
Algorithmica (2024) 86:2766–2785
https://doi.org/10.1007/s00453-024-01238-z

Approximate and Randomized Algorithms for Computing a
Second Hamiltonian Cycle

Argyrios Deligkas1 · George B. Mertzios2 · Paul G. Spirakis3 ·
Viktor Zamaraev3

Received: 18 April 2022 / Accepted: 24 April 2024 / Published online: 12 June 2024
© The Author(s) 2024

Abstract
In this paper we consider the following problem: Given a Hamiltonian graph G, and
a Hamiltonian cycle C of G, can we compute a second Hamiltonian cycle C ′ �= C of
G, and if yes, how quickly? If the input graph G satisfies certain conditions (e.g. if
every vertex of G is odd, or if the minimum degree is large enough), it is known
that such a second Hamiltonian cycle always exists. Despite substantial efforts, no
subexponential-time algorithm is known for this problem. In this paper we relax the
problem of computing a second Hamiltonian cycle in two ways. First, we consider
approximating the length of a second longest cycle on n-vertex graphs with minimum
degree δ and maximum degree �. We provide a linear-time algorithm for computing
a cycle C ′ �= C of length at least n − 4α(

√
n + 2α) + 8, where α = �−2

δ−2 . This results
provides a constructive proof of a recent result by Girão, Kittipassorn, and Narayanan
in the regime of �

δ
= o(

√
n). Our second relaxation of the problem is probabilistic.

We propose a randomized algorithmwhich computes a second Hamiltonian cyclewith
high probability, given that the input graph G has a large enough minimum degree.

Supported by the NeST initiative of the EEE/CS School of the University of Liverpool and by the EPSRC
grants EP/P02002X/1 and EP/P020372/1. The results of Sect. 2 previously appeared in an extended
abstract in the proceedings of the 45th International Symposium on Mathematical Foundations of
Computer Science, MFCS 2020 [12].

B George B. Mertzios
george.mertzios@durham.ac.uk

Argyrios Deligkas
argyrios.deligkas@rhul.ac.uk

Paul G. Spirakis
p.spirakis@liverpool.ac.uk

Viktor Zamaraev
viktor.zamaraev@liverpool.ac.uk

1 Department of Computer Science, Royal Holloway University of London, Egham, UK

2 Department of Computer Science, Durham University, Durham, UK

3 Department of Computer Science, University of Liverpool, Liverpool, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-024-01238-z&domain=pdf
http://orcid.org/0000-0001-7182-585X

Algorithmica (2024) 86:2766–2785 2767

More specifically, we prove that for every 0 < p ≤ 0.02, if the minimum degree of
G is at least 8

p log
√
8n + 4, then a second Hamiltonian cycle can be computed with

probability at least 1− 1
n

(
50
p4

+ 1
)
in poly(n)·24pn time. This result implies that, when

the minimum degree δ is sufficiently large, we can compute with high probability a
secondHamiltonian cycle faster than any known deterministic algorithm. In particular,
when δ = ω(log n), our probabilistic algorithm works in 2o(n) time.

Keywords Hamiltonian cycle · Graph with minimum degree 3 · Approximation
algorithm · Randomized algorithm

1 Introduction

A classical fact published by Tutte [26] and accredited to Smith states that, in a cubic
(i.e. degree-3 regular) graph, every edge is contained in an even number ofHamiltonian
cycles. The theorem of Smith was later generalized by Thomason [22] to all graphs
in which every vertex has an odd degree. Therefore, every Hamiltonian graph with
odd-degree vertices has at least one further Hamiltonian cycle; actually it is not hard
to derive that also a third Hamiltonian cycle exists. However, if we allow vertices of
even degree, the existence of a second Hamiltonian cycle is not guaranteed. More
specifically, Entringer and Swart [13] constructed uniquely Hamiltonian graphs (i.e.
graphs with a unique Hamiltonian cycle), in which all vertices have degree 3, except
only two of them which have degree 4. Fleischner [15] also constructed two infinite
families of uniquely Hamiltonian graphs, one with minimum degree 4 and maximum
degree 14, and one with arbitrarily high maximum degree.

On the other hand, for regular graphs it is known that uniquely Hamiltonian graphs
cannot have high degree. More specifically, Thomassen [25] proved that, for every
r ≥ 300, every Hamiltonian r -regular graph has a second Hamiltonian cycle. This
was subsequently improved to every r ≥ 23 [17]. It still remains unknown whether
every r -regular Hamiltonian graph has a second Hamiltonian cycle, where 4 ≤ r ≤ 22
is an even number. Sheehan conjectured in 1975 that this is true for r = 4 [21]. If
Sheehan’s conjecture is true, then this will imply that, for every r ≥ 3, every r -
regular Hamiltonian graph has a second Hamiltonian cycle. For non-regular graphs,
it is known that a second Hamiltonian cycle is guaranteed to exist also in graphs with
large minimum degree. Bondy and Jackson proved this for graphs with n vertices
and minimum degree at least 2.41 log 8n + 3 [8].1 This bound was later improved to
1.752 log n [17] and to 1.71 log n+ 2 [1]. All the above results have been proved with
the probabilistic method using non-constructive arguments.

Our focus in this paper is to devise algorithms which, given a graph G and a
Hamiltonian cycle C of G, actually compute a second Hamiltonian cycle C ′ �= C
in G, instead of just proving the existence of C ′. For cubic (or, more generally, for
odd-degree) Hamiltonian graphs, several exponential-time algorithms are known for
computing C ′ [3–7, 10–12, 14, 18, 19, 28]; however, it remains open whether C ′ can
be computed in polynomial, or even subexponential time. One possible relaxation of

1 All logarithms in this paper are base 2.

123

2768 Algorithmica (2024) 86:2766–2785

the problem is, given a Hamiltonian cycle C , to efficiently compute a second cycle
C ′ �= C which is large enough (not necessarily Hamiltonian). For cubic Hamiltonian
graphs, Bazgan et al. [2] showed that the knowledge of the first Hamiltonian cycle
C algorithmically strictly helps to approximate the length of a second cycle. In fact,
if C is not given along with the input, there is no polynomial-time constant-factor
approximation algorithm for finding a long cycle in cubic graphs, unless P=NP. In
contrast, if C is given, then for every ε > 0 a cycle C ′ �= C of length at least (1− ε)n
can be found in 2O(1/ε2) · n time, i.e. there is a linear-time PTAS for approximating
the second Hamiltonian cycle [2]. The main ingredient in the proof of the latter result

is an O(n
3
2 log n)-time algorithm which, given G and C , computes a cycle C ′ �= C of

length at least n − 4
√
n [2]. In wide contrast to cubic graphs, for graphs of minimum

degree at least three, only existential proofs are known for a second large cycle. In
particular, Girão et al. [16] recently proved with a non-constructive argument that any
n-vertex Hamiltonian graph with minimum degree at least 3 contains another cycle of
length at least n − o(n).
Our Contribution In this paper we consider two relaxations of the problem of com-
puting a second Hamiltonian cycle. First, we consider approximating the length of a
second cycle on n-vertex graphs with minimum degree δ and maximum degree�. We
provide in Sect. 2 a linear-time algorithm for computing a cycle C ′ �= C of length at
least n−4a(

√
n+2α)+8, where α = �−2

δ−2 . On the one hand, this improves the results
of Bazgan et al. [2] in two ways: (1) it provides a generalization from cubic Hamil-
tonian graphs to arbitrary Hamiltonian graphs of degree at least 3; (2) our algorithm
works in linear time in n for all constant-degree regular graphs. In particular it works
in time O(n) on cubic graphs (see Corollary 6). On the other hand, we complement
the results of [16] as we provide a constructive proof for their result in case where δ

and � are o(
√
n)-factor away from each other. Formally, our algorithm constructs in

linear time another cycle of length n − o(n) whenever �
δ

= o(
√
n) (see Corollary 7).

Our second relaxation of the problem is probabilistic. We propose in Sect. 3 a ran-
domized algorithmwhich computes a secondHamiltonian cyclewith high probability,
given that the input graph G has a large enough minimum degree. More specifically,
we prove that for every 0 < p ≤ 0.02, if the minimum degree of G is at least
8
p log

√
8n + 4, then a second Hamiltonian cycle can be computed with probability at

least 1− 1
n

(
50
p4

+ 1
)
in poly(n) ·24pn time. Thus, by appropriately choosing the value

of the parameter p, we can achieve different trade-offs between the minimum degree
and the resulting running time, as it is illustrated in Table 1 (see Corollary 15). These
results imply that, when the minimum degree δ is sufficiently large, we can compute
with high probability a second Hamiltonian cycle faster than any known deterministic
algorithm. In particular, when δ = ω(log n), our probabilistic algorithmworks in 2o(n)

time.

123

Algorithmica (2024) 86:2766–2785 2769

Table 1 Summary of our probabilistic results for computing a second Hamiltonian cycle in a Hamiltonian
graph of large minimum degree δ, where c is a constant and ε ∈ (0, 0.25)

Minimum degree δ at least Running time Probability at least

32c · log√
8n + 4 poly(n) · 2n/c 1 − O

(
1
n

)

64 logc+1 n poly(n) · 2n/ logc n 1 − O

(
log4c n

n

)

32nε · log√
8n + 4 poly(n) · 2n1−ε

1 − O
(

1
n1−4ε

)

2 Computing Another Long Cycle in a Hamiltonian Graph in Linear
Time

Since the complexity status of finding a second Hamiltonian cycle in a given cubic
Hamiltonian graph is illusive at the moment, we consider a simpler problem of finding
another almost Hamiltonian cycle in a given Hamiltonian graph of minimum degree 3.
Our main result in this section provides a O(m) time algorithm for finding a n − o(n)

cycle in a given Hamiltonian graph of minimum degree at least 3 when the maximum
and the minimum degrees of the graph are in certain relation.

Bazgan et al. [2] studied an optimization problem that can be seen as a relaxation
of the problem of finding another Hamiltonian cycle in a cubic Hamiltonian graph.
Namely, they considered the following problem.

Second Largest Cycle
Input: A cubic Hamiltonian graph G and a Hamiltonian cycle C .
Solution: A cycle different from C .
Value: The length of the cycle.

The authors showed that Second Largest Cycle has an efficient polynomial-time
approximation scheme (EPTAS) by proving the following theorem; recall an EPTAS
finds a (1− ε)-approximate solution in time f (1

ε
) · poly(n), where f is a computable

function.

Theorem 1 ([2]) Let G be an n-vertex cubic Hamiltonian graph and let C be a Hamil-
tonian cycle in G. Given G and C, for every ε > 0, a cycle C ′ �= C of length at least
(1 − ε) · n can be found in time 2O(1/ε2) · n.

The main ingredient of the proof of Theorem 1 is a polynomial-time procedure
that finds in G a cycle C ′ different from C of length at least n − 4

√
n. This result is

formalized in the following:

Theorem 2 ([2]) Let G be an n-vertex cubic Hamiltonian graph and let C be a Hamil-
tonian cycle in G. There is an algorithm that given G and C finds in G a cycle C ′ �= C
of length at least n − 4

√
n in time O(n3/2 log n).

Our main result of this section improves Theorem 2 in two ways. First, it implies a
generalization of Theorem 2 to arbitrary regular Hamiltonian graphs of degree at least
3. Second, our algorithm works in linear time in n for constant degree regular graphs.
In particular, it works in time O(n) on cubic graphs (see Corollary 6).

123

2770 Algorithmica (2024) 86:2766–2785

2.1 Notation and Auxiliary Results

Before we proceed to the main result of the section, we introduce preliminary notation
and state auxiliary results. Let G be a graph with a designated Hamiltonian cycle
C = v1v2 . . . vn . We assume that the the cycle has a fixed, clockwise, direction.
Any edge of G that is not in C is called a chord. Two chords are independent if
they do not share an endpoint. The length of a chord viv j with i < j is defined as
min{ j − i, n + i − j}. We say that two vertices u, v ∈ V (G) are chord-adjacent if
they are connected by a chord of G. Two independent chords e1 and e2 are called
crossing if their endpoints appear in alternating order around C ; otherwise e1 and e2
are parallel.

For x, y ∈ V (G), we denote by dC (x, y) the length of the path from x to y around
C , using the clockwise direction. Note that dC (x, y) �= dC (y, x) in general. We define
the distance between two independent chords xy and ab, denoted dist(xy, ab), as
follows:

1. if xy andab are crossing, then dist(xy, ab) = min{dC (x, a)+dC (y, b), dC (x, b)+
dC (y, a)};

2. if xy and ab are parallel such that neither y nor b lie on the path the path from x
to a around C , then dist(xy, ab) = dC (x, a) + dC (y, b).

In the proof of our main result we use the following two lemmas. The first is a
basic fact from graph theory and the second is straightforward to check (see Fig. 1 for
illustration).

Lemma 3 ([27], Exercise 3.1.29) Let G = (V , E) be a bipartite graph of maximum
degree �. Then G has a matching of size at least |E |

�
.

Lemma 4 Let G = (V , E) be an n-vertex graph with a Hamiltonian cycle C =
v1v2 . . . vn.

(1) If G has a chord of length �, then G contains a cycle C ′ �= C of length at least
n − � + 1.

(2) If G has two crossing chords e1, e2 and dist(e1, e2) = d, then G contains a cycle
C ′ �= C of length at least n − d + 2.

(3) If G has four pairwise independent chords e1, e2, f1, and f2 such that

Fig. 1 Illustration of Lemma 4

123

Algorithmica (2024) 86:2766–2785 2771

(a) e1, e2 are parallel and f1, f2 are parallel,
(b) ei and f j are crossing for every i, j ∈ {1, 2},
(c) dist(e1, e2) = d1 and dist(f1, f2) = d2,

then G contains a cycle C ′ �= C of length at least n − d1 − d2 + 4.

2.2 Long Cycles in Hamiltonian Graphs

Theorem 5 Let G = (V , E) be an n-vertex Hamiltonian graph of minimum degree
δ = δ(G) ≥ 3. Let C = v1v2 . . . vn be a Hamiltonian cycle in G and let � denote the
maximum degree of G. Then G has a cycle C ′ �= C of length at least n − 4α(

√
n +

2α) + 8, where α = �−2
δ−2 . Moreover, given C a cycle C ′ can be computed in O(m)

time, where m = |E |.
Proof We start by showing the existence of the desired cycle C ′.

Without loss of generality we assume that α <
√
n
2 , as otherwise any cycle C ′ �= C

in G satisfies the theorem.
Furthermore, we assume that the length of every chord in G is at least 4α(

√
n +

2α) − 6, as otherwise the existence of C ′ follows from Lemma 4(1).
Let q = α

√
n.

We partition arbitrarily the vertices of the Hamiltonian cycle C into r consecutive

intervals B0, B1, . . . , Br−1, such that r ∈
{⌊√

n
α

⌋
,
⌊√

n
α

⌋
+ 1

}
and �q	 ≤ |Bi | ≤

�q	 + 2α2 for every i ∈ {0, 1, . . . , r − 1}. It is a routine task to check that such a
partition exists.

For every i ∈ {0, 1, . . . , r − 1} we denote by Wi the set of vertices that are chord-
adjacent to a vertex in Bi and by Ei we denote the set of chords that are incident with
a vertex in Bi . Furthermore, we denote by Hi the graph with vertex set Bi ∪ Wi and
the edges set Ei . Since the length of every chord in G is at least 4α(

√
n+ 2α)− 6, we

observe that for every i ∈ {0, 1, . . . , r − 1} set Wi is disjoint from Bi−1 ∪ Bi ∪ Bi+1
(where the arithmetic operations with indices are modulo r). The latter, in particular,
implies that Hi is a bipartite graph with color classes Bi and Wi .

We say that the intervals Bi and Bj , where i �= j , are matched if there exist
two independent chords such that each of them has one endpoint in Bi and the other
endpoint in Bj . We claim that every interval Bi is matched to another interval Bj for
some j ∈ {0, 1, . . . , r − 1} \ {i − 1, i, i + 1}. Indeed, by Lemma 3, graph Hi has a
matching Mi of size at least

�q	(δ − 2)

� − 2
= �α√

n	
α

>
α
√
n − 1

α
≥ √

n − 1 >
⌊√

n

α

⌋
− 2 ≥ r − 3,

and therefore, by the pigeonhole principle, there exists j ∈ {0, 1, . . . , r − 1} \ {i −
1, i, i + 1} such that at least two edges in Mi have their endpoints in Bj , meaning that
Bi is matched to Bj .

Let σ : {0, 1, . . . , r −1} → {0, 1, . . . , r −1} be a function such that Bi is matched
to Bσ(i), and denote by fi,1 and fi,2 some fixed pair of independent chords between Bi
and Bσ(i). We observe that dist(fi,1, fi,2) ≤ 2(�q	 + 2α2 − 1) ≤ 2α(

√
n + 2α) − 2,

123

2772 Algorithmica (2024) 86:2766–2785

as the endpoints of fi,1 and fi,2 lie in the intervals Bi and Bσ(i) each of length at most
�q	 + 2α2.

Let now R be an auxiliary graph with a Hamiltonian cycle x0x1 . . . xr−1 and the
chord set being {xi xσ(i) : i = 0, 1, . . . , r − 1}.

Let xi x j be a chord in R of the minimum length, where j = σ(i). Without loss of
generality, we assume that i < j and j − i ≤ r + i − j . Let xk be a vertex of R such
that i < k < j and let s = σ(k).

Since xi x j is of minimum length, the chords xi x j and xkxs are crossing, and hence
each of fi,1 and fi,2 crosses both fk,1 and fk,2.

Finally, if fi,1, fi,2, or fk,1, fk,2, are crossing, then by Lemma 4(2) there exists a
cycleC ′ �= C of length at least n−2α(

√
n+2α)+4. Otherwise, fi,1, fi,2 are parallel

and fk,1, fk,2 are parallel, and hence by Lemma 4(3) there exists a cycle C ′ �= C of
length at least n − 4α(

√
n + 2α) + 8, which proves the first part of the theorem.

The above proof is constructive. We now explain at a high level how the proof can

be turned into the desired algorithm. First, if α ≥
√
n
2 , then we output any cycle formed

by a chord and the longer path of C connecting the endpoints of the chord. Otherwise,
we partition the vertices ofC into intervals B0, B1, . . . , Br−1 and assign to each vertex
the index of its interval. Clearly, this can be done in O(n) time. Next, we traverse the
vertices of G along the cycle C and for every vertex v of an interval Bi we check the
chords incident to v. If we encounter a chord f of length less than 4α(

√
n + 2α) − 6,

thenwe output the cycle formed by f and the longer path ofC connecting the endpoints
of f . Otherwise, for the interval Bi we keep the information of how many and which
vertices ofWi belong to other intervals Bj for j ∈ {0, 1, . . . , r − 1} \ {i − 1, i, i + 1}.
When we find an interval Bj that has at least two elements from Wi , we set σ(i) to
j and proceed to the first vertex of the next interval Bi+1. By doing this, we also
keep the information of the current shortest chord in the graph R (defined in the
proof above). After finishing this procedure: (1) we have a function σ(·); (2) for every
i ∈ {0, 1, . . . , r − 1} we know a pair fi,1, fi,2 of independent edges between Bi and
Bσ(i); and (3) we know k such that xkxσ(k) is a minimum length chord in R. Clearly,
this information is enough to identify the desired cycle in constant time. In total, we
spent O(n) time to compute the partition of the vertices into the intervals and we
visited every chord at most twice, which implies the claimed O(m) running time. �

By noticing that in the above theorem parameter α is equal to 1 for any regular
graph, we obtain the following corollary.

Corollary 6 Let G = (V , E) be an n-vertex Hamiltonian δ-regular graph with δ ≥ 3,
and let C be a Hamiltonian cycle in G. Then G has a cycle C ′ �= C of length at least
n − 4

√
n, which can be computed in O(δn) time.

Corollary 7 Let G = (V , E) be an n-vertex Hamiltonian graph of minimum degree
δ = δ(G) ≥ 3. Let C be a Hamiltonian cycle in G and let � denote the maximum
degree of G. If �

δ
= o(

√
n), then G has a cycle C ′ �= C of length at least n − o(n),

which can be computed in O(m) time.

123

Algorithmica (2024) 86:2766–2785 2773

3 Second Hamiltonian Cycle in Graphs of LargeMinimumDegree

In this section we provide an algorithm (see Theorem 14) which, given a Hamiltonian
cycle C in an arbitrary Hamiltonian graph G with n vertices and with large minimum
degree δ = 	(log n), computes a second Hamiltonian cycle C ′ �= C faster than the
best known algorithms (cf. the discussion in the Introduction).

3.1 Second Hamiltonian Cycle via Red-Independent and Green-Dominating Sets

Let G be a graph with a Hamiltonian cycle C . Colour the edges of C red and the
chords green. A neighbor u of a vertex v is a red (resp. green) neighbor of v if uv is
a red (resp. green) edge. A set X of vertices of G is red-independent if the subgraph
G[X] of G induced by X contains no red edges, and X is green-dominating if every
vertex outside X is adjacent to a vertex in X via green edge. The following lemma is
a classical result of Thomassen [24] proved via Thomason’s lollipop argument [23].

Lemma 8 (Thomassen’s lemma, [24]) If G has a red-independent and green-
dominating set of vertices, then G contains a Hamiltonian cycle C ′ �= C.

Motivated by Thomassen’s lemma, it is natural to ask whether the knowledge of a
red-independent and green-dominating set X in G can improve the time complexity
of finding a second Hamiltonian cycle. The proof of Lemma 8 is reduced to the
application of Thomason’s lollipop argument and therefore does not immediately
imply an efficient algorithm for finding a second Hamiltonian cycle; it is known that
there exist cubic graphs where Thomason’s algorithm requires exponential time [9].
However, if X is not too large, it can in fact be used to speed up the computation of a
second Hamiltonian cycle. To explain this, we need to state another lemma, which can
be easily extracted from Thomassen’s proof. Following the terminology of Bondy and
Jackson [8], a set of vertices X of G is weakly green-dominating if every red neighbor
of a vertex in X is also a green neighbor of some vertex in X .

Lemma 9 ([24]) If G has a red-independent and weakly green-dominating set of
vertices, then G contains a Hamiltonian cycle C ′ �= C.

Clearly, any green-dominating set X in G is also weakly green-dominating. Let X be
a red-independent and green-dominating set of size k, and let P1, P2, . . . , Pk be the k
paths obtained fromC by removing the vertices of X . LetG ′ be the graph obtained from
G by removing all chords connecting two vertices not in X and all chords connecting
a vertex in X and an internal vertex of any of the paths P1, P2 . . . , Pk . Clearly, X is
red-independent and weakly green-dominating in G ′, and therefore, by Lemma 9, G ′
contains a Hamiltonian cycle C ′ �= C , which is also a Hamiltonian cycle in G.

A simple, but important observation is that all internal vertices of the paths
P1, P2 . . . , Pk have degree two in G ′, and hence all edges incident with these ver-
tices belong to every Hamiltonian cycle of G ′. Note here that the extreme vertices of
these paths P1, P2 . . . , Pk might have a higher degree. Let H be the graph obtained
from G ′ by removing, for every path P ∈ {P1, P2 . . . , Pk} with at least four vertices,
all its internal vertices and adding one new vertex and two new edges connecting

123

2774 Algorithmica (2024) 86:2766–2785

the new vertex with the endpoints of P . Then, there is an obvious bijection between
the Hamiltonian cycles of G ′ and the Hamiltonian cycles of H . Denote by CH the
Hamiltonian cycle of H corresponding to the Hamiltonian cycle C of G ′. We observe
that X is a red-independent and weakly green-dominating set (with respect to CH)
in H . Therefore, by Lemma 9, H contains a Hamiltonian cycle C ′

H �= CH , which
in turn corresponds to a cycle C ′ �= C of G ′ and can be efficiently computed from
C ′
H . We call the graph H shrunken and observe that the number of vertices in H is

at most k + 3k = 4k. If k is small enough, then applying a best known algorithm A
for finding a Hamiltonian cycle to every graph H − e, where e is a red edge in H
that is incident to a vertex in X , one can find a Hamiltonian cycle C ′

H �= CH in H ,
and therefore a Hamiltonian cycle C ′ �= C in G, faster than applying n times the best
known algorithm A directly to G. The above implies the correctness and running time
of Algorithm 1, which is formally given in Theorem 10.

Algorithm 1 Second Hamiltonian Cycle via red-independent and green-dominating
set
Input: A graph G = (V , E); a Hamiltonian cycle C of G; a red-independent and green-dominating set

X ⊆ V in G; an algorithm A with running time f A(n) that, given an input n-vertex graph, either
computes a Hamiltonian cycle or concludes that no Hamiltonian cycle exists.

Output: A Hamiltonian cycle C ′ in G such that C ′ �= C .

1: Using set X , construct from G the shrunken graph H
2: for every red edge e in H that is incident to a vertex in X do
3: Check using algorithm A whether H − e admits a Hamiltonian cycle
4: If such a Hamiltonian cycle exists then denote it by C ′

H {C ′
H exists for at least one edge e}

5: Reconstruct from C ′
H a Hamiltonian cycle C ′ in G such that C ′ �= C

6: return C ′

Theorem 10 Let G = (V , E) be an n-vertex graph, let C be a Hamiltonian cycle in
G, and let X be a red-independent and green-dominating set in G, where |X | = k.
Let A be an algorithm that, given an input n-vertex graph, computes a Hamiltonian
cycle in time fA(n). Then Algorithm 1 computes a second Hamiltonian cycle in time
at most poly(n) · f A(4k).

Using the above approach, we develop in the subsequent sections a randomized
algorithm that computes a second Hamiltonian cycle in Hamiltonian graphs of large
minimum degree.

3.2 Finding Sparse Red-Independent Green-Dominating Sets in Graphs of Large
MinimumDegree

In this section we give a procedure that with high probability produces a red-
independent and green-dominating set in graphs of large minimum degree. The
procedure is a generalization of a random process used by Bondy and Jackson [8]
to show that every n-vertex Hamiltonian graph of minimum degree at least c log n, for

123

Algorithmica (2024) 86:2766–2785 2775

some constant c and large enough n, has a red-independent and green-dominating set,
and hence a second Hamiltonian cycle.

For convenience, we reuse most of the notation and terminology from [8]. Let
G = (V , E), where V = {0, 1, . . . , n − 1}, be a graph on n vertices and let C =
(0, 1, 2, . . . , n − 1, 0) be a Hamiltonian cycle in G. Let p ∈ (0, 1) be a fixed number.
We define a random subset X of V by the following procedure:
For p = 1

2 this is exactly the procedure used by Bondy and Jackson [8] to show that
if every vertex in G has degree at least c log 8n + 4, where c = (2 − log 3)−1, then
with non-zero probability the set X produced by the procedure is red-independent
and green-dominating. This implies that any such graph contains at least one red-
independent and green-dominating set and therefore contains a second Hamiltonian
cycle.

We will generalize and complement the arguments of Bondy and Jackson to show
that for any small enough p, if every vertex in G has degree at least 8

p log
√
8n + 4,

then, with high probability, X is red-independent and green-dominating and also has
size at most pn. In Sect. 3.3, we will combine this result with the general approach
from Sect. 3.1 to obtain faster exponential and subexponential algorithms that find a
second Hamiltonian cycle in graphs of large minimum degree with high probability.
We proceed with some notation and an auxiliary lemma.

Let d ∈ N. A k-part composition of d is an ordered k-tuple (d1, d2, . . . , dk) of
positive integers summing up to d. We call each di a part of this composition of the
number d. Denote by C(k, d) the set of all k-part compositions of d, in which di ≥ 2
for every i ∈ {2, . . . , k − 1}. We write

c(k, d) = |C(k, d)| and C(d) =
⋃
k≥1

C(k, d).

Similarly, we denote by C∗(k, d) the set of all k-part compositions of d, in which
di ≥ 2 for every i , except possibly at most one of the two parts d1 or dk . We write

c∗(k, d) = |C∗(k, d)| and C∗(d) =
⋃
k≥1

C∗(k, d).

Lemma 11 Let k, d ∈ N and μ ∈ (0, 2], and let α =
√
4μ+1−1

2 and β =
√
4μ+1+1

2 .
Then

(a)
∑

k≥1 μk−1 · c(k, d) = 1
α+β

(
βd+1 + (−1)dαd+1

) ≤
(

α+4β
4(α+β)

)
βd ;

(b)
∑

k≥1 μk−1 · c∗(k, d) = βd−1 + (−1)d−1αd−1 ≤ 2βd−1,

Proof In both cases we will count weighted compositions of d in which each com-
position into k parts is given weight μk−1. This is done by assigning weight one to
the first part d1 and weight μ to each of the remaining parts. For a polynomial f (x)
we denote by [xd] f (x) the coefficient of xd in f (x). We will also make use of the

123

2776 Algorithmica (2024) 86:2766–2785

following equation, which is a routine task to verify:

[xd](x + x2 + · · ·)
⎛
⎝∑

i≥0

(μx2 + μx3 + · · ·)i
⎞
⎠ (μx + μx2 + · · ·)

= [xd]
(

x

1 − x

)(
1

1 − μx2
1−x

)(
μx

1 − x

)

= [xd] 1

α + β

(
β

1 − βx
− α + β

1 − x
+ α

1 + αx

)

= 1

α + β

(
βd+1 − (α + β) + (−1)dαd+1

)

= 1

α + β

(
βd+1 + (−1)dαd+1

)
− 1.

(1)

We proceed now by proving item (a).

∑
k≥1

μk−1 · c(k, d) = 1 +
∑
k≥2

μk−1c(k, d)

= 1 + [xd](x + x2 + · · ·)
⎛
⎝∑

i≥0

(μx2 + μx3 + · · ·)i
⎞
⎠

(μx + μx2 + · · ·) (1)= 1

α + β

(
βd+1 + (−1)dαd+1

)
. (2)

Now, since μ ≤ 2, we have α
β

≤ 1
2 , and therefore

∑
k≥1

μk−1 · c(k, d)
(2)= 1

α + β

(
βd+1 + (−1)dαd+1

)

= 1

α + β

(
β + (−1)dα

(
α

β

)d
)

βd

≤ 1

α + β

(
β + α

4

)
βd =

(
α + 4β

4(α + β)

)
βd .

To prove item (b) we first notice that by the inclusion–exclusion principle

∑
k≥1

μk−1 · c∗(k, d) = 1 +
∑
k≥2

μk−1 · (2c′(k, d) − c′′(k, d)
) = 1

+2
∑
k≥2

μk−1 · c′(k, d) −
∑
k≥2

μk−1 · c′′(k, d), (3)

where c′(k, d) is the number of k-part compositions of d in which all parts are at least
two, except possibly the first one; and c′′(k, d) is the number of k-part compositions

123

Algorithmica (2024) 86:2766–2785 2777

of d in which all parts are at least two. Now,

∑
k≥2

μk−1 · c′(k, d)

= [xd](x + x2 + · · ·)
⎛
⎝∑

i≥0

(μx2 + μx3 + · · ·)i
⎞
⎠ (μx2 + μx3 + · · ·)

= [xd−1](x + x2 + · · ·)
⎛
⎝∑

i≥0

(μx2 + μx3 + · · ·)i
⎞
⎠ (μx + μx2 + · · ·)

(1)= 1

α + β

(
βd + (−1)d−1αd

)
− 1. (4)

Similarly,

∑
k≥2

μk−1 · c′′(k, d)

= [xd](x2 + x3 + · · ·)
⎛
⎝∑

i≥0

(μx2 + μx3 + · · ·)i
⎞
⎠ (μx2 + μx3 + · · ·)

= [xd−2](x + x2 + · · ·)
⎛
⎝∑

i≥0

(μx2 + μx3 + · · ·)i
⎞
⎠ (μx + μx2 + · · ·)

(1)= 1

α + β

(
βd−1 + (−1)d−2αd−1

)
− 1. (5)

Plugging in (4) and (5)–(3) and using the fact that−2β +1 = −(2α +1) = −(α +β)

we obtain

∑
k≥1

μk−1 · c∗(k, d)

= 1 + 2

α + β

(
βd + (−1)d−1αd

)
− 2 − 1

α + β

(
βd−1 + (−1)d−2αd−1

)
+ 1

= 1

α + β

(
2βd + 2(−1)d−1αd − βd−1 + (−1)d−1αd−1

)

= 1

α + β

(
(−1)d−1αd−1(2α + 1) − βd−1(−2β + 1)

)

= βd−1 + (−1)d−1αd−1

≤ βd−1 + αd−1 ≤ 2βd−1,

where in the latter inequality we used the fact that α ≤ β. �

123

2778 Algorithmica (2024) 86:2766–2785

Green-Dominating Clearly, the set X produced by Algorithm 2 is always red-
independent. We show next that, if the minimum degree of G is large enough, then X
is also green-dominating with high probability.

Lemma 12 Let p ∈ (0, 0.2]. If every vertex in G has degree at least 8
p log

√
8n + 4,

then the set X produced by Algorithm 2 is green-dominating with probability at least
1 − 1

n .

Proof Let m ∈ {0, 1, . . . , n − 1} be a fixed vertex of G. The green neighborhood
N̂ (m) of m is the set

N̂ (m) = N (m) \ {m − 1,m + 1} = {m1,m2, . . . ,mt },

where 0 ≤ m1 < m2 < . . . < mt and the arithmetic operations are modulo n.
Ifm1 = 0, then 0 ∈ N̂ (m)∩ X . We shall show that in all other cases N̂ (m)∩ X = ∅

with probability less than n−2, which implies by the union bound that with probability
at least 1 − 1

n the set X is green-dominating.

Algorithm 2 Bondy and Jackson’s procedure
Input: A graph G = (V , E); a Hamiltonian cycle C = (0, 1, 2, . . . , n − 1, 0) of G; a number p ∈ (0, 1).
Output: A red-independent set X ⊆ V .

1: X = {0}
2: for i = 1 to n − 2 do
3: if i − 1 does not belong to X then
4: Add i to X with probability p and skip with probability 1 − p

5: return X

Denote by A the set of all sequences A = (a0, a1, . . . , ar), where 0 = a0 < a1 <

. . . < ar < n − 1, and ai+1 − ai ≥ 2, 0 ≤ i ≤ r − 1. For A = (a0, a1, . . . , ar) ∈ A,

P(X = A) =
r∏

i=1

p(1 − p)ai−ai−1−2

(∞∑
i=0

p(1 − p)−ar+(n−1+i)−2

)

= pr+1(1 − p)n−2r−3
∞∑
i=0

(1 − p)i

= pr (1 − p)n−2r−3

= (1 − p)n−3
(

p

(1 − p)2

)r

= (1 − p)n−3μr ,

where we denote μ = p
(1−p)2

.
Let now d1 = m1, di = mi − mi−1, 2 ≤ i ≤ t , and dt+1 = n − mt , and

C = C∗(d1) × C(d2) × · · · × C(dt) × C∗(dt+1).

123

Algorithmica (2024) 86:2766–2785 2779

There is a natural bijection between C and the subset Â of A consisting of those
sequences which are disjoint from N̂ (m). Moreover, for A = (a0, a1, . . . , ar) ∈ Â,

P(X = A) = (1 − p)n−3μr = (1 − p)n−3
t+1∏
i=1

μki−1, (6)

where ki is the number of parts in the corresponding composition of di , 1 ≤ i ≤ t +1.
Note that

C =
⎛
⎝⋃

k1≥1

C∗(k1, d1)

⎞
⎠×

⎛
⎝⋃

k2≥1

C(k2, d2)

⎞
⎠× · · · ×

⎛
⎝⋃

kt≥1

C(kt , dt)

⎞
⎠

×
⎛
⎝ ⋃

kt+1≥1

C∗(kt+1, dt+1)

⎞
⎠ =

⋃(
C∗(k1, d1) × C(k2, d2) × · · · × C(kt , dt)

× C∗(kt+1, dt+1)
)
, (7)

where the union is taken over all (t + 1)-tuples (k1, k2, . . . , kt+1) of positive integers.
Therefore (6) implies that

P(X ∈ Â) = (1 − p)n−3
∑[

μk1−1 · c∗(k1, d1)
(

t∏
i=2

μki−1 · c(ki , di)
)

μkt+1−1 · c∗(kt+1, dt+1)
]
,

where the summation is taken over all (t + 1)-tuples (k1, k2, . . . , kt+1) of positive
integers. Thus, by Lemma 11,

P(X ∈ Â)

= (1 − p)n−3

⎛
⎝∑

k1≥1

μk1−1c∗(k1, d1)

⎞
⎠
⎛
⎝

t∏
i=2

∑
ki≥1

μki−1c(ki , di)

⎞
⎠

⎛
⎝ ∑

kt+1≥1

μkt+1−1c∗(kt+1, dt+1))

⎞
⎠

≤ (1 − p)n−3
(
2

β

)
βd1

(
t∏

i=2

[(
α + 4β

4(α + β)

)
βdi

])(
2

β

)
βdt+1

= (1 − p)n−3β

(∑t+1
i=1 di

) (
2

β

)2 (
α + 4β

4(α + β)

)t−1

= (1 − p)n−3βn
(
2

β

)2 (
α + 4β

4(α + β)

)t−1

.

123

2780 Algorithmica (2024) 86:2766–2785

Now, since μ = p
(1−p)2

and β =
√
4μ+1+1

2 (cf. Lemma 11), it follows that 1 + p ≤
β ≤ 1

1−p for every p ∈ (0, 1). Therefore, for p ≤ 0.2, we have

P(X ∈ Â)

≤ (1 − p)n−3
(

1

1 − p

)n (2

1 + p

)2 (
α + 4β

4(α + β)

)t−1

= 4

(1 − p)3(1 + p)2

(
α + 4β

4(α + β)

)t−1

≤ 8

(
α + 4β

4(α + β)

)t−1

.

Therefore, if the degree of the fixed vertexm is equal to t +2 ≥ c log
√
8n+4, where

c ≥ 2 log−1 4(α+β)
α+4β , then P(X ∈ Â) < 1

n2
. To conclude the proof, it is enough to

show that 8
p ≥ 2 log−1 4(α+β)

α+4β or, equivalently, log 4(α+β)
α+4β ≥ p

4 for any p ∈ (0, 0.2].
First, using series expansions one can derive p(1+ p) ≤ α ≤ p

(1−p)2
and 1+ p ≤

β ≤ 1−p+p2

(1−p)2
in the target interval p ∈ (0, 0.2]. Therefore,

log
4(α + β)

α + 4β
≥ log

4(p(1 + p) + (1 + p))
p

(1−p)2
+ 4(1−p+p2)

(1−p)2

= log
4(p + 1)2(1 − p)2

p + 4(1 − p + p2)
.

Let us denote the latter function by f (p). One can check that f (p) is concave in the
interval [0, 0.2] and f (p) ≥ p

4 in the extreme points of the interval. Consequently,
f (p) ≥ p

4 holds in all points of the interval, which gives the desired conclusion and
completes the proof. �

In the remainder of this section we are going to show that the size of X is at most
pn with high probability. To this end, we formalize Algorithm 2 as a Markov chain
with two states: State 0 and State 1. At time point t = 0 the Markov chain is in State
1, and for t ≥ 1

1. if at time point t − 1 the Markov chain is in State 0, then at time point t it is in
State 1 with probability p and in State 0 with probability 1 − p;

2. if at time point t − 1 the Markov chain is in State 1, then at time point t it is in
State 0.

Let N = n−1. For i ∈ {0, 1, . . . , N−1}we denote by ξi the randomvariablewhich
is equal to α ∈ {0, 1} if the Markov chain is in State α at time point i . We interpret the
Markov chain as follows: a vertex i is included in X if and only if theMarkov chain is in
State 1 at time point i , i.e. ξi = 1. In particular, X = {i | ξi = 1, i = 0, 1, . . . , N −1},
|X | = ∑N−1

i=0 ξi .
Denote by � = (0, 1) the vector of initial distribution of the Markov chain, which

means that at time point 0 the Markov chain is in State 1 with probability 1 (this

123

Algorithmica (2024) 86:2766–2785 2781

corresponds to inclusion of 0 to X). Let also T denote the transition matrix

T =
(
1 − p p
1 0

)

of the Markov chain. Then the probability distribution of ξi is defined by the vector
�(i) = � · T i .

It can be shown by induction that

T i = 1

1 + p

(
1 p
1 p

)
+ (−p)i

1 + p

(
p −p

−1 1

)
,

and hence

�(i) = � · T i = 1

1 + p

(
1 − (−p)i , p + (−p)i

)
,

that is, P[ξi = 0] = 1−(−p)i

1+p and P[ξi = 1] = p+(−p)i

1+p .

Lemma 13 For n large enough and p ∈ (0, 0.2], the size of the set X produced by
Algorithm 2 is at most pn with probability at least 1 − 50

np4
.

Proof As before, let N = n − 1. To prove the statement, we first show that for ε > 0

P

[∣∣∣∣
|X |
N

− p

1 + p

∣∣∣∣ > ε

]
≤ 34

Nε2
. (8)

By Chebyshev’s inequality we have

P

[∣∣∣∣
|X |
N

− p

1 + p

∣∣∣∣ > ε

]
≤

E

[∣∣∣ |X |
N − p

1+p

∣∣∣
2
]

ε2
.

Therefore, in order to prove (8), we only need to show that E

[∣∣∣ |X |
N − p

1+p

∣∣∣
2
]

≤ 34
N .

Let π = p
1+p and p(i)

1 = P[ξi = 1] = p+(−p)i

1+p . Then

E

[∣∣∣∣
|X |
N

− p

1 + p

∣∣∣∣
2
]

= E

⎡
⎣
∣∣∣∣∣
∑N−1

i=0 ξi

N
− π

∣∣∣∣∣
2
⎤
⎦ = 1

N 2E

⎡
⎣
(
N−1∑
i=0

(ξi − π)

)2⎤
⎦

= 1

N 2

N−1∑
i=0

N−1∑
k=0

δik, (9)

where δik = E[ξiξk] − πE[ξi] − πE[ξk] + π2.

123

2782 Algorithmica (2024) 86:2766–2785

Observe that |p(i)
1 − π | ≤ pi

1+p , and hence for i, k ∈ {0, . . . , N }

δik = E[ξiξk] − πE[ξi] − πE[ξk] + π2

= p(s)
1 p(t)

1 − π p(i)
1 − π p(k)

1 + π2

≤ 2

1 + p
(ps + pt + pi + pk),

(10)

where s = min{i, k} and t = |i − k|. Therefore, by plunging in (10)–(9) we obtain

E

[∣∣∣∣
|X |
N

− p

1 + p

∣∣∣∣
2
]

= 1

N 2

N−1∑
i=0

N−1∑
k=0

δik

≤ 2

N 2(1 + p)

N−1∑
i=0

N−1∑
k=0

[ps + pt + pi + pk]

≤ 8

N 2(1 + p)

N−1∑
i=0

N−1∑
k=0

pmin{s,t}

≤ 8

N 2(1 + p)

�N/2�−1∑
i=0

pi
[
2(N − 2i − 1) + 2(N − 2i)

]

≤ 8

N 2(1 + p)
· 4N

1 − p
≤ 34

N
,

where in the latter inequality we used the assumption p ≤ 0.2. This proves (8).

Now, by setting ε = p2

1+p , we deduce from (8) that

P

[∣∣∣∣
|X |
N

− p

1 + p

∣∣∣∣ >
p2

1 + p

]
≤ 34(1 + p)2

Np4
≤ 49

Np4
,

which implies P[|X | ≤ pN] ≥ 1− 49
Np4

and therefore P[|X | ≤ pn] ≥ 1− 50
np4

for all
n ≥ 50. �

3.3 Faster Algorithms for Second Hamiltonian Cycle

In this section we combine Algorithm 2 with the general procedure from Sect. 3.1
to obtain randomized algorithms for finding a second Hamiltonian cycle in graphs of
large minimum degree.

Theorem 14 Let G = (V , E) be an n-vertex graph, C be a Hamiltonian cycle in
G, and p ∈ (0, 0.2]. If every vertex of G has degree at least 8

p log
√
8n + 4, then

given G, C, and p, Algorithm 3 succeeds with probability at least 1 − 1
n

(
50
p4

+ 1
)
.

Furthermore, the algorithm works in poly(n) · 24pn time.

123

Algorithmica (2024) 86:2766–2785 2783

Algorithm 3 Randomized algorithm for Second Hamiltonian Cycle
Input: A graph G = (V , E); a Hamiltonian cycle C of G; a p ∈ (0, 1).
Output: A Hamiltonian cycle C ′ in G such that C ′ �= C , or a “fail” announcement.

1: Given G, C , and p, construct a set X using Algorithm 2
2: if X is a red-independent and green-dominating set of size at most pn then
3: Find a second Hamiltonian cycle C ′ in G using Algorithm 1 with input parameters: G, C , X and the

Bellman–Held–Karp algorithm
4: return C ′
5: else
6: return Fail

Proof Algorithm 3 fails if and only if Algorithm 2 outputs a non-green-dominating set
or the size of the set exceeds pn. The former happens with probability at most 1

n , by
Lemma 12, and the latter happens with probability at most 50

np4
, by Lemma 13. Hence,

the algorithm succeeds with probability at least 1 − 1
n

(
50
p4

+ 1
)
.

Now, ifAlgorithm3does not fail, byTheorem10, it constructs a secondHamiltonian
cycle in G in time not exceeding poly(n) · f (4pn), where f (k) = O(k22k) is the
time complexity of the Bellman–Held–Karp algorithm [3, 18]. Hence the theorem. �

The next corollary follows by Theorem 14, when replacing the factor 8
p by either

(1) a constant 32c, or (2) a polylogarithmic factor 32 logc n, or (3) a polynomial factor
32nε (where ε < 0.25). Note that the second case of the corollary is implied by the
fact that 64 logc+1 n > 32 logc n · log√

8n + 4, for large enough n.

Corollary 15 Let c, ε be positive constants, where ε < 0.25. Let G = (V , E) be an
n-vertex graph and C be a Hamiltonian cycle in G. Then:

1. If every vertex of G has degree at least 32c · log√
8n + 4, then Algorithm 3 finds

a second Hamiltonian cycle in G in time poly(n) · 2n/c with probability at least
1 − O

(1
n

)
.

2. If every vertex of G has degree at least 64 logc+1 n, then Algorithm 3 finds a
second Hamiltonian cycle in G in time poly(n) · 2n/ logc n with probability at least

1 − O
(
log4c n

n

)
.

3. If every vertex of G has degree at least 32nε · log√
8n+ 4, then Algorithm 3 finds

a second Hamiltonian cycle in G in time poly(n) · 2n1−ε
with probability at least

1 − O
(

1
n1−4ε

)
.

4 Conclusions

We conclude by stating some questions for future research. The most prominent prob-
lem is to classify the complexity of finding a second Hamiltonian cycle, when its
existence is guaranteed and we are given a first Hamiltonian cycle.

For cubic graphs, the only known upper bound for the problem is the complexity
class PPA [20]. It is unknown whether the problem is hard for PPA, or some other

123

2784 Algorithmica (2024) 86:2766–2785

complexity class, or if it can be solved in polynomial time. In fact, it is not even known,
if the problem can be solved in 2o(n) time by a randomized algorithm.

Our randomized algorithm can achieve such time complexity at the expense of a
larger minimum degree. For example, it works in time 2o(n) when theminimum degree
is ω(log n). This suggests the following problem:

Problem 16 Let c be any sufficiently large constant. Does there exist a 2o(n)-time
deterministic algorithm that, given an n-vertex Hamiltonian graph G of minimum
degree at least logc n and a Hamiltonian cycle C in G, computes a Hamiltonian cycle
in G that is different from C?

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abbasi, S., Jamshed, A.: A degree constraint for uniquely Hamiltonian graphs. Graphs Comb. 22,
433–442 (2006)

2. Bazgan, C., Santha, M., Tuza, Z.: On the approximation of finding a(nother) Hamiltonian cycle in
cubic Hamiltonian graphs. J. Algorithms 31(1), 249–268 (1999)

3. Bellman, R.: Dynamic programming treatment of the travelling salesman problem. J. ACM 9(1), 61–63
(1962)

4. Björklund, A.: Determinant sums for undirected hamiltonicity. SIAM J. Comput. 43(1), 280–299
(2014)

5. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: The traveling salesman problem in bounded degree
graphs. ACM Trans. Algorithms 8(2), 18:1-18:13 (2012)

6. Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single exponential time algo-
rithms for connectivity problems parameterized by treewidth. Inf. Comput. 243, 86–111 (2015)

7. Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single exponential time algo-
rithms for connectivity problems parameterized by treewidth. Inf. Comput. 243, 86–111 (2015)

8. Bondy, J.A., Jackson, B.: Vertices of small degree in uniquely Hamiltonian graphs. J. Comb. Theory
Ser. B 74(2), 265–275 (1998)

9. Cameron, K.: Thomason’s algorithm for finding a second Hamiltonian circuit through a given edge in
a cubic graph is exponential on Krawczyk’s graphs. Discrete Math. 235, 69–77 (2001)

10. Cygan, M., Kratsch, S., Nederlof, J.: Fast hamiltonicity checking via bases of perfect matchings. In:
Proceedings of the 45th ACM Symposium on Theory of Computing Conference (STOC), pp. 301–310
(2013)

11. Cygan, M., Kratsch, S., Nederlof, J.: Fast hamiltonicity checking via bases of perfect matchings. J.
ACM (JACM) 65(3), 1–46 (2018)

12. Deligkas, A., Mertzios, G.B., Spirakis, P.G., Zamaraev, V.: Exact and approximate algorithms for
computing a second Hamiltonian cycle. In: Proceedings of the 45th International Symposium on
Mathematical Foundations of Computer Science (MFCS), vol. 170, pp. 27:1–27:13 (2020)

13. Entringer, R.C., Swart, H.: Spanning cycles of nearly cubic graphs. J. Comb. Theory Ser. B 29(3),
303–309 (1980)

14. Eppstein, D.: The traveling salesman problem for cubic graphs. J. Graph Algorithms Appl. 11(1),
61–81 (2007)

123

http://creativecommons.org/licenses/by/4.0/

Algorithmica (2024) 86:2766–2785 2785

15. Fleischner, H.: Uniquely Hamiltonian graphs of minimum degree 4. J. Graph Theory 75(2), 167–177
(2014)

16. Girão, A., Kittipassorn, T., Narayanan, B.: Long cycles in Hamiltonian graphs. Isr. J. Math. 229(1),
269–285 (2019)

17. Haxell, P., Seamone, B., Verstraete, J.: Independent dominating sets and Hamiltonian cycles. J. Graph
Theory 54(3), 233–244 (2007)

18. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. J. Soc. Ind. Appl.
Math. 10(1), 196–210 (1962)

19. Liśkiewicz,M., Schuster,M.R.: A new upper bound for the traveling salesman problem in cubic graphs.
J. Discrete Algorithms 27, 1–20 (2014)

20. Papadimitriou, C.H.: On the complexity of the parity argument and other inefficient proofs of existence.
J. Comput. Syst. Sci. 48(3), 498–532 (1994)

21. Sheehan, J.: The multiplicity of Hamiltonian circuits in a graph. In: Recent Advances in Graph Theory,
pp. 477–480 (1975)

22. Thomason, A.G.: Hamiltonian cycles and uniquely edge colourable graphs. Ann. Discrete Math. 3,
259–268 (1978)

23. Thomason, A.G.: Hamiltonian cycles and uniquely edge colourable graphs. Adv. Graph Theory 3,
259–268 (1978)

24. Thomassen, C.: Chords of longest cycles in cubic graphs. J. Comb. Theory Ser. B 71(2), 211–214
(1997)

25. Thomassen, C.: Independent dominating sets and a second Hamiltonian cycle in regular graphs. J.
Comb. Theory Ser. B 72(1), 104–109 (1998)

26. Tutte, W.T.: On Hamiltonian circuits. J. Lond. Math. Soc. 1(2), 98–101 (1946)
27. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall, Upper Saddle River (2001)
28. Xiao, M., Nagamochi, H.: An exact algorithm for TSP in degree-3 graphs via circuit procedure and

amortization on connectivity structure. Algorithmica 74(2), 713–741 (2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Approximate and Randomized Algorithms for Computing a Second Hamiltonian Cycle
	Abstract
	1 Introduction
	2 Computing Another Long Cycle in a Hamiltonian Graph in Linear Time
	2.1 Notation and Auxiliary Results
	2.2 Long Cycles in Hamiltonian Graphs

	3 Second Hamiltonian Cycle in Graphs of Large Minimum Degree
	3.1 Second Hamiltonian Cycle via Red-Independent and Green-Dominating Sets
	3.2 Finding Sparse Red-Independent Green-Dominating Sets in Graphs of Large Minimum Degree
	3.3 Faster Algorithms for Second Hamiltonian Cycle

	4 Conclusions
	References

