eye could see due to the features hidden beneath the
surface. Looking closely, sites 1 and 2 have similar µ′s values at 617 nm and intensities in the
visible image. However, in the 850 nm µ′s map, site 1 has a lower µ′s value than site 2. The
reason behind this may be that site 2 had formed a deeper pus cavity and hence a more severe
infection condition than site 1. The 850 nm wavelength penetrates more deeply and can thus see
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pus forming at a greater depth than that seen by the 617 nm. Such a difference is illustrated by
the black arrows.

Comparing µa maps in the Fig. 5 with µ′s maps in the Fig. 4, the difference in the healthy skin
and infection site is not evident in µa. The µ′s is a promising indicator for structural change due
to the pus formation, whilst the µa maps are not sensitive to the pus at the two wavelengths used.

2mm

visible image, day 0

(a) (b) (c)

6 mm

Fig. 5. Visible image and absorption maps at day 0 (a) The visible image of wound area,
day 0. (b) The absorption µa map at 617 nm for the wound at day 0. (c) The absorption µa
map at 850 nm for the wound at day 0. The sutures have different absorption coefficients at
the two wavelength.

4.2. Physiological observation

The µa maps, µ′s maps and visible images for the whole period of observation are shown in
Fig. 6. On day 0 and day 4, uneven hand placement, minor motion or the hand curvature was
likely to add uncertainty to the absorption maps at 850 nm. This effect is readily apparent as the
absorption coefficient value at 850 nm are significant lower. From the visible images, at day 4, the
wound area is red in appearance. This indicates the capillaries were forming during the dermal
replacement. From day 4 to day 7, the wound site demonstrates a higher value in µa possibly due
to scab formation combined with the expected blood volume increase. The scab gets thicker from
day 7 to day 10 shown in both the visible picture and a higher value in the 617 nm absorption
maps. The 850 nm may get through the scab or it is not sensitive to the wound tissue below the
scab compared to the surrounding skin. The low µ′s value in the wound area can be explained by
the expected dissolution of the collagen fibers during the wound healing process. The edge of the
wound area always has a high reduced scattering probably due to re-epithelialization. The low
scattering area shrinks day by day, showing the wound was healing and contracting gradually in
days 4 to 19.

On day 14, the absorption map at 617 nm clearly shows the extent of the scab whilst at 850 nm
there is a high absorption line at the right of the wound as indicated by the arrow. We believe this
is an artifact due to the detachment of the skin and the angle of imaging at this point. When the
scab detaches at the edge, the incident light "bounces" several times in the thin air layer between
the scab and skin and is lost to the detector. The absorption coefficient therefore has a higher
value in this area.

In these early stages of wound healing SFDI appears to detect the changes in the wound
beneath the scab and changes in the scab providing a monitor of the wound healing process better
than the naked eye. When the scab fell from the wound, from day 19, the regeneration was still
ongoing. The high scattering intensity spots in day 26 and day 34 may be caused by the suture
and wound scar formation. This indicates the collagen fibers are growing and transforming in
type so again SFDI is providing greater information on wound progression then the visible image
alone. Further details will be discussed in the following section.

4.3. Optical properties observation

The wound area is determined by the relatively low scattering value on the µ′s map. To verify the
wound healing model, the area near the wound margin is also selected, with approximately a 1
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Fig. 6. The wound healing images from day 0 to day 42. Each row is for a specific day
and each column is for one optical property or visible image. The first to fourth columns
from the left present the recovered optical properties map at the two wavelength.The right
most column is the visible picture for the entire area of the wound site and the red rectangle
indicates the area shown in the optical property maps.
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mm margin as shown in Fig. 1(b). The mean value of the reduced scattering and absorption of
two wavelengths are calculated and demonstrated in Fig. 7 with the error bar obtained from the
standard deviation of all pixels within the wound or margin area.. In the absorption curves, the
617 nm is more insightful to the chromophore change in the wound healing process than the 850
nm.

Fig. 7. (a) The reduced scattering coefficient curves for wound and area near the wound at
617 nm and 850 nm separately. The red rectangles indicate the point two curves start to
overlapped to each other. (b) The absorption coefficient curves for wound and area near the
wound at 617 nm and 850 nm separately.

From day 0 to day 10 (see orange area), collagen fiber is transferred into the fibroblasts
gradually, forming the granulation tissue to replace the provisional wound matrix. This caused a
fall in the reduced scattering coefficient in the wound center as well as the area near the wound.
A similar µ′s decreasing phenomena, due to the granulation tissue, was also observed in the burn
wound [74,75]. With the granulation tissue gradually forming within the wound, blood vessels
contained within the wound result in an increased blood content both in and near the wound,
driving a rise in absorption in the 617 nm curves of both wound and, to a slightly lesser extend,
near the wound as shown in the top graph in Fig. 7.
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In the time range indicated by the purple shading, the µ′s curves in both wavelengths of Fig. 7(b)
follow a rising trend and finally become overlapped until the end of observation. This may
indicate the granulation tissue altering from homogeneous to heterogeneous where the fibroblasts
laid down into collagen fibers to stabilize and contract the wound. The µa value stayed stable
during this period probably due to the scab was fully formed and dominated the absorption
recovered from the wound. According to our wound healing knowledge, the vascular network
might be continuing to be restored under the scab in the angiogenesis process. The scab came off
after day 19 when the wound was visibly healed and switched into remodeling stage. The µa
values at 617 nm then dropped for both wound areas comparing to day 10 as the newly generated
vessel decline.

Notably, the wound contraction was ongoing simultaneously from day 0 to day 26 as
demonstrated by the distance between the wound and area near the wound’s optical properties
curve. In the structural aspect, the area near the wound had greater µ′s value than in the wound
center. Also, the µ′s curves in 617 nm graphs began to be overlapped from day 26 whilst there at
850 nm (where photon penetration depth is deeper) begin to overlap at day 17 (see red rectangles
in Fig. 7(b)). These indicate the wound contracting from the bottom to top and edge to center.
Additionally, there is a significantly higher level of absorption in wound than the area near the
wound. This suggests that center of the wound requires more blood supply, or that the edge or
the blood vessels, decline earlier than in the wound center. Both µ′s and µa curve trends reflect
the wound healing V-shaped model as shown in Fig. 1(b).

4.4. Hemodynamic observation

Oxygen supply plays a vital role in the success of wound healing. The numerous biological
processes demand an adequate oxygen supply and appropriate oxygen levels also triggers the
tissue healing response [76,77]. The blood supply for oxygen delivery will be greatest at the
wound margin.

The maps for oxygen saturation (StO2) are shown in Fig. 8. On day 0, the saturated oxygen
level at the infection site is very high, indicating the large oxygen requirement of immune cells
defending the body against bacteria. The wound area near the sutures is relatively low in oxygen
saturation matching the hypoxia expected in the inflammation phase. This is potentially also an
indicator of a delay in wound healing.

2 mm

2 mm

2 mm

2 mm

Fig. 8. The oxygen saturation maps for the wound from day 0 to day 42.



Research Article Vol. 15, No. 10 / 1 Oct 2024 / Biomedical Optics Express 5881

From day 4 to day 7, the area around the wound has relatively high oxygen saturation as
the wound healing requires adequate blood supply from outside the wound. In days 10 to 19,
the scab has fully formed and became thick with strong absorption that blocks the sinusoidal
pattern from being transmitted and backscattered from deeper within the wound. Due to the
scab the absorption map here is not reliable enough for quantifying the wound, leading to an
unexpectedly low value StO2 at scab area. There is expected to be from tissue proliferation and
vessel rebuilding based on our wound healing knowledge but we do not have evidence of this
as this is hidden beneath the absorbing scab. From the area surrounding the wound, temporary
hypoxia occurred again to stimulate the growth factor [76] as an initiator for the angiogenic
growth and re-epithelialization. On day 14, as predicted by the µ′s maps, wound contraction is
occurring and increasing the demand on oxygen indicated by the high oxygen level in the area
surrounding the wound.

After the wound is visibly healed, moving into the final wound healing phase, the oxygen
saturation is high as observed on day 26 and day 34 when the wound is in a remodeling phase.
At this time, the type 3 collagen is being replaced by type 1 which is dependent on sufficient
oxygen for the transformation to take place [76]. When the collagen replacement is complete, the
oxygen saturation fell to the normal level.

5. Conclusion and discussion

For the first time we have monitored a typical surgical biopsy wound with the SFDI technique.
SFDI clearly aided in detecting the infection at an early stage and provided information on the
wound healing progress. Reduced scattering coefficient provides an indication of the structural
changes taking place in the tissue including the formation of pus and collagen fibers. Damage to
the collagen fibers leads to a lower µ′s value matching the result from previous work [78]. The
pus collecting within the cavity produced a high scattering value indicative of the high density of
the dead and diseased tissue inside. Applying the dual wavelength measurement, the V-shaped
wound healing model is observed through the different depth measurements. We observe the
wound contraction via the µ′s and the blood volume change by the µa. The time series StO2
calculated using the two wavelength values of µa serves as another prospective bio-marker for
monitoring the wound healing process.

The µ′s can penetrate through the scab to present the wound structural changes underneath.
However, recovery of the µa fails through the scab tissue. The reason here might be that in the
biological tissue the µ′s is far greater than the µa. Thus, µa is more difficult to measure accurately.

Previous research [51] has demonstrated that the the difference between the µ′s in the neighboring
structures the easier it is to detect the difference. This matches our observation that pus at day 0
demonstrates a good contrast with double the µ′s value of the surrounding skin. Here the partial
volume effect [79] exists in that SFDI overestimates the wound width in a vertical structured
wound. The wound area from the µ′s map probably has a smaller size than indicated by lower µ′s
value, especially for the days 14 to 19 (see Fig. 6). However, µ′s here still presents the real size
of the wound more accurately than the naked eye. Longer wavelengths demonstrate a smaller
wound site underneath the scab validating a V-shaped 3D wound structure. Our observations
thus fit with the current physiological model of wound healing.

6. Future work

We report a single case of an infected wound observation after the wound had been forming, for
2 weeks. In the future, we are looking to have animal models with vertical surgical wounds and
creating the infection with bacteria [41]. This will help us to control the infection and the initial
condition of the wound. We will also measure the wound more closely at the day from creation
of the wound. We will also look to build an instrument suitable for use in the clinic. This will
help us to build a database of human wound healing parameters when measured using SFDI,
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from which the earliest signs of infection may be detectable prior to when they could be detected
through visual inspection alone.

In our case, the pus, collagen fiber and epidermis changes are detected in the wound tissue.
In terms of structure, we are also keen to observe the scar formation after the wound is visibly
healed. Polarization will be integrated into the current system for better monitoring of the scar
and to help increase the contrast from surface reflections from the tissue [80,81]. We would also
look more deeply beneath the scab to see the wound healing features. For this purpose, we may
optimize the wavelength used in the SFDI system to have greater penetration under the scab. To
apply SFDI in other body areas, especially areas with lower optical properties values, structure
curvature needs to be taken into account to obtain accurate results. [82]. One may consider a 3D
shape measurement combined with the SFDI measurement based upon the shape of the reflected
line combined with the SFDI measurement. This could be achieved by adjusting the polarizing
filters such that the reflected light is detected rather than rejected in the current configuration.

SFDI wound monitoring may also be combined with other optical imaging techniques, such as
hyperspectral imaging [24,83,84] helping to separate the melanin distribution and laser Doppler
imaging [85,86] for blood flow change.

Appendix

The relative oxygen saturation(StO2) is calculated based on the absorption of the extracted µa in
two wavelength.

µa(λ) = ln(10)[εHbO2 (λ)cHbO2 + εHb(λ)cHb] + µa,water(λ) · 70% (2)

The HbO2 is the oxy-hemoglobin and the Hb is the deoxy-hemoglobin. The molar extinction
coefficients are εHbO2 (λ) and εHb(λ) correspondingly. cHbO2 is the molar concentration of HbO2
and cHb is the cHb of Hb. The µa,water is the absorption of the water at the wavelength λ assuming
the water content of human skin is 70%. The oxygen saturation StO2 is calculated with

StO2 = cHbO2/(cHbO2 + cHb) (3)

Here the molar extinction coefficients for the two wavelengths are listed in the Table 1 from
the omlc website [87].

Table 1. The molar extinction coefficients for HbO2 and Hb.

Wavelength εHbO2 / moles · cm−1L−1 εHb / moles · cm−1L−1

617 nm 1068 6927.2

850 nm 1058 7136
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