
Nonlinear power spectrum and forecasts
for a generalized cubic covariant Galileon

Luís Atayde ,1,* Noemi Frusciante ,2,† Benjamin Bose ,3,4,‡ Santiago Casas ,5,§ and Baojiu Li6,∥
1Instituto de Astrofisíca e Ciências do Espaço, Faculdade de Ciências da Universidade de Lisboa,

Edificio C8, Campo Grande, P-1749016, Lisboa, Portugal
2Dipartimento di Fisica “E. Pancini,” Università degli Studi di Napoli “Federico II,”
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To fully exploit the data from next generation surveys, we need an accurate modeling of the matter power
spectrum up to nonlinear scales. Therefore in this work we present the halo model reaction framework
for the generalized cubic covariant Galileon (GCCG) model, a modified gravity model within the
Horndeski class of theories which extends the cubic covariant Galileon (G3) by including power laws of the
derivatives of the scalar field in the K-essence and cubic terms. We modify the publicly available software
ReACT for the GCCG in order to obtain an accurate prediction of the nonlinear power spectrum. In the limit
of the G3 model we compare the modified ReACT code toN-body simulations and we find agreement within
5% for a wide range of scales and redshifts. We then study the relevant effects of the modifications
introduced by the GCCG on the nonlinear matter power spectrum. Finally, we provide forecasts from
spectroscopic and photometric primary probes by next generation surveys using a Fisher matrix method.
We show that future data will be able to constrain at 1σ the two additional parameters of the model at the
percent level and that considering nonlinear corrections to the matter power spectrum beyond the linear
regime is crucial to obtain this result.
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I. INTRODUCTION

The observed late-time acceleration of the Universe
remains one of the greatest mysteries in cosmology.
The standard cosmological model (ΛCDM) assumes the
theory of general relativity (GR) to describe the space-time,
with the cosmological constant, Λ, being the source of
the cosmic acceleration. This model has well known
theoretical [1–4] and observational [5–12] shortcomings
which motivated the search for models beyond GR, known
as modified gravity (MG) models [13].
Scalar-tensor theories are among these MG models

and are characterized by an additional scalar field which
is coupled to gravity through nonminimal and derivative

couplings. Many of these models belong to the Horndeski
and/or Galileon theories [14–18]. They have gained a lot of
attention given the possibility to construct viable models to
account for the late-time acceleration without a cosmo-
logical constant as well as to realize phantom dark energy
equation-of-state free of ghosts. Additionally in the sub-
class of Galileon models [19–21] satisfying the constraints
on the speed of gravitational waves [22], i.e. cGW ¼ 1, there
are models for which it has been shown to have a better fit
to cosmological data than ΛCDM [23,24]. An example is
the generalized cubic covariant Galileon model [25]
(GCCG), for which a clear preference over ΛCDM is
found when the Planck cosmic microwave background
(CMB) temperature and polarization data are used in the
analysis [24]. Moreover for this model the value of the
today’s Hubble parameter, H0, is found to be consistent
with its determination from Cepheids at 1σ [24], resolving
the famous tension of the cosmological standard model [8].
In details, the model extends the cubic covariant Galileon
(hereafter G3) [16] by including power laws of the field
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derivatives in the K-essence and cubic terms which still
allow for tracker solutions. Contrary to the GCCG, the G3
model has been ruled out by cosmological data [26,27].
While GCCG has been widely studied [24,28] both at

background level and linear scales, the nonlinear, small
scales are yet to be explored. The nonlinear regime is where
the situation starts to become challenging for MG models
due to the complexity of the equations to be solved which
usually require extremely expensive computations, as well
as new phenomenology arising from the screening mech-
anisms [4] that needs to be taken into account. The latter are
mechanisms able to recover GR at Solar System scales
where no signature of modifications of the gravitational
force has been found (see Ref. [29] for example). In the
case of Galileon models it is the Vainshtein mechanism,
which acts through the second derivative of the scalar
field [30]. Future surveys such as Euclid,1 SKAO2 and
Rubin-LSST,3 will largely improve the constraints on
deviations from GR at these scales. Therefore the physics
in the nonlinear regime of cosmic structure formation
requires accurate and efficient modeling of nonlinearities
and the development of appropriate codes to interpret
the data.
In this paper we study the modeling of nonlinearities

in the GCCG model using the halo model reaction
method [31] which is based on the halo model and
perturbation theory, and is implemented in the ReACT code
[32–34]. In particular we derive the necessary theoretical
quantities and provide the implementation in ReACT. We
then use this machinery to forecast how well a spectro-
scopic survey of galaxies and an imaging survey from a
Euclid-like mission and SKAO-like one can be used to
constrain the GCCG model.
The paper is organized as follows: In Sec. II we review

the dynamics of the background evolution and linear
growth of perturbations of the GCCG. We also present a
detailed study of the collapse of a spherical matter over-
density, the nonlinear growth of large scale structures
and the computation of the nonlinear power spectrum at
1-loop order in this model. In Sec. III we revisit the halo
model reaction framework and in Sec. IV we validate our
approach against N-body simulations. In Sec. V we show
the phenomenology of the GCCGmodel at nonlinear scales
and in Sec. VI we provide forecasts for Euclid-like and
SKAO-like surveys. Finally we conclude in Sec. VII.

II. GENERALIZED CUBIC COVARIANT
GALILEON

We start by considering the cubic Horndeski theory
described by the action [35,36]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

pl

2
Rþ L2 þ L3

�
þ Sm½gμν; χi�; ð1Þ

whereM2
pl is the Planck mass, R is the Ricci scalar, g is the

determinant of the metric gμν, Sm stands for the matter
action for all matter fields, χi, and the Lagrangians Li are
defined as follows

L2 ¼ G2ðϕ; XÞ; L3 ¼ G3ðϕ; XÞ□ϕ; ð2Þ

with Gi being free functions of the scalar field ϕ
and X ¼ ∂μϕ∂

μϕ.
In this work we choose the forms of the Gi functions as

follows [25]:

G2¼−c2α
4ð1−p2Þ
2 ð−XÞp2 ; G3¼−c3α

1−4p3

3 ð−XÞp3 ; ð3Þ

where ci and pi are dimensionless constants and αi are
constants with dimensions of mass, defined as

α2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
H0Mpl

p
; α3 ¼

�
M1−2p3

pl

H2p3

0

� 1
1−4p3

; ð4Þ

with H0 being the Hubble constant. Without loss of
generality we set c2 ¼ 1=2 [26,37,38]. The above model
is known to be the generalized cubic covariant Galileon
(hereafter GCCG) and it extends the original proposal
of the covariant Galileon [16] (hereafter G3) because it
considers power law functions of X in the Lagrangians, i.e.
Gi ∝ Xpi . Indeed the G3 model is obtained by setting
p2 ¼ p3 ¼ 1.

A. Background evolution

At background level if we consider the flat Friedmann-
Lemaître-Robertson-Walker (FLRW) metric

ds2 ¼ −NðtÞdt2 þ a2ðtÞδijdxidxj; ð5Þ

where aðtÞ is the scale factor, NðtÞ is the lapse function and
t is the cosmic time, we can vary Eq. (1) with respect to a
and N and we obtain

3M2
plH

2 ¼ ðρm þ ρϕÞ; ð6Þ

M2
plð2Ḣ þ 3H2Þ ¼ −ðpm þ pϕÞ; ð7Þ

where H ≡ ȧ=a is the Hubble rate, an over-dot stands for
derivatives with respect to t, ρm and pm are the density and
pressure of the standard matter fluids and

ρϕ ¼ 2XG2;X −G2 − 6aXHϕ0G3;X − XG3;ϕ; ð8Þ

pϕ¼G2þ2XðaðḢþH2Þϕ0−a2H2ϕ00ÞG3;X−XG3;ϕ; ð9Þ

1Euclid: www.euclid-ec.org.
2Square Kilometer Array Observatory: https://www.skao.int.
3The Vera C. Rubin Observatory Legacy Survey of Space and

Time: https://www.lsst.org.
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are the density and pressure associated to the scalar field.
Here the prime is the derivative with respect to the scale
factor, Gi;X ¼ ∂Gi=∂X and Gi;ϕ ¼ ∂Gi=∂ϕ. For the matter
fields, which we assume to be perfect fluids, we consider
the continuity equation:

ρ̇m þ 3Hð1þ wÞρm ¼ 0; ð10Þ

with w≡ pm=ρm. Finally, the equation of evolution for ϕ
can be obtained by varying Eq. (1) with respect to the scalar
field itself. It reads

H
a2

d
da

ða3JÞ ¼ P; ð11Þ

where

J ¼ −2aHϕ0G2;X − 6HXG3;X þ 2aHϕ0G3;ϕ; ð12Þ

P ¼ G2;ϕ − 2XfG3;ϕϕ − 2½aðḢ þH2Þϕ0 − a2H2ϕ00�G3;ϕXg:
ð13Þ

The GCCG model at the background level is charac-
terized by a tracker solution which is given by [25]

H2qþ1ψ2q ¼ ζH2qþ1
0 ; ð14Þ

where we have defined a dimensionless constant

q≡ ðp3 − p2Þ þ
1

2
; ð15Þ

and a dimensionless scalar field

ψ ≡ 1

Mpl

dϕ
d ln a

: ð16Þ

We have also introduced a dimensionless constant ζ. We
can implement the above tracker solution in the background
Eq. (6), which simply reads [24]

�
H
H0

�
2þs

¼ Ω0
ϕ þ

�
Ω0

c þΩ0
b

a3
þΩ0

r

a4

��
H
H0

�
s
; ð17Þ

where s ¼ p2=q and Ω0
i ≡ ρ0i =3M

2
plH

2
0 is the density

parameter at present time for cold dark matter, c, baryonic
matter, b, radiation, r, and scalar field, ϕ. The latter can be
computed by evaluating the above equation at the present
time, which gives the flatness condition

Ω0
ϕ ¼ 1 −Ω0

m ¼ c3ð2sqþ 2q − 1Þζsþ1 −
1

6
ð2sq − 1Þζs;

ð18Þ

where Ω0
m ¼ Ω0

c þ Ω0
b þ Ω0

r . It can be easily verified that

ζ ¼ ð6Ω0
ϕÞ

1
s; c3 ¼

1

3

sq

ð6Ω0
ϕÞ

1
sð2sqþ 2q − 1Þ ; ð19Þ

therefore the GCCG model has only two extra free
parameters, i.e. fs; qg, with respect to ΛCDM. In this
description the G3 model does not have additional para-
meters because s ¼ 2 and q ¼ 1=2. The GCCG model has
been analyzed using data by Planck and it has been found at
95% CL that q > 0 and s ¼ 0.6þ1.7

−0.6 and a preference over
ΛCDM has been found using the effective χ2eff and deviance
information criterion [24]. Including the measurements
of baryon acoustic oscillation, SNIa and redshift space
distortion is possible to find a lower bound for q, i.e.
q > 0.8, while s ¼ 0.05þ0.08

−0.05 . We note that due to stability
conditions (ghost and gradient requirements) both param-
eters are restricted to be positive.

B. Linear growth of perturbations

At the linear perturbation level we can consider the
perturbed FLRW metric in the Newtonian gauge4

ds2 ¼ −ð1þ 2ΨÞdt2 þ a2ð1 − 2ΦÞδijdxidxj; ð20Þ

where Φðt; xiÞ and Ψðt; xiÞ are the two gravitational
potentials. We can write general forms for the linear
perturbation equations in MG which relate the gravitational
potentials and the matter perturbation δm ≡ δρm=ρm, where
ρm is the background matter density. They are [40–44]:

−k2Ψ ¼ 4πGNa2μLða; kÞρmδm; ð21Þ

−k2ðΨþΦÞ ¼ 8πGNa2ΣLða; kÞρmδm; ð22Þ

where k is the comoving wavenumber, GN ¼ ð8πM2
plÞ−1

is the Newtonian gravitational constant, μL and ΣL are
respectively the linear effective gravitational coupling and
light deflection parameter. For the GCCG model, when
using the Quasi Static Approximation (QSA)5 they read:

μLðaÞ ¼
�
1þ 2α2B

c2sα

�
; ΣLðaÞ ¼ μL; ð23Þ

4We note that the definition of the metric in Ref. [39] uses an
opposite convention: δg00 ¼ 2Φ and δgij ¼ −2Ψδij. For the
model under consideration we will see that Φ ¼ Ψ.

5The QSA assumes that the time derivatives of the perturbed
quantities can be neglected when compared with their spatial
derivatives. This approximation is valid for modes deep inside the
Hubble radius [45].
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with α≡ αK þ 6α2B > 0 being the no-ghost condition with

αK ¼ −12qαB; αB ¼ −sqΩ0
ϕ

�
H0

H

�
sþ2

; ð24Þ

being respectively the kineticity and the braiding functions.
Finally, c2s is the speed of propagation of the scalar mode
and it is defined as

c2s ¼
2

α

�
ð1þ αBÞ

�
−

Ḣ
H2

− αB

�
−

˙αB
H

�
−
3Ωm

α
: ð25Þ

The latter has to be positive to avoid gradient instability.
For a thorough discussion about the viability space of the
GCCG model we forward the reader to Refs. [24,28].
Finally we have to consider the evolution equation of the

matter density perturbation which reads

d2δm
d2 lna

þ
�
2þ 1

H
dH
dlna

�
dδm
dlna

−
3

2
ΩmμLðaÞδm¼0; ð26Þ

where ΩmðaÞ ¼ ρm=3M2
plH

2 is the time dependent matter
density parameter.

C. Nonlinear growth of perturbations

Let us consider nonlinear perturbations and assume the
QSA holds. We will consider for modeling the formation
of gravitationally bound structures, the spherical collapse
model to describe the collapse of what we assume to
be a spherical overdensity. The collapse phase is then
followed by a phase where virialization takes place. The
methodology adopted here has been already applied to MG
models [46–53].
The nonlinear equations for the GCCG model read [53]

∇2Ψ ¼ ρδm
2M2

pl

þ αB∇2Q; ð27Þ

Φ ¼ Ψ; ð28Þ

∇2Qþ λ2

H
½ð∇i∇jQÞ2 − ð∇2QÞ2� ¼ −

λ2H
2M2

pl

ρδm; ð29Þ

where we have defined

Q ¼ Hδϕ

ϕ̇
; λ2 ¼ −

2αB
Hαc2s

: ð30Þ

Combining the above equations, assuming a top-hat
profile for the density field and after some integrations,
we found a modified Poisson equation which includes
nonlinear corrections

∂
2Ψ
a2

¼ 4πGNμ
NLða; RÞρmδm; ð31Þ

where we define μNL as the nonlinear effective gravitational
coupling and its form is

μNLða;RÞ¼1þ2ðμL−1Þ
�

R
RV

�
3

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þR3

V

R3

s
−1

1
A; ð32Þ

with �
RV

R

�
3

¼ 4H2
0Ω0

mλ
4
δm
a3

; ð33Þ

where R3
V ¼ 8GNλ

4δM is the Vainshtein radius, δM being
the total mass of the density perturbation δρm and R is the
radius of the sphere of massM. The Vainshtein mechanism
plays a very important role when considering the formation
of gravitationally bound structures. Indeed it suppresses the
modification to the gravitational force in high-density
environments which is what happens during the collapse
phase when the density of the region is sufficiently high to
significantly modify the dynamics of the scalar field.

1. Spherical collapse

The general form of the nonlinear evolution equation for
the matter density is

δ̈m þ 2Hδ̇m −
4

3

δ̇2m
1þ δm

¼ ð1þ δmÞ
∂
2Ψ
a2

; ð34Þ

which for MG assumes the following form when the
Poisson equation is used

δ̈m þ 2Hδ̇m −
4

3

δ̇2m
1þ δm

¼ 4πGNμ
NLρmð1þ δmÞδm: ð35Þ

The above equation can be used to obtain the equation for
the radius of the spherical top-hat, R, by starting from the
assumption that the total mass inside R is conserved during
the collapse phase, i.e.

M ¼ 4π

3
R3ρmð1þ δmÞ ¼ const: ð36Þ

By performing a change of variable

y ¼ R
Ri

−
a
ai
; ð37Þ

where Ri and ai are respectively the initial values of R and
scale factor, and differentiating Eq. (36), one finds

d2y
d ln a2

¼ −
1

H
dH
d ln a

dy
d ln a

þ
�
1þ 1

H
dH
d ln a

�
y

−
Ωm

2
μNLδm

�
yþ a

ai

�
: ð38Þ
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Finally, we can write the overdensity as

δm ¼ ð1þ δm;iÞ
�
1þ ai

a
y

�
−3

− 1; ð39Þ

which follows from matter conservation.

2. Virial theorem

Finally we consider the last stage of the collapse: the
virialization, i.e. when the collapse stops and the system
reaches equilibrium, and satisfies the virial theorem. The
virial theorem reads

W þ 2T ¼ 0; ð40Þ
where W is the potential energy and T the kinetic energy.
The kinetic energy has the form

T
E0

¼ H2

H2
0

�
a
ai

�
dy

d ln a
þ y

��
2

; ð41Þ

with E0 ¼ 3=10MðH0RiÞ2. The potential energy gets
three energy contributions: the Newtonian (WN), scalar
field (Wϕ) and background (Weff ) potential energies, which
read [31,46]

WN

E0

¼ −Ω0
my2ð1þ δmÞ

a−1

a2i
; ð42Þ

Wϕ

E0

¼ −Ω0
mFy2δm

a−1

a2i
; ð43Þ

Weff

E0

¼ −
8πGN

3H2
0

ð1þ 3weffÞρeff
a2

a2i
y2; ð44Þ

where for the GCCG we have defined F ≡ μNL − 1 in
Eq. (32) and

ρ̄eff ¼
�
H0

H

�
s 3H0

8πGN
Ω0

ϕ; ð45Þ

weff ¼
Ḣs
3H2

− 1; ð46Þ

according to which

Weff

E0

¼
�
2 −

Ḣ
H2

s

��
H
H0

�
2

ð1 −ΩmÞ
a2

a2i
y2: ð47Þ

3. Higher order coupling kernels of the power spectrum
at 1-loop order

In this section we compute the nonlinear power
spectrum at 1-loop order using standard perturbation theory
(SPT) [54]. We consider the relation between Ψ and δm and
expand up to 3rd order in the matter perturbation [55,56]

−
k2

a2H2
Ψ ¼ 3

2
ΩmμLðk; aÞδmðkÞ þ SðkÞ; ð48Þ

where SðkÞ is the nonlinear source term up to the third
order and it is given by [57]

SðkÞ ¼
Z

d3k1d3k2

ð2πÞ3 δDðk − k12Þγ2ðk;k1;k2; aÞδmðk1Þδmðk2Þ

þ
Z

d3k1d3k2d3k3

ð2πÞ6 δDðk − k123Þγ3ðk;k1;k2;k3; aÞδmðk1Þδmðk2Þδmðk3Þ; ð49Þ

where δD is the Dirac delta function, kij ¼ ki þ kj and kijk ¼ k1 þ kj þ kk, γ2ðk;k1;k2; aÞ and γ3ðk;k1;k2;k3;aÞ are
functions symmetric under the exchange of ki. We follow Ref. [57] to compute their forms for the GCCG and we find

γ2ðk;k1;k2; aÞ ¼ −18
�
H0

H

�
4 α4B
ðαc2sÞ3

�
Ω0

m

a3

�
2
�
1 −

ðk1 · k2Þ2
k21k

2
2

�
; ð50Þ

γ3ðk;k1;k2;k3; aÞ ¼ 72

�
H0

H

�
6 α6B
ðαc2sÞ5

�
Ω0

m

a3

�
3
�
1 −

ðk1 · k23Þ2
k21k

2
23

��
1 −

ðk2 · k3Þ2
k22k

2
3

�
: ð51Þ

III. THE HALO MODEL REACTION

In this section we review a model-independent framework to compute the nonlinear matter power spectrum, namely the
halo model reaction [31]. This approach combines both 1-loop perturbation theory and the halo model.
The nonlinear matter power spectrum of a modified theory of gravity, hereafter PNL, is computed as follows

PNL ¼ Rðk; zÞPpseudo
NL ðk; zÞ; ð52Þ
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where Ppseudo
NL is the nonlinear pseudo power spectrum. This

is a the nonlinear matter power spectrum within ΛCDM
whose initial conditions are such that the modified linear
clustering is reproduced at the target redshift. The second
component, R, is the halo model reaction given by

Rðk; zÞ ¼ f½1− EðzÞ�e−k=k⋆ðzÞ þ EðzÞgPLðk; zÞ þP1hðk; zÞ
Ppseudo
hm ðk; zÞ ;

ð53Þ

with PL being the MG linear matter power spectrum and
P1h being the 1-halo contribution to the power spectrum
as predicted by the halo model for the MG scenario (see
Sec. II C 1 for the GCCG case). Finally we have

Ppseudo
hm ðk; zÞ ¼ PLðk; zÞ þ Ppseudo

1h ðk; zÞ; ð54Þ

EðzÞ ¼ lim
k→0

P1hðk; zÞ
Ppseudo
1h ðk; zÞ ; ð55Þ

k⋆ðzÞ¼−k̄
�
ln

�
Aðk̄;zÞ
PLðk̄;zÞ

−EðzÞ
�
− ln½1−EðzÞ�

�
−1
; ð56Þ

where k̄ ¼ 0.06 hMpc−1 and the k → 0 limit in the above
is taken to be k ¼ 0.01 hMpc−1 according to Ref. [31] and

Aðk; zÞ ¼ P1−loopðk; zÞ þ P1hðk; zÞ
Ppseudo
1−loopðk; zÞ þ Ppseudo

1h ðk; zÞP
pseudo
hm ðk; zÞ

− P1hðk; zÞ: ð57Þ

In the above expressions we further define Ppseudo
1h as the

1-halo contribution to the power spectrum as predicted by
the halo model for the pseudocosmology, P1−loop and

Ppseudo
1−loop are respectively the 1-loop matter power spectra

from SPT with and without nonlinear MG effects
(SðkÞ ¼ 0). The higher order coupling kernels of P1−loop
for the GCCG model are calculated in Sec. II C 3.
We modify the public software package ReACT [32,33]

which allows for fast and accurate calculation of nonlinear
power spectra for beyond standard models using the
reaction method reviewed above. Our new patch accounts
for a modified background evolution [Eq. (17)], the
spherical collapse and virial theorem computations defined
respectively in Secs. II C 1 and II C 2, which are needed
for the halo-model spectra computations, and the 1-loop
corrections in Sec. II C 3 to compute the 1-loop matter
power spectra. Note our implementation also allows the
computation of the redshift space power spectrum multi-
poles in GCCG [57].
We have compared the background evolution and the

linear matter power spectrum of the GCCG of our ReACT

patch with the Einstein-Boltzmann solver EFTCAMB [58,59]

where the GCCG is implemented [24], and we find
agreement at the subpercent level. For the nonlinear matter
power spectrum implementation we discuss its validation in
the next section.
Note that for the nonlinear spectrum, we must also

choose a prescription for Ppseudo
NL in Eq. (52). For this we

make two choices in the draft: HALOFIT [60] and
HMCode2020 [61]. We would normally expect HMCode2020

to be the most accurate prescription, but what we have
found is that this prescription gives poor results when
comparing Eq. (52) directly with the simulation measure-
ments. This is likely due to the exceptionally high
σ8ðz ¼ 0Þ of the simulations, which is far beyond the
values to which HMCode2020 was fit to. Further, it was
found that the HMCode2020-based nonlinear boost factor,
Bðk; zÞ ¼ Rðk; zÞ × Ppseudo

HMCode2020ðk; zÞ=PΛCDM
HMCode2020 ≤ 1 at

quasi-nonlinear scales. This is not to be expected from
such scalar tensor theories which act to enhance power.
This effect was not found for HMCode2016 nor HALOFIT.
In particular, HMCode2020 introduces a σ8 dependent

damping to the linear power spectrum which can cause
exactly this effect, as well as over damping of the power
spectrum if σ8 is exceptionally high, as in the simulations
considered in this work. For this reason, we choose to
use halofit when comparing to the simulations which
gives the level of agreement seen in many other works
[31–33,62–67]. In our forecasts, we switch to HMCode2020

as the fiducial σ8 is chosen to be much lower, where the
HMCode2020 prescription for the pseudospectrum should
outperform HALOFIT. In an upcoming work we demonstrate
this improvement explicitly.

IV. VALIDATION OF THE MODELING
AGAINST SIMULATIONS

N-body cosmological simulations of the GCCG do not
exist yet but in the limit s ¼ 2 and q ¼ 1=2 the model
reduces to the G3 model for which simulations were run
using the ECOSMOG code [49,68,69]. We will employ
these simulations to validate our implementation of the
nonlinear matter power spectrum in the G3 limit. The
simulations are dark matter only and the box sizes are
L ¼ 200 Mpc h−1 and L ¼ 400 Mpch−1 with threshold
values Np;th ¼ 8 and Np;th ¼ 6 respectively. In both cases
the total number of particles is Np ¼ 5123 and the domain
grid has 512 cells in each direction. The reference cosmol-
ogy for these simulations considers the best fits obtained
by running Monte Carlo Markov chains and combining
WMAP9þ SNLSþ BAO data [70]: Ω0

r h2¼4.28×10−5,
Ω0

bh
2 ¼ 0.02196, Ω0

ch2 ¼ 0.1274, h ¼ H0=100 ¼ 0.7307,
the primordial spectra index ns ¼ 0.953, the optical depth
to reionization τ ¼ 0.0763, the scalar amplitude As at pivot
scale k ¼ 0.02 Mpc−1 is log½1010As� ¼ 3.154. The back-
ground is solved differently than our approach, where
c=c2=33 ¼ −5.378 and c3 ¼ 10 and log½ρϕ;i=ρm;i� ¼ −4.22,
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where “i” refers to quantities evaluated at initial time,
zi ¼ 106. We adopt the same values for the cosmological
parameters for comparison purposes but note thatΩ0

r ¼ 0 is
assumed in ReACT.
Besides the simulations for the G3 model, in the

same work the authors run simulations for another model,
QCDM, which is defined such that the background is the
same as G3 and the perturbations are those of ΛCDM. This
was made with the purpose of disentangling the effects of
the modified gravitational strength in changing the linear
matter growth from those of the background. We have also
implemented this scenario in our ReACT patch.
In Figs. 1 and 2 we present the results of the

comparison for QCDM and the G3 models respectively.
We show results for both the pseudo spectra and full h
alo model reaction predictions along with the matter
power spectra measured from the N-body simulations
for three different times (a ¼ 0.60, 0.80, 1 or z ¼ 0.67,
0.25, 0) and for box size L¼400Mpch−1. From Fig. 1
we can infer differences coming from the background
evolution only. Let us stress that the N-body simulations
and the theoretical predictions use different approaches
to solve the background evolution which can lead to
small differences. Despite this, for all three scale factors,
we have agreement between theory and simulation within

5% for 2×10−2 hMpc−1≲k≲1 hMpc−1. Further, for
0.2 hMpc−1 ≲ k≲ 0.7 hMpc−1 the agreement is better
(within 3%). For the G3 model the accuracy is the same
as for QCDM (see Fig. 2). For the reaction predictions it
is even possible to find agreement within the 5% region
for smaller scales (k≲ 3 hMpc−1 at a ¼ 0.6 and a ¼ 0.8
and k≲ 5 hMpc−1 at a ¼ 1).
Recall that the accuracy of our pseudospectrum,

HALOFIT, is ∼5% at these scales [60], implying improve-
ment in the pseudo can lead to far better predictions.
Slightly better accuracy (∼2–3%) was found for many
other nonstandard models within the halo model reaction
formalism [31,33,62–65,67,71] where the authors typi-
cally compare the theoretical predictions to simulation
measurements of the ratio of power spectra with respect
to ΛCDM, which are not available in this case. The ratio
typically factors out some of the systematic inaccuracy of
the pseudo.
We thus conclude that our predictions show the

expected accuracy of the halo model reaction formalism
as presented in the literature, which we deem sufficient
up to scales k≲ 1 hMpc−1 for a wide redshift range, and
that the reaction formalism can then be used to model the
nonlinearities of the Galileon model. We then extend the
validity of the modeling to the GCCG as well.

FIG. 1. Top panels: nonlinear matter power spectra for the QCDM model at three times: a ¼ 0.60, 0.80 and 1. Red triangles are
measurements from the N-body simulations, green dashed lines are the pseudo spectrum and blue solid lines are the halo model reaction
predictions. Bottom panels: relative percentage difference of the model predictions vs N-body simulations for the nonlinear matter
power spectra, Δ ¼ 100%ð1 − Pprediction=PN−bodyÞ.
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V. PHENOMENOLOGY OF THE NONLINEAR
MATTER POWER SPECTRUM FOR

GENERALIZED CUBIC COVARIANT GALILEON

In this section we illustrate the phenomenology of the
GCCG by considering the nonlinear matter power spectrum
predictions from ReACT. In order to quantify the deviation
with respect to the standard scenario and to the linear
behavior, we consider two sets of values for fs; qg:
fs ¼ 2; q ¼ 0.35g, we refer to it as GCCG1 and
fs ¼ 1.3; q ¼ 0.5g, hereafter GCCG2. For comparison
we include also G3 (fs ¼ 2; q ¼ 0.5g). For the cosmo-
logical parameters we use the same as in previous section.
We show in Fig. 3 the ratio of the linear (solid lines) and
nonlinear (dashed lines) matter power spectra for the
Galileon models with respect to their ΛCDM counterparts
at z ¼ 0. We note at linear scales an enhancement of
the growth of structure with respect to ΛCDM for
0.01 hMpc−1 ≲ k≲ 0.1 hMpc−1. The enhancement is
larger for the models with the higher values of s, i.e.,
G3 (green solid lines) and GCCG1 (blue solid lines).
GCCG1 power spectra are lower than G3 ones because
the value of q is smaller. We can also notice that up to
k≲ 0.1 hMpc−1 there is good agreement between the
nonlinear and the linear theory prediction (≲0.5%). We
can then deduce that the screening mechanism does not

affect the large scales where usually the validity of the
linear perturbation theory is assumed. Nonlinear correc-
tions enter at smaller scales (k≳ 0.1 hMpc−1). We observe
up to a ∼4% enhancement for 0.1 hMpc−1≲k≲1 hMpc−1

FIG. 2. Top panels: nonlinear matter power spectra for the G3 model at three times: a ¼ 0.60, 0.80 and 1. Red triangles are
measurements from the N-body simulations, green dashed lines are the pseudospectrum and blue solid lines are the halo model reaction
predictions. Bottom panels: relative percentage difference of the model predictions vs N-body simulations for the nonlinear matter
power spectra, Δ ¼ 100%ð1 − Pprediction=PN−bodyÞ.

FIG. 3. Ratio of the linear (solid lines) and nonlinear (dashed
lines) matter power spectra for the Galileon models with respect
to their ΛCDM counterparts.
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with respect to linear ratio and finally for the higher k a
suppression, showing the efficiency of the screening
mechanism. We note that we do not expect the ratio to
go to unity as k → ∞. In this case, the Poisson equation
will approach the GR expression, but the perturbations will
still be modified with respect to ΛCDM as they will
experience a GCCG background expansion.

VI. FORECASTS ANALYSIS FOR
SPECTROSCOPIC AND PHOTOMETRIC

PRIMARY PROBES

We will provide forecasts for the GCCG model using
spectroscopic and photometric galaxy clustering (GCsp

and GCph) and weak lensing (WL) probes. We will also
include the cross correlation of GCph and WL (we will refer
to this combination as XC) as well as the full combination
of probes. We will use specifications of surveys such as
Euclid-like and SKAO-like. We selected Euclid and
SKAO-like specifications because they are quite different
between each other as detailed in the following section.
Then we will be able to show how the forecasts can actually
change. Another survey we could consider is Rubin-LSST
but its specifications are more close to the Euclid photo-
metric ones.

A. Method

We follow the methodology adopted in Ref. [72],
which extends the treatment of the spectroscopic and
photometric probes for ΛCDM described in Ref. [73] to
scale-independent MG models. We summarize it here.
For the GCsp probe we consider the observed galaxy

power spectrum defined as

Pobsðk; μθ; zÞ ¼
1

q2⊥ðzÞqkðzÞ
�½bσ8ðzÞ þ fσ8ðzÞμ2θ�2
1þ ½fðzÞkμθσpðzÞ�2

�

×
Pdwðk; μθ; zÞ

σ28ðzÞ
Fzðk; μθ; zÞ þ PsðzÞ; ð58Þ

where

q⊥ðzÞ ¼
DAðzÞ
DA;refðzÞ

; ð59Þ

qkðzÞ ¼
HrefðzÞ
HðzÞ ; ð60Þ

accounts for the Alcock-Paczynski effect, defined in term
of the angular diameter distance DAðzÞ and the Hubble
parameter HðzÞ. The subscript “ref” stands for reference
cosmology. The term in the curly bracket accounts for the
redshift-space distortions where we define the effective
scale-independent galaxy bias b, for which we consider
numerical values as in Ref. [73] (in the analysis we consider

lnðbσ8Þ as a free parameter and we marginalize over), the
growth rate, f, and the square of the cosine of the angle
between the wave vector k and the line-of-sight direction,
μ2θ. We note that the denominator includes the finger-of-
God effect. We consider σ2v ¼ σ2p, with

σ2vðzÞ ¼
1

6π2

Z
dkPLðk; zÞ; ð61Þ

and PL being the linear matter power spectrum. They are
evaluated at every redshift bin, and we kept them fixed.
Additionally Pdw defines the de-wiggled power spectrum,
which includes the smearing of the baryon acoustic
oscillations, which reads

Pdwðk;μθ;zÞ¼PLðk;zÞe−gμk2 þPnwðk;zÞð1−e−gμk
2Þ; ð62Þ

where Pnw stands for a no-wiggle power spectrum.
Nonlinearities are included in the nonlinear damping
factor [74]

gμðk; μθ; zÞ ¼ σ2vðzÞf1 − μ2θ þ μ2θ½1þ fðzÞ�2g: ð63Þ

The function Fz accounts for the redshift uncertainty as it is
defined as

Fzðk; μθ; zÞ ¼ e−k
2μ2θσ

2
rðzÞ; ð64Þ

with σ2rðzÞ ¼ ð1þ zÞσz=HðzÞ, and Ps takes into account a
residual shot noise, and it is considered as a nuisance
parameter.
For the photometric probes we consider the angular

power spectra, which, under the Limber approximation,
reads

CXY
ij ðlÞ ¼

Z
zmax

zmin

dz
WX

i ðzÞWY
j ðzÞ

HðzÞr2ðzÞ PNLðkl; zÞ; ð65Þ

where i and j stand for two tomographic bins, and X and Y
represent either CGph or WL, kl ¼ ðlþ 1=2Þ=rðzÞ, and
rðzÞ is the comoving distance. PNL stands for the nonlinear
matter power spectrum, which we take from ReACT [see
Eq. (52)]. Additionally we define the kernels for galaxy
clustering and weak lensing,

WG
i ðk; zÞ ¼ biðk; zÞ

niðzÞ
n̄i

HðzÞ; ð66Þ

WL
i ðk; zÞ ¼

3

2
Ωm;0H2

0ð1þ zÞrðzÞΣðzÞ

×
Z

zmax

z
dz0

niðz0Þ
n̄i

rðz0 − zÞ
rðz0Þ

þWIA
i ðk; zÞ: ð67Þ
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In these expressions ni=n̄i is the normalized number
density in the ith bin. The galaxy distribution is binned into
10 equipopulated redshift bins with a true distribution
nðzÞ ∝ ðz=z0Þ2 exp½−ðz=z0Þγ�, with z0 ¼ zm=

ffiffiffi
2

p
being the

median redshift, we will specify these numbers in the
survey specifications. To account for the photometric
redshift uncertainties the redshift distribution is then con-
volved with a sum of two Gaussian distributions. For
details about the expressions see Ref. [73]. Additionally, bi
are the constant values of bias in each bin and are
considered as nuisance parameters, then we marginalize
over. Their fiducial values are computed as biðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
1þ z̄

p
with z̄ being the mean redshift of the bin (in this we follow
Ref. [73]). Σ encodes the changes to the lensing potential
for MG. In our case Σ ¼ μ. FinallyWIA

i defines the intrinsic
alignment of galaxies with the extended nonlinear align-
ment model [73]

WIA
i ðk; zÞ ¼ −

AIACIAΩm;0F IAðzÞ
δðk; zÞ=δðk; z ¼ 0Þ

niðzÞ
n̄iðzÞ

HðzÞ; ð68Þ

and

F IAðzÞ ¼ ð1þ zÞηIA
�hLiðzÞ
L⋆ðzÞ

�
βIA
: ð69Þ

with hLiðzÞ and L�ðzÞ being the mean and the characteristic
luminosity of source galaxies.
We will use specifications of surveys such as Euclid-like

and SKAO-like, which are very close to the more realistic
cases. In detail:

(i) For a Euclid-like survey we consider [72,73,75]:
a survey area of 15000 deg2; Nz ¼ 10 (number of
photo-z bins), n̄gal ¼ 30 arcmin−2 (galaxy number
density), zm ¼ 0.9, γ ¼ 3=2, σϵ ¼ 0.3 (intrinsic
ellipticity), lmin ¼ 10 (minimum multipole) for both
GCph and WL and lmax ¼ 1500 (maximum multi-
pole) for WL and lmax ¼ 750 for GCph; for GCsp

we adopt nz ¼ 4 (number of spectro-z bins), the
centers of the bins are zi ¼ f1.0; 1.2; 1.4; 1.65g,
the error on redshift is 0.001, the minimum scale
kmin ¼ 0.001 hMpc−1 and the maximum scale is
kmax ¼ 0.25 hMpc−1. These specifications can be
considered very close to the real case. To test the
power in constraining of the nonlinear scales we also
adopt a smaller kmax ¼ 0.15 hMpc−1 for GCsp and
smaller lmax respectively lmax ¼ 500 for GCph and
lmax ¼ 1000 for WL. We refer to this case as
quasilinear (QL).

(ii) For a SKAO-like survey [76]: we consider a survey
area of 5000 deg2; Nz ¼ 10, n̄gal ¼ 2.7 arcmin−2,
zm ¼ 1.1, γ ¼ 1.25, σϵ ¼ 0.3, for lmin and lmax as

well as for kmax we use the same as Euclid-like for
both spectroscopic and photometric probes.

We use a Fisher matrix approach [77–79] to estimate
errors for cosmological and model parameter measure-
ments as implemented in the publicly available library
CosmicFish [80,81]. This approach approximates the curva-
ture of the likelihood at the peak, under the assumption that
it is a Gaussian function of the model parameters.
For the forecast analysis we will vary the following

cosmological parameters around their fiducial values:

Ωm ¼ 0.2565; Ωb ¼ 0.041; h ¼ 0.737

ns ¼ 0.96605; σ8 ¼ 0.891; ð70Þ

where Ωm ¼ Ωc þΩb and h ¼ H0=100 and the model
parameters which fiducial values are

q ¼ 1.06; s ¼ 0.65: ð71Þ

The fiducial values have been chosen to be the best fit
values for GCCG with Planck data obtained in Ref. [24].
For stability reason both fq; sg need to be positive.
However the use of the Fisher matrix approach to compute
the constraints does not allow us to impose a priori such
cuts in the parameter space. Therefore while the results
assume Gaussianity we will a posteriori cut the negative
range when presenting our results.

B. Results

We show in Figs. 4 and 5 the 1σ and 2σ contours for
the probes GCsp, WL, WLþ GCph, WLþ GCph þ XC
and all the combined probes, GCsp þWLþ GCph þ XC,
respectively for Euclid-like and SKAO-like. We also show
in Figs. 6 and 7 the 1σ and 2σ contours for the same
combinations of probes in the QL case for both surveys.
In Table I we list the forecasted 1σ relative errors to its
fiducial on the cosmological and model’s parameters for the
same combinations of probes.
As shown in Table I, for the MG parameter s we find

that at 1σ the Euclid-like survey has a stronger power in
constraining compared to SKAO-like survey. In details, the
GCsp for a Euclid-like survey will constrain swith a relative
error of ∼14.4%, while for SKAO-like survey it is much
higher ∼82.5%; in the WL alone case the relative error is
∼67.1% for Euclid-like, while for SKAO-like the parameter
s is unconstrained; when the WL is combined with GCph

the relative error decreases to 23.5% for Euclid-like, while s
is still unconstrained for SKAO-like. The error strongly
improves when the XC is considered: ∼9.7% and ∼53.4%
for Euclid and SKAO-like respectively. Finally the full
combination gives a further better constraint in the case
of Euclid-like (∼6.2% relative error) and a slightly worse
error for SKAO-like, ∼36.9%. In the SKAO case then the
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cross-correlation between the photometric probes as well as
its combination with spectroscopic GC will be crucial to set
a constraint on the s parameter.
When we consider the QL specifications for both surveys

the constraints on the s parameter become worse, as it can
be expected given that we cut the power in constraining
coming from the larger k. Specifically with the Euclid-like
specifications for the spectroscopic probe we obtain ∼93%,
for weak lensing ∼87.4% and for WL combined with GCph

we find 40.6%. For SKAO-like these probes alone are not

able to constrain s. The combinations with the cross
correlation of GCph and WL largely improve the relative
error which is comparable to the one with more realistic
specifications (∼14.2 with WLþ GCph þ XC and 9.6% for
the full combination). For SKAO-like we have 84.3%
and 51.5%.
For the MG parameter q, we also find that at 1σ the

Euclid-like survey performs better compared to the SKAO-
like survey. In details, for Euclid-like the relative error is
∼21.2% with GCsp while for SKAO-like it is ∼71.8%.

FIG. 4. 1σ and 2σ joint marginalized error contours on the cosmological and GCCGmodel parameters for a Euclid-like survey. Blue is
GCsp, orange is for WL, green for the combination WLþ GCph, red for WLþ GCph þ XC and magenta for all the photometric probes,
including their cross-correlation, combined with GCsp.
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For both surveys WL alone is not able to constrain the
parameter q. In the case of Euclid-like the combination of
WLþ GCph improves the error which is 65.1%, while for
SKAO-like the inclusion of the photometric galaxy cluster-
ing probe does not make any difference. Finally the
inclusion of the XC in the photometric probes for the
Euclid-like survey gives an even better constraint ∼36.9%
and the strongest constraint is ∼17.7% for the full combi-
nation. For SKAO-like we obtain a constraint ∼43.5% only
for the full combination. In the QL regime Euclid-like loses

its power in constraining for both the spectroscopic and
photometric GC, while the errors when the XC is included
increase (∼75.4% with WLþ GCph þ XC and ∼23% for
the full combination), but still performs better than SKAO-
like. In the SKAO-like we get a constraint only in the full
combination of probes give the orthogonality of the
spectroscopic and photometric probes, see Fig. 7.
In Table I we show also the forecasts on the cosmo-

logical parameters fΩ0
m;Ω0

b; h; nsσ
0
8g. We can see how the

Euclid-like survey performs very well on all parameters

FIG. 5. 1σ and 2σ joint marginalized error contours on the cosmological and GCCG model parameters for an SKAO-like survey. Blue
is GCsp, orange is for WL, green for the combination WLþ GCph, red for WLþ GCph þ XC and magenta for all the photometric
probes, including their cross-correlation, combined with GCsp.
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and for all the combinations of probes considered. The
only parameter with a larger relative error is Ω0

b, ∼25.5%
for WL alone, but this is usually also the case of ΛCDM
[73]. In the SKAO-like case the constraints are all worse
with respect to the Euclid-like case. In the QL case the
constraints degrade for both surveys with Euclid-like case
performing in any case better than SKAO. Comparing our
forecast on the cosmological parameters with those of the
ΛCDM obtained for Euclid in [73] (see Table 9 pessi-
mistic case) we notice that the order of magnitude of the

errors is the same as we find in this work, with GCCG
performing slightly better on some parameters and for
some probes. While this is surprising, because in general
the inclusion of additional parameters with respect to the
baseline ones leads to larger errors, we attribute this
different tendency here to the presence of the parameter s
at level of the background which affects the constraints
on cosmological parameters. Indeed from Fig. 4 in the
bottom line, we can notice that the orientation of the
ellipses of the spectroscopic and photometric probes

FIG. 6. 1σ and 2σ joint marginalized error contours on the cosmological and GCCG model parameters for a Euclid-like survey when
quasilinear cuts to linear and angular scales are applied. Blue is GCsp, orange is for WL, green for the combination WLþ GCph, red for
WLþ GCph þ XC and magenta for all combination of probes.
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FIG. 7. 1σ and 2σ joint marginalized error contours on the cosmological and GCCG model parameters for a SKAO-like survey when
quasilinear cuts to linear and angular scales are applied. Blue is GCsp, orange is for WL, green for the combination WLþ GCph, red for
WLþ GCph þ XC and magenta for all the photometric probes, including their cross-correlation, combined with GCsp.

TABLE I. Marginalized 1σ relative errors on the cosmological and GCCG model parameters using Euclid-like and SKAO-like
specifications for spectroscopic galaxy clustering (GCsp), weak lensing (WL), photometric galaxy clustering (GCph) and the cross-
correlation between the photometric probes (XC).

Data Ω0
m (%) Ω0

b (%) h (%) ns (%) σ08 (%) q (%) s (%)

Euclid (GCsp) 1.4 2.2 1.5 0.9 0.8 21.2 14.4
Euclid (WL) 4.0 25.5 7.1 6.7 2.8 132.2 67.1
Euclid (WLþ GCph) 1.4 3.7 1.0 1.0 1.7 65.1 23.5
Euclid (WLþ GCph þ XC) 0.8 2.4 0.7 0.7 1.0 36.9 9.7
Euclid (GCsp þWLþ GCph þ XC) 0.3 1.3 0.3 0.4 0.4 17.7 6.2

(Table continued)
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are such that their combination may help in reducing
the errors.

VII. CONCLUSION

In this work we have presented the nonlinear modeling
of the matter power spectrum in the generalized cubic
covariant Galileon with the aim of exploiting the
constraining power of future surveys. To this extent, we
created a new patch for the ReACT code which implements
the halo-model reaction prescription. For our model we
implemented the modified background evolution, the
spherical collapse and the potential energy obtained from
the virial theorem. Additionally we included the 1-loop
corrections to compute the 1-loop matter power spectra. We
demonstrated the performance of this new tool by compar-
ing our theoretical prediction against N-body simulations
and we found agreement within 5%.
Finally we focused on the ability of future missions

such as Euclid and SKAO to constrain the GCCG model
parameters. We found that a survey such as Euclid will
be able to provide outstanding constraints on the two
parameters of the model fq; sg, especially when a larger
range of nonlinear scales is considered. We also provide
constraints for SKAO which are weaker for both para-
meters when compared to Euclid.

In conclusion, with the tool presented in this work it will
be possible to obtain reliable and accurate constraints on
the GCCG model with forthcoming surveys. We are
confident that when the new data will be available it will
allow to discern the GCCG model from ΛCDM.
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TABLE I. (Continued)

Data Ω0
m (%) Ω0

b (%) h (%) ns (%) σ08 (%) q (%) s (%)

Euclid quasilinear (GCsp) 7.2 9.0 2.4 3.8 12.5 449.6 93.0
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