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Abstract: We consider situations in which the clustering of some multivariate data is desired, which
establishes an ordering of the clusters with respect to an underlying latent variable. As our motivating
example for a situation where such a technique is desirable, we consider scatterplots of traffic flow
and speed, where a pattern of consecutive clusters can be thought to be linked by a latent variable,
which is interpretable as traffic density. We focus on latent structures of linear or quadratic shapes,
and present an estimation methodology based on expectation–maximization, which estimates both
the latent subspace and the clusters along it. The directed clustering approach is summarized in
two algorithms and applied to the traffic example outlined. Connections to related methodology,
including principal curves, are briefly drawn.

Keywords: clustering; mixture model; latent variable model; dimension reduction; expectation–
maximization algorithm; model selection; fundamental diagram

1. Introduction

Multivariate clustering methods are now well-developed. A wide range of methods
and techniques is available, including empirical methods such as K-means [1,2], parametric
methods based on mixture models [3,4], and nonparametric methods based on density
modes [5,6]. Questions regarding the choice of model complexity—such as the number
of clusters, cluster shape, and bandwidth—are generally well-understood, with statistical
software providing efficient implementations to automatically select these parameters.
For instance, the R package mclust for mixture-based clustering uses the BIC criterion in
order to automatically and simultaneously determine the number of Gaussian mixture
components and the shapes of these components, selected out of 14 possible variance
parameterizations, and allowing for differing degrees of flexibility in terms of volume,
shape, and orientation [7]. For a relatively recent (but still valid) overview of contemporary
clustering techniques, see [8]. Nonetheless, research on multivariate clustering continues at
high intensity: A Google Scholar search on articles since 2015 featuring the terms ‘cluster-
ing’, ‘multivariate’, and ‘methodology’ gives, at the time of writing, 19,100 hits. Areas of
research activity on clustering in the last 10 years include the development of methods for
high-dimensional data, incorporating aspects of variable selection and sparsity [9,10], meth-
ods tailored to functional data [11], variations in clustering methods for spatial statistics,
including spatially constrained clustering [12], algorithmic variants that allow for faster
computation [13,14], and methods that link to soft computing techniques [15], to name
a few.

Clustering is generally considered as a process without a sense of direction. In other
words, the set of detected clusters is an entirely unordered one. That is, in existing clustering
procedures, there is no sense of ‘ordering’ that can be sensibly assigned to the clusters (apart
from, perhaps, by probability mass). In other words, there is usually no way of putting
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the clusters in relation to each other based on their location within the data space. This is
a possible drawback, especially in situations where the relative positioning of the cluster
centers (and, hence, of the clusters) is meaningful as it can be considered as being driven by
an external variable, which may or may not be observed. Specifically, in many situations,
one may argue that the cluster centers are just particular realizations of a latent variable
spanning the data space, with the observations essentially constituting multivariate ‘noise’
around these centers. Such scenarios are particularly prone to occur when the relationship
between the variables in question is governed by some physical equation or property. An
example of such a situation is the measurement of speed and flow on highways, sometimes
referred to as the ‘fundamental diagram’, where the underlying latent variable can be
thought to represent the traffic density. Although the next section is dedicated to detailing
this particular application, the reader may wish to glance at Figure 1 at this point to gain
some intuition. When clustering this data, the order of the clusters along the ‘curved
direction’ taken by the data cloud is clearly meaningful: there is much more information in
the data than would be captured by an unordered list of cluster centers.

Figure 1. Speed-flow data on a California freeway with K-means clustering. The cluster centers are
marked with + symbols. Left: Traditional shape of the ‘Fundamental diagram’, recorded from 9
July 2007 9:00 to 10 July 2007 21:59 by VDS detector 1202263 on California Freeway SR57-N. Right:
An unusual pattern involving traffic by heavy vehicles on a slow lane, recorded on 9 July 2007 from
0:00 to 19:59 by VDS detector 1213624 on freeway SR57-S. Each point in the plots corresponds to the
number of vehicles and average speed over 5-min intervals.

To define the terms more formally, assume the given data xi ∈ Rm, i = 1, . . . , n. We
consider clustering as an algorithmic process that takes the data {xi}1≤i≤n as input, and
produces a set of cluster centers, say c1, . . . , cK ∈ Rm, with cluster labels 1, 2, . . . , K as output,
where observations xi are then assigned according to a clustering rule k̂(xi) with values
in 1, . . . , K. It is important to realize that, in conventional clustering, it is generally not
meaningful to establish an ordering relation on the cluster labels; that is, one cannot say
that cluster 2 is ‘larger’ than cluster 1 in any meaningful way. The reason is that any such
ordering would be based on the relative positioning of the centers ck in the m-variate space,
but these will not allow for obvious ordering unless m = 1. Since this paper is concerned
with multivariate clustering, we are only interested in the case where m > 1.

We define a directed clustering algorithm as a clustering process in which the ordinal
relationship of the resulting cluster labels is well-defined; that is, one can say that cluster
k + 1 is larger (or smaller) than cluster k in a meaningful way. In order to include directional
information in the clustering process, one needs to connect the clustering problem with the
concept of a latent variable. The idea is to assume the existence of such a latent variable,
which parameterizes a curve through m-variate space, passing through c1, c2, ..., cK. Since
the latent variable is one-dimensional, it enables an ordering relation along it, which can
then be inherited by the cluster centers ‘sitting’ on it and, hence, to their corresponding
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cluster labels. A suitable latent variable model that can used to achieve this purpose was
recently proposed by [16], who suggested approximating highly correlated multivariate
data through the use of a one-dimensional latent space, i.e., a straight line, which is
parameterized by a single random effect. An estimation of this model was carried out
through the nonparametric maximum likelihood approach [17], which is based on a mixture
model approximation that facilitates the clustering step. This model achieves clustering
of the data and dimension reduction simultaneously. The work by [16] did not introduce
the notion of ‘directed’ clustering, so one novel contribution of the present manuscript is
to introduce and implement this concept. However, importantly, it is clear that most data
structures are not exactly linear (such as the ones in Figure 1); hence, as a second novel
contribution, in this manuscript, we also extend the approach in Ref. [16] to quadratic
latent variable models. We propose an algorithm to simultaneously select the number of
clusters and choose between a linear and a quadratic latent variable model, and a second
algorithm to carry out the actual directed clustering based on this model choice.

Apart from the mentioned example from traffic engineering, potential applications
of this method include situations where ‘rankings’ or ‘league tables’ are constructed from
multivariate data. Instances of such problems are school-effectiveness studies [18] or large-
scale international skill surveys [16], where one is not only interested in identifying clusters
of similarly performing schools or countries but also in their relative performance to each
other, as this is of relevance for resource allocation and related policy decisions. Similar
arguments can be made for summaries of economic indicators such as export/import activities
or price indices [19], where one may be interested in identifying clusters of the best- or worst-
performing countries, in certain senses. Ample areas of potential application can be found
in the sciences where relationships are driven by natural laws and processes; for instance, in
single-cell RNA sequencing, a common task is the ‘cell ordering problem’ [20,21], where one
attempts to identify clusters of gene co-expressions with the help of a latent variable referred
to as ‘pseudotime’; in the case of reference [20], this is achieved through a combination of the
principal curve [22] and K-means methodology.

This paper proceeds as follows. In Section 2, we introduce the motivating traffic data
application in more detail; explicitly making the case for the usefulness of the proposed
methodology in this field. In Section 3, we recall the linear latent variable model and
then develop the quadratic one, including the estimation approach. Simulation studies
that demonstrate the efficiency of the estimation methodology are presented in Section 4.
Equipped with the methodology, we can formulate the required algorithms in Section 5.
In Section 6, we return to the speed-flow data, producing the directed clustering results
for the considered datasets. In Section 7, we draw some parallels between the presented
approach and principal curves before the paper is concluded with a Discussion in Section 8.

2. Motivating Application: Speed-Flow Data

Although most drivers typically do not give much thought to the physics of the
traffic they are in, they instinctively understand the mechanisms that determine road
conditions. Drivers are aware that, when traffic density [vehicles/distance] is low, their
speed is essentially only restrained by the speed limit. Once traffic is denser, this does not
immediately impact their speed but will increase the flow [or throughput; vehicles/time]
of vehicles passing each fixed location. However, when traffic is too dense, the speed
is impacted, up to a point when vehicles are jammed and both speed and flow break
down synchronously.

This is precisely the story told by the scatterplot depicted on the left side of Figure 1.
This plot depicts measurements of traffic speed and flow on the California freeway SR57-N,
recorded from 9 July 2007, 9 am, to 10 July 2007, 10 pm, on Lane 5, with 444 observations.
The data, which are available as part of a dataset calspeedflow in the R package LPCM [23],
were collected by a loop-detector at a fixed ‘vehicle detector station’. Each point in the
scatterplot represents the number of vehicles passing over the loop detector within a 5-min
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interval (flow; x-axis) and the average speed (in miles per hour) of those vehicles in that
interval (y-axis).

Direct statistical analyses of speed-flow data are not very widespread in the literature
due to potential bimodalities in both coordinate directions, which precludes regression
analysis in either orientation. Ref. [24] fitted principal curves to speed-flow data patterns
from the California PeMS database. Using data from the same source, but additionally
involving a third variable (occupancy, the length of time a vehicle takes to drive over a
loop), Ref. [25] demonstrated through the use of an agglomerative clustering algorithm
that five clusters can typically be identified. Ref. [26] used K-means clustering to identify
the transition point from uncongested to congested conditions in speed-flow data from the
metropolitan area of São Paulo, Brazil.

The left panel in Figure 1 shows the clustering of the calspeedflow dataset through
K-means with five clusters (as in [25]) using the kmeans function available in R. While the
clusters appear nicely lined up along the data cloud, it is important to note that they are
not actually ordered—neither K-means nor any other commonly used clustering algorithms
inherently provide a method for arranging the clusters in any ordered relationship with
each other. In this paper, we follow the approaches of both [24,26], and analyze such
data directly in speed-flow space, combining the notions of curvilinear approximation
and clustering.

Indeed, considering Figure 1 (left), it is intuitive to postulate the presence of a latent
variable, starting in the top left corner of the data and proceeding, continuously and
smoothly, to the bottom right of the data cloud. An obvious question is then, why would
anyone be interested in such a latent variable? To answer this question, we need to
appreciate that the observed pattern is not coincidental: beyond the intuitive arguments
given in the first paragraph of this section, one can resort to the fundamental identity of
traffic flow, which states that, under certain conditions on the stationarity and homogeneity
of the traffic, speed v and flow q are related through the fundamental identity q = dv,
where d is the traffic density.

As illustrated by [24], traffic density is a monotone transformation of the described
latent variable. A mathematical reason for this monotonicity involves the following: Note
that the fundamental identity of traffic flow implies v/q = 1/d, i.e., the traffic density is
determined by the (inverse of) the ratio of speed and flow. Hence, the traffic density at each
point is uniquely determined by the slope of the line connecting that point to the origin. For
there to be a break in the monotony of traffic density along the latent variable describing
the curved data shape, a line through the origin would need to intersect that curve twice.
When considering Figure 1 (left), it looks unlikely that this property is strongly violated
here, and as we will see in Section 5, it is certainly not violated for the sequence of ordered
(directed) cluster centers identified by our methodology.

The data in Figure 1 (right) show a pattern that differs from the typically reported
behavior. This dataset was collected from 0:00 to 19:59 on the southbound California
Freeway SR57-S, with 240 observations in total, as presented in [24]. Just like the previous
dataset, it was originally extracted from the PeMS 7.3 database. As explained in [24], the
unusual pattern is likely explained by the presence of heavy vehicles (vehicles with a
larger-than-standard gross vehicle weight rating, such as trucks or buses) on a slow lane,
where increased speed is counterproductive as it leads to larger stopping distances and,
hence, reduces flow. Imagine a latent variable tracing a curvilinear path from the top left
to the bottom right of this data cloud. By reasoning similar to the previous example, the
assumption that traffic density increases monotonically with respect to the latent variable
is plausible. The right panel in Figure 1 also gives the K-means clustering for this dataset.

To summarize, achieving a directed clustering of the data with respect to the latent
variable simultaneously results in a directed clustering with respect to traffic density,
which is immediately and intrinsically meaningful and interpretable. According to [25],
density is “the primary factor to determine the level of service on a freeway”. So, the
algorithmic determination of cluster membership ranked by traffic density enables an
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automatic assessment of the road’s operating condition (congested, free-flow, etc.) with
immediate relevance for traffic control strategies and intelligent transportation systems.
On the contrary, a plain establishment of cluster membership, such as through K-means
as in Figure 1, does not allow for identifying the operating condition on the road without
additional information about the meaning of these clusters.

Of course, in other applications, it may even be useful to carry out directed clustering
along a latent variable that has no such physical meeting. But if it has, as in the present
application, the case for such a method is particularly compelling.

We provide the required methodology for directed clustering along curvilinear data
structures in the following sections and will return to this example in Section 6.

3. Methodology
3.1. Modeling

Consider multivariate data xi ∈ Rm, m > 1, i = 1, 2, . . . , n. The model proposed
by [16] considers the data generated by a latent variable plus Gaussian noise as follows:

xi = α + βzi + εi, (1)

where the univariate random effects zi are realizations of a random variable Z with density
function ϕ (where no distributional assumption is made), α ∈ Rm and β ∈ Rm are m-variate
parameter vectors, and εi ∈ Rm are independent Gaussian errors with a diagonal variance
matrix Σ = diag(σ2

j ){1≤j≤m} ∈ Rm×m.
This model is limited by its linear nature, particularly in handling multivariate data

structures with the curvature. Given the existence of a non-linear structure in the motivat-
ing example data, it becomes apparent that a non-linear model is needed to capture the
curvature effectively. In this paper, we propose a quadratic extension of the linear random
effect model to allow the fitting of non-linear multivariate data. This extended model can
be written as follows:

xi = α + βzi + ηzi
2 + εi, (2)

where zi ∈ R is again a univariate random effect, which can be considered the curve
parameterization of a quadratic curve through m-variate space, which is defined by m-
variate parameters α, β and η. As before, εi ∼ Nm(0, Σ) are independent Gaussian errors.
For a simplified presentation, we combine both models into a single formulation, as follows:

xi = g(zi, θ) + εi, (3)

where g(z, θ) = α+ βz with θ = (αT , βT)T , or g(z, θ) = α+ βz+ ηz2 with θ = (αT , βT , ηT)T

according to Equations (1) or (2), respectively, and proceed (as long as possible) with a
unified presentation of the methodology.

Under formulation (3), the conditional probability density function of xi is a multivari-
ate normal distribution, which can be expressed as follows:

f (xi|zi, θ) =

(2π)−m/2|Σ|−1/2 exp
{
−1

2
(xi − g(zi, θ))TΣ−1(xi − g(zi, θ))

}
.

To find the likelihood function, we need to first obtain the marginal probability density
function f (xi|θ) for observations generated from model (3), which can be written as follows:

f (xi|θ) =
∫

f (xi, zi|θ)dzi =
∫

f (xi|zi, θ)ϕ(zi)dzi,

where f (xi, zi|θ) is the joint probability distribution of (multivariate, observed) data xi and
(univariate, unobserved) random effects zi. In principle, the distribution Z of the zi can
be Gaussian or non-Gaussian. If it is non-Gaussian, then one will generally not be able
to find an analytical form for the marginal density function. Following the approach for
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the linear latent variable in [16], we do not make any explicit assumptions regarding the
distribution Z of the zi. Instead, we use the nonparametric maximum likelihood approach
for mixture models, intensely discussed by Aitkin et al. [27] and based on theoretical
results leading back to [28], in order to deal with the integration over zi. Specifically, we
replace the integral with a set of mass points z1, z2, . . . , zk and their corresponding masses
π1, π2, . . . , πk, where k = 1, 2, . . . , K, so that the approximated marginal probability density
function can be written as follows:

f (xi|θ) ≈
K

∑
k=1

f (xi|zk, θ)πk,

which is a mixture of Gaussian components, i.e.,

xi|zk, θ ∼ Nm(g(zk, θ), Σ), (4)

and mixture probabilities πk, k = 1, . . . , K.

3.2. EM Algorithm

Since the marginal likelihood resulting from specification (4) is not tractable, an EM
algorithm is used, which is the most common way of estimating a mixture model [29]. In
order to set up the EM algorithm, with component membership serving as the ‘missing infor-
mation’, let us define an indicator variable Gik, where it equals 1 if the observation i belongs
to mixture component k; otherwise, it equals 0. Defining further fik = f (xi|zk, θ), it is clear
that P(yi, Gik = 1) = fikπk, and so the probability of the ‘complete data’ (xi, Gi1, . . . , GiK)
is as follows:

P(xi, Gi1. . . . , GK) =
K

∏
k=1

( fikπk)
Gik .

Hence, the complete log-likelihood is as follows: ∏n
i=1 ∏K

k=1( fikπk)
Gik , and the expected

complete log-likelihood has the following form:

lc =
n

∑
i=1

K

∑
k=1

E[Gik|xi] log(πk fik) =
n

∑
i=1

K

∑
k=1

wik log πk +
n

∑
i=1

K

∑
k=1

wik log f (xi|zk, θ), (5)

where wik = E[Gik|xi] = P(Gik = 1|xi) =
πk fik

∑l πl fil
is the ‘posterior’ probability of observation

i belonging to component k. The expected log-likelihood (5) with the specified expression
for f (xi|zk, θ) can be rewritten as follows:

lc =
n

∑
i=1

K

∑
k=1

wik log(πk) +
n

∑
i=1

K

∑
k=1

−1
2

wik log(|Σ|) +
n

∑
i=1

K

∑
k=1

−m
2

log(2π)wik

+
n

∑
i=1

K

∑
k=1

−1
2

wik(xi − g(zk, θ))TΣ−1(xi − g(zk, θ)).

(6)

The E-step of the expectation–maximization algorithm is then given by the following:

wik =
πk fik

∑l πl fil

and the M-step is derived by taking partial derivatives of lc with respect to each parameter,
setting these score equations to 0, and solving them. For the linear latent variable model
(1), the resulting estimates, θ̂ = (α̂T , β̂T)T , Σ̂, and ẑk, π̂k, k = 1, . . . , K, are provided in [16],
with publicly accessible implementation in the R package [30], and are not repeated here.
For the quadratic model (2), these derivations are more involved, and detailed in the next
subsection.
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3.3. The M-Step for the Quadratic Model

For model (2), taking partial derivatives of (6) w.r.t. α, β, η, and zk, leads to a complex
set of expressions that we provide in Appendix A. However, these expressions involve
many matrix inversions and are computationally not very stable to evaluate. Therefore,
we follow the approach in [16], where, only within these expressions, we assume that
Σ̂ ≡ diag(σ2), for some constant σ2, which does not need to be specified since it cancels
out from the resulting simplified update equations for α, β, and η. The resulting simplified
estimators are then given by the following:

α̂ =
1
n

(
n

∑
i=1

xi − β̂
n

∑
i=1

K

∑
k=1

wik ẑk − η
n

∑
i=1

K

∑
k=1

wik ẑ2
k

)
, (7)

β̂ =
∑n

i=1 ∑K
k=1 wik(xi − α̂ − η̂ẑ2

k)ẑk

∑n
i=1 ∑K

k=1 wik ẑ2
k

, (8)

η̂ =
∑n

i=1 ∑K
k=1 wikxi ẑ2

k − α̂ ∑n
i=1 ∑K

k=1 wik ẑ2
k − β̂ ∑n

i=1 ∑K
k=1 wik ẑ3

k

∑n
i=1 ∑K

k=1 wik ẑ4
k

. (9)

The estimates of zk will be obtained by solving the cubic equation as follows:

(
n

∑
i=1

m

∑
j=1

2 · wikη̂2
j )zk

3 + 3 · (
n

∑
i=1

m

∑
j=1

wik β̂ jη̂j)zk
2

−(
n

∑
i=1

m

∑
j=1

2 · wikxijη̂j −
n

∑
i=1

m

∑
j=1

2 · wikα̂jη̂j −
n

∑
i=1

m

∑
j=1

wik β̂2
j )zk

−(
n

∑
i=1

m

∑
j=1

wikxij β̂ j −
n

∑
i=1

m

∑
j=1

wikα̂j β̂ j) = 0.

(10)

Unfortunately, there is still an added complication since, even when conditional on α̂,
β̂, and η̂, obtaining the analytical form of ẑk is not possible. However, the score equation
(10) is a cubic equation of zk, for which solvers exist in standard software packages. We use
the polyroot() function (available in the base [31] R package) to solve this cubic equation.
It is important to note that the roots of a cubic equation fall into two scenarios: (i) one
real root and two complex roots, in which case we consider the real root as the estimate
of zk, and (ii) three real roots, where we always choose the smallest absolute root in the
implementation.

The estimates in Equations (7)–(10) still depend on each other, but they do not depend
on Σ̂. Hence, within each M-step of the EM algorithm, one can iterate between them a small
number of times, then estimate πk via π̂k =

1
n ∑n

i=1 wik, and finally estimate the entries of Σ
via the following:

σ̂j
2 =

∑n
i=1 ∑K

k=1 wik(xij − α̂j − β̂ j ẑk − η̂ẑ2
k)

2

n
. (11)

The simulation study in the following section demonstrates that this procedure accurately
estimates the model parameters. It is also noted that, as in [16], one can work with cluster-
dependent variance matrices Σk, k = 1, . . . , K, which vary in size and shape. However,
in the context of directed clustering, the benefits of doing so are limited. Therefore, we
relegate a brief consideration of cluster-dependent variance matrices to Appendix B but
continue with the homoscedastic case in the main flow of this paper.

4. Simulation

We conducted a simulation study to evaluate the accuracy of parameter estimation for
the quadratic latent variable model (2), based on an implementation of the EM algorithm
according to Section 3.3. We consider a simple scenario where xi are 2-dimensional data
generated according to model (4) from K = 4 mixture components, with three sample
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sizes n = 100, n = 300, and n = 500. The true model parameters are displayed in the
left column of Table 1. Figure 2 shows the data structures of the data we used for this
simulation study. We generate 300 replicates for each sample size, respectively. For each of
the 300 replicates (for each sample size), we run the EM algorithm 20 times to select the
best estimates with the smallest BIC value; this process aids in selecting a good starting
value for the EM algorithm.

Figure 2. Simulated data with a sample size of 500. The fitted curve is displayed in black, and the
mixture centres are given by red triangles.

Table 1. Simulation results for all parameters.

Average Estimates

True n = 100 n = 300 n = 500

π1 0.1500 0.1269 0.1269 0.1355
π2 0.2000 0.1949 0.1954 0.1946
π3 0.3000 0.2916 0.2963 0.2971
π4 0.3500 0.3866 0.3814 0.3727

z1 1.2696 1.2834 1.2847 1.2769
z2 0.2402 0.2091 0.2021 0.2179
z3 −0.4461 −0.4635 −0.4579 −0.4497
z4 −1.0637 −1.0289 −1.0288 −1.0451

α1 5.0000 5.4230 5.3237 5.3444
α2 15.0000 14.9822 15.0769 15.0253

β1 −5.0000 −6.6284 −6.5173 −6.0477
β2 15.0000 14.1142 14.3244 14.3750

η1 5.0000 4.8833 4.8010 4.9135
η2 10.0000 10.4077 10.3825 10.2027

σ1 1.0000 1.1239 1.1701 1.1103
σ2 2.0000 2.2411 2.3176 2.2107

The averaged estimates are shown in Table 1, and boxplots of the estimates for some
of the parameters are provided in Figures 3–6. Firstly, we observe that as the sample size
increases, the boxplots squeeze towards the true values for each parameter, indicating
empirically the consistency of the proposed estimation procedure. For the zk, this is less
clearly visible, since even at n = 100, the interquartile range (IQR) is already very small.

We also observe that the averaged estimations in Table 1 are generally very close to
their true values, except for the β parameters. However, closer inspection of Figure 5 shows
that the estimates of β1 and β2 are correctly centered; but there is a considerable amount of
outliers similarly observed in the boxplots for the η parameters (see Figure 6). We proceed
with displaying the mean squared errors (MSEs) for the estimates of the parameters in
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Table 2; note that, for β and η, due to the mentioned presence of outliers, we use the
trimmed MSE [32] with a trimming parameter of 0.1.

Overall, from these tables and boxplots, we find that the estimators give sensible
estimates and that the bias and MSE are reduced with the increase in the sample size.

Table 2. Mean squared errors (MSEs) for all estimated parameters. For β and η, the MSEs are
trimmed with the trimming parameter 0.1.

n = 100 n = 300 n = 500

π1 0.0033 0.0033 0.0021
π2 0.0014 0.0009 0.0006
π3 0.0015 0.0006 0.0005
π4 0.0060 0.0063 0.0042

z1 0.0030 0.0035 0.0020
z2 0.0120 0.0125 0.0071
z3 0.0106 0.0130 0.0101
z4 0.0128 0.0146 0.0092

α1 2.5781 1.6265 1.5941
α2 0.5989 0.3743 0.3437

β1 8.0054 6.4488 1.8666
β2 3.1502 0.0963 0.0190

η1 0.8834 0.5009 0.0934
η2 0.3457 0.3020 0.0454

σ1 0.1428 0.1797 0.1075
σ2 0.5376 0.6173 0.4181

Figure 3. Estimations of parameters π = (π1, π2, π3, π4)
T with different sample sizes.
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Figure 4. Estimations of parameters zk = (z1, z2, z3, z4)
T with different sample sizes.

Figure 5. Estimations of parameters β = (β1, β2)
T with different sample sizes.

Figure 6. Estimations of parameters η = (η1, η2)
T with different sample sizes.
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5. Algorithms Required for Directed Clustering

Given a multivariate dataset xi ∈ Rm, m > 1, i = 1, 2, . . . , n, we first need to decide
whether to fit the data with the linear model or the quadratic model. The model selection
process is carried out with Algorithm 1. The algorithm requires the specification of a
maximum considered number of components, Kmax. We suggest taking Kmax = 10, as in
practical applications there will rarely be a need to use more than 10 components. This is
similar to the ‘nonparametric maximum likelihood estimation’ of standard mixture models;
the monograph by Aitkin et al. [27] discusses this approach extensively.

Algorithm 1: Model selection

(i) Choose an integer Kmax and fit the linear model (1) and the quadratic model (2)
separately to the data, for all K = 2, 3, . . . , Kmax.

(ii) For each model type, (1) and (2), select the best-fitting model by identifying the
value of K yielding minimum BIC values.

(iii) We compare the BIC values from the best-fitting linear model and the best
fitting quadratic model. The model with the minimum BIC value will be our
chosen model.

From the best-fitted model according to Algorithm 1, we obtain the posterior probabil-
ity matrix W = (wik)1≤i≤n,1≤k≤K and the estimated mass points ẑ1, . . . , ẑK. Each mass point
ẑk has a corresponding mass π̂k, and each pair of mass points and its mass has a matching
column in the W matrix. The directed clustering of m-dimensional non-linear data {xi}
will be obtained according to Algorithm 2.

Algorithm 2: Directed clustering

(i) Fit the data {xi} according to the best model identified by Algorithm 1.
(ii) Order the estimated mass points ẑ1, . . . , ẑK in an ascending order.
(iii) Reorder the columns of W according to the ascending order of mass points.
(iv) Perform the clustering rule (e.g., MAP rule, k̂(xi) = maxk wik) on the rows of the

reordered W matrix.

Following the strategy above, each observation xi will be assigned to a cluster k, which
is ordered along the curve g(z, θ̂) according to the latent variable, represented by the values
of the mass points ẑk.

6. Application on Speed-Flow Data
6.1. Model Selection

We apply Algorithm 1 to the two datasets introduced in Section 4. We fit both the
linear model and the quadratic model with different numbers of mixture components K,
where Kmax = 10. Tables 3 and 4 show the BIC values for the speed-flow data from the left-
and right-hand panels of Figure 1, respectively. Comparing the minimum BIC values of
the fitted linear model and the fitted quadratic model indicates that the quadratic model
provides a better fit for each of these two datasets; the quadratic model with K = 4 is
selected for the first dataset, and the quadratic model with K = 8 for the second dataset.

Figures 7 and 8 illustrate the fitting process of the quadratic model across the con-
sidered range of K values. They show that generally increasing K improves the model fit
(decrease bias); however, as is known from the ‘usual’ nonparametric maximum likelihood
estimation [27], once it reaches a certain K value, increasing the number of mass points
further will no longer make much improvement to the fitting. From Tables 3 and 4, one can
see that the quadratic models achieve their optimal BIC values at larger values of K than
the linear models. The reason for this behavior is that the quadratic shape of the curves
allows capturing clusters, which would otherwise be masked when simply projecting onto
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a line; this becomes intuitive when looking at the collection of clusters on the left part of
each scatterplot in Figure 8.
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Figure 7. The calspeedflow data from the northbound freeway SR57-N, fitted with a quadratic
curve (in blue) and mass points represented by red triangles, with different numbers of mixture
components.

Table 3. The BIC values for both the linear model and the quadratic model fitted with different
number of mixture components, for the left hand data from Figure 1. The best fit for each model type
is indicated in bold letters.

K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10

Linear 7545.65 7557.84 7570.03 7582.23 7594.42 7606.61 7618.80 7630.99 7643.18
Quadratic 7557.84 7391.20 7359.93 7371.79 7365.24 7364.84 7374.60 7382.78 7401.42

Figure 7. The calspeedflow data from the northbound freeway SR57-N, fitted with a quadratic
curve (in blue) and mass points represented by red triangles, with different numbers of mixture
components.

Table 3. The BIC values for both the linear model and the quadratic model fitted with different
numbers of mixture components, for the left-hand data from Figure 1.

K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10

Linear 7545.65 7557.84 7570.03 7582.23 7594.42 7606.61 7618.80 7630.99 7643.18
Quadratic 7557.84 7391.20 7359.93 7371.79 7365.24 7364.84 7374.60 7382.78 7401.42

Note: The best fit for each model type is indicated in bold letters.

Table 4. The BIC values for both the linear model and the quadratic model fitted with different
mixture components, for the right-hand data from Figure 1.

K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10

Linear 3831.80 3776.75 3751.58 3759.37 3766.83 3781.53 3786.85 3797.42 3808.69
Quadratic 3842.76 3751.23 3700.76 3709.41 3696.52 3694.48 3689.92 3696.85 3705.95

Note: The best fit for each model type is indicated in bold letters.
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Figure 8. Speed-flow data from the southbound freeway SR57-S, fitted with a quadratic curve (in
blue) and mass points represented by red triangles, with different numbers of mixture components.

Table 4. The BIC values for both the linear model and the quadratic model fitted with different
mixture components, for the right hand data from Figure 1.

K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10

Linear 3831.80 3776.75 3751.58 3759.37 3766.83 3781.53 3786.85 3797.42 3808.69
Quadratic 3842.76 3751.23 3700.76 3709.41 3696.52 3694.48 3689.92 3696.85 3705.95
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Figure 11 displays the dk against k. It is visible from this plot that this relationship is indeed 352

Figure 8. Speed-flow data from the southbound freeway SR57-S, fitted with a quadratic curve (in
blue), and mass points represented by red triangles, with different numbers of mixture components.

6.2. Directed Clustering

Now, we demonstrate how Algorithm 2 can be applied to obtain directed clustering of
the speed-flow datasets. Based on the output of Algorithm 1, we fit the quadratic model
with K = 4 and K = 8 mass points, respectively, to the two datasets. The estimated mass
points ẑ1, ẑ2, . . . , ẑK and the posterior probability matrix W are obtained at the convergence
of the EM algorithm. These are then reordered according to steps (ii) and (iii) of Algorithm 2.
This is followed by applying the maximum a posteriori (MAP) clustering rule according to
step (iv). The resulting clusterings are illustrated in the left panels of Figures 9 and 10. One
can see how the clusters are lined up along the estimated curve, and ordered with respect
to the latent variable that parameterizes the curve.

Returning to the considerations expressed in Section 2, one can relate the clustering
to traffic density. This argument can be made explicit by computing the theoretical traffic
density at each mass point according to the fundamental diagram, which is given by
the following:

dk =
qk
vk

=
g(ẑk, θ̂)[1]

g(ẑk, θ̂)[2]

where the indices [1] and [2] stand for the first and second elements of the vector, respec-
tively. Figure 11 displays the dk against k. It is visible from this plot that this relationship
is indeed monotone, endorsing that the latent variable has a meaningful interpretation in
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terms of the traffic density; hence, the clusters are ordered from the top left to the bottom
right end by increasing traffic density, starting with low densities at the top left end and
proceeding toward larger densities in the bottom right end.

For the first dataset, Table 5 reports the ordered cluster labels with the estimated ẑk, as
well as the center coordinates g(ẑk, θ̂) in the data space, and the density values derived as
above. It is clear from this table that the clusters represent increasing density (congestion)
from K = 1 to K = 4. Note that the information required to display this table is already
available from part (ii) of Algorithm 2.

Additional features and insights can be obtained from the output (iv) of
Algorithm 2. Specifically, we can obtain the posterior random effect through the use
of zi

∗ = ∑K
k=1 wik ẑk [33], where wik represents the posterior probabilities for each obser-

vation. The zi
∗ can serve as one-dimensional summary information for the xi and can be

used for ranking purposes. The right-hand panels in Figures 9 and 10 show the resulting
projections, i.e., the segments connecting xi with g(zi

∗, θ̂), along the fitted curve for the
respective datasets. In practice, it means that each observation (each 5-min interval of
speed- and flow values) can be immediately associated with a specific cluster, correspond-
ing to a certain operating condition at the measured location. This information could
then be used by intelligent transportation systems to take appropriate action, or perhaps
just to flag a ‘congestion score’ (in the form of the current cluster label) to relevant road
management authorities.

Additionally, we can construct a ‘league table’ of the observations, ranked by the zi
∗.

We illustrate this here only for the first dataset, i.e., the left one in Figure 1, with results
shown in Table 6. The table displays the matrix of posterior probabilities, W, with rows
reordered according to increasing z∗i . The values z∗i are given in the second column of
the table. The last column displays the clustering allocation according to the MAP rule.
One sees from the table that information provided by the matrix W is much more fine-
grained than that provided by the MAP rule. For instance, we see that the observation
at the time stamp 03:35:00 is clearly allocated to mass point 1 (a low-density mass point),
whereas the one at 05:35:00 is undecided between the mass points with the lowest and
second-lowest density.

Due to the presence of 444 time stamps, it is impossible to include all in the table.
Therefore, we only show a portion of the full ‘league table’ in Table 6. Note that the 5-min
time periods are not ‘ranked’ chronologically in the table. The four mass points represent
four levels of traffic density, ranging from mass point 1 to mass point 4, corresponding to the
time period with the lowest traffic density to the time period with the highest traffic density.
Most of the time periods that have been clustered to low traffic density are between 23:00:00
to 05:35:00; most of the time periods between 05:50:00 and 07:15:00 and the time between
19:45:00 and 23:05:00 are assigned to mass point 2. The time periods from the morning rush
hour until around 14:00:00 are assigned to the second high traffic density mass point 3, and
most of the time between 14:10:00 and 18:35:00 exhibit the highest traffic density.

Table 5. For the dataset from the northbound freeway, the results of the directed clustering algorithm:
ordered cluster labels (first column), cluster centers in latent space and data space (second and third
columns, respectively), derived density values (final column).

K ẑk (qk, vk) dk

1 −1.14 (15.46, 51.78) 0.30
2 −0.36 (52.95, 60.62) 0.87
3 0.27 (79.06, 55.75) 1.42
4 1.22 (111.62, 28.02) 3.98
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Table 6. For the calspeedflow data with K = 4, posterior probability matrix W with application
to classification and ranking. Posterior probabilities: 0.10 < p < 0.90, 0.90 ≤ p < 0.95,
0.95 ≤ p < 1. (Note that we highlight the largest probability only if it exceeds 0.90.)

Time Stamp Posterior Intercept Mass Points MAP
k 1 2 3 4

π̂k 0.18 0.19 0.39 0.24
z∗i ẑk −1.14 −0.36 0.27 1.22

03:35:00 −1.14 1.00 0.00 0.00 0.00 1
03:55:00 −1.14 1.00 0.00 0.00 0.00 1
02:05:00 −1.14 1.00 0.00 0.00 0.00 1
02:35:00 −1.14 1.00 0.00 0.00 0.00 1

...
...

...
...

...
... ...

05:35:00 −0.78 0.54 0.45 0.01 0.00 1
23:10:00 −0.63 0.35 0.65 0.00 0.00 2
22:30:00 −0.56 0.27 0.72 0.01 0.00 2

...
...

...
...

...
... ...

06:00:00 −0.41 0.07 0.92 0.01 0.00 2
06:15:00 −0.40 0.06 0.93 0.01 0.00 2

...
...

...
...

...
... ...

20:05:00 −0.35 0.00 0.98 0.02 0.00 2
21:30:00 −0.34 0.02 0.94 0.04 0.00 2

...
...

...
...

...
... ...

20:30:00 −0.07 0.00 0.55 0.45 0.00 2
20:10:00 −0.03 0.00 0.49 0.51 0.00 3

...
...

...
...

...
... ...

19:30:00 0.22 0.00 0.09 0.91 0.00 3
10:15:00 0.22 0.00 0.09 0.91 0.00 3
13:05:00 0.22 0.00 0.09 0.91 0.00 3
10:05:00 0.22 0.00 0.09 0.91 0.00 3

...
...

...
...

...
... ...

11:30:00 0.26 0.00 0.02 0.98 0.00 3
09:55:00 0.26 0.00 0.01 0.99 0.00 3
13:40:00 0.26 0.00 0.01 0.99 0.00 3

...
...

...
...

...
... ...

14:00:00 0.27 0.00 0.00 1.00 0.00 3

...
...

...
...

...
... ...

17:10:00 1.22 0.00 0.00 0.00 1.00 4
18:25:00 1.22 0.00 0.00 0.00 1.00 4
17:40:00 1.22 0.00 0.00 0.00 1.00 4
17:30:00 1.22 0.00 0.00 0.00 1.00 4
17:55:00 1.22 0.00 0.00 0.00 1.00 4
18:00:00 1.22 0.00 0.00 0.00 1.00 4
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Figure 9. For the calspeedflow data, left panel: clustering of the speed-flow data using the MAP
rule; right panel: clustered projections (dashed lines) of the the speed-flow data.

Figure 10. For the second speed-flow dataset, on the southbound freeway SR57-S, left panel:
clustering of the speed-flow data using the MAP rule; right panel: clustered projections (dashed
lines) of the speed-flow data.

Figure 11. The ratio of flow over speed against zk for the two speed-flow datasets, presented in the
same order as in Figure 1.

7. Comparison with Principal Curves

The fitted curves shown in the previous sections suggest that this methodology could
be seen as another approach to estimating principal curves [22]. Both principal curves and
the proposed methodology aim to approximate multivariate datasets with smooth curves
parameterized by a one-dimensional latent variable.
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It is clear that the model formulation (3), which encompasses both the linear and the
quadratic case, can be seen as special cases of a generative data model

xi = g(zi) + εi, (12)

where g : R 7→ Rm is a smooth curve. This model was formulated by Hastie and
Stuetzle [22] as their base model for their approach to estimating principal curves, infor-
mally defined as ‘smooth curves passing through the middle of a dataset’. Their estimation
approach is based on the self-consistency property, loosely meaning that each point on the
curve is the mean of all data points, which project onto that point. Under this approach,
g is not actually the principal curve for data generated from the model (12). An example
illustrating this point is provided by [34]. However, conceptually, it is still right to think
of ‘principal curves’ being a concept trying to estimate g in (12), and other principal curve
definitions, such as by Ref. [34], do not suffer from this conceptual issue. Some principal
curve estimation approaches, including local principal curves [35], do not even postulate
an underlying model at all. In either case, the similarity between (3) and (12) justifies a
brief comparative look at our approach in relation to principal curves.

Here, we restrict to the first of the two speed-flow datasets. We choose to fit the quadratic
model with K = 4, which leads to a minimum BIC value of 7359.93, for comparison with the
principal curves. We also fit the data with a Hastie and Stuetzle principal curve, using the R
package princurve [36], and a local principal curve (LPC), using R package LPCM [23]. The
results are shown in Figure 12. We observe that both the fitted HS principal curve (top left
panel) and the curve arising from the quadratic latent variable model (bottom panel) fail to
fully capture the curvature of the data. In contrast, the local principal curve (top right panel)
manages to pull into the endpoint associated with maximum traffic density. One can still
argue that the latent variable model produces a sensible result: The methodology aims to
locate the mixture centers, which it has done convincingly, and other points around them
are considered just noise (belonging to the respective clusters).
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Apart from qualitatively comparing the fitted curves, it is hence not fair to use a
quantitative assessment, such as goodness of fit, to compare them, given the different
characteristics of the projections from these methods.

Figure 12. Top: Hastie-Stuetzle (left) and local principal curve (right) with orthogonal projections of
the data onto the fitted curve; bottom: the fitted curve resulting from the quadratic latent variable
model, with projections onto the curve defined by the realization of the latent variable at the posterior
random effect of the respective data point.

8. Discussion

We have presented an approach for the clustering of multivariate data which enables
an ordering of clusters along a curve parameterized by a latent variable, which is estimated
from the data alongside the clustering process. We have illustrated this concept in the
context of a linear and a quadratic latent variable model. We have shown how to choose
between these models, how to implement the estimators, and how to interpret the results.
Particular attention has been devoted to an application in traffic engineering, where the
latent variable has a meaningful interpretation, corresponding to the traffic density. Ap-
plication of the proposed methodology is of course not restricted to this field. There is
indeed no limitation of the field of science where this approach is potentially applicable.
While the idea of a latent variable representing some ’underlying governing process’ seems
more natural in the physical sciences, the concept of latent variables is home to many other
sciences including fields like education or economics, as alluded to in the introduction.
However, it is not actually necessary for the researcher to identify or justify the existence of
a governing process in order to use the presented approach. As a minimum, there should
be a belief, grounded in subject matter expertise, that the relative ordering of the clusters is
informative. In doing so, the existence of a latent variable spanning the centers is postulated
— and then the methodology does the job of estimating it.

Our work can be seen as a contribution towards the development of clustering algo-
rithms which account for the governing process underlying the data at hand. As pointed

Figure 12. Top: Hastie–Stuetzle (left, solid) and local principal curve (right, solid) with orthogonal
projections (dashed) of the data onto the fitted curve; bottom: the fitted curve (solid) resulting
from the quadratic latent variable model, with projections (dashed) onto the curve defined by the
realization of the latent variable at the posterior random effect of the respective data point.
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The main difference between the approaches lies in the way the projections are carried
out, as is evident in Figure 12. While under the HS and LPC frameworks, one has orthogonal
projections; under the latent variable approach proposed in this paper, one does not, since
the dashed lines xi − g(z∗i , θ̂) are driven toward the cluster centers.

Apart from qualitatively comparing the fitted curves, it is not fair to use a quantitative
assessment, such as the goodness of fit, to compare them, given the different characteristics
of the projections from these methods.

8. Discussion

We presented an approach for clustering multivariate data that enables the ordering of
clusters along a curve parameterized by a latent variable, estimated alongside the clustering
process. We illustrated this concept in the context of linear and quadratic latent variable
models. We showed how to choose between these models, how to implement the estimators,
and how to interpret the results. Particular attention was devoted to an application in traffic
engineering, where the latent variable had a meaningful interpretation, corresponding
to the traffic density. The application of the proposed methodology is not restricted to
this field; it has potential applicability across various scientific fields. While the idea of
a latent variable representing some ‘underlying governing process’ seems more natural
in the physical sciences, the concept of latent variables is home to many other sciences,
including fields like education or economics, as alluded to in the introduction. However, it
is not actually necessary for the researcher to identify or justify the existence of a governing
process in order to use the presented approach. At a minimum, there should be a belief that,
grounded in subject matter expertise, the relative ordering of the clusters is informative. In
doing so, the existence of a latent variable spanning the centers is postulated—and then the
methodology estimates it.

Our work contributes to the development of clustering algorithms that account for the
governing process underlying the data at hand. As pointed out by a referee, mathematical
clustering models are ineffective if they do not consider important driving factors that
contribute to the generation of patterns. The proposed methodology allows the identi-
fication of a potentially existing latent variable driving the data-generating process and
also allows for the further processing of this latent variable through its posterior random
effects. This could include applications such as regression or correlation with actually
measured physical variables. Conceptually, it would be even more desirable to directly
include the knowledge of the governing process of the data in the clustering algorithm. To
a certain extent, this could be achieved by adjusting the clustering process for the presence
of influencing variables. For instance, in the context of the traffic examples, one may want
to adjust for spatial or temporal factors. This would require the inclusion of covariates into
the model (3). In the case of the linear model relationship (1), this was developed in [16],
and could be extended to the more general framework presented here.

It is apparent that the restriction to linear and quadratic latent variable models is
a possible limitation of the presented methodology. To overcome this restriction, more
complex shapes of latent variable models could be considered, such as:

xi =
p

∑
j=0

αjBj(zi) + εi, (13)

where xi ∈ Rm and zi ∈ R play the same roles as before, Bj(zi) can be regarded as
any real-valued basis function, such as a B-spline or polynomial, and αj is a m-variate
parameter vector. These still fit into the notational framework defined by (3), but now
with θ = (αT

0 , . . . , αT
p )

T . The potential power of such an approach becomes evident when
considering the LPC fit in Figure 12, which shows that there is still considerable scope
for improvement in fitting capability for sufficiently complex data patterns. However,
given the difficulties of even estimating the quadratic model (2), requiring a combination
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of iterative statistical algorithms (EM) and numerical root finders, it will be a considerable
challenge to devise an algorithm to estimate this model in full generality.

To prevent doubt, we would like to highlight that we do not advocate this methodology
as a superior or favorable clustering technique for generic clustering applications. While
the added structure embedded into the model may lend, in some occasions, computational
stability to the clustering process, there is no general advantage of using this approach if one
is not interested in the directional aspects of the clusters. One reason for this is that the linear
or quadratic models constrain the flexibility in positioning the cluster centers, which generally
will not lead to more precise or better-fitting clusters than conventional approaches.

Apart from the directional clustering itself, further applications of this approach arise
from the presented methodology such as the construction of rankings or ‘league tables’.
While it could be felt that the construction of the league table for the traffic dataset was
a slightly contrived exercise—for other applications, such as when considering sets of
educational attainment indicators [16], or economic indicators such as import/export
activity, it will not. We leave such considerations for interested researchers to ponder over.
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Appendix A

The original expressions for α, β, and η are written as the following, derived by
equating partial derivatives of the expected complete log-likelihood (6) to zero:

α̂ =

(
n

∑
i=1

K

∑
k=1

wikΣ̂−1

)−1( n

∑
i=1

K

∑
k=1

wikΣ̂−1(xi − β̂ẑk − η̂ẑ2
k)

)
, (A1)
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η̂ =
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∑
i=1

K

∑
k=1

wikΣ̂−1(xi − α̂ − β̂ẑk)(zk
2)T

)(
n

∑
i=1

K

∑
k=1

wikΣ̂−1zk
4

)−1

. (A3)

The original expression for the cubic equation of zk has the following form:
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∑
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σ̂j
)zk
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∑
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)zk

2
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∑
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∑
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σ̂j
−

n

∑
i=1
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∑
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σ̂j
−

n

∑
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∑
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wik β̂2
j

σ̂j
)zk
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n

∑
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∑
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−
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∑
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m

∑
j=1

wikα̂j β̂ j

σ̂j
) = 0.

(A4)
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Appendix B

For the linear version of model (3), it is possible to use different diagonal variance
matrices for different mixture components, as implemented by [16]. In the quadratic version,
when we use different diagonal variance matrices for different mixture components, the
only change is that Σ will become Σk in the log-likelihood (6). The estimators for α, β, η,
and the cubic equation for zk used in the M-step are the same as in Equations (7)–(10). The
estimator for the diagonal elements of Σk used in the M-step takes the following form:

σ̂2
jk =

∑n
i=1 wik(xij − αj − β jzk − ηzk

2)2

∑n
i=1 wik

. (A5)

When we apply the quadratic model with this type of variance parameterization to the
first speed-flow dataset with both K = 4 and K = 5, we obtain similar clustering results
as before, as shown in Figure A1, with K = 4 leading to the smallest BIC value. However,
we observe that when K = 5, it leads to an undesired clustering result where Cluster 5
is surrounded by data points that belong to Cluster 4. This can cause problems for the
interpretation of the ordered clustering along the fitted curve.

Figure A1. The clustering of calspeedflow data using the variance parametrization with different
diagonal matrices for different mixture components for K = 4 and K = 5.
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