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Abstract. The C programming language and its cousins such as C++
stipulate the static storage of sets of structured data: Developers have
to commit to one, invariant data model—typically a structure-of-arrays
(SoA) or an array-of-structs (AoS)—unless they manually rearrange,
i.e. convert it throughout the computation. Whether AoS or SoA is
favourable depends on the execution context and algorithm step. We
propose a language extension based upon C++ attributes through which
developers can guide the compiler what memory arrangements are to be
used. The compiler can then automatically convert (parts of) the data
into the format of choice prior to a calculation and convert results back af-
terwards. As all conversions are merely annotations, it is straightforward
for the developer to experiment with different storage formats and to pick
subsets of data that are subject to memory rearrangements. Our work
implements the annotations within Clang and demonstrates their poten-
tial impact through a smoothed particle hydrodynamics (SPH) code.
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1 Introduction

Loops over sequences of data are the workhorses of scientific codes. Modern high-
level languages provide us with the concept of structures to model our data ele-
ments. They are convenient to represent particles, mesh cells, and so forth. Due
to its structs, the C++ language leans towards an array-of-structs (AoS) stor-
age for sequences. The class is the primary modelling entity for the programmer,
and the language favours sequences over class instances, i.e. objects [6,7,10,11].

In many cases, implementations over structure-of-arrays (SoA) outperform
their SoA counterpart. They facilitate the efficient usage of vector instructions [4,
9,14] and are less sensitive to cache effects [7, 8, 14]: With AoS, compute ker-
nels over sequences of structs have to gather and scatter vector register content
(shuffling), vector parallelism is not blatant to the compiler, and structs for mul-
tiple loop iterations might not fit into the cache. With SoA, vector registers
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can be filled with coalesced memory accesses, vector computations are exposed
explicitly, and data from subsequent loop iterations is likely to reside in cache.
While CPUs improve their gather-scatter efficiently with every new generation,
the observations remain valid and apply GPUs, too [15].

SoA is not always superior to AoS. Tasks such as boundary data exchange,
particle movements over meshes, or, in general, any algorithm that has to alter
or permute struct sequences or access it in a non-continuous way [15] benefit
from AoS. The size of characteristic sequences [7] and the memory footprint per
struct further affect which storage format performs better. Finally, any runtime
difference depends upon how successful the compiler vectorises an algorithm
[11,19] and what the target architecture looks like. The choice of an optimal
data structure is context-dependent. There is no “one format rules them all”.

Refactoring code to accommodate memory rearrangements is error-prone
and laborious. Wrappers allow developers to write their algorithms in a mem-
ory layout-agnostic way. C++ template meta programming combined with spe-
cialised containers are popular to achieve this [7,10,11, 14, 15]. This is a static,
global approach. The data layout remains fixed. Any static strategy fails to
react to the algorithmic context. A dynamic, local approach reorders data prior
to the loop, such that only a local code block is aggressively optimised while the
global data layout stays invariant.

To determine the permutation of data relative to plain AoS, we distinguish
manual (user-driven) from automatic workflows. A guided one [11,19] is a hy-
brid, where the actual transformation is carried out by the compiler, but only at
the explicit request of the user. We propose a dynamic, local, guided approach:
The code remains written in plain C++. Through additional annotations, pro-
grammers specify alternative data layouts for particular loops. A compiler takes
the annotations and manually reorders data in a separate, temporary memory
block prior to the loop. This is an out-of-place reordering, i.e. does not alter
the original data layout [4,5,18]. The compiler also alters all corresponding data
accesses such that they fit to the reordered copy of the data. A counterpart an-
notation ensures that data modifications are copied back at the end of the block,
i.e. data are kept consistent.

Our approach is lightweight and non-invasive: The code remains correct if the
annotations are unknown to the compiler. Different to manual optimisations or
the implementation through future C++ generations supporting reflections [2],
no code rewrites are required. This facilitates experimenting with different data
layouts and separating algorithm development from performance tuning [3]. Our
approach is not lightweight behind the scenes, as it introduces data movements.
To reduce data movements, we rely on views: Developers can apply the AoS-to-
SoA and SoA-to-AoS permutations to a subset of the structs’ attributes.

We demonstrate the potential of the idea by means of selected SPH ker-
nels [13]. Individual SPH interactions can either be strongly memory-bound, or
rely on compute-intense kernels. Since we allow the code base to stick to AoS
overall, we do not negatively impact algorithmic phases such as the particle
boundary exchange or any sorting, but still show that some kernels—depending
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on the context and the algorithmic character—perform better due to temporal
data reordering. We cannot yet provide a heuristic when conversions pay off. Our
data suggests that common knowledge that it pays off only for Stream-like [12]
kernels [7] or large arrays [15] is not unconditionally true.

Dynamic data structure transformations within a code have been used by
several groups successfully [4,18]. Our contribution is that we clearly separate
storage format considerations from programming, introduce the notion of views,
and move all data conversions into the compiler. As this approach requires no
rewrite of existing code, additional libraries or new features such as reflec-
tions [2], it has the potential to streamline code development and code tuning.
We notably do not increase the syntactic complexity of the code. As we challenge
the common knowledge that temporal data reordering prior to loops or compu-
tational kernelsis problematic [8,9], we lay the foundations of making these data
layout optimisations a standard optimisation step within a compiler pipeline.

The remainder is organised as follows: We sketch our use case first to motivate
our work (Section 2), though all ideas are more widely applicable. We next
introduce our code annotations, and then discuss their semantics (Section 3).
This allows us to realise the annotations in Section 4, before we finally study
their impact. A brief discussion and outlook in Section 6 close the discussion.

2 Demonstrator use case

We motivate and illustrate our ideas by means of the compute kernels of a simple
smoothed particle hydrodynamics (SPH) code. SPH is a Lagrangian technique.
The particles interact, move and carry properties. This way, they represent the
underlying fluid flow. We zoom into the elementary operations of any SPH code,
which is the hydrodynamic evolution with leapfrog as SPH’s predominant time
integrator. More complex physical models typically start from there [13].

Algorithmic kernels. We focus on N particles and assume that they can interact
with any other particle. This resembles an SPH code which clusters the com-
putational domain into control volumes each hosting a small, finite number of
particles. The control volumes are chosen such that particles only interact with
other particles within the volume and its neighbours, as SPH typically works
with a finite interaction radius. We assume to know its upper bound. The core
compute steps of the algorithm then read as follows:

1. We determine the smoothing length of each particle, i.e. the interaction
area, and its density. This initial step evaluates two-body interactions, i.e. is
in O(N?). It studies all nearby particles within the volume and decides if
to shrink or increase the interaction radius. The process then repeats. The
density computation overall is iterative, but we study one iteration step only.

2. We compute the force acting on each particle. The force is the sum over all
forces between a particle and its neighbours within the interaction radius.
Overall, the force calculation is asymptotically of quadratic complexity.
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3. We kick the particle by half a time step, i.e. we accelerate it. This is a mere
loop over all particles within a cell and hence of linear complexity.

4. We drift a particle, i.e. update its position. This is another loop in O(N).

5. We kick a second time, i.e. add another acceleration.

Memory layout and data flow. Our SPH particle is modelled as a struct. We
work with AoS. The hosted structs aka particles can hold from a few quantities
up to hundreds of doubles. Our benchmark code induces a memory footprint of
256 bytes per particle. Some of these bytes encode administration information,
others store physical properties. For many steps, only few attributes enter the
equations. The others are, within this context, overhead [1,7].

The density calculation starts from the density and smoothing length of the
previous time step and updates those two quantities, and others such as the
neighbour count, the rotational velocity vector, and various derivative proper-
ties. Smoothing length, density and further properties feed into the force accu-
mulation which eventually yields an acceleration per particle. Kicks are relatively
simple, i.e. add scaled accelerations onto the velocity. The second kick in our im-
plementation also resets a set of predicted values which feed into the subsequent
density calculation. Drifts finally implement a simple Euler time integration step,
i.e. a tiny daxpy.

SPH is a Lagrangian method and hence works with particles which are scat-
tered over the computational domain. While we tend to hold the particles con-
tinuously in memory per cell to facilitate vectorisation, the nature of the moving
particles implies that we have to resort frequently. In a parallel domain decom-
position environment, we furthermore have to exchange few particles per time
step as part of the halo exchange.

3 Source code annotations

Converting AoS into SoA is an evergreen in high-performance computing, once
we have committed to AoS as development data structure (cmp. for exam-
ple [3,4,7-11,14-16, 18, 19]). Vector computing in a SIMD or SIMT sense in-
cluding coalesced memory accesses, cache and TLB effects drives such rewrites.
A sophisticated conversion takes into account weather we have to convert only
a subset of the struct, i.e. if we can peel a struct or open a view [8].

We propose that developer focus exclusively on either SoA or AoS. For the
demonstrator from Section 2, AoS is, in line with many codes [6, 7,10, 11], a
natural choice. The (temporal) data permutation into SoA then is delegated to
the compiler. For this we introduce C++ attributes (Algorithm 1):

— Whenever the compiler encounters a [[clang: :soa_conversion_target]]
attribute, we instruct the translator to convert the array named as argument
into SoA prior to entering the following loop. All attribute accesses within
the loop will be redirected to the converted data. We instruct the compiler
to perform a temporary out-of-place transformation [16].
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Algorithm 1 The drift of all particles within a control volume is annotated
with instructions to the compiler to convert parts of the underlying AoS data
into SoA prior to the actual loop invocation.

1: function voIiD DRIFT(Particle *particles, int size)

2: [[clang::soa_conversion_target(particles)]]

3 [[clang::soa_conversion_target_size(size)]]

4 [[clang::soa_conversion_inputs(pos, vel, updated)]]

5: [[clang::soa_conversion_outputs(pos, updated)]]
6: for (int i = 0; i < size; i++) do
7
8

auto &p = particles]i];
p.pos[0] += p.vel[0] * dt;

9: p.pos[1] += p.vel[1] * dt;
10: ..
11: p-updated = true;

12: end for
13: end function

— To trigger the conversion, users have to specify the size of the target array
through [[clang::soa_conversion_target_sizel]], as plain C arrays do
not come along with such meta information.

— We can convert the whole struct, i.e. all attributes, hosted within an AoS,
or we can restrict the conversion to particular attributes of these structs
through [[clang: :soa_conversion_inputs]]. The input annotation opens
a view on the struct. It peels the struct [8].

— Alterations to the implicitly created SoA view become invalid once we leave
the code block. If changes should be copied back into the original data,
i.e. synchronised, users have to add [[clang: :soa_conversion_outputs]].

3.1 Transformation semantics

Let S be a struct and S = [Sy, S, 52, . . .] be a sequence, i.e. array of these structs
(AoS). We assume that S is identified through a pointer to the first element of the
sequence. As we work with raw data in a C sense, we require explicit information
on the size |S| of S from the user, though passing s.size() is admissible if we
work with C4++’s std: :array or std: :vector, e.g.

[[clang: :soa_conversion_target]] over S identified by its pointer informs
us that S is held as AoS, and it introduces a mapping aos_to_soa : S +— S.Sis
a tuple of data, where each entry is an array of a primitive type with the size
|S|. With [[clang: :soa_conversion_inputs]], the set A of attributes that are
mapped can be restricted. Not every attribute of S has to be copied into the
reordered data area.

Our compiler does not automatically copy content from the temporary data
structure back. It does not automatically synchronise SandsS. Instead, we require
users to specify which attribute set A to copy back through
[[clang: :soa_conversion_outputs]]. [[clang: :aos_conversion target]] in-
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troducing soa_to_aos and its counterpart [[clang: :aos_conversion_outputs]]
are well-defined the other way round.

Out-of-place temporary data. Let S hold attributes from A U A. That is, the
temporary data hold all attributes which are either defined through input or
output statements. We have no subset relation and allow AN A # (). With this,

mem(S) < mem(S) if mem yields the memory footprint. We furthermore note
that soa_to_aos = aos_to_soa~! whenever A = A.

Prologue. The target statement adds a preamble to the following loop. The
preamble opens with the creation of a temporary data structure S, and then
immediately fills the image with

S.a; < S;.a V0 <i<|[S|, Va € A. (1)

Only attributes a € A of S are copied into the SoA helper data structure due to
(1). For A # A, we do not fill all attributes in S. Some fields hold garbage.

Redirection. Any subsequent access to S;.a, a € AU A within the loop is redi-
rected to S.a;. Our compiler extension redirects accesses to the structs within
S to the structure of arrays. Any follow-up optimisation pass within the com-
piler pipeline will hence work with SoA. Through an explicit specification of A
and A, we can shrink the memory footprint of S and reduce the copy overhead.
Attribute accesses a € A U A continue to hit S directly.

Epilogue. The epilogue adds
Si.a + S.a; Y0 <i<|[S|, Va €A, (2)

to the outcome code, followed by a free of S. In principle, the epilogue uses
soa_to_aos. The difference between (2) and (1) is the temporal order: An out-
put statement inserts the mapping into an epilogue, while the target statement
tackles the prologue.

3.2 Extensions

Our language extension is focused on one-dimensional data sets which are log-
ically continuous, i.e. allow for coalescent data access: A container traversed
via for (auto& p: ...) can technically be realised with scattered data S. Our
conversion yields one continuous excerpt S.

We implicitly exploit that any loop imposes an ordering. Therefore, we can
extend our annotations by [[clang: :soa_conversion_start_idx()]] which re-
strict the conversion to a subset of the range. There is no need for a
[[clang: :soa_conversion_end_idx()]], as the size is manually specified.
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Algorithm 2 Pseudo code which illustrates how the compiler rewrites the ex-
ample in Algorithm 1. Embedded arrays where the size has to be known at
compile time and types of all converted data can be analysed by the compiler
from the source code.

1: function voIiD DRIFT(Particle *particles, int size)

2: posOsmp = new double[size]; > temporary out-of-place array

3: poslimp = new double[size];

4: N

5: for (int i = 0; i < size; i++) do

6: posOtmpli] = particles[i].pos[0]; > out-of-place AoS-SoA conversion
T e

8: end for

9: for (int i = 0; i < size; i++) do

10: posOtmpli] += velOgmp * dt; > p.pos[0] += p.vel[0] * dt;
11: ..

12: updatedimp[i] = true; > p.updated = true;
13: end for

14: for (int i = 0; i < size; i++) do

15: particles[i].pos[0] = posOimp[i]; > SoA-AoS conversion due
16: .. > to outputs statement
17: end for

18: delete[] posOimp; > free temporary arrays
19:

20: end function

4 Compiler realisation

We implement our proposed techniques prototypically such that we can highlight
their potential impact for the SPH demonstrator. For this, we plug into the Clang
LLVM front-end. Clang takes C++ code and emits unoptimised LLVM IR. As we
work within Clang, our modifications affect the resultant unoptimised interme-
diate representation (IR) output, and do not alter any downstream steps within
the translation pipeline. Notably, the generated IR code still benefits from all
LLVMe-internal optimisation passes. Clang’s lexer, parser and semantic analyser
yield an abstract syntax tree (AST). The AST then is subsequently consumed
to produce LLVM IR. These steps constitute the compiler’s FrontendAction.
We realise our functionality with a new FrontendAction. It traverses the
AST top down and searches for our annotations. When it encounters a convert,
it inserts allocation statements for the out-of-place memory allocations once all
information on the data view are available, and it adds the actual data copying
from (1). The names of the temporary variables are mangled to avoid variable
re-declarations. Following the prologue step, we query the actual loop body and
redirect the memory accesses to A U A. Finally, we add an epilogue that syn-
chronises the data according to (2) and frees the temporary buffers. As AST
modifications are not possible in Clang, i.e. as the AST is immutable, our reali-
sation pretty prints the AST into C++ subject to our modifications and then in-
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vokes Clang’s original FrontendAction. This process happens in-memory, and is
transparent to the end user. The behaviour can be disabled on the command line
through -fno-soa-conversion-attributes-language-extension. Our com-
piler optimisation pass materialises in a source-to-source compiler (cmp. rewrite
of Algorithm 1 into 2) which feeds into subsequent translation sweeps [18].

As we precede Clang’s original FrontendAction, it is possible to dump our
output into source files explicitly instead of implicitly passing it on into the sub-
sequent FrontendAction. While originally designed for debugging, this feature
is particularly appealing in environments where the modified compiler is only
available locally, while the compilers on the target production platform cannot
be modified.

As we navigate the source code using the AST, the effect of our annotations
is scoped at the translation-unit level: The data transformations cannot propa-
gate into user translation units (object files) and notably fail to propagate into
libraries. Instead, the annotations will break the code if library functions are
used internally. While functions with signatures similar to foo(particles[i])
(cmp. Algorithm 1) cannot be used in code blocks subject to the code trans-
formations, functions capturing attributes individually are supported. A func-
tion foo(particles[i] .pos[0], particles[i].pos[1],...) will continue to
work. A sequence of foo calls will even vectorise if translated accordingly (declare
simd in OpenMP for example).

5 Benchmark results

We assessed the impact of our compiler prototype on two architectures. Our first
system is an AMD EPYC 9654 (Genoa) testbed. It features 2 x 96 cores over 2x 4
NUMA domains spread over two sockets, hosts an L2 cache of 1,024 KByte per
core and a shared L3 cache with 384 MByte per socket. Our second system is an
Intel Xeon Gold 6430 (Sapphire Rapid). It features 2 x 32 cores over two sockets.
They form two NUMA domains with an L2 cache of 2,048 KByte per core and a
shared L3 cache with 62 MByte per socket. To avoid NUMA effects, we confine
all our Intel and AMD tests to a single NUMA domain through numactl.

Upscaling. We start our studies with a classic strong scaling configuration for
4.19 - 10° particles. The particles are held as AoS and we iterate over them with
a parallel loop invoking one of our kernels only. Our measurements distinguish
three different variants: A plain AoS serves as vanilla version. This is the code
base actually written down in C++. We compare this to SoA where the whole
particle sequence is converted prior to loop and synchronised back afterwards,
i.e. A = A with all attributes of the struct involved. Finally, we assess a version
where views narrow down the attribute sets to the number of variables which
are actually read or written, respectively.

The force calculation scales almost perfectly as it is compute-bound, while
kicks and drifts tail off (Figure 1). This implies that the latter ones become
bandwidth-bound once we use a sufficiently high number of cores. Converting
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Fig. 1. Scalability plots for 2048 particles on a single node for four different kernels
(Genoa). We benchmark the baseline code (AoS) against a version which converts all
of the particle data (SoA) against a version which works with views.

into a SoA leads to a higher compute time, but narrowing down the conversion
to views eliminates this penalty. For the drift, the converted version becomes
even slightly faster than the AoS vanilla version. The situation is fundamentally
different for the computationally demanding force kernel. Here, the temporary
conversion into SoA pays off, and the views then help to reduce the runtime
even further. All measurements for the Sapphire Rapid yield qualitatively similar
data.

Adding additional data movements due to AoS—SoA conversions to compu-
tationally cheap kernels is poisonous: Even an improved AVX512 vectorisation
cannot compensate for the logical latency that our out-of-place conversion in-
troduces. We delay the actual loop launch as we first have to convert data. If we
employ many cores and operate overall in the saturation regime, the difference
starts to disappear. As a core has to wait for the memory controller anyway, it
can as well use the cycles to convert the data structure in a nearby cache.

If a kernel exhibits sufficient compute load, a temporary conversion pays
off. This contradicts the intuition that a conversion is particularly beneficial
for Stream-like operations [7,9]. It aligns with other papers where temporary
transformations are used for expensive code parts [4].

Impact of particle count. We continue with a test where we alter the number
of particles per kernel, draw 16 samples per run to avoid noise, and study the
throughput, i.e. the number of particle updates or the number of particle—particle
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interactions per second, respectively. As the scalability of the benchmark is con-
firmed, we stick to three characteristic thread counts. As we have demonstrated
the impact of the views, we focus on a comparison of the views to the vanilla
AoS storage.
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Fig. 2. Dependency on particle counts for fixed thread numbers (8, 16 and 32). Sap-
phire Rapid (top) vs. Genoa data (bottom). The L2 cache size denotes the size for a
single thread, i.e. how many particles would fit into one single L2 cache.

For the cheap kernels, the conversion pays off as long as the particle count
is contained within a machine-specific optimal range. The efficiency gap closes
on Intel systems as we use more threads, and becomes rather erratic on AMD
(Figure 2). “Optimal range” notably implies that we are not in a scaling regime
yet, where using all threads pays off. For the compute-heavy force kernel, the
gap between sole AoS and the views widens on the Intel system as the particle
count increases. We notably observe a “sudden” throughput deterioration for
the plain AoS which does not occur for the converted algorithm. On AMD, the
curves for both schemes are relatively smooth, yet they close again if we use
too many threads: The SoA version with views stagnates, while the AoS version
catches up.

The large caches on both testbeds imply that we never fall out of L3 cache
once the first warm-up run out of 16 is completed. We hence rule out last level
cache misses to explain the throughput behaviour. Our L3 is filled with the AoS
data once per test, and these data are then converted 16 times into SoA with
views and back. We manually verified that the machine code (AVX vectorisation)
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is comparable on both target systems and is efficient. Runtime behaviour and
qualitative differences in the data thus have to be explained through the memory
access characteristics.

We need a decent number of particles per thread to give the vectorisation the
opportunity to unfold its potential. For very small particle counts per thread, a
conversion never pays off. For small particle counts per thread, we however bene-
fit within the loop body from improved memory access characteristics. Once the
particle count increases, the advantage is eaten up by the single-threaded conver-
sion in the epilogue and preamble of the loop if we encounter an algorithm with
linear complexity and low computational load. If we have “too many” threads,
they have to synchronise through the shared L3 cache, which adds a further
penalty and renders the conversion useless.

For high computational load and quadratic complexity, the improvement
in better memory access characteristics outweighs the conversion penalty. The
performance gap widens. On the Intel system, the original AoS version takes
a hit once we fall out of the L2 cache on a core. The converted SoA memory
comprises only the hot data [18], i.e. the data we actually work on. It continues
to fit into the L2. On the AMD system, we however quickly start to suffer from
NUMA effects once we employ too many threads. We have to give up on our
performance wins.

Context. Our demonstrator uses structs that are embedded into other structs [14],
as we work with coordinate vectors within the particle structure. It supports data
hierarchy through struct composition, but seems to restrict itself exclusively to
AoS and SoA. It is important to realise however that we actually support more
sophisticated data structures, too. This observation results directly from the fact
that our conversion is local and temporary.

Our underlying code base [13] and many other codes advocate for the use
of AoSoA [3] or ASTA [16] to compromise between speed and flexibility. As we
may convert subarrays of a given AoS structure, our approach can logically yield
an AoSoA/AoS hybrid. The overall data are stored as AoS, but subsections flip
to SoA. Along the same lines, our techniques allow for the manipulation of data
structures where chunks of AoS data are scattered over the heap. It does not
require one global data space. Both properties are important for our SPH code
base, where cells for example host a pointer. The data per cell are held as AoS,
but the cells’ data are scattered over the heap.

As long as SPH codes run through the individual algorithmic phases step by
step and synchronise after each step in a fork-join manner, only the algorithmic
phases with quadratic complexity per control volume seem to benefit. However,
once we work with codes that work with functional decomposition (task-based
parallelism) or employ multiple ranks per node, simulations tend to run different
algorithmic steps on different threads concurrently. As as result, fewer threads
than the whole node configuration are effectively available to a compute step. It
might be reasonable to parallelise the conversion into SoA and back. In practice,
it is not clear if this adds significant value as a step rarely “owns” many or all
threads.
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6 Conclusion and outlook

We introduce a local, guided approach to convert from AoS into SoA and vice
versa within simulation codes. When users add our novel C++ annotations to
their code, the compiler rewrites its underlying data structure out-of-place into
a temporary scratchpad for the affected code block, redirects all source code
operations to this altered memory location, and eventually synchronises (parts
of) the temporary data structure with its original again. Our approach allows for
the incremental, non-disruptive optimisation of code, as all code remains valid if a
compiler does not support our annotations, and as users can continue to design
their implementation with their favourite data layout in mind [3]. In object-
oriented codes, this will likely be AoS. Our experimental studies challenge the
wide-spread assumption that such temporary, local reordering is not affordable.
It is affordable once we introduce the notion of a view, i.e. the opportunity to
restrict transformations only to some attributes of a struct.

Our data are obtained through a prototypical Clang compiler extension. A
more mature, yet more heavy-weight long-term realisation might implement the
transformations within LLVM’s MLIR layer and hence make it independent of
the used front-end. The promise here is that the conversion would automatically
benefit from other memory optimisations such as the automatic introduction of
padding and alignment. Within the C++ domain, it is an interesting challenge
for future work to discuss how the data transformations could be integrated
with C++ views or memory abstractions as pioneered within Kokkos [17], as
the conversion gain is clearly tied to the underlying problem sizes and data
layouts. Both directions of travel for the compiler construction are timely and
reasonable, as our work has demonstrated that temporal out-of-place conversions
have the potential to speed up code. In particular, it is reasonable to assume
that our idea unfolds its full potential once we apply it to GPU-based codes [16].
It also feeds into a high-level discussion whether data transformations should
be offered to developers [2] or realised by and within the compiler subject to
developer guidance.

There is an elephant in the room: We leave the responsibility to insert ap-
propriate data reordering instructions with the user and do not try to move the
decisions themselves into the compiler [8]. Designing an automatic data transfor-
mation requires appropriate heuristics. Our studies suggest that such a heuristic
is inherently difficult to construct, as it would require a “what if” analysis: what
would the gain of the transformation be, i.e. how much performance improve-
ment would unfold due to better vectorisation, reduced cache misses and reduced
TLB, and could those improvements compensate for any transformation over-
head. Each of these questions has to be answered over a huge space of potential
reorderings. We hence hypothesise that only feedback optimisation (static) or on-
the-fly adjourning and just-in-time compilation can deliver beneficial automatic
reordering [8,18].

A second train of thought arises from the insight that conversions benefit
greatly from the concept of views, i.e. partial permutations and copying of the
data structures. Future work has to study how we can weaken the notion of
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temporal, localised transformations [6] further: It is a natural idea to preserve
converted data over multiple code blocks, i.e. not to free and re-allocate them
but to synchronise selectively. This would lead to a setup where data is held
both in AoS and SoA—and both subject of different views—and the compiler
automatically synchronises these representations upon demand. We expect this
to reduce overhead massively, trading memory for speed.
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A Compiler download

The forked Clang/LLVM project is publicly available at
https://github.com/pradt2/1lvm-project, our extensions are available in
the hpc-ext branch. To avoid conflicts, it is strongly recommended to remove
any existing Clang/LLVM installations before proceeding.

Once cloned, we create a build folder in the cloned repository, and afterwards
execute the following command:

cmake
-DCMAKE_BUILD_TYPE="RelWithDebInfo"
-DCMAKE_C_COMPILER="gcc"
-DCMAKE_CXX_COMPILER="g++"
-DLLVM_ENABLE_PROJECTS="clang; openmp"
-DLLVM_TARGETS_TO_BUILD="host"
-DBUILD_SHARED_LIBS="ON"

-G "Unix Makefiles"

../1lvm

make -j$(nproc) && make install compile and install the compiler. From
hereon, clang++ directs to our modified compiler version.

Its command-line interface (CLI) is backwards compatible with the mainline
Clang/LLVM version. The support for the new attributes discussed in this paper
is enabled by default, no additional compiler flags are needed. Yet, the features
can be switched off (Section 4).

If the use of any of the new attributes leads to a compilation error, a common
troubleshooting starting point is to inspect the rewritten source code. To see the
rewritten code, we can add -fpostprocessing-output-dump to the compilation
flags. This flag causes the post-processed source code be written to the standard
output.

B Download, build and run testbench

All of our code is hosted in a public git repository at https://gitlab.lrz.
de/hpcsoftware/Peano. Our benchmark scripts are merged into the reposi-
tory’s main, i.e. all results can be reproduced with the main branch. Yet, to
use the exact same code version as used for this paper, please switch to the
particles-aos-vs-soa branch.

The test benchmarks in the present paper are shipped as part of Peano’s
benchmark suite, which implies that Peano has to be configured and built first.
The code base provides CMake and autotools (Alg. 3) bindings. Depending on
the target platform, different compiler options have to be used. Once configured,
the build (make) yields a set of static libraries providing the back-end of our
benchmarks.
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Algorithm 3 Cloning the repository and setting up the autotools environment.

: git clone https://gitlab.lrz.de/hpcsoftware/Peano

: ¢d Peano

: libtoolize; aclocal; autoconf; autoheader; cp src/config.h.in .
automake --add-missing

./configure CXX=... CC=... CXXFLAGS=... LDFLAGS=...
: —enable-loadbalancing —enable-particles —enable-swift
—with-multithreading=omp

make

S IR A e

The actual benchmark can be found in Peano’s subdirectory
benchmarks/swift2/hydro/aos-vs-soa-kernel-benchmarks. Within this di-
rectory, a sequence of Python commands (Alg. 4) produces the actual kernel
benchmark executable kernel-benchmarks. The Python script provides further
options available through the argument --help. Internally, it parses the con-
figuration used to build the static library, creates all glue code required by the
benchmark, and then yields a plain Makefile. By default, this Makefile is imme-
diately invoked.

Algorithm 4 Building the benchmark itself.

1: cd benchmarks/swift2/hydro/aos-vs-soa-kernel-benchmarks
2: export PYTHONPATH=../../../../python
3: python3 kernel-benchmark.py -d 2

With the executable at hand, we can run the benchmark and obtain an
output similar to

4096 particles (16 samples)

density kernel: 0.802495 (avg=0.802495,#measurements=16,max=1.52808(value #12),min=0.705117(value #4),+90.4159%,-12.1344%,...
force kernel: 0.640393 (avg=0.640393,#measurements=16,max=1.17305(value #13),min=0.576625(value #5),+83.1761%,-9.95752%,...
kickl kernel: 4.29028e-05 (avg=4.29028e-05,#measurements=16,max=0.000144243 (value #12),min=3.4756e-05(value #4),+236.209%,...
kick2 kernel: 7.64441e-05 (avg=7.64441e-05,#measurements=16,max=0.000265726(value #12),min=6.2503e-05(value #4),+247.608%,...
drift kernel: 1.86415e-05 (avg=1.86415e-05,#measurements=16,max=4.9618e-05(value #12),min=1.632e-05(value #4),+166.17%,...

which we can postprocess further.
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C Additional scalability tests
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Scalability plots for 20482 particles, i.e. the same experiment as in Figure 1 on
the Sapphire Rapid testbed.

Drift kernel Force kernel

ms
ms

Kernel runtime [t]

Kernel runtime [t]

2 2 27 20 2
#Cores #Cores

Kick1 kernel Kick2 kernel

ms
ms

[t]=

Kernel runtime [t]

#Cores

Experiment from Figure 1 for 4 - 20482 particles.
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D Additional throughput data

Density kernel

#Cores

Force kernel

::g 10°

107 107
100k L2 caclie IL2 cache
2
=
=
107 107
T 107 107 107 T 107 107 107
#Particles #Particles

All Sapphire Rapid data for the algorithmic

steps with quadratic complexity.

o Drift kernel Kick2 kernel
10° 10
L 107
=
E)
g ~A
g
= L2 caclie
10°

10t 107 0

it
#Particles

Sapphire Rapid data for the algorithmic

not show in main manuscript.

o7 S0 107

10°

#Particles

steps with linear complexity which are




Semi-manual AoS-to-SoA conversions with data views 19

N Density kernel Force kernel
10%, - 10
o
e
107! 107"
2 H
g 7 ; E
EStY ; L2 cache EZT IL2 cache
3 H
2 2
= F =
10°! 10°!
10" 10"
107 107 107 107 10! 10 10 107

#Particles #Particles

Genoa data for algorithmic steps with quadratic complexity.

Drift kernel Kick1 kernel
10 0
E o — L
= =
E E
= IL2 cache =g
o
T 107 10° 107 RN 107 10° 07
#Particles #Particles

Kick2 kernel

Throughput

107 107 107 107
#Particles

Genoa data for algorithmic steps with linear complexity.



Citation on deposit:

%’Durham Radtke, P., & Weinzierl, T. (2024, September).

University Compiler support for semi-manual AoS-to-SoA
purham Research Oniine conversions with data views. Presented at PPAM
2024 - 15th International Conference on Parallel
Processing & Applied Mathematics, Ostrava, Czech Republic

For final citation and metadata, visit Durham Research Online URL:
https://durham-repository.worktribe.com/output/2582837

Copyright Statement: This accepted manuscript is licensed under the Creative
Commons Attribution 4.0 licence.
https://creativecommons.org/licenses/by/4.0/


https://durham-repository.worktribe.com/output/2773370

	2405.12507v2
	Compiler support for semi-manual AoS-to-SoA conversions with data views

	Citation page-V1-2023

