
 Guest (guest)

IP: 129.234.39.132

On: Fri, 13 Sept 2024 12:43:15

196

Teaching coding inclusively
If this, then what?

Olivia Guest
Donders Institute for Brain, Cognition and Behaviour, School of Artificial
Intelligence, Radboud University
olivia.guest@donders.ru.nl

Samuel H. Forbes
Department of Psychology, Durham University
samuel.forbes@durham.ac.uk

Abstract
We present our stance on teaching programming with the aim of in-
creasing ref lexivity amongst university educators through dissecting
and destroying pervasive anti-pedagogical gendered framings. From
the so-called male geek trope that dominates Global North/Western
perceptions of technology to the actively anti-feminist stances such
demographics espouse: programming has a sexism problem. Herein,
we touch on how and why programming is so gendered in the present;
we expound on how we manage this in our classrooms and in our
mentorship relationships; and we explain how to keep doing so moving
forwards. Through weaving examples of programming into the text, it
is demonstrated that basic coding concepts can be conveyed with little
effort. Additionally, example dialogues – exchanges between teachers
and students and between educators – are worked through to counteract
inappropriate or harmful framings. Finally, we list some ground rules,
concrete dos and don’ts, for us to consider going forwards. Ultimately,
as educators, we have a twofold obligation, for our students to a) learn
programming, and for them to b) unlearn problematic perceptions of
who can code.

Keywords: programming, inclusivity, pedagogy

TIJDSCHRIFT VOOR GENDERSTUDIES 27.2/3 (2024) 196-217
https://doi.org/10.5117/TVGN2024.2-3.007.GUES

© Olivia Guest & Samuel H. Forbes
This is an open access article distributed under the terms of the CC BY 4.0 license.

https://creativecommons.org/licenses/by/4.0

https://creativecommons.org/licenses/by/4.0

 Guest (guest)

IP: 129.234.39.132

On: Fri, 13 Sept 2024 12:43:15

Guest & Forbes � 197

Teaching coding inclusively

Scoping the issue

Programming has a sexism problem.1 There is a history of women being not only
the first programmers and the first computers, but also of them being actively
pushed out and expunged from the historical record (Evans, 2020; Hicks, 2017;
Lee Shetterly, 2016). There is also a present day highly masculinised view of the
field starting from children’s perceptions, such as the so-called male geek trope,
which dovetails with masculinist ideologies within the tech sector (Birhane
& Guest, 2021; Erscoi, Kleinherenbrink, & Guest, 2023; Hermans, 2024; Lewis,
Anderson, & Yasuhara, 2016; Margolis & Fisher, 2001; O’Mara, 2022; Salter
& Blodgett, 2017; White, 2020). Furthermore, there is the view that the tech
sector is the only place where coding skills are relevant – a caricature akin to
‘writing is only useful if one wants to be a novelist’ (Hermans & Aldewereld,
2017). In turn, this translates into dissuading girls and women from learning to
code (Busjahn & Schulte, 2013; De Wit, Hermans, Specht, & Aivaloglou, 2024;
Hermans, 2021). The interrelated dynamics of Global North/Western gendered
and racialised perceptions of technology and the pedagogical situations in
which these perceptions are relevant is our focus herein. Teaching programming
must take on these issues against the backdrop of their latent cause: patriarchy.

Given all this, no wonder that women do not appreciate the fun or
usefulness of learning coding, and that the layperson has no idea that
programming is for everybody. If girls, women, and the feminised generally,
are made to believe they are not intelligent or do not belong, or they are
sexually harassed and assaulted (Dresden, Dresden, Ridge, & Yamawaki,
2018; Essanhaji, 2023; McKinley, 2018), the problem lies with the educator,
institute, and society at large for not challenging gender apartheid (Blum
& Frieze, 2005; Goffman, 1977; Lind-Guzik, 2023).

While by no means is it true that everybody needs to code, we make a
different case: everybody already knows how to code at least with respect
to some basic concepts and everybody who wants to learn should be af-
forded the same respect to do so. Because our pedagogical focus herein is
programming, we are at odds with an existing hyper-masculinised culture,
that does not set us on a fair footing to foster deep care for each other’s
experiences in educational and pastoral contexts. Quite the opposite, as
shall be seen: technology culture is interwoven with white supremacy,

 Guest (guest)

IP: 129.234.39.132

On: Fri, 13 Sept 2024 12:43:15

198 � VOL. 27, NO. 2/3, 2024

Tijdschrift voor Genderstudies

capitalism, competition-as-virtue; and it defaults to extremely polarised
gendered archetypes (Erscoi et al., 2023; Hicks, 2017; Little & Winch, 2020).

In this piece, we – under the guidance of our students’ feedback, through
examination of our own (inter)relationships and lived experiences, and
as a function of other academics’ views (Abbiss, 2008; Anderson, 2016;
Hermans, 2021; Kramarae, 1988; Light, Nicholas, & Bondy, 2015; Mayer, 1981;
McCracken et al., 2001; Mitcho, 2016; Sheard et al., 2014; Shrewsbury, 1987;
Turkle, 2005; Webb, Allen, & Walker, 2002) – speak to fellow educators who
ignore these issues at their students’ peril. We aim to probe, dissect, and
destroy anti-pedagogical framings that aid few and harm many, especially
the racialised and feminised, in the academy and beyond. We posit that
such a journey is fraught with danger because of the framing of technology
as masculinised and inappropriate for the feminised, people of colour,
and any minoritised group. In other words, we face the double bind of
being (seen as) both internally and externally hostile to anyone who falls
outside the standard white male geek archetype. Freeing ourselves, at
least within the conf ines of the classroom, is a big ask that we lay bare.

Dysfunctional programming

Figure 1. Historical depictions of programmers and computer technicians serve to (re)
claim such activities. License (in order): a) Raytheon (1969); b), c), and d) Public Domain.

 Guest (guest)

IP: 129.234.39.132

On: Fri, 13 Sept 2024 12:43:15

Guest & Forbes � 199

Teaching coding inclusively

The current state of teaching coding minimally ignores the backdrop of
sexism and maximally plays into it. How do we include those whom their
classmates, other educators, and society at large are excluding? To answer
such questions, the wider context of learners needs to be understood.

From a young age, children learn that tinkering, reverse engineering,
video games, and other such activities, are seen as prototypically mas-
culine (Lien, 2013). Worse, these activities or hobbies are not recognised
as such when the feminised generally take part in them or when these
activities occur in less male-coded settings (Scott, 2019), e.g. puzzle video
games are not seen as true video games, and HTML is not seen as a true
programming language. This facilitates statements, e.g. about women’s
programming capacity, such as in Dialogue 3 (see below), to be seen as
uncontroversial.

Obfuscating women’s interests in and contributions to technology echoes
through the ages (Erscoi et al., 2023); see Figure 1. Culinary recipes are
archetypal algorithms, but cooking is not seen as related to programming
(cf. Shore, 1985). Jaccard looms, machines that weave cloth, are the original
use case for punchcards – physical pieces of paper that were used to program
computers (Harlizius-Klück, 2017). Ada Lovelace invented the f irst computer
program (Aiello, 2016). Women mathematicians and programmers worked
with the f irst digital computer, the ENIAC (Kleiman, 2022). Grace Hopper
invented the compiler (Beyer, 2012). Core rope memory was created through
knitting copper wires by women for NASA’s Apollo missions (Rosner, Shorey,
Craft, Remick, 2018). Margaret Hamilton was Director of the Software
Engineering Division that, inter alia, took humans to the Moon (Hamilton
& Hackler, 2008).

The contradictions rising evermore give us framings such as ‘women
are good at language and men are good at logic and maths’ which fail to
notice logic, maths, and programming languages are all languages. All these
framings are not only sexist, but discombobulating to our students and false
(Kelly, Wang, & Mizunoya, 2022; O’Dea, Lagisz, Jennions, & Nakagawa, 2018;
Voyer & Voyer, 2014). Ultimately, these are typical trends within capitalist
patriarchy, where women’s – and all minoritised people’s contributions
– are systematically hidden from the historical retelling of humanity’s
achievements (also known as cryptogyny, the Matilda effect: Connell &
Janssen-Lauret, 2022; Evans, 2020; Gage, 1883; Hicks, 2017; Kleiman, 2022;
Lee Shetterly, 2016; Pozo & Padilla, 2019; Pozo-Sánchez & Padilla-Carmona,
2021; Rossiter, 1993; Van den Brink & Benschop, 2012). Part of a good teacher’s
repertoire is this fact, which both drives a more expansive appreciation
of their own f ield and results in a broader and more interesting syllabus.

 Guest (guest)

IP: 129.234.39.132

On: Fri, 13 Sept 2024 12:43:15

200 � VOL. 27, NO. 2/3, 2024

Tijdschrift voor Genderstudies

In the Dutch setting, direct relationships are proposed between what
specialisation in high school students chose, i.e. between so-called hard
sciences or so-called soft sciences, prior to entering our classrooms – and
this prior exposure is taken as predictive of their aptitude (Scheerens,
Timmermans, & Van der Werf, 2019). The fact that programming languages
are so Anglocentric rears its head from childhood, interlocking with class
and educational attainment (Hermans, 2024; Swidan & Hermans, 2023).
Ironically, this is not taken as a part of our jobs as educators, but as a deficit
or an essential characteristic of the student (Abbiss, 2008; O’Dea et al., 2018).

In the Anglosphere setting, these relationships to technology or so-called
hard sciences are traced further back to childhood (Lien, 2013; Margolis &
Fisher, 2001; O’Mara, 2022; Scott, 2019). Statements from mentors recruiting
childhood exposure are said lightly without reflexivity.2 Adding to the irony,
these are the same mentors who do little to no coding on a daily or weekly
basis. If any property of a skill is uncontroversial, it is that frequent exercise
of said skill is likely indicative of current aptitude.

However, and much more importantly, there is no critical window for
learning coding. There is no biological clock that starts ticking, counting
down from birth to childhood when exposure to code sets one on a course
to being adept at coding for life (cf. Forbes, Aneja, & Guest, 2022). There is
nothing stopping anybody at any age from having fun with code or retraining

Figure 2. Displaying the breadth of what one can do with coding skills, or what a
person with computational skills looks like, dissolves masculinist assumptions. License
(clockwise): a) and b) used with permission, c) used with permission from the Computer
History Museum, d) CC BY-SA 4.0, by Chickymaria: https://commons.wikimedia.org/
wiki/File:Regina_Honu_01.jpg.

 Guest (guest)

IP: 129.234.39.132

On: Fri, 13 Sept 2024 12:43:15

Guest & Forbes � 201

Teaching coding inclusively

as a programmer. Basic coding is not radically different from adding a little
formal veneer to basic literacy and numeracy all students have already been
exposed to and have mastered (see Dialogue 1 below).

Dialogic deprogramming

in computer science it is heard that ‘women are stupid’ and ‘women cannot
code as well as men’ – and these are taken as facts of the matter, not open to
debate or questioning, let alone unpacking as forms of abuse (see Dialogue
3). This continues in our proximal academic environments to this day, as
reported by our own students in an artif icial intelligence bachelor’s degree
and by women students in computer science in Margolis and Fisher (2001)
and Yates and Plagnol (2022).

On the other hand, in psychology, educators are not only reluctant to
teach these highly prized skills, but are also outspoken and defensive about
their reluctance (see Dialogues 4–7 below). This reluctance is in contrast
with the facts on the ground, where the book Learning Statistics with R: A
Tutorial for Psychology Students and Other Beginners by Danielle Navarro
(2013) was averaging 90 downloads per day in 2014. She also notes:

I’ve been pleasantly surprised at just how little diff iculty I’ve had in
getting undergraduate psych students to learn R. It’s certainly not easy
for them, […] but they do eventually get there. […] So if the students can
handle it, why not teach it?
(Danielle Navarro, 2013, p. xii)

This makes clear the backdrop of negativity she is reacting to: students
are expected to be reluctant or even unable to learn coding. Academics
are rarely on record claiming women in psychology cannot (learn to) code
(cf. Long, 2018), but this is no reason not to address these claims (Tupas &
Tarrayo, 2024). Relatedly, BSc degree programmes, including psychology,
can have negative consequences on women’s academic careers: ‘there is
often a smaller percentage of women than men among doctoral graduates
even in domains in which they are in the majority at the undergraduate
level’ (Aelenei, Martinot, Sicard, & Darnon, 2019, p. 4).

 Guest (guest)

IP: 129.234.39.132

On: Fri, 13 Sept 2024 12:43:15

202 � VOL. 27, NO. 2/3, 2024

Tijdschrift voor Genderstudies

Dialogue 1
I am too old to learn to code; others started in childhood.
�Many learn to code, and many other complex skills, later in life. But also,
programming basics are not novel concepts: if-statement, ‘if you are
hungry, then you can have a snack’; while-loop, ‘while there are slices of
pizza left, offer them to your guests’; object-orientation, ‘a dog is a type of
mammal, so you can typically expect it to have four legs. An orca is also a
mammal, but has modified legs for an aquatic life’. Age is not relevant.
Those who use their prior, much younger, exposure to coding are
gatekeeping you; they are not warning you of real educational dangers,
but using this false excuse to stop you learning. Unlike some facets of
cognitive development, there is no critical window for learning to code; this
is a myth.

What is typif ied here is a classic framing that takes perhaps useful notions
from education like zones of proximal development (Vygotsky & Cole, 1978)
or critical windows (Burrill, 1985) and misapplies them in a self- and other-
harmful way.3 The self-harm is the product of the active hostile enculturation
that is tacitly and directly promoted by those who want to gatekeep (i.e. keep
women out of coding; Hicks, 2017; Yates & Plagnol, 2022). This framing is
also found outside undergraduate courses that require coding in their f irst
year, since there the students in many ways have no choice: the programme
they are enrolled in, e.g. computer science, requires programming. Such
settings are prevalent in psychology when advanced methods courses cause
the learners to confront their (perceived) minimal technical or coding
skills. The men, while dramatically fewer than the women in psychology,
nonetheless end up being the ‘code guy’ (Johnson, Madill, Koutsopoulou,
Brown, & Harris, 2020; White, 2020).

Dialogue 2
I do not know how to code, even though I am in my final year of an
artificial intelligence BSc.
Why do you think this, given you have passed all your programming
classes?4 That is the university’s definition of knowing something, which
might not mean much, but what metric are you using? Stereotypically
polluted perceptions of women coders taken from your classmates,
teachers, or society at large? Remember, the coding you do is real coding.

Not believing in our skills as women coders is a typical academic journey
(recall Yates and Plagnol, 2022; also see Lehtinen, Lukkarinen, & Haaranen,

 Guest (guest)

IP: 129.234.39.132

On: Fri, 13 Sept 2024 12:43:15

Guest & Forbes � 203

Teaching coding inclusively

2021). Most women seem to think, due to years of denigration, that they
are not as good as the men. In other words, ‘in the academic contexts in
which women are less certain that they belong, they may consequently feel
less academic self-eff icacy’ (Aelenei et al., 2019, p. 6). Even the kind of men
who will choose to read this article should reflect on how there have been
moments where they have also held biases, made throwaway denigratory
comments, or allowed such attitudes or behaviours to pass uncritically.

Dialogue 3
Women are not good at programming.
If you think this, then can you explain how women: invented the compiler
(Grace Hopper), wrote the code that took humans to the moon (Margaret
Hamilton), and on and on? If these are somehow exceptions to some
baseline where most women are not that good at coding, I can grant it if
you also grant that most people are not that good. Not everybody is an
expert writer or mathematician, but girls excel at these subjects (Kelly et
al., 2022; O’Dea et al., 2018; Voyer & Voyer, 2014).

These self- and other-harming comments are a reaction to perhaps their
world view shattering. Notably Hicks (2017) and Lee Shetterly (2016) might
be useful materials for such students to help set them on a better footing.
This might also be an opportune moment to remember the vicious cycle
at play here. Sexism drives and is driven by many of these assumptions,
that is to say, ‘women on GitHub [a social code-sharing website] may be
more competent overall, bias against them exists nonetheless’ (Terrell et
al., 2016, p. 1).

Dialogue 4
Students want or need graphical user interfaces (GUIs), otherwise they do
not enjoy the course and/or they cannot learn as well.
Pupils from a young age for example learn complex enough linguistic,
mathematical, and artistic skills without the use of GUIs. Besides, we
already expect undergraduates to have the ability to navigate complex
statistical or conceptual work without multimedia.

This is a myth that is pushed in part by the technology industry, e.g. vendors
such as MathWork’s MATLAB and IBM’s SPSS. While GUIs might seem
easy to use, they are not conducive to (and in fact may harm) so-called
‘computational thinking’ – the skill we are trying to teach (Anderson, 2016;
Angeli & Giannakos, 2020; Wing, 2006; cf. Basman, 2017). Learning to use a

 Guest (guest)

IP: 129.234.39.132

On: Fri, 13 Sept 2024 12:43:15

204 � VOL. 27, NO. 2/3, 2024

Tijdschrift voor Genderstudies

GUI is a different skill set and not a necessary core subject in a programming
course.

Dialogue 5
We cannot teach them to code because scoping (or any other program-
ming concept) is difficult and time-consuming to learn.
If the goal is to make every course as easy as possible – where easy means
the teacher is purposefully avoiding what they perceive as difficult, but
they have this knowledge – then our students will rightfully complain
because this is both elitist and anti-pedagogical.

These are frames that are premised on the idea that somehow computational
knowledge is more diff icult to learn in the abstract and not diff icult to
learn as a function of the teacher or social contexts (Birhane & Guest, 2021;
Gould, 1981; Hampshire, Highfield, Parkin, & Owen, 2012). Which is to say:
‘The problem with women in technology isn’t the women’ (Ford, 2015).

We can even invert the paradigm that difficulty with respect to coding is
somehow unique or gendered in essence (Abbiss, 2008). Learning anything
of value is a serious but not impossible commitment. To say one cannot teach
something because that something (e.g. computational thinking: Brennan &
Resnick, 2012; Wing, 2006) is difficult is to say one is not qualified to do so. Fur-
thermore, to say that what one teaches is driven merely by (perceived) difficulty
is a serious error. This becomes doubly erroneous if claimed by a member of
staff in a psychology department from the perspective of understanding human
cognitive capacities (Fine, 2010; Kyndt, Dochy, Struyven, & Cascallar, 2010).

Dialogue 6
Teaching students to code is zero-sum, so that means removing other
parts of the course.
Coding can be taught alongside other things. In psychology this can be
during experimental design, since academics use programming
language(-derived tools), and during statistics courses (see also Anderson,
2016). These are packaged together as ‘Research Methods,’ which span the
full breadth of a multiyear degree in psychology, meaning there is ample
time to teach relevant programming practice as you use in your research.

This zero-sum property may hold. In the United Kingdom, the British Psycho-
logical Society (BPS) controls curricula, which means that to be accredited
certain criteria must be met. A welcome change is the flexibility in teaching
Research Methods. Furthermore, the BPS states statistics taught in R is an

 Guest (guest)

IP: 129.234.39.132

On: Fri, 13 Sept 2024 12:43:15

Guest & Forbes � 205

Teaching coding inclusively

appropriate method of teaching students some of the required research
skills (The British Psychological Society, 2017). This means programming
can be folded into teaching Research Methods without adding overhead to
students who may otherwise not have the curriculum space.

On the other hand, in the Netherlands ‘students experience a higher
workload than 28 hours per EC’ (Faculty Student Council, 2022) and ‘the
number of students taking longer than 3 years to complete their studies
[for a 3 year degree] is relatively large’ (QANU, 2020, p. 16). Students need
stretches of uninterrupted time to manage their time, so this is undesirable
(Kyndt, Berghmans, Dochy, & Bulckens, 2013).

Dialogue 7
You cannot teach them how to code during a stats class because some
students will have a ‘handicap’ if they have not coded before.5

Isn’t the real disadvantage leaving university without ever learning how
academics do their work? If some students already know how to program,
which is your contention, the problem is that imbalance. You can address
this by having a class that weaves these concepts into their statistical
training, or indeed a separate class.

As mentioned above, this is a type of zero-sum framing (Kyndt et al., 2010),
which we may need to navigate. Educators like Navarro (2013) have done it,
so others can draw inspiration from her materials.

Additionally, we would like to problematise the assumption that the
educator in a university setting where the learning goals comprise ‘learning
how to program’ has to do much for students who already code. These
students often perpetuate masculinist notions (Margolis & Fisher, 2001;
McCracken et al., 2001). As educators, we have a responsibility to protect
our students from anti-pedagogical framings. We must use our judgement
to decide if a student who already achieves the learning goals can be safely
taught to promote our values in class.

In the classroom

 Guest (guest)

IP: 129.234.39.132

On: Fri, 13 Sept 2024 12:43:15

206 � VOL. 27, NO. 2/3, 2024

Tijdschrift voor Genderstudies

Large classrooms have their own sets of diff iculties. Some students will be
learning this skill for the f irst time, others may have had previous exposure.
The role of the teacher is to make sure those students who have had the
least exposure learn to code, and to recognise they have learned to code
(Dialogue 2).

In contrast, perceived-to-be experienced coders are not the responsibility
of the educator to keep entertained (Dialogue 7). Unlike other earlier stages
of education, university classes are often not mandatory. A student who
feels un(der)stimulated by classes on topics they already know can either
not attend and pass the exam based on their previous skills, or request to
be given an exemption. An educator’s job is to teach those who do not know
how to code, and not to keep experienced coders highly stimulated (which
perhaps might be the case in prior stages of education; Angeli, 2022; Angeli
& Valanides, 2020; De Wit, Hermans, Specht, & Aivaloglou, 2023). Herein,
we propose something that seems radical to some of our colleagues, that a
teacher’s role is to help those who meet the entrance criteria of their course
and take them on a pedagogical journey to meet (or indeed surpass) the
learning objectives.

Workgroups or practical sessions also present a series of diff iculties
(Lehtinen et al., 2021; Morrison, Margulieux, & Guzdial, 2015). This is
especially true if the teacher is unable to spread their attention over all
groups, pairs, or individual students at all times. Teaching assistants can
be trained to spot the deployment of statements in Dialogues 1–3 and act
appropriately. Lacking these interventions, educational contexts can easily
be derailed into signif icant emotional labour, wherein feminised students
are traumatised by framings of their (perceived) inability to code (Lewis et
al., 2016; Lind-Guzik, 2023; Terrell et al., 2016; Yates & Plagnol, 2022).

In mentoring

In contrast to the larger setting of the classroom, one-on-one mentoring
relationships allow for a more direct examination of problematic baggage

 Guest (guest)

IP: 129.234.39.132

On: Fri, 13 Sept 2024 12:43:15

Guest & Forbes � 207

Teaching coding inclusively

our mentees may carry. Such an intimate setting requires even more due
care and attention, as things said in such contexts may have the deepest
impact. Situations such as those uncovered in Dialogue 2, where mentees
disclose deeply held (harmful) beliefs about their skills, arise when the
mentor-mentee relationship is one where divulging such self-images is
seen as safe.

A healthy mentoring relationship is required for a f lourishing mentee
(Phillips-Jones, 2003). In such settings – part of academics’ pastoral and
managerial responsibilities – we should strive to elevate our mentees to
heights that they alone may not yet be ready to reach (due to trauma visited
upon them by previous experiences; recall Dialogues 1 & 2). Importantly,
however, not all our mentees will be feminised – it is unlikely most of them
will be, given the current gendered landscape if the context is programming.
Relatedly, some may be more likely to express or believe sentiments such as
those captured by Dialogue 3, and this is much more likely if we ourselves
are not feminised. In other words, men mentors, for example, may have
differing opportunities for intervention. We implore our colleagues to take
such opportunities for changing perspectives.

In the Dutch setting, PhD candidates may take classes to hone their
technical skills. In the United Kingdom setting, PhD students are not em-
ployees and are more actively mentored, allowing for personalised pastoral
care. In both settings, as supervisors/mentors, we have a responsibility
to investigate if their presence is safe for other learners. If our mentee is
gendered and/or racialised, we should allow space for them to report to us
what tensions or problems may arise in these spaces. Graduates learning to
program provides a fertile environment to collaboratively address biased
or lacking educational experiences.

How not to go loopy

Given the above, what concrete steps may an educator take? We have an
obligation to deradicalise our masculinist students, both for their own
benefit and for the safety and educational success of their peers (also see
Abbiss, 2008; Berry, McKeever, Murphy, & Delany, 2022). Intertwined with

 Guest (guest)

IP: 129.234.39.132

On: Fri, 13 Sept 2024 12:43:15

208 � VOL. 27, NO. 2/3, 2024

Tijdschrift voor Genderstudies

this, we have an obligation to support our vulnerable students through
learning concepts and skills that are embedded in a minefield of distractors
and punishments. Below are some basic points to avoid or promote in your
learning spaces:

Avoid catering to the most competent students other than to give them (if
asked) work on diversity, inclusivity, and equity issues within programming.
For example, essays on historical programmers or organising events like
viewings of Hidden Figures (based on Lee Shetterly, 2016). Recruit them
to help other students sparingly – or not at all – and ensure they do not
recapitulate that certain demographics are inherently more skilled.

Remember there is no one way of teaching other than your own way of
imparting knowledge and nurturing the students. If you inherit materials,
question them. If you have high student attrition, look at the demographics
and ask why. The answer is generally socially unjust forces are at work,
but your unique case may need specif ic interventions; new teaching
methods or more women staff might not be enough. Think deeply and
take your time.

Avoid assuming you are a good teacher – do not take your students’
word on this as f inal. Be ready to grow. While student evaluations are in-
dispensable, they are not experts on what/how you should teach. Pedagogy
comprises many academic f ields, and students are not trained in them. It
is your responsibility to seek out experts on teaching programming (see
Bibliography).

Avoid pretending sexism is absent from your classroom, from daily
interactions with other students, from students’ educational histories.
Neglecting it leaves the door open for masculinist radicalisation to harm
the feminised programmers, and for racist, or otherwise socially unjust,
notions of who can code (e.g. ableism; Bocconi, Dini, Ferlino, Martinoli, &
Ott, 2007; Van der Meulen, Hartendorp, Voorn, & Hermans, 2023).

Avoid deploying individualistic framings such as so-called stereotype
threat, impostor syndrome, or implicit associations. Telling students that,
all else equal, the problem is within their head constitutes an improper basis
on which to build a functional learning environment, and is tantamount
to victim-blaming in this context. Sexism and racism are out there in the
world and not something women or people of colour are creating in our
classrooms to subvert our pedagogy.

Ask students to care about each other and each other’s learning experi-
ences. Warn them away from gendered dynamics in which the masculinised
students are typically explaining things to the feminised students, but

 Guest (guest)

IP: 129.234.39.132

On: Fri, 13 Sept 2024 12:43:15

Guest & Forbes � 209

Teaching coding inclusively

nonetheless empower them to help, support, and care for each other.
Competition-as-virtue and individualism are not useful paradigms in a
pedagogical safe space.

Remind mentees of humility because it is important to remember that
nobody knows everything about everything. Technology is constantly
changing, and so current knowledge becomes outdated faster than people
realise. Relatedly, being wrong, e.g. introducing bugs to code accidentally,
is part of the learning process.

Promote ref lexivity – there is value in looking back at and thinking
deeply about both how far learners have come in terms of the direct
learning goals and with respect to overcoming sexist, racist, or other
framings. Learning how to code, exploring their ability to teach others, if
they are mentoring their peers, or assisting you with teaching, as well as
surpassing maladaptive social conditioning are all valuable achievements.

On this f inal note, the above suggestions are meant to inspire educators’
reflexivity. They are not meant to be used as a way to be catastrophically
self- or other-critical (Okun, 2021). Cultivating healthy learning spaces is a
work-in-progress; def initionally in flux.

OO, so what now?

Looking forwards, we ask that educators who are not able to carry the
whole classroom take a step back and question why: what holds you back?
Presenting in class materials such as those presented here (Figures 1 and 2)
can go a long way. If you are a woman, feminised, or gender diverse, showing
up has impact; from an artif icial intelligence undergraduate in her f inal year:

[Women professors and educators] inspire me to maybe pursue an aca-
demic career. I used to think not seeing many women didn’t bother me,

 Guest (guest)

IP: 129.234.39.132

On: Fri, 13 Sept 2024 12:43:15

210 � VOL. 27, NO. 2/3, 2024

Tijdschrift voor Genderstudies

but apparently it really helps. I just realised this week we only have had 1
female teacher for all the compulsory courses.

Humans learn and continue to learn, and we can also choose to forget. We
can collectively decide to leave behind toxic framings that only certain types
of people can learn to code. This constitutes a zeroth step towards reclaiming
and rehabilitating programming as skill and as profession – invented by
women erased from mainstream history – and it presents unique challenges
to both learner as student and learner as educator.

Notes

1.	 The authors would like to thank Iris van Rooij and Kirstie Whitaker for their
feedback on an earlier draft of this manuscript. We would also like to thank
the CCS group for their helpful reflections on the contents, and specifically
Todd Wareham for useful references. Parts of this paper are based on a blog
post by the first author (Guest, 2018).

2.	 While our focus is not one that lies outside the Global North/West, the first
author grew up shielded from many such framings (although with exposure
to computers indeed at a young age) in Cyprus.

3.	 See Angeli and Georgiou (2023), Gilsing et al. (2022), Macrides et al. (2022),
and van der Werf et al. (2022) for teaching programming in childhood.

4.	 Perhaps unexpectedly, this was heard from one of our most academically
successful women students in artificial intelligence, while doing a thesis
project that involved coding.

5.	 For example, Wagenmakers (2018).

Bibliography

Abbiss, J. (2008). Rethinking the ‘problem’ of gender and IT schooling: Discourses
in literature. Gender and Education, 20(2), 153–165.

Aelenei, C., Martinot, D., Sicard, A., & Darnon, C. (2019). When an academic culture
based on self-enhancement values undermines female students’ sense of belong-
ing, self-eff icacy, and academic choices. The Journal of Social Psychology, 160(3),
373–389.

Aiello, L.C. (2016). The multifaceted impact of Ada Lovelace in the digital age.
Artificial Intelligence, 235, 58–62.

Anderson, N.D. (2016). A call for computational thinking in undergraduate psychol-
ogy. Psychology Learning & Teaching, 15(3), 226–234.

 Guest (guest)

IP: 129.234.39.132

On: Fri, 13 Sept 2024 12:43:15

Guest & Forbes � 211

Teaching coding inclusively

Angeli, C. (2022). The effects of scaffolded programming scripts on pre-service
teachers’ computational thinking: Developing algorithmic thinking through
programming robots. International Journal of Child-Computer Interaction, 31,
100329.

Angeli, C., & Georgiou, K. (2023). Investigating the effects of gender and scaffolding
in developing preschool children’s computational thinking during problem-
solving with bee-bots. Frontiers in Education, 7.

Angeli, C., & Giannakos, M. (2020). Computational thinking education: Issues and
challenges. Computers in Human Behavior, 105, 106185.

Angeli, C., & Valanides, N. (2020). Developing young children’s computational
thinking with educational robotics: An interaction effect between gender and
scaffolding strategy. Computers in Human Behavior, 105, 105954.

Basman, A. (2017). If what we made were real: Against imperialism and cartesianism
in computer science, and for a discipline that creates real artifacts for real
communities, following the faculties of real cognition. PPIG, 23.

Berry, A., McKeever, S., Murphy, B., & Delany, S.J. (2022). Addressing the ‘leaky
pipeline’: A review and categorisation of actions to recruit and retain women
in computing education. arXiv preprint arXiv:2206.06113.

Beyer, K. W. (2012). Grace Hopper and the invention of the information age. MIT Press.
Birhane, A., & Guest, O. (2021). Towards decolonising computational sciences.

Kvinder, Køn & Forskning, 1, 60-73.
Blum, L., & Frieze, C. (2005). The evolving culture of computing: Similarity is the

difference. Frontiers: A Journal of Women Studies, 26(1), 110–125.
Bocconi, S., Dini, S., Ferlino, L., Martinoli, C., & Ott, M. (2007). ICT educational

tools and visually impaired students: Different answers to different accessibil-
ity needs. Universal Access in Human-Computer Interaction. Applications and
Services, 491–500.

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the
development of computational thinking. Proceedings of the 2012 annual meeting
of the American educational research association, Vancouver, Canada, 1, 25.

Burrill, C. (1985). The sensitive period hypothesis: A review of literature regarding
acquisition of a native-like pronunciation in a second language. Paper presented
at a meeting of the TRI-TESOL conference, Bellevue, WA.

Busjahn, T., & Schulte, C. (2013). The use of code reading in teaching program-
ming. Proceedings of the 13th Koli Calling International Conference on Computing
Education Research.

Connell, S.M., & Janssen-Lauret, F. (2022). Lost voices: On counteracting exclusion
of women from histories of contemporary philosophy. British Journal for the
History of Philosophy, 30(2), 199–210.

 Guest (guest)

IP: 129.234.39.132

On: Fri, 13 Sept 2024 12:43:15

212 � VOL. 27, NO. 2/3, 2024

Tijdschrift voor Genderstudies

De Jonge Akademie. (2021). A smarter academic year. Amsterdam. Retrieved
from https://www.dejongeakademie.nl/documenten/handlerdownloadf iles.
ashx?idnv=2043173

De Wit, S., Hermans, F., Specht, M., & Aivaloglou, E. (2024). Gender, social interac-
tions and interests of characters illustrated in scratch and python programming
books for children. Proceedings of the 55th ACM Technical Symposium on Computer
Science Education V. 1.

De Wit, S., Hermans, F., Specht, M., & Aivaloglou, E. (2023). Exploring the effects
of the Hedy user interface on the development of cs interest in girls. 10th ACM
Celebration of Women in Computing womENcourage: Computing Connecting
Everyone.

Dresden, B.E., Dresden, A.Y., Ridge, R.D., & Yamawaki, N. (2018). No girls allowed:
Women in male-dominated majors experience increased gender harassment
and bias. Psychological reports, 121(3), 459–474.

Erscoi, L., Kleinherenbrink, A.V., & Guest, O. (2023). Pygmalion displacement: When
humanising ai dehumanises women. SocArXiv. February, 11.

Essanhaji, Z. (2023). The (im)possibility of complaint: On efforts of inverting and
(en)countering the university. Gender and Education, 1–16.

Evans, C.L. (2020). Broad band: The untold story of the women who made the internet.
New York: Penguin.

Fine, C. (2010). Delusions of gender: How our minds, society, and neurosexism create
difference. New York: WW Norton & Company.

Forbes, S.H., Aneja, P., & Guest, O. (2022). The myth of normative development.
Infant and Child Development, 33(1), e2393.

Ford, P. (2015). What is code? if you don’t know, you need to read this. Retrieved
from https://www.bloomberg. com/graphics/2015-paul-ford-what-is-code/

Gage, M.J. (1883). Woman as an inventor. The North American Review, 136(318),
478–489.

Gilsing, M., Pelay, J., & Hermans, F. (2022). Design, implementation and evaluation
of the Hedy programming language. Journal of Computer Languages, 73, 101158.

Goffman, E. (1977). The arrangement between the sexes. Theory and society, 4(3),
301–331.

Gould, S. J. (1981). The mismeasure of man. New York: Norton.
Guest, O. (2018). Why women in psychology can’t program. Retrieved from http://

neuroplausible.com/ programming
Hamilton, M.H., & Hackler, W.R. (2008). Universal systems language: Lessons

learned from apollo. Computer, 41(12), 34–43.
Hampshire, A., Highf ield, R.R., Parkin, B.L., & Owen, A.M. (2012). Fractionating

human intelligence. Neuron, 76(6), 1225–1237.

 Guest (guest)

IP: 129.234.39.132

On: Fri, 13 Sept 2024 12:43:15

Guest & Forbes � 213

Teaching coding inclusively

Harlizius-Klück, E. (2017). Weaving as binary art and the algebra of patterns.
Textile, 15(2), 176– 197.

Hermans, F. (2021). The programmer’s brain: What every programmer needs to know
about cognition. Shelter Island, NY: Manning Publications.

Hermans, F. (2024). [onward23] creating a learnable and inclusive programming
language. Retrieved from https://www.youtube.com/watch?v=VzXiup5Gm7Y

Hermans, F., & Aldewereld, M. (2017). Programming is writing is programming.
Companion Proceedings of the 1st International Conference on the Art, Science,
and Engineering of Programming, 1–8.

Hicks, M. (2017). Programmed inequality: How Britain discarded women technologists
and lost its edge in computing. Cambridge, MA: MIT press.

Johnson, J., Madill, A., Koutsopoulou, G.Z., Brown, C., & Harris, R. (2020). Tackling
gender imbalance in psychology. Psychologist, 33, 5–6.

Kelly, P., Wang, Y., & Mizunoya, S. (2022). How do the educational experiences of
girls and boys differ? Retrieved from https://data.unicef.org/data-for-action/
how-do-educational-experiences-ofgirls-and-boys-differ/

Kleiman, K. (2022). Proving ground: The untold story of the six women who pro-
grammed the world’s first modern computer. Hurst Publishers.

Kramarae, C. (1988). Technology and women’s voices: Keeping in touch. Routledge.
Kyndt, E., Berghmans, I., Dochy, F., & Bulckens, L. (2013). ‘Time is not enough’:

Workload in higher education: A student perspective. Higher Education Research
& Development, 33(4), 684–698.

Kyndt, E., Dochy, F., Struyven, K., & Cascallar, E. (2010). The perception of workload
and task complexity and its influence on students’ approaches to learning: A
study in higher education. European Journal of Psychology of Education, 26(3),
393–415.

Lee Shetterly, M. (2016). Hidden figures: The American dream and the untold story
of the Black women mathematicians who helped win the space race. New York:
William Morrow.

Lehtinen, T., Lukkarinen, A., & Haaranen, L. (2021). Students struggle to explain
their own program code. Proceedings of the 26th ACM Conference on Innovation
and Technology in Computer Science Education V. 1.

Lewis, C.M., Anderson, R.E., & Yasuhara, K. (2016). ‘I don’t code all day’: Fitting in
computer science when the stereotypes don’t f it. Proceedings of the 2016 ACM
conference on international computing education research, 23–32.

Lien, T. (2013). No girls allowed. Retrieved from https://www.polygon.com/fea-
tures/2013/12/2/5143856/nogirls-allowed

Light, T. P., Nicholas, J., & Bondy, R. (2015). Feminist pedagogy in higher education:
Critical theory and practice. Waterloo, Ontario: Wilfrid Laurier University Press.

 Guest (guest)

IP: 129.234.39.132

On: Fri, 13 Sept 2024 12:43:15

214 � VOL. 27, NO. 2/3, 2024

Tijdschrift voor Genderstudies

Lind-Guzik, A. (2023). You should give a sh*t about: Gender apartheid. Retrieved
from https : / / conversationalist.org/2023/05/18/end-gender-apartheid-today-
open-letter-interviewgissou-nia-human-rights-lawyer/

Little, B., & Winch, A. (2020). Patriarchy in the digital conjuncture: An analysis of
Google’s James Damore. New Formations, 102(102), 44–63.

Long, K. (2018). Why don’t women code? a UW lecturer’s answer draws heat.
Retrieved from https://www.seattletimes.com/seattle-news/education/why-
dont-women-code-a-uw-lecturersanswer-draws-heat/

Macrides, E., Miliou, O., & Angeli, C. (2022). Programming in early childhood
education: A systematic review. International Journal of Child-Computer Interac-
tion, 32, 100396.

Margolis, J., & Fisher, A. (2001). Unlocking the clubhouse: Women in computing.
Cambridge, MA: MIT Press.

Mayer, R.E. (1981). The psychology of how novices learn computer programming.
ACM Computing Surveys, 13(1), 121–141.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y.B.-D.,
Laxer, C., Thomas, L., Utting, I., & Wilusz, T. (2001). A multi-national, multi-
institutional study of assessment of programming skills of f irst-year CS students.
ACM SIGCSE Bulletin, 33(4), 125–180.

McKinley, K. S. (2018). What happens to us does not happen to most of you. Retrieved
from https://www.sigarch.org/what-happens-to-us-does-not-happen-to-most-
of-you/

Mitcho, S.R. (2016). Feminist pedagogy. Encyclopedia of Educational Philosophy
and Theory, 1–5.

Morrison, B.B., Margulieux, L. E., & Guzdial, M. (2015). Subgoals, context, and worked
examples in learning computing problem solving. Proceedings of the eleventh
annual International Conference on International Computing Education Research.

Navarro, D. (2013). Learning statistics with R. Lulu.com. Retrieved from http://
compcogscisydney.org/learning-statistics-with-r

O’Dea, R.E., Lagisz, M., Jennions, M.D., & Nakagawa, S. (2018). Gender differences
in individual variation in academic grades fail to f it expected patterns for stem.
Nature communications, 9(1), 3777.

Okun, T. (2021). Retrieved from https://www.whitesupremacyculture.info/
O’Mara, M. (2022). Why can’t tech f ix its gender problem? Retrieved from https://

www.technologyreview.com/ 2022/08/11/1056917/tech-f ix-gender-problem/
Phillips-Jones, L. (2003). Skills for successful mentoring: Competencies of outstanding

mentors and mentees. CCC/The Mentoring Group.
Pozo, B., & Padilla, C. (2019). Criptogıń ia: Una paraula nova per a un fenomen

antic. eldiario. es, 5, 2019.

 Guest (guest)

IP: 129.234.39.132

On: Fri, 13 Sept 2024 12:43:15

Guest & Forbes � 215

Teaching coding inclusively

Pozo-Sánchez, B., & Padilla-Carmona, C. (2021). Criptoginia: Una palabra nueva, un
concepto para investigar. Quaderns de Filologia-Estudis Lingüı́śtics, 26, 175–192.

QANU. (2020). Report on the bachelor’s and the master’s programmes artif icial
intelligence of Radboud University. Retrieved from https://publicaties.nvao.
net/ACCR_009468_21PM-56945_ Artif icial_Intelligence_Rapport_2020.pdf

Raytheon. (1969). Apollo 11 Press Kit Raytheon. Retrieved from https://www.apol-
lopresskits.com/apollopresskit-directory

Rosner, D.K., Shorey, S., Craft, B.R., & Remick, H. (2018). Making core memory: Design
inquiry into gendered legacies of engineering and craftwork. Proceedings of the
2018 CHI conference on human factors in computing systems, 1–13.

Rossiter, M.W. (1993). The Matthew Matilda effect in science. Social studies of
science, 23(2), 325–341.

Salter, A., & Blodgett, B. (2017). Toxic geek masculinity in media: Sexism, trolling,
and identity policing. Cham: Palgrave Macmillan.

Scheerens, J., Timmermans, A., & Van der Werf, G. (2019). Socioeconomic inequality
and student outcomes in the Netherlands. In Volante, L., Schnepfe, S., Jerrim, J., &
Klinger, D. (Eds.), Socioeconomic inequality and student outcomes: Cross-national
trends, policies, and practices (pp. 111–132). Singapore: Springer.

Scott, S. (2019). Fake geek girls. New York: New York University Press.
Sheard, J., Simon, J., Dermoudy, J., D’Souza, D., Hu, M., & Parsons, D. (2014). Bench-

marking a set of exam questions for introductory programming. Proceedings of
the Sixteenth Australasian Computing Education Conference (ACE2014), Auckland,
New Zealand.

Shore, J. (1985). The sachertorte algorithm and other antidotes to computer anxiety
(Vol.17). New York: ACM New York.

Shrewsbury, C.M. (1987). What is feminist pedagogy? Women’s Studies Quarterly,
15(3/4), 6–14.

Swidan, A., & Hermans, F. (2023). A framework for the localization of programming
languages. Proceedings of the 2023 ACM SIGPLAN International Symposium on
SPLASH-E.

Terrell, J., Kof ink, A., Middleton, J., Rainear, C., Murphy-Hill, E., Parnin, C., &
Stallings, J. (2016). Gender differences and bias in open source: Pull request
acceptance of women versus men. PeerJ Computer Science.

The British Psychological Society. (2017). Supplementary guidance for research
and research methods on Society accredited undergraduate and conversion
programmes. Retrieved from https://cms.bps.org.uk/sites/default/f iles/202207/
Research%20Methods%20-%20Undergraduate%20Programmes%20WEB.pdf

Tupas, R., & Tarrayo, V.N. (2024). The violence of literature review and the imperative
to ask new questions. Applied Linguistics Review, (0).

Turkle, S. (2005). The second self. Cambridge, MA: MIT Press.

 Guest (guest)

IP: 129.234.39.132

On: Fri, 13 Sept 2024 12:43:15

216 � VOL. 27, NO. 2/3, 2024

Tijdschrift voor Genderstudies

Van den Brink, M., & Benschop, Y. (2012). Gender practices in the construction of
academic excellence: Sheep with f ive legs. Organization, 19(4), 507–524.

Van der Meulen, A., Hartendorp, M., Voorn, W., & Hermans, F. (2023). Observing
the computational concept of abstraction in blind and low vision learners using
the bee-bot and blue-bot. Computer Science Education, 1–23.

Van der Werf, V., Aivaloglou, E., Hermans, F., & Specht, M. (2022). (how) should
variables and their naming be taught in novice programming education?
Proceedings of the 2022 ACM Conference on International Computing Education
Research-Volume 2, 53–54.

Voyer, D., & Voyer, S.D. (2014). Gender differences in scholastic achievement: A
meta-analysis. Psychological bulletin, 140(4), 1174.

Vygotsky, L. S., & Cole, M. (1978). Mind in society: Development of higher psychological
processes. Cambridge, MA: Harvard University Press.

Wagenmakers, E.-J. (2018). Agreed, but I am not sure that combining these in a single
course is wise, and I worry about students without coding experience feeling
that they start with a handicap (because they do). In their f irst stats course, I
like students to grasp the concepts, not “tapply”. Retrieved from https://twitter.
com/EJWagenmakers/status/1066680953534328832

Webb, L.M., Allen, M.W., & Walker, K.L. (2002). Feminist pedagogy: Identifying
basic principles. Academic Exchange, 6(1), 67–72.

White, S.K. (2020). Women in tech statistics: The hard truths of an uphill battle.
CIO online.

Wing, J.M. (2006). Computational thinking. Communications of the ACM, 49(3),
33–35.

Yates, J., & Plagnol, A.C. (2022). Female computer science students: A qualitative
exploration of women’s experiences studying computer science at university in
the UK. Education and Information Technologies, 27(3), 3079–3105.

About the authors

Olivia Guest is an Assistant Professor of Computational Cognitive Science
at Donders Institute for Brain, Cognition and Behaviour and the School of
Artif icial Intelligence, at Radboud University, Netherlands. Her research
interests comprise (meta)theoretical, critical, and radical perspectives
on the neuro-, computational, and cognitive sciences broadly construed.
She emigrated from Cyprus to the UK in 2006 to pursue an undergraduate
degree in Computer Science (2009; University of York, UK), a masters in
Cognitive and Decision Sciences (2010; University College London, UK),
and a PhD in Psychological Sciences (2014; Birkbeck, UK). She has worked

 Guest (guest)

IP: 129.234.39.132

On: Fri, 13 Sept 2024 12:43:15

Guest & Forbes � 217

Teaching coding inclusively

in labs at the University of Oxford, University College London, and as an
independent scientist at a research centre in Cyprus. In 2020, she moved
to the Netherlands where she still lives and works. Additionally, Olivia is
an Associate Editor-in-Chief for ReScience C and for the Journal of Open
Source Software.

Samuel Forbes is an Assistant Professor in Psychology at Durham University
in the United Kingdom. He completed his DPhil in Experimental Psychology
at the University of Oxford in 2018, where he researched how infants learn
colour words and what that means for their colour perception. He worked
the University of East Anglia as a postdoc, working on early visual working
memory with Professor John Spencer. His research at Durham focuses on
the interplay between early cognition and word learning in infants, looking
particularly at the links between cognition, environmental factors and
early word learning, using a mixed-methods approach. He also carries out
work in metascience and methods development, developing pipelines and
software for researchers to use in their own research, and runs workshops
in coding for psychologists.

