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Abstract. A hybrid network is a static (electronic) network that is
augmented with optical switches. The Reconfigurable Routing Problem
(RRP) in hybrid networks is the problem of finding settings for the opti-
cal switches augmenting a static network so as to achieve optimal delivery
of some given workload. The problem has previously been studied in var-
ious scenarios with both tractability and NP-hardness results obtained.
However, the data center and interconnection networks to which the
problem is most relevant are almost always such that the static network
is highly structured (and often node-symmetric) whereas all previous
results assume that the static network can be arbitrary (which makes
existing computational hardness results less technologically relevant and
also easier to obtain). In this paper, and for the first time, we prove vari-
ous intractability results for RRP where the underlying static network is
highly structured, for example consisting of a hypercube, and also extend
some existing tractability results.

Keywords: algorithms · complexity · reconfigurable topologies · optical
circuit switches · software-defined networking.

1 Introduction

The rapid growth of cloud computing applications has induced demand for new
technologies to optimize the performance of data center networks dealing with
ever-larger workloads. The data center topology design problem (that of find-
ing efficient data center topologies) has been studied extensively and resulted in
myriad designs (see, e.g., [5]). Advances in hardware, such as optical switches
reconfigurable in milli- to micro-seconds, have enabled the development of re-
configurable topologies (see, e.g., [14]). These topologies can adjust in response
to demand (demand-aware reconfigurable topologies) or vary configurations over
time according to a fixed protocol (demand-oblivious reconfigurable topologies;
see, e.g., [2]). So-called hybrid data center networks are a combination of a static
topology consisting of, for example, electrical switches, and a demand-aware re-
configurable topology implemented, for example, with optical circuit switches
or free space optics (see, e.g., [4,11,15,19]). An intuitive example of a simple
reconfigurable topology is illustrated in Fig. 1.

The hybrid network paradigm combines the robustness guarantees of static
networks with the ability of demand-aware reconfigurable networks to serve large
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Fig. 1. Basic model of an optical wireless data-center network, as described in [4,15,19].
Practical timescales for reconfiguration vary from milliseconds [15] to microseconds or
nanoseconds [4,19].

workloads at very low cost. Consider, for example, the hybrid network shown in
Figure 2, and the configuration shown in Figure 3. In the (unaugmented) static
network, there are two possible paths along which a message from node b to node
d may be routed: b → f → h → e → d or b → f → e → d. In the hybrid network
as configured in 3, the path b ⇢ a → c ⇢ d (among others) is an option∗.

A hybrid network.
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Fig. 2. A hybrid network.

Of particular interest to us is the question of how the reconfigurable (optical)
portion of the network should be configured for some demand pattern, formal-
ized by Foerster, Ghobadi and Schmid [9] as the Reconfigurable Routing
Problem (RRP): in short, given a hybrid network (consisting of a static net-
work and of some switches) and a workload, we wish to choose a configuration
(setting of the switches) which results in an optimal delivery of the workload.

Crucially, existing hardness results are only valid when the static network is
allowed to be arbitrary, which is almost never the case in practice where intercon-
nection and data center network design is driven by symmetry, high connectivity,

∗We denote by u ⇢ v the concatenation of a switch link from u to some switch, of
the internal switch connection, and of a switch link to v from that switch.
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Fig. 3. An augmented network and its abstracted dynamic links.

recursive decomposition, and so forth. For example: the popular switch-centric
data center network Fat-Tree [1] is derived from a folded Clos network; the server-
centric data center network DCell [13] is recursively-structured whereby at each
level, a graph-theoretic matching of servers is imposed; and the server-centric
data center network BCube [12] is recursively-structured with a construction
based around a generalized hypercube. (It should be noted that there do exist ex-
amples of unstructured data center networks, such as Jellyfish [17] and Xpander
[18] which utilize the theory of random graphs.) Many (but not all) NP-complete
problems become tractable when the input is restricted to the graphs providing
the communications fabric for data center networks and other interconnection
networks. For example, Hamiltonian paths are often trivial to find in many inter-
connection networks; indeed, no finite connected vertex-transitive graph without
a Hamiltonian path is known to exist (the Lovász Conjecture contends there is
no such graph - see Section 4 of [16]). This motivates our investigation into how
the complexity of RRP changes when we restrict to more structured and realistic
networks. The question of the complexity of RRP for specific network topologies
was specifically identified as an area for future work in [8].

In this paper, we establish for the first time hardness results for RRP that
apply to various specific families of highly structured static networks such as,
for example, the hypercubes. Our constructions are (perhaps not surprisingly)
of a much more involved nature than has hitherto been the case.

2 Problem Setting

The decision problem Reconfigurable Routing Problem considered in this
paper is a proper restriction of that presented in prior work [8,9,10]. In this
section, we provide technical detail to fully formalize our version of the problem,
but also additionally provide sufficient framing to briefly review existing results
and to identify the areas strengthened by our contribution.

We adopt the usual terminology of graph theory though we tend to use ‘nodes’
and ‘links’ when speaking about the components of reconfigurable networks and
‘nodes’ and ‘edges’ when dealing with (abstract) graphs. We denote the natural
numbers by N (we include 0 ∈ N) and the non-negative rationals by Q+.
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2.1 Hybrid networks, (re)configurations and (segregated) routing

A hybrid network G(S) can be visualized as in Fig. 2, and consists of a static
network G and some switches S augmenting it. A static network G can be
abstracted as an undirected graph G = (V,E) so that each static link (u, v) ∈ E
has some fixed weight w ∈ Q+ (reflecting a transmission cost) and is incident
with internal ports of two distinct nodes of V . The number of internal ports of
some node v ∈ V is then exactly the degree of v in the abstracted graph G.
We denote by S a set of switches augmenting the static network G with switch
links joining switch ports of some switch to external ports of some of the nodes
of V . Every switch link has weight 0 (we say more about switch link weights
momentarily). Every switch s ∈ S has at least two switch ports.

In general, the number of external ports of the nodes of a static network
G = (V,E) is variable, as is the number of switch ports of the switches of
a hybrid network G(S), and it may be the case that there is more than one
switch link between a specific node and a specific switch. We assume that the
switch links describe a bijection between the external ports and the switch ports;
otherwise, there would be some unused ports, which we can safely ignore.

Given a hybrid network G(S) and a switch s ∈ S, a switch matching Ns

of s is a set of pairs of switch ports of s so that all switch ports involved are
distinct. Each switch matching represents an internal setting of the switch and
naturally yields a set of pairs of external ports of nodes where all such ports are
distinct; we refer to a set of pairs of external ports obtained in this way as a node
matching (note that this differs from the standard graph-theoretic notion of a
matching). An illustration of a configured hybrid network is shown in Figure 3:
on the right side, switch matchings are represented as sets of arcs, and on the
left side the corresponding node matching is shown as a set of dotted lines.

A configuration N is a set of switch matchings, one for each switch. A configu-
ration straightforwardly encodes the corresponding node matchings. We say that
(u, v) is a dynamic link in the configuration N (we sometimes write (u, v) ∈ N)
if (u, v) appears in any node matching corresponding to N .

We allocate a fixed weight µ ∈ Q+ to each internal port-to-port connection
in a switch s. Although a dynamic link is an atomic entity, it can be visualized
as consisting of a switch link followed by an internal port-to-port connection
in s followed by another switch link. We denote by G(N) the static network
G augmented with the dynamic links (each of weight µ) resulting from the
configuration N and we call G(N) an augmented network . In the augmented
network visualized in Figure 3, for example: (a, b) is a dynamic link; (a, c) is a
static link; and (e, h) is both a static link a dynamic link. Note that it is possible
that an augmented network G(N) is a multigraph.

The concepts defined above are driven by reconfigurable hardware technol-
ogy such as optical switches, wireless (beamforming) and free-space optics, all
of which establish port-to-port connections, i.e., switch matchings. The survey
paper [11] provides some detail as regards the relationship between the emergent
theoretical models and current opto-electronic technology.
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2.2 Routing in hybrid networks

Consider again the example shown in Figure 3. In the configuration shown, a
message M from c to node e may be routed:

1. via static links only, along the path φ1 := c → b → f → e with weight 3w, or
2. via dynamic links only, along the path φ2 := c ⇢ d ⇢ h ⇢ e with weight 3µ,

or
3. via a combination of static and dynamic links, along the path φ3 := c ⇢ d →

e with weight µ+ w.

Depending on the value of µ, any of the paths may minimize the cost to route
M : if µ ≥ 2w then φ1 is optimal; if µ ≤ w

2 then φ2 is optimal; and if µ ∈ [w2 , 2w]
then φ3 is an optimal. We may wish to bound the number of alternations allowed
between optic and static links in any path a message takes; we capture this
hardware requirement via a segregation parameter σ ∈ N ∪ {∞}, as introduced
in [10], that is the number of alternations between static and dynamic links. In
the fully segregated case, σ = 0: messages may be routed either by static links
only (as in φ1) or by dynamic links only (as in φ2). In the non-segregated case,
σ = ∞ and there is no restriction on the number of alternations, so any path is
admitted. Note φ3 is admitted as a valid path to route M if and only if σ ≥ 1.

Networks are expected to route many messages (of varying sizes) optimally at
the same time. Given a hybrid network G(S) we represent the set of all demands
we must optimize for as a workload (matrix ) D with entries {D[u, v] ∈ Q+ :
u, v ∈ V } providing the intended pairwise node-to-node workloads (each D[u, u]
is necessarily 0).

Given a configuration N and u, v ∈ V for which D[u, v] > 0, we route the
corresponding workload via a path in G(N) from u to v in G(N) so that this
chosen flow-path φ(u, v) has workload cost D[u, v]×wtG(N)(φ(u, v)), where the
weight wtG(N)(φ(u, v)) is the sum of the weights of the links of the flow-path
φ(u, v) (if G(N) has both a static link (x, y) and a dynamic link (x, y) then we
need to say which we are using in φ(u, v)). The total workload cost (of D under
N) is defined as ∑

u,v∈V,D[u,v]>0

D[u, v]× wtG(N)(φ(u, v)).

Our aim will be to find a configuration N in some hybrid network G(S) and
flow-paths in G(N) for which the total workload cost of some workload matrix D
is minimized. In an unrestricted scenario, we would choose any flow-path φ(u, v)
to be a flow-path of minimum weight from u to v in G(N), the weight of which
we denote by wtG(N)(u, v). When σ ̸= ∞ we must also ensure the flow-path has
at most σ alternations. We also have the analogous concepts wtG(φ(u, v)) and
wtG(u, v) where we work entirely in the static network G. Note that we often
describe D by a weighted digraph, which we usually call D′, so that the node
set is V and there is an edge (u, v) of weight w > 0 if, and only if, D[u, v] = w.
We also refer to some D[u, v] > 0 as a demand (from u to v).
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2.3 The Reconfigurable Routing Problem

We are now in a position to introduce our protagonist:

Reconfigurable Routing Problem (σ) (RRP(σ))
Input: (G,S, µ, w,D, κ): D is a workload matrix for the hybrid network G(S)
with static (resp. dynamic) links all of weight w (resp. µ).
Question: Does G(S) admit some configuration N such that the total work-
load cost of D under N (where the number of alternations for any path is
bounded by σ) is at most κ?

As previously alluded to, this setting is more expressive than we require for
most of this paper, and more restrictive than the exact formalism considered
in prior work [8,9,10]: in those works, w and µ are sometimes allowed to be
functions of their endpoints rather than fixed constants. This provides much
more expressivity; notably, their model loses no power when it is restricted to
inputs where G is a complete graph and there is only one switch, since it is
possible to simulate any other instance by assigning prohibitively large weights
to any static edges and any pair of switch ports which should not be usable.

We now turn to the “realistic” networks we mentioned in our introduction.
Henceforth unless otherwise specified, static link weights are all equal (and nor-
malized to 1) and dynamic link weights are always some fixed constant µ ∈ Q+.
Also, there is a single switch and all nodes are connected to it with identical
hardware. This is both practically relevant and intuitively realistic; see e.g. Fig.
1. Then the set of switches S of the hybrid network consists of just one switch,
which is fully described by the number of switch links each node in the hybrid
network has, which we call ∆S . This is closely related to the maximum reconfig-
urable degree ∆R from [10], which is an upper bound on the number of external
ports per node. The resulting restriction of RRP can be formalized as follows:

∆S-switched RRP (σ)
Input: (G,µ,D, κ): D is a workload matrix for the hybrid network G(S) with
static (resp. dynamic) links all have weight 1 (resp. µ) (where S consists of
a single switch that every node in G is connected to exactly ∆S times).
Question: Does G(S) admit some configuration N such that the total work-
load cost of D under N (where the number of alternations for any path is
bounded by σ) is at most κ?

3 Results

Table 1 shows a summary of hardness results from previous work as well as our
three main intractability results. In general terms, we obtain NP-completeness
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Result |S| ∆R σ D link weights notes

[8], Theorem 1 Θ(n)
(or 1 †) Θ(n)

any
σ ≥ 2

sparse,
all values
0 or 1

variable;
w ∈ [1, 100n2]
µ ∈ [1, 100n2]

Showed inapprox.
within Ω(logn)

[9], Lemma 1 Θ(n)
1

fixed;
w = µ = 1

All switches
have 3 ports.

[9], Theorem 2

1

G has Θ(n)
components

[10], Theorems
4.1, 4.2

2
any
σ ≥ 0

dense,
values in
poly(n)

G is empty; there
are no static links

Theorem 1

sparse,
values in
poly(n)

fixed;
w = 1

µ ∈ Θ( 1
poly(n)

)

G ∈ H, where H
is any polynomial
family of networks
(incl. hypercubes,

grids, cycles).Theorem 2 3
fixed;
w = 1

µ ∈ Θ( 1
log(n)

)

Theorem 4 1 σ = 3
fixed;
w = 1

any µ ∈ (0, 1)
G is a hypercube

Table 1. Settings for some pre-existing hardness results for RRP. |S| is the number of
switches; ∆R is the maximum number of external ports per node; σ is the segregation
parameter; D is the workload matrix; n denotes the number of nodes in the instance.

for 2-switched RRP and 3-switched RRP on any fixed class of static net-
works of practical interest (defined more fully below) and for any value of σ.
We then restrict our focus (and associated parameters) to the case where the
static network is a hypercube when we establish the NP-completeness of 1-
switched RRP(σ = 3) in this setting; we conjecture that a similar construc-
tion can be used to establish hardness when σ > 3. We also, in Theorem 3, show
that 1-switched RRP(σ = 0) is solvable in polynomial time. The cases when
σ ∈ {1, 2} remain interesting open problems.

As is standard in NP-hardness proofs, we reduce from known NP-complete
problems to instances of RRP; the challenge is that, due to the expansive scope
of our theorems, we lose several “degrees of freedom” which are used for encoding
hard instances in, e.g., [7,8,9]. Specifically, we may not make use of varying static
or dynamic link weights to prohibit certain connections, nor encode any features
of the input instance in the topology of the hybrid network G(S). For example,
in Lemma 1 [9], many small switches with two feasible configurations each are

†By using variable µ with prohibitively large weights, it is possible to simulate many
switches with just one.
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used to encode a truth assignment, and in Theorem 1 of [8] “bad” links are given
weights of order Θ(n2). Neither of these mechanisms can be leveraged to obtain
hardness in our setting; in this sense, our hardness results are strictly stronger
and also harder to obtain than those from [7,8,9]. We are constrained to choose
a size for the network G, and then to encode the input instance in the demand
matrix D.

Our first two results hold for a wide class of graph families, which may be of
broader interest for the study of computational hardness in network problems.
Rather than allowing arbitrary static networks in instances of RRP, we wish to
force any such static network to come from a fixed family of networks where
a family of networks H is an infinite sequence of networks {Hi : i ≥ 0} so
that the size |Hi| of any Hi is less than the size of Hi+1. However, we wish
to control the sequence of network sizes. Consequently, we define a polynomial
family of networks as being a family of networks H = {Hi : i ≥ 0} where
there exists a polynomial pH(x) so that |Hi+1| = pH(|Hi|), for each i ≥ 0‡.
Note that given any n ≥ 0, we can determine in time polynomial in n the
smallest i such that n ≤ |Hi|. As an example of a polynomial family of networks,
consider the hypercubes; here, the polynomial pH(x) = 2x. Other examples
include independent sets, complete graphs, cycles, complete binary trees and
square grids, among many others. The sweeping generality of having a single
construction which holds for any polynomial family H poses a challenge in our
proofs of Theorems 1 and 2; we require that our constructed network H(S)
behaves identically when H is a connected (or even complete) graph and, at the
opposite extreme, when H is disconnected (or even independent). For reasons of
length, full proofs are deferred to the full version of this paper; we provide our
construction for Theorem 1 in full, along with a sketch of the proof.

Theorem 1. For any polynomial family of networks H = {Hi : i ≥ 0}, the
problem 2-switched RRP restricted to instances (H,µ,D, κ) satisfying:

– H ∈ H has size n
– the workload matrix D is sparse and all values in it are polynomial in n
– µ ∈ Θ( 1n ) is fixed for all dynamic links

is NP-complete.

Proof. 2-switched RRP is straightforwardly in NP as a subproblem of RRP.
We describe a polynomial-time reduction from the problem 3-Min-Bisection,
which is known to be NP-complete [3] and is defined as follows:

‡Technically, we insist that there exists a polynomial Turing machine M which
computes Hi+1 on input Hi, for each i ≥ 0, but this definition obfuscates the utility of
this description.
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3-Min-Bisection
Input: (G = (V,E), k): G is a 3-regular graph on n vertices and k ∈ N.
Question: Is there a partition of V into two disjoint subsets A and B, of
equal size, so that the set of edges incident with both a node in A and a
node in B has size at most k? Or: does G have bisection width at most k?

Note that any 3-regular graph necessarily has an even number of nodes, and
that we may assume that k ≤ n

3 +46 as it was proven in [6] that every 3-regular
graph has bisection width at most n

3 + 46. Given an arbitrary instance (G =
(V,E), k) of size n of 3-Min-Bisection, we now build our instance (H,µ,D, κ).

We describe our workload matrix D via the weighted digraph D′ = (V ′, E′),
which has a directed edge (u, v) with weight w if, and only if, there is a node-
to-node workload of w from u to v. Let n̄ be the size of the network Hi where i
is the smallest integer such that n+ 6n2 + 2 ≤ |Hi| and set H = Hi.

The node set V ′ is taken as a disjoint copy of the node set V of G, which
we also refer to as V , together with the set of nodes Vc = {xi, yi : −L

2 ≤
i ≤ L

2 }, where L = 3n2 (recall, n is even), and another set of nodes U of size
n̄− (n+6n2+2); so, |V ′| = n̄. We call every node of Vc a chain-node. For ease of
presentation, we denote the chain-nodes xL

2
and x−L

2
by x+ and x−, respectively,

and we define the chain-nodes y+ and y− analogously. The (directed) edge set
E′ consists of Eα ∪ Eβ ∪ E1 where:

– the set of chain-edges Eα = {(xi, xi+1), (yi, yi+1) : 0 ≤ i < L
2 } ∪ {(xi, xi−1),

(yi, yi−1) : −L
2 < i ≤ 0}

– the set of star-edges Eβ = {(x0, v) : v ∈ V } ∪ {(y0, v) : v ∈ V }
– the set of unit-edges E1 which is a copy of the edges E of G, but on our

(copied) node set V and so that every edge is replaced by a directed edge of
arbitrary orientation.

Note that the nodes of U are all isolated in D′ and that |V ′| = n̄ (the nodes
of U will play no role in the following construction). The workloads on the edges
of E′ are α, β or 1 depending upon whether the edge is a chain-edge from Eα, a
star-edge from Eβ or a unit-edge from E1, respectively, where we define α = 24n6

and β = 6n3. If the directed edge (u, v) has weight α (resp. β, 1) in D′ then
we say that (u, v) is an α-demand (resp. β-demand, 1-demand). The digraph D′

can be visualized as in Fig 4.
As stated earlier, our static network H is the network Hi ∈ H where |Hi| = n̄.

We refer to the node set of H as V ′ also and we refer to the subset of nodes within
V ′ corresponding to V as V also. Since we are in the 2-switched setting, we have
one switch s with 2|V ′| ports so that every node of H is adjacent, via switch
links, to exactly two ports of the switch. Hence, our switch set is S = {s} and
our hybrid network is H(S). It is important to note that for any configuration
N , any node of H(N) can be adjacent to at most 2 other nodes via dynamic
links (as ∆S = 2).

As can be seen, we have the graph G = (V,E), the digraph D′ = (V ′, E′)
and the hybrid network H(S) with node set V ′. Although G, D′ and H(S) are
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x0x−1 x1x−2 x2x− = x−L
2

x+ = xL
2

. . . . . .

y0y−1 y1y−2 y2y− = y−L
2

y+ = yL
2

. . . . . .

Fig. 4. The digraph D′. The nodes of V are in the grey rectangle, the nodes of Vc appear
along the top and the bottom and the dashed (resp. dotted, solid) directed edges depict
the chain-edges (resp. star-edges, unit-edges). The nodes of U are omitted.

disjoint in terms of node sets, we do not distinguish between, say, the node set
V of G and the subset of nodes V of H.

We set the weight of any dynamic link as µ = 1
2L = 1

6n2 and the bound κ for
the total workload cost as κ = κα + κβ + κ1 where:

– κα = 24n6

– κβ = 3n4 + n3

2 + n2

– κ1 = k
2 + 1

8 − 1
4n + k

3n2 .

The values of κα, κβ and κ1 have the following significance.

– Suppose that for every chain-edge (u, v) of Eα, N contains the dynamic link
joining u and v in H(N) and the α-demand (u, v) is routed by the flow-path
u ⇢ v. Then the total workload cost of flow-paths serving α-demands is
2Lαµ = 24n6 = κα.

– Further, suppose that the dynamic links incident with nodes of V in H(N)
are chosen so that we have a path of dynamic links pA from x+ to either y−
or y+, involving the subset of nodes A ⊆ V , and a path of dynamic links
pB from x− to y+ or y−, respectively, involving the subset of nodes B ⊆ V ,
so that both pA and pB have length n

2 + 1. That is, we choose the dynamic
links so that they form a cycle C (of length n + 2L + 2) in H(N) covering
exactly the nodes of V and Vc. Suppose that for any star-edge (x0, v) (resp.
(y0, v)) of Eβ , we choose the flow-path in H(N) serving this star-edge as
consisting entirely of dynamic links resulting from the shortest path in our
cycle C from x0 to v (resp. y0 to v). The total workload cost of flow-paths
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corresponding to the star-edges is

4µβ

n
2∑

i=1

(
L

2
+ i) = 3n4 +

n3

2
+ n2 = κβ .

– Further, suppose we choose the flow-path in H(N) serving the 1-demand
(u, v) (in E1) to be a path of dynamic links within the cycle C of shortest
length. If u and v both lie on pA or both lie on pB then the workload cost of
this flow-path is at most µ(n2 − 1) = 1

6n (
1
2 −

1
n ), and if one of u and v lies on

pA with the other node lying on pB then the workload cost of this flow-path
is at most µ(n2 + L+ 1) = 1

2 + 1
12n + 1

6n2 . If the width of the bisection of G
formed by A and B is at most k then the total workload cost of flow-paths
corresponding to the unit-edges is at most

(
3n

2
− k)µ(

n

2
− 1) + kµ(

n

2
+ L+ 1) =

k

2
+

1

8
− 1

4n
+

k

3n2
= κ1.

From above, we immediately obtain that if (G, k) is a yes-instance of 3-Min-
Bisection then (H,µ,D, κ) is a yes-instance of 2-switched RRP.

It remains to show that if (H,µ,D, κ) is a yes-instance of 2-switched RRP,
then (G, k) is a yes-instance of 3-Min-Bisection; this is much more technical.
For reasons of length, we provide only a flavor of the full proof here. Our first
step is to show that all chain-edges are realized as dynamic links (i.e. Eα ⊆ N ,
abusing notation slightly), then that the set of dynamic links N forms a cycle C
covering exactly the nodes of V ∪Vc. From there, we obtain that deleting Vc from
C produces two paths on exactly n

2 nodes, and hence encodes a bisection A,B
of G (the function of the β-demands is to force |A| = |B|). Lastly, applying our
choice of κ1 we obtain that there are at most k edges in G between A and B. So,
if (H,µ,D, κ) is a yes-instance of 2-switched RRP then (G, k) is a yes-instance
of 3-Min-Bisection. Our result follows as (H,µ,D, κ) can be constructed from
(G, k) in time polynomial in n.

This result significantly strengthens Theorems 4.1 and 4.2 from [10]: there,
RRP(∆R ≥ 2, σ = 0) is shown to be NP-complete when the static network is
an independent set, and the proof does not enable us to restrict the workload
matrix D meaningfully. The main weakness of Theorem 1 is its reliance on µ
being a polynomial factor smaller than any static link weight. This is actually
related to the fact that a connected 2-regular network, as is G(N) when G is
an independent set and ∆S = 2, has diameter linear in the number of nodes
n. A network of maximum degree 3, on the other hand, may have diameter
logarithmic in n (e.g., a complete binary tree has this property) and we indeed
show NP-completeness of RRP(∆S = 3) when µ = Θ( 1

logn ).

Theorem 2. For any polynomial family of networks H = {Hi : i ≥ 0}, the
problem 3-switched RRP restricted to instances (H,µ,D, κ) satisfying:

– H ∈ H has size n
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– the workload matrix D is sparse and all values in it are polynomial in n
– µ ∈ Θ( 1

log(n) )

is NP-complete.

These results led us to consider the problem 2-switched RRP(σ = k) for
k ≥ 0. By extending Theorem 3.1 from [10] (which establishes tractability in the
case where σ = 0 and only paths using at most one dynamic link are admitted),
we show that this restriction entails tractability when either σ = 0 or the static
network is a complete graph, in contrast with our NP-completeness results.

Theorem 3. 1-switched RRP(σ = 0) is in P.

Proof. Since each node is connected to the switch exactly once, no vertex is
incident to two dynamic links under any configuration N , and hence no flow-
path consists of two or more dynamic links. That is, the constraint on the number
of dynamic links per flow-path is implicit in this setting, and tractability follows
from Theorem 3.1 from [10].

Corollary 1. 1-switched RRP(σ = k) restricted to instances where the static
network G is a complete graph is in P, for any k ∈ N ∪ {∞}.

Proof. If G is a complete graph (with all edge weights equal) then without loss
under any configuration N , each demand D[u, v] is routed via the flow-path
φ(u, v) of minimum weight, which is either a single static link from u to v with
unit weight, or a single dynamic link from u to v with weight µ. It follows that
setting σ = 0 introduces no new constraints, and then by Theorem 3 we have
tractability.

Corollary 1 rules out the possibility that 1-switched RRP might be NP-
complete for any polynomial graph family H (since such a claim would extend
to the family of complete graphs) unless P equals NP. This leaves open the
practically relevant case where ∆S = 1 and σ > 0 for specific topologies. We
consequently consider the scenario where the static network is a hypercube and
the segregation parameter σ = 3.

Theorem 4. For any fixed µ ∈ (0, 1), the problem 1-switched RRP(σ = 3)
restricted to instances (H,µ,D, κ) satisfying:

– H ∈ Q, where Q := {Qd|d ∈ N} is the family of hypercubes
– the workload matrix D is sparse and all values in it are polynomial in n

is NP-complete.

We emphasize the relevance of the hypercube as a prototypical model of
interconnection networks (see, e.g., [12]) and the fact that we obtain hardness
here for any choice of fixed dynamic link weight µ.
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4 Discussion and Future Work

Taken together, our results comprehensively establish the computational hard-
ness of RRP in practically relevant settings. We establish that the problem re-
mains intractable in several cases where the demand matrix is sparse, the hybrid
network is highly structured (in fact node-symmetric) and the weights of links
depend only on their medium. Furthermore, in Theorems 1, 2, and 4, the instru-
ment used to “express” NP-completeness is the demand matrix D. In the real
world, the computational workload for the network is generally expected to vary
significantly with time, unlike the network’s hardware, which (in addition to its
structural properties already discussed) does not rapidly change. Our results are
in this sense closely relevant to the hardness of the real world reconfigurable
routing problem.

We take this opportunity to identify some specific questions we have left
open, as well as several more general avenues for future work in this area. First,
it would be interesting to study the restriction of the problem to cases where
∆S is greater than 1 and µ is a fixed constant. Results in this setting would
“bridge the gap” between Theorems 1 and 2, and Theorem 4. Analogously, there
is a gap for 1-Switched RRP on hypercubes between σ = 0 (which is solvable
in polynomial time) and σ = 3 (which is an intractable case). The complexity
of the problem with σ = 1 and σ = 2 remains open for hypercubes (note that
results for arbitrary networks do exist when σ = 2, as shown in Table 1).

Secondly, the present work considers only exact computation. In [8] the au-
thors establish inapproximability within Ω(log n) for RRP in a more permissive
setting (making use of variable link weights). However, the empty solution (there
are no dynamic links and all demands are routed through the static network only)
is a logn

µ -approximation for ∆S-Switched RRP on hypercubes. (This follows
straightforwardly from hypercubes having logarithmic diameter.) It would be
interesting to see what (in)approximability results can be derived in our model
with fixed link weights, with and without restrictions to realistic topologies.

Lastly, parameterized algorithms may provide more fine-grained insights into
the computational complexity of reconfigurable routing. Our Theorems 1 and 2
establish that structural parameters of the static network, such as treewidth, are
insufficient to yield fixed-parameter tractable (fpt) algorithms (unless P=NP).
However, it would be interesting to see whether it is possible to obtain an fpt
algorithm by additionally parameterizing by the sum of the demand matrix D;
some structural parameters for the digraph representation of the demands, D′;
the dynamic link weight µ; or a combination of these.
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