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ABSTRACT 
Laser guide stars in astronomical adaptive optics systems have the focus 
anisoplanatism problem, especially for telescopes larger than 4 m in diam
eter. The Projected Pupil Plane Pattern (PPPP) offers an alternative solution 
by projecting a collimated laser beam across the telescope’s entire pupil. 
One significant challenge is dealing with gain-related issues, necessitating 
the use of two beam profiles obtained simultaneously from two different 
distances from the telescope pupil. In this work, we explore the integration 
of a convolutional neural network (CNN) with experimental data emulating 
PPPP. We investigate how CNNs can significantly simplify the PPPP design 
by enabling operation with a single beam profile. These results permit the 
development of the PPPP concept to use a single beam profile without 
distance-gain degeneracy. In this work, it is shown that a 10% residual 
error can be achieved for test data randomly chosen over the SNR range 
of 4 to 12.
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1. Introduction

When looking at objects located far away from Earth, optical telescopes with diameters greater than 
1 m are typically needed to either obtain images with sufficient angular resolution or to collect suffi
cient light within an exposure. In the case of ground-based telescopes, the atmosphere introduces 
aberrations which deform the wavefront, leading to several undesirable effects but principally a ran
dom degradation of the point-spread function (PSF) with a systematic drop in angular resolution; 
equivalently a degradation in the modulation transfer function at medium to high spatial frequen
cies.[1] This is the origin of image blurring and can be overcome by the use of Adaptive Optics (AO), 
which processes the measurements from a wavefront sensor (WFS) through a wavefront reconstructor 
and then generates the correction using a deformable mirror (DM) to compensate a non-flat wave
front.[2] A traditional AO WFS will use guide stars – natural or artificial – to obtain the latest meas
urements of wavefront aberrations. Natural guide stars (NGS) are not always located sufficiently close 
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to the object of interest with sufficient brightness, and this restriction promoted the development of 
artificial alternatives; the laser guide star (LGS) which can be deployed at any arbitrary sky position.[3] 

To create a LGS, a laser is projected though the atmosphere to form a compact beacon and the back- 
scattered light is analyzed with a conventional WFS design, typically a Shack-Hartmann. Using this 
artificial alternative to NGS is not identical, however, as the volume of atmosphere traversed by the 
LGS back to the telescope is smaller than from the NGS: this is known as cone-effect or anisoplana
tism.[4] As an alternative to LGS, in order to solve the anisoplanatism, a technique known as 
Projected Pupil Plane Pattern (PPPP)[5] was proposed, avoiding the need for multiple LGS[6] to fully 
illuminate the volume as well as easing the complexity of both the wavefront reconstructor and the 
system design: Neichel et al.[7] shows how the LGS asterism must change, along- side the recon
structor, to be optimal and this type of system engineering analysis is mandatory for new, multiple- 
LGS, narrow-field AO.

In contrast, PPPP uses a wide collimated laser, which is projected from the primary telescope 
mirror and this mimicking of the NGS illumination allows us to compensate for LGS anisoplana
tism. The only variable is the height from which the two beam-profiles are recorded. PPPP also 
changes the nature of the WFS since the signal is developed on the propagation path rather than 
the reception path. By using linear reconstruction, it has been shown that it is possible to recon
struct the aberrated wave- front above the telescope both in simulation[8] and in a laboratory 
experiment[9] while achieving a similar performance to a Shack-Hartmann WFS (SH-WFS) using 
a NGS. One of the main issues of PPPP is that it relies on the linear reconstructor to obtain the 
reconstruction of the atmosphere above the telescope and this has high-noise propagation: for a 
4 m primary mirror diameter, to obtain similar performance to a SH-WFS observing a bright 
star, the 1064 nm projected laser’s power is ca.1 kW[8] which has obvious difficulties in implemen
tation. More recently, a new reconstruction method based on artificial neural networks (ANN) 
has been proposed, showing great results for laser powers reduced by at least one order of 
magnitude.[10]

ANNs are an artificial intelligence technique originally inspired by human neurons,[11] 

although its development during the last years has separated from this idea, coining a new term 
known as Deep Learning[12] where several layers of different types of neurons are stacked to 
improve the learning ability of the system. ANNs have been widely used in AO systems for differ
ent tasks[13] including an on-sky demonstration of a tomographic reconstructor operating with 
multiple WFS in the William Herschel telescope in La Palma.[14] These results motivated us to 
investigate using an ANN in the PPPP project in conjunction with the laboratory PPPP demon
strator,[15] which can generate realistic images to test the performance of the ANN developed by 
Yang et al. in a laboratory environment.

The present article is structured as follows. In Section 2, the PPPP method is explained, giving 
some insights about the PPPP bench development. Section 3 provides details about the CNN 
used and its training and learning process. After that, in Section 4, the results of the different 

Nomenclature 

PPPP Projected Pupil Plane Pattern 
CNN Convolutional Neural Network 
SNR Signal to Noise Ratio 
PSF Point-Spread Function 
AO Adaptive Optics 
WFS WaveFront Sensor 
NGS Natural Guide-Star 
LGS Laser Guide-Star 
SH-WFS Shack Hartmann WFS 
ANN Artificial Neural Network 

CWFS Curvature WaveFront Sensing 
SP-P4 Single-Profile PPPP 
DM Deformable Mirror 
SCAO Single-Conjugate AO 
PreLU Parametric Rectified Linear Unit 
CPU Central Processing Unit 
RAM Random Access Memory 
VRAM Video Random Access Memory 
GPU Graphical Processing Unit 
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experiments are shown along with Section 5, where those results are discussed and analyzed with 
detail. Finally, in Section 6, conclusions about the experiments are written and future lines of the 
PPPP technique are exposed.

2. PPPP theory and laboratory implementation

The PPPP method was developed from Curvature Wavefront sensing (CWFS),[16] which uses images 
conjugated to two planes which are independently distant from the pupil. These images can be thought of 
as beam profiles. In the PPPP case, the distances from the pupil to each beam profile are both positive and 
the profiles are recorded back at the telescope through back-scattering in the free-atmosphere, as in Figure 
1. The wavefront sensing method is developed by illuminating through a source of aberrations – typically 
the atmosphere – and the diffraction causes intensity variations in the beam profiles. Using the transport of 
intensity equation,[17] the following relationship can be developed,

k@zI ¼ −r � ðIr/Þ, (1) 

where k is the scalar wave-vector, I(x, y; z¼ 0) is the intensity recorded at the pupil (z¼ 0), and 
/(x, y; z¼ 0) represents the phase. Implicitly, the phase is determined as co-located with the 
pupil, hence z¼ 0. This equation can be approximated as,[16]

Figure 1. Conceptual outline of the PPPP method for wavefront sensing. A collimated laser beam is emitted from a telescope 
and, as it passes through aberrating layers in the atmosphere, /i, it diffracts which imparts additional intensity variations at dis
tances h1 and h2. Using time-gating or some similar procedure, the back-scattered intensity from depths Dh1 and Dh2 is received 
back in the telescope and imaged to produce beam-profiles from the two altitudes. These profile intensities are then combined 
to produce information on the wavefront derivatives of /i, d/i/dr. The magnitude of d/1/dr is not dependent on the distance of 
/1 from the telescope pupil, as is desired, but the magnitude of d/2/dr is dependent on its distance from both h1 and h2. 
Single-Profile PPPP (SP-P4) using the beam-profile from h2 alongside a pre-determined equivalent at the telescope pupil (h1 ¼

0) would similarly have a magnitude–distance degeneracy for measurements of both /1 and /2, and the required profile imag
ing is technologically easier to implement (temporally controlled only by e.g. pulse repetition rate).
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k
I2 − I1

h2 − h1
¼ −r � I0r/ð Þ, ¼ −rI0 � r/ − I0r

2/, (2) 

M I1, I2; h1, h2; kð Þ
I2 − I1

K h2 − h1 

where M is the wavefront derivatives measurement from the detected intensities of the beam pro
files, I1(x, y) � I(x, y; h1) and I2(x, y) � I(x, y; h2) as a linear sum of the product of intensity 
and intensity derivative with wavefront gradient, r//k and the wavefront second derivative, 
r2//k, respectively.

2.1. PPPP fundamentals

The key factor in Equation (2) is that two beam profiles corresponding to different propagation 
distances from z¼ 0 can produce a measurement proportional to the wavefront differential along 
the wavevector. What is less clear is that results from referrences[8] show that the distance of the 
source of / from the pupil is irrelevant, i.e. /(x, y; z) ! /(x, y; 0) as long as z� h1. This vali
dates the assumption in Equation (1). For h1< z< h2, the sensitivity of the measurement to /(z) 
decreases linearly to zero as z ! h2. This breaks the assumption, but not such that would cause 
positive feedback if attempting to use it for correction. The overall implication is that only / 

below both beam-profile distances can be measured accurately: between the profiles, there is an 
unknown gain term, 0� 1, in the measurement. This situation does not exist for the CWFS, so it 
is a new phenomenon.

Also, unlike the CWFS method, both terms on the right-hand side of Equation (2) are used sim
ultaneously, which leads to more information per measurement element of the WFS: it is logical to 
have a detector grid which is compatible with array imaging rather than tied to some polynomial 
measurement basis, e.g. as shown in reference,[18] although this aspect has not been studied.

Finally, to solve for /, the theoretical method of[19] fromthe CWFS literature was used by[8] in 
simulation whereas an interaction matrix approach as with conventional DM–WFS calibration 
was implemented by Yang et al.[32] for operation on the experimental test-bench. Such a use of a 
pre facto calibrated control approach is standard for experimental work so we do not comment 
on it further here.

The implementation of PPPP requires two related technologies: a pulsed laser and a detector 
which can separate in time the back-scattered return from the two distances. The latter is technic
ally difficult, whereas the former is a more standard technology. Therefore, we were motivated to 
explore if using just one beam profile is possible, i.e. h1¼ 0 which implies we know the outgoing 
laser beam profile and are only required to measure the beam profile from h2. The obvious detri
ment is that the measurement becomes sensitive to the altitude since 0< z< h2: in other words, a 
degeneracy between the distance to / and the amplitude of / wherein without additional con
straints, it is not possible to unambiguously determine an effective gain of /. However, if the 
aberration distance can be constrained, then single-profile PPPP (SP-P4) would be far simpler to 
implement since the detector would only be required to be synchronised with the laser pulse 
emission and no longer with the pulse propagation distance between profiles.

2.2. Alternative to overcoming the distance–strength degeneracy

The key issue with using a collimated beam for SP-P4 is that a degeneracy develops between h2 − z 
and j/j; between the distance from / to h2 and the amplitude of /. To overcome this, consider 
instead of one beam profile from a non-zero distance and originating from one illuminating beam 
(this is SP-P4), one beam profile from the same non-zero distance but now originating from two 
illuminating, overlapping beams, with these beams having different focal distances, as in Figure 2. 
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As with SP-P4 or PPPP (two beam profiles, one illuminating beam), one beam has infinite focus – 
it is collimated – but now we consider that the other has some divergence. It is known that the dif
fraction effects – also called scintillation when amalgamated – cause an increase in scintillation with 
focused beams and, conversely, a reduction with diverging beams.[20]1

The outcome is that the distance–strength degeneracy can be broken by sampling the beam 
profile from a collimated and a diverging/focused beam at the same physical distance from the 
telescope as in the figure. This might seem to be as complex as PPPP since either switching 
beams in time or wavelength would be required, but here we propose the advantage of ANNs is 
that the beams can be superimposed and just one beam profile recorded containing the diffrac
tion effects from both the illuminating beams. Whether the beams are temporally coherent or not 
is a separate matter to be investigated, but combining the beams on the detector leads to a situ
ation where no known linear reconstructor exists to retrieve /i’s, and so a machine learning pro
cess becomes valuable to investigate this concept. This is particularly pertinent in the non-linear 
case of the two beams coherently interfering. In the context of this work, by demonstrating PPPP 
with an ANN in a laboratory, we give confidence for the development of the two-beam single- 
profile variant that relies on a machine-learning non-linear algorithm, such as an ANN.

Figure 2. Conceptual outline of a modified method for wavefront sensing using one beam-profile and two illuminating beams. 
Two laser beams are emitted from a telescope, one collimated and one diverging, and as with PPPP they diffract to produce 
intensity variations in the beams at the distance, h. The back-scattered intensity from those two beams – but one distance – 
from a finite volume represented by Dh, is received back in the telescope and imaged to produce a beam-profile from both 
beams. These combined beam’s profile intensities are then used with a non-linear algorithm, such as an ANN, to produce infor
mation on the wavefront measurement of /i’s. Unlike with PPPP, the two use of two beams will break the distance-magnitude 
degeneracy, which should permit both the correct magnitude of /i’s to be determined, and also potentially their distance from 
the telescope.
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2.3. Laboratory implementation

The laboratory experiment for PPPP, Figure 3, was previously used in Yang et al.[32] but with 
modifications, therefore, it is described here for reference. A light source (laser, 635 nm, random 
polarisation) is collimated and reflected from M1, which is the deformable mirror (DM, DMP40/ 
M-P01 from Thorlabs). The DM is used to inject random aberrations into the path and so repre
sents our source of turbulence: it is not used for correction in this work, and we use both the 
bimorph actuators which deform the primary mirror surface and the tip/tilt actuators that rotate 
the mirror surface. The aberrations were chosen to have a white-noise spectrum, which is inde
pendent of any assumptions. Following the DM, a pupil image is created where a stop is placed 
to define the pupil; in this work, 9 mm in diameter. At the first beam-splitter, BS1, 10% of the 
flux is directed to a Shack-Hartmann WFS with 7� 7 sub-apertures. The measured centroids, 74 
in total, are used in the ANN as the target to train and validate the PPPP estimation. The 
remainder of the flux is principally diverted via mirrors, M3’s, and then a polarising beam-split
ter, BS3, to two rotating, retro-reflecting surfaces, z1/2, whose linear, orthogonal polarisation state 
is retained on reflection. The surface is equivalent to 3 M Scotchlite and the rotational motion 
eliminates laser speckle. The beam-splitters, BS2’s, in conjunction with polarisers, P1/2, ensure 
the back-scatter from each surface is independently imaged by a separate camera. The images 
from these cameras – the beam-profiles, as it can be seen in Figure 4 – are then processed to 
form the input into the ANN, together with the WFS centroids as the training outputs, as 
described in the next section.

3. Artificial Neural Networks

One of the main features of ANNs are their ability to learn from a known set of data and apply 
that knowledge to unseen data with the same characteristics. This process is known as training, 

Figure 3. Diagram of the layout of the experiment. Principal components are the light source (laser), the deformable mirror 
(DM, M1), the Shack–Hartmann wavefront sensor arm (WFS), and the two identical PPPP arms (PPPP 1 and 2), which are conju
gated to the retro-reflective surfaces z1 and z2. The separation of the scattering from each retro-reflective surface is via polarisa
tion, first separated using BS3 and subsequently by linear polarisers P1 and 2. (Light which is lost and absorbed by beam 
blockers, preventing erroneous ghosting and stray reflections, is not shown.)
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and it is carried out with several pairs from input–output data. By doing this, the ANN acquires 
the ability to generalize, so it can predict an output when provided an input that has never been 
used for training. In particular, Convolutional Neural Networks (CNN) are a subtype of ANNs 
and have shown an excellent performance in recent years for their use in AO, going from the 
simulation experiment developed by Yang et al. for PPPP, to other approaches like the developed 
by[21] for SCAO configurations or its use by S�uarez G’omez et al.[22] with a tomographic pupil 
image WFS.

3.1. Convolutional Neural Networks

Convolutional Neural Networks are formed by neurons that learn to self-optimize.[23] These net
works contain one or several convolutional layers in addition to other type of layers such as pool
ing, fully connected, or nonlinear.[24] Convolutional layers reduce the number of components 
from the input vector by passing a logistic regression over the whole data.[25] CNN are based on 
the animal visual cortex and are commonly used for processing data that has a grid pattern, such 
as images.[26]

CNNs are based on three different concepts: local receptive fields, shared weights and bias, 
and pooling. To obtain an output vector with fewer dimensions, the network selects a specific 
region of the input and connects it to a hidden neuron which learns the field weight and its over
all bias. The network’s division and the number of hidden layers depend on two different param
eters: the kernel size, the size of the region, and the strides, the number of pixels it skips between 
each receptive field. Each hidden neuron identifies the same feature but in different areas of the 
image. As a result, between the first hidden layer and the input ones, we find what we call the 
feature map, defined by the shared bias and gathering all the shared weights. These shared com
ponents depict the kernel or filter of the layer. Using shared bias and weights decreases poten
tially the number of parameters in the network. The last crucial concept when defining the CNN 
are the pooling layers, which only condense and simplifies the information sent after a convolu
tional layer.

Using a data set of known inputs and associated outputs, the network trains, learns and 
adapts its weights trying to optimize its residual error when comparing the output of the 
neural network with the ideal from the dataset. The correction of the weights leads to 
the back propagation algorithm[27] where the error travels back through the network updating 

Figure 4. Images captured by P1 (left) and P2 (right) show how the laser is affected by the turbulence introduced through the 
deformable mirror using the procedure explained in Yang, Bharmal, et al. (2019). These images are used as inputs to the neural 
network, along with the centroids obtained from the Shack-Hartmann as outputs, they provide the necessary information for 
training
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the values of the weights so it can reduce the obtained error. This operation is repeated until 
this process has been fully iterated through all the data set and so an “epoch” concludes. 
Then, the centroids from the WFS can be compared with those obtained by the network in 
order to reduce the residual error.

3.2. Neural network architecture

The CNN used for this application is a combination of different types of layers. After testing sev
eral options and connections, it has been concluded that the following architecture is the one that 
has obtained the best results.

The input consists of pairs of beam profiles, captured by the two PPPP cameras as shown 
in Figure 3, representing propagation to two different distances from the DM. Different com
binations of these images have been used as input, such as the parallel use of the two images 
and a subtraction between them were tested, along with an experiment that only used the fur
ther distance propagated image (from camera PPPP 2). The images have a size of 300� 300 
pixels.

The use of five consecutive convolutional layers reduces the number of parameters trained in 
the first fully-connected layer of the ANN since it reduces the size of the input image. The num
ber of filters used in these layers increment from one to the other. It begins with eight filters, and 
it reaches 256. It has been deduced that this increase cannot be very drastic, as it deteriorates the 
efficiency of the ANN. Also, different kernel or filters sizes and strides or steps have been exam
ined, balancing between profitable computational costs and a minimization of the error measured. 
Every convolutional layer employs a Parametric Rectified Linear Unit activation function or 
PreLU.[28] The 256 images of 5� 5 pixels acquired of the sequence of convolutional layers is then 
flattened into a one-dimension vector of size 6400. This enables the use of two fully connected 
layers of 128 and 74 neurons consecutively that connect our network with the output layer. A 
summary of this architecture can be observed in Table 1. The 74 neurons in the last layer relate 
to the 74 centroids from the WFS in the experiment.

This network has been created using TensorFlow software.[29] The finest results have been 
obtained with a learning rate equal to 0.000025, with a momentum of 0.5 and a batch size of 64. 
Also, a normalization factor has been used in order to enhance the performance of the network. 
One important tweak used to enhance the performance of the CNN is to create a custom error 

Table 1. Final network. Number of output filters, size of the filters and 
strides are indicated in each convolutional layer.

Input images (64� 64)

Conv2D (8, 3� 3, 2)
ELU

Conv2D (32, 3� 3, 1)
ELU

Conv2D (64, 3� 3, 1)
ELU

Conv2D (128, 5� 5, 3)
ELU

Conv2D (256, 5� 5, 4)
ELU

Flatten
Dense (128)

ELU
Dense (256)

ELU
Flatten

Output vector (74)
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function which minimizes the residual wavefront error (WFE) after converting the centroids to a 
re- constructed phase. To train the neural network, the 74 neurons (both from the CNN and the 
WFS measurements) at the output are transformed into a wavefront and then both are compared 
to obtain the residual WFE, which is the value backpropagated and used to update the weights of 
the CNN.

3.3. Training and test data

Training and test sets have been created in an optical bench as the one described in Figure 3. To 
generate this data, five different values of SNR in the measured WFS slopes (4.2, 6.7, 8.3, 10.0, 
12.5) were used to train the network for variable atmospheric turbulence strength. Noise was 
added after measurements to ensure control of the SNR per dataset. For each SNR value, 40,000 
random input phases resulted in the same number of image pairs (beam profiles), totaling 
200,000 image pairs for the five strengths.

This complete set was split as follows to test the performance of the ANN:

� Out of the 200,000 image pairs, 20,000 randomly chosen pairs were saved for testing. These 
pairs are kept apart and used for the different experiments, allowing cross-comparison. These 
data set will be known as the ’Random’ test set.

� Removing 20,000 image pairs generated for a specific SNR (out of 40,000) for testing. These 
data are known as ‘SNRx’ test set.

In either case, the remaining 180,000 image pairs were used for training, utilising 5% of these 
for validation during the training process. It is important to remark that the test sets are never 
used as part of the training data.

3.4. Real time performance

Although the main goal of this article is not to probe how PPPP can be implemented in a real 
system, it is quite interesting to analyze how fast an actual output can be obtained from a single 
image. To perform that measurement PyTorch[30] has been used as inference tool along with a 
server equipped with a Intel(R) Xeon(R) W-3235 CPU @ 3.30 GHz, with 512 Gb of RAM and 
one Nvidia RTX 2080 GPU. All the weights of neural network were previously loaded in the 
graphics card VRAM before providing the input image and the experiment were conducted feed
ing the NN with 1,000 images one at a time. It was possible to obtain the outputs in less than 
two seconds, which give an average of 2 milliseconds per output. This result is sufficient for real- 
time systems that operate up to 500 Hz such as MOR- FEO/MAORY[31] encouraging the feasibil
ity of the solution, having still margin of improvement for the implementation of the system in a 
real telescope, since it will be possible to create an ad hoc code for the neural network instead of 
using PyTorch, along with the acquisition of newer and more powerful and updated GPUs.

4. Experiment and results

The work of Yang et al.[] used experimental data with a linear algorithm, which mandated using 
both beam profiles in an image pair, but using an ANN, it is possible to design a wider number 
of data analysis experiments including using one input image rather than two. Here we used two 
additional inputs to the ANN: subtraction of the two beam profiles in an image pair (difference), 
or using the beam profile corresponding to further propagation (z2, from camera PPPP 2). Of the 
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two beam profiles, we chose the one which has a higher SNR and this is equivalent to SP-P4 
because the implicit I0 is just a constant value in this configuration.

These two experiments (difference and single) allow us to provide new results when analyzing 
its performance in different case scenarios as described in the previous section. We should add 
that because the SH WFS is not calibrated, the results are at the plate scale of the WFS which is 
unknown in angular units. Of interest in this work is the relative precision and accuracy of the 
ANN estimation, so physical units are not necessary, as the WFS SNR is reported here. In this 
scenario, the residual error refers to the residual wavefront error, which is obtained by subtracting 
the centroids predicted by the neural network from those provided by the SH-WFS and converted 
into a wavefront.

4.1. Two images, both beam profiles

In this experiment, both beam profiles in each image pair are used as the CNN input. Results can 
be seen in Table 2.

When using two images as it was done in the original experiments, the performance of the 
ANN results in no correction which is consistent with the ANN resolving no output except for 
the case of the random test set.

4.2. Subtracted image, the difference

For the second experiment, the difference in each image pair is used as the input. Results can be 
seen in Table 3.

The behaviour of the ANN in this scenario is quite erratic. It is noted that the images are nor
malised in total power before subtraction: this corresponds to the numerator of Equation (2), 
which implies a proportionality to the wavefront derivatives. At higher SNR, some correct estima
tion is made, but there is no clear relationship with noise, and for the lowest SNR, the ANN is 
able to retrieve a partial estimate, although it is not complete.

4.3. One image, a single beam profile

In this experiment, only one of the two images in the pair is used, and this is equivalent to SP- 
P4. Results can be seen in Table 4.

The results of the ANN with this input configuration have the best performance of all three. 
In the random test set case, the correction approaches the expectation of noise error, 0.05 based 
on discrete centroid curl.[32] The other interesting result is that residual is not correlated with 
SNR, implying noise does not affect the ANN estimation. This implies the ANN will be robust 
against noise and with the ability to be trained to accommodate variable input amplitude, shown 
by the random test-set result.

Table 2. Two images as input results.

Test set Residual error Non corrected error WFE percentage

Random 0.156 0.491 31.77
SNR 4.3 0.191 0.214 88.94
SNR 6.7 0.310 0.320 97.08
SNR 8.3 0.573 0.576 99.51
SNR 10.0 0.575 0.580 99.31
SNR 12.5 0.742 0.746 99.41
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5. Discussion

In the previous section, results from the neural network have been shown for the three experiments, and 
only the use of the single beam profile from the image pairs produces a useful estimation. Using both beam 
profiles as inputs seems to complicate the learning process of the CNN and with real data the ability to 
generalise is almost non-existent despite what was shown with simulated data Yang et al.[15] With these 
results, we conclude the ANN as described is unable to operate with two separate images in a real-world 
implementation.

In the case of the beam profile differences (I2−I1), it is possible to observe an improvement 
when compared with the previous experiment. When changing the value of the SNR in the differ
ent datasets, the ANN starts to show acceptable performance, especially when dealing with high 
turbulent atmospheres and in the case of random testing, which shows the best performance of 
all. It is interesting to see how the fact of using only a single image that has been created from 
the subtraction of the two actual images provides enough information for the neural network to 
partially correct the turbulence, especially in cases where the signal of that turbulence is high.

The best results occur from the third experiment, single beam profile (I2) as input for the 
ANN. With the random test set, the performance of the system is close to the limit of the WFS 
noise (which limits the fundamental performance). This shows the potential of the neural net
work, since it indicates having a sufficiently large and diverse training set allows sufficiently good 
performance in comparison with a linear measurement from a conventional wavefront sensor. 
Unusually this occurs when only using a single beam profile. Also in this scenario, the CNN esti
mation is consistent with the input SNR although there is a baseline error which cannot be 
removed with the training dataset obtained. (It should be noted that due to experimental and 
logistical limitations, the dataset size of 200,000 image pairs was the technical limit.) The consist
ency in estimation with the SNR is consistent with other AO studies such as reference.[14] Our 
results also agree with the experiments done in Yang et al.,[] which show that the ANN is able to 
work with a single image and this mode of operation is confirmed in this article.

Although the original PPPP concept required two images (beam profiles) as inputs for the 
reconstruction, the ANN is able to work with a single beam profile, and it obtaining high per
formance is encouraging. As previously explained, the technical complexity for obtaining two 
beam profiles can then be avoided, what gives confidence that the Wavefronts Obtained from 
Measurements from Beam-profiles through Atmospheric Turbulence (WOMBAT) concept, of 
using two illuminating beams and recording one beam profile to overcome the distance–strength 

Table 3. I2–I1 as input results.

Test set Residual error Non corrected error WFE percentage

Random 0.120 0.491 24.37
SNR 4.3 0.151 0.214 70.57
SNR 6.7 0.231 0.320 72.45
SNR 8.3 0.752 0.576 130.61
SNR 10.0 0.281 0.580 48.40
SNR 12.5 0.264 0.746 35.38

Table 4. I2 as input results.

Test set Residual error Non corrected error WFE percentage

Random 0.052 0.491 10.70
SNR 4.3 0.156 0.214 72.86
SNR 6.7 0.201 0.320 62.77
SNR 8.3 0.265 0.576 46.01
SNR 10.0 0.167 0.580 28.76
SNR 12.5 0.119 0.746 15.90
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degeneracy implicit in SP-P4, can be implemented with the CNN architecture described, although 
uncertainty remains as to whether it can truly eliminate the distance–gain degeneracy.

6. Conclusions and future lines

In this article, we have shown the potential of applying an ANN to the PPPP technique when 
using data generated from an experimental test-bed in the laboratory.

This combination (ANN and PPPP) has already been tested in simulation, and it was a natural 
step to analyze its behaviour when using real data. Using two beam profiles, as in the recon
structor of the original proposal, results in poor reconstruction estimation. However, using a sin
gle image, SP-P4 is a potential solution that overcomes the reconstruction error. An ANN is, 
therefore, a useful solution with real-world data to estimate the wavefront but under certain con
ditions that introduce measurement limitations with PPPP. In this work, we have proposed a 
related concept, WOMBAT, which overcomes the distance–strength degeneracy, and only produ
ces one beam profile. Our main result, which we have demonstrated with laboratory data, is that 
the measurement analysis concept is feasible here. The additional benefit of the ANN over the 
linear reconstructor previously demonstrated is the improvement in operation at low SNR. In 
future work, we plan to further test the WOMBAT concept and understand the SNR limitations 
to place a better bound on potential minimum laser power required.

Note 

1. Alternately this can be described by the Huygens-Fresnel principle and the reduction in size of the first 
1/2-period zone.[33]
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