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ABSTRACT

We investigate the non-adiabatic effect of time-dependent deformations in the Milky Way (MW) halo potential on stellar streams.
Specifically, we consider the MW’s response to the infall of the Large Magellanic Cloud (LMC) and how this impacts our ability
to recover the spherically averaged MW mass profile from observation using stream actions. Previously, action clustering
methods have only been applied to static or adiabatic MW systems to constrain the properties of the host system. We use a
time-evolving MW-LMC simulation described by basis function expansions. We find that for streams with realistic observational
uncertainties on shorter orbital periods and without close encounters with the LMC, e.g. GD-1, the radial action distribution is
sufficiently clustered to locally recover the spherical MW mass profile across the stream radial range within a 20" confidence
interval determined using a Fisher information approach. For streams with longer orbital periods and close encounters with the
LMC, e.g. Orphan—Chenab (OC), the radial action distribution disperses as the MW halo has deformed non-adiabatically. Hence,
for OC streams generated in potentials that include an MW halo with any deformations, action clustering methods will fail to
recover the spherical mass profile within a 20 uncertainty. Finally, we investigate whether the clustering of stream energies
can provide similar constraints. Surprisingly, we find for OC-like streams, the recovered spherically averaged mass profiles
demonstrate less sensitivity to the time-dependent deformations in the potential.

Key words: Galaxy: evolution —Galaxy: halo—Galaxy: kinematics and dynamics—Galaxy: structure — Magellanic Clouds—
dark matter.

in the MW gravitational potential: the displacement of the MW disc,
a stellar overdensity (Belokurov et al. 2019; Garavito-Camargo et al.
2019; Conroy et al. 2021), and the reflex motion of the stellar halo
(Erkal et al. 2019, 2021; Petersen & Pefiarrubia 2020, 2021). The

1 INTRODUCTION

Within the Local Group, the Milky Way (MW) is undergoing a
merger with the Large Magellanic Cloud (LMC).! The LMC is

thought to be on its first pericentric passage® (Besla et al. 2007)
and to have a dark matter mass M yc ~ 10! M. Such a large mass
for the LMC is needed to explain many Local Group phenomena:
for example, the kinematics of MW satellites (Correa Magnus &
Vasiliev 2022); dynamical models of stellar streams (Erkal et al.
2019; Koposov et al. 2019; Shipp et al. 2021; Vasiliev, Belokurov &
Erkal 2021); and the timing argument (Pefiarrubia et al. 2016). The
LMC has also been observed to generate significant disequilibrium

* E-mail: richard.brooks.22 @ucl.ac.uk

ISee Vasiliev (2023) for a comprehensive review detailing the effect of the
LMC on the MW.

2There are proposed scenarios where the LMC is not on its first passage
(Vasiliev 2024). However, most features of earlier passages are superseded
by the most recent passage at a smaller pericentre.

© 2024 The Author(s).

orbit of the LMC is sensitive to the assumed Galactic potential (see
fig. 3 of Vasiliev 2023) and, because the LMC is of considerable
mass, it is also subject to dynamical friction (Chandrasekhar 1943).
Current state-of-the-art models of the MW-LMC system account for
dynamical friction and the reflex motion of both galaxies (e.g. Gémez
etal. 2015; Patel, Besla & Sohn 2017; Erkal et al. 2019; Cunningham
et al. 2020; Patel et al. 2020; Vasiliev et al. 2021; Dillamore et al.
2022; Koposov et al. 2023; Lilleengen et al. 2023).

Stellar streams act as kinematic tracers of the underlying dark
matter distribution within the Galactic potential. Streams form when
satellites, dwarf galaxies, or globular clusters orbiting the MW
have their stars tidally stripped. Streams are stringent probes of the
MW gravitational potential (Helmi & White 1999; Johnston et al.
1999); stream members roughly delineate orbits in the host potential
(McGlynn 1990; Johnston, Hernquist & Bolte 1996; Sanders &
Binney 2013a), allowing us to infer the accelerations that the stars

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
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experience and hence the host’s gravitational field. The LMC has
perturbed streams in the MW, especially those with close encounters
[e.g. Orphan—Chenab (OC); Erkal et al. 2019; Shipp et al. 2021;
Koposov et al. 2023; Lilleengen et al. 2023]. We focus on the OC
(Belokurov et al. 2006; Grillmair 2006; Shipp et al. 2018; Koposov
et al. 2019) and GD-1 (Grillmair & Dionatos 2006) stellar streams
because they cover a broad radial and angular range of the MW halo
with the OC stream having a closer encounter with the LMC.

The dynamics of streams are most simply described in action—
angle coordinates (Helmi & White 1999; Tremaine 1999). Once a
star is tidally stripped from the progenitor, its orbital actions are
conserved while the angles linearly increase with time in a static or
adiabatically invariant potential. Modelling a stream using action—
angle variables allows straightforward integration in time (Bovy
2014), with the angle variables correlated with the frequencies in
potentials close to the true one (Sanders & Binney 2013b). However,
time-dependent potentials (Buist & Helmi 2015, 2017; Sanderson,
Helmi & Hogg 2015) and the ‘self-sorting’ of streams (Bovy 2014;
Sanders 2014) can complicate these correlations. We omit the angle
variables in our modelling and focus on the actions alone as the
observable quantity.

The stars in a stream originate from small progenitors and will
move along similar orbits; thus, the transformation from phase-
space positions to action space results in stream members being
tightly clustered. When a chosen potential maximally clusters stream
members in action space, this is said to reflect the true potential for
the system (Helmi & White 1999). Similarly, the energy clustering of
stream members displays the same behaviour. Pefiarrubia, Koposov
& Walker (2012) demonstrated that for separable energy distribu-
tions, the associated entropy increases under wrong assumptions
about the gravitational potential.

The first attempts using stellar streams and their action clustering
were able to recover parameters of the adopted static potential in
which mock streams were evolved (Sanderson et al. 2015; Yang,
Boruah & Afshordi 2020). In turn, the application to observational
data using multiple streams was able to set constraints on the enclosed
mass of the MW for an assumed static Stidckel gravitational potential
(Reino et al. 2021). Multiple streams are often used to nullify any
biases on galactic potential parameter fitting due to the orbital phase
of streams (Reino et al. 2022). However, any time dependence
that is not captured in these static models will subject clustering
methods to biases as actions may no longer be conserved (Sanderson
et al. 2015). Arora et al. (2022) provide the most recent effort to
accommodate time evolution in the MW potential. They identify
MW-like galaxies in FIRE-2 cosmological simulations and generate
populations of stellar streams to maximize action clustering. For the
time-evolving MW-like galaxies without any mergers, they find that
actions remain clustered and stable over dynamical times. However,
for a larger merger (1:8 mass ratio), there is a temporary decrease
in action clustering due to the interaction. Furthermore, highly non-
linear perturbations to the potential cause a drift in the radial action
distribution (Burger, Pefiarrubia & Zavala 2021).

Due to the merger with the LMC (~1:8 mass ratio), the potential
of the MW has deformed (Lilleengen et al. 2023). Basis function
expansions (BFEs) are used to represent complex systems as linear
combinations of simpler functions called basis functions. As such,
BFEs offer the flexibility to model the deformations captured in
N-body simulations (Lilley et al. 2018a; Lilley, Sanders & Evans
2018b; Petersen & Pefiarrubia 2020; Sanders et al. 2020; Garavito-
Camargo et al. 2021; Lilleengen et al. 2023). The N-body simulations
of Lilleengen et al. (2023) infer a BFE description using the EXP
toolkit (Petersen, Weinberg & Katz 2022). This provides a time-
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evolving MW system in which stellar streams can be generated.
The BFE structure allows exploration of which terms describing
the deformation to the MW halo will contribute most to the dis-
ruption of clustering of stream members in action spaces. We will
consider spherical actions, which not only are useful for perfectly
non-deforming spherical systems but also act as a solid base for
investigating perturbations to spherical potentials (Pontzen et al.
2015).

Analyses of the Galactic potential using statistical action clustering
methods such as Kullback—Leibler divergence (or relative entropy;
Sanderson et al. 2015), minimum (Shannon) entropy (Pefarrubia
et al. 2012), or Fisher information (a non-clustering method; Bonaca
& Hogg 2018) are all closely related. The last one represents the
Hessian, or curvature, of the relative entropy of a conditional distri-
bution with respect to its parameters. Bonaca & Hogg (2018) use the
inverse of the Fisher information to determine the Cramér—Rao (Rao
1945; Cramér 1946) lower bounds on model parameters describing
a static MW potential given cold stellar stream observations. To
properly constrain the global properties of the Galactic potential, they
advocate that many streams should be used simultaneously. However,
to capture the complexity of our Galaxy’s accretion history with the
LMC, a time-dependent model must also be used. We use time-
dependent MW and LMC dark matter haloes by employing BFEs
to determine the Fisher information on the model parameters (see
also Lilleengen et al., in preparation). This extends upon previous
Fisher information methods that have assumed static MW potential
models for the generation of streams (Bonaca & Hogg 2018). We
investigate the ability of action clustering methods to recover the
MW’s spherically averaged mass profile when the temporal evolution
could include non-adiabatic behaviour. The flexibility of BFEs allows
us to easily investigate behaviour for a wide range of deforming
MW-LMC potentials.

The plan of the paper is as follows. Section 2 describes our
methodology containing an overview of BFEs, spherical action—
angle coordinates, and the framework to generate stellar streams.
In Section 3, we present the action distributions of mock stellar
streams in various deforming potentials. In Section 4, we outline our
information theory approach and determine the ability to constrain
the spherically averaged MW mass profile. We discuss the results
plus any caveats in Section 5 and summarize our findings in Section
6.

2 METHODS

In Section 2.1, we summarize the approach taken in Lilleengen et al.
(2023) to generate their N-body model of the MW dark matter
halo using the BFE software suite, EXP (Petersen et al. 2022). Also,
we outline the expected result when the potential has non-adiabatic
behaviour. In Section 2.2, we outline the action—angle variables for
stream members in spherical potentials. This includes details of the
use of the high-performance numerical computing PYTHON package
JAX (Bradbury et al. 2018) in analysing streams (see Section 2.2.1).
Finally, in Section 2.3, we present the dynamical modelling used to
generate streams.

2.1 Basis function expansions
2.1.1 Exp

To generate stellar stream models in a time-evolving MW-LMC sys-
tem, we need a description of the potential and forces at any arbitrary
position and time. Static potentials fail to capture deformations to
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the MW and LMC dark matter haloes. BFEs offer a framework to
describe these deformations. They track the density, gravitational
potential, and forces as the system evolves over time. BFEs have
previously been seen to accurately describe flexible models of the
MW (Petersen, Weinberg & Katz 2016, 2019; Dai, Robertson &
Madau 2018; Petersen & Pefiarrubia 2020; Garavito-Camargo et al.
2021). In this work, we use the BFEs of the MW-LMC system
presented in Lilleengen et al. (2023) that are simulated using EXP
(Petersen et al. 2022), with the expansion coefficients recorded at
each time-step. All potentials we consider exclude contributions from
the MW disc.

The BFE technique uses appropriately chosen biorthogonal
density—potential pairs of basis functions, {g,(x), ¢,(x)}, that
solve Poisson’s equation, i.e. V2¢,(x) =47 Go,(x), and satisfy
the biorthogonality condition f d’x ¢ (x)o,(x) = 4w G§,,,,, where
8,y 1s the Kronecker delta.Each basis function, labelled by the
index u, adds a degree of freedom to the system and has an
associated coefficient A,, which determines its contribution to the
total description of the system, i.e. the summation over all basis
function terms. A system at any given time is described by the basis
functions and the coefficients that weight them. Mathematically, the
density, p, and gravitational potential, ®, are

plx, 1) = Au(t)ou(x), €]
"

D(x,1) =Y Au(t)py(x), (@)
n

where the basis coefficients are time-dependent and the basis function
keeps its fixed functional form.

Basis functions are selected to reflect the system they describe.
To model density profiles, p(r, ¢, ), with deviations away from
spherical symmetry, the spherical harmonics Y;" are chosen to
describe the distribution in the angular coordinates (¢, 6), while
EXP describes the radial dependence (index n) by the eigenfunctions
of a Sturm-Liouville equation (Weinberg 1999). Each spherical
basis function is then represented by the triplet of indices u =
(n, 1, m). The radial index, n, determines the number of nodes
in the radial basis function. For / =0, n equals the number of
nodes in the radial function. For / > 0, there are n + 1 radial nodes.
A maximum truncation in the expansion for the radial part, 7,x,
and angular part, /., corresponds to a spherical coefficient set of
size (Imax + 1)? - (Mmax + 1). The EXP method creates a lowest order
monopole term, pogo(r), that exactly matches the unperturbed input
potential-density pair. All other, higher order, terms are perturbations
around the input distribution. If the lowest order monopole does not
match the input pair, more terms are needed to approximate the input
distribution. Another example of a BFE is the classical Hernquist—
Ostriker basis set (Hernquist & Ostriker 1992), which expands
upon the Hernquist density distribution (Hernquist 1990) as pgoo(r).
Alternative choices of analytical basis functions have been made
such that the underlying density distribution allows axisymmetric,
triaxial, and lopsided distortions (Lilley et al. 2018a, b).

2.1.2 N-body models and basis function expansions

An efficient lightweight PYTHON interface, MWLMC, has been de-
veloped to facilitate the EXP simulations of the Lilleengen et al.
(2023) MW-LMC system. This user-friendly interface is publicly
available at https://github.com/sophialilleengen/mwlmc. This MW—
LMC system is constructed with three components with separate
BFEs: the MW dark matter halo, the MW stellar disc, and the LMC
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dark matter halo. The EXP method explicitly uses the BFE for the
force evaluations in the N-body evolution. We describe the MW and
LMC dark matter haloes in this section. Descriptions of the BFE
and N-body models for the MW disc can be found in sections 2.1
and 2.2 of Lilleengen et al. (2023), respectively. The N-body models
of Lilleengen et al. (2023) self-consistently include the effect of
dynamical friction on the LMC as it falls into the MW’s potential.
Throughout this work, we analyse the deformations of the MW halo.
The LMC is described by its full basis expansion throughout.

The LMC dark matter halo is modelled by a Hernquist (Hernquist
1990) profile with Myyc = 1.25 x 10! Mg and ry = 14.9 kpc. This
halo is realized with 107 particles and simulated using EXP (Petersen
et al. 2022) with /;y,x = 6 and ny,x = 23 (Lilleengen et al. 2023).

The MW dark matter halo profile is selected from table Al of
Erkal et al. (2019) as the best-fitting spherical potential, labelled ‘sph.
MW + LMC’. A Navarro-Frenk—White (NFW) profile (Navarro,
Frenk & White 1996) is used to describe the MW halo with
My =7.92 x 10" Mg, rs = 12.8 kpc, and ¢ = 15.3. This profile
is truncated as phz\lo(r) = OSIONFW(")(1 - erf[(r - rlrunc)/wlrunc])»
where ryyne = 430kpe and wyune = 5S4 kpe. This halo is realized
with 107 particles and simulated using EXP (Petersen et al. 2022)
with [.x = 6 and ny.x = 17 (Lilleengen et al. 2023). For the MW
halo, itis convenient to describe individual harmonic subsets of /. The
[ = 0 terms are called the monopole, [ = 1 is the dipole, / = 2 is the
quadrupole, etc. The live simulation of the MW-LMC system begins
at t = fiiye = —2.5 Gyr, with present day at + = 0 Gyr. At the start
of the live simulation, the MW and LMC haloes are totally distinct,
with the LMC outside the virial radius of the MW at a distance of
450 kpc. The density, force, and potential fields before the start of the
live simulation have the basis coefficients set to their initial values
prescribed at fiye.

2.1.3 Evolution in increasingly complex systems

To investigate how different harmonic subsets of the full BFE affect
the generation of a stellar stream, harmonic terms can be selectively
turned off, i.e. by setting all relevant BFE coefficients to zero, to
isolate the contributions to the total BFE description of the system.
This effect on the OC stream track relative to that of the full BFE
expansion is visualized in fig. 5 of Lilleengen et al. (2023). They
isolate the effect of each term in the BFE by keeping either the MW
or LMC live and varying the harmonic contributions of the other.
For the MW halo, the largest effect on the OC stream track is from
including the dipole harmonic. In this work, we consider six MW—
LMC potentials to generate streams that all use the full LMC halo
BFE but with different harmonic subsets of the MW halo BFE: ‘static
monopole’ that uses the unperturbed set of monopole coefficients,’
i.e. before the live simulation starts, ‘evolving monopole’, ‘monopole
+ dipole’, ‘monopole + quadrupole’, ‘monopole + dipole +
quadrupole’, and ‘full expansion’. We use the same LMC description
for all generated streams so that we can focus on the systematic effect
of deformations to the MW halo.

The harmonic orders of the BFE will develop over the entire
simulation. At the beginning of the live simulation, ¢ = #;y., and for
all prior times, there has yet to be any response of the MW’s dark
matter halo due to the passage of the LMC. At these times, the MW
halo can be fully described by its monopole harmonic subset as we do
not include the MW disc that would create some halo deformations.

3This differs from Lilleengen et al. (2023) who used the set of monopole
coefficients at t = 0 Gyr for their ‘static monopole’ potential.
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Figure 1. Temporal development of various MW dark matter halo harmonics and the LMC dark matter halo over the live simulation time: t = —2.5 Gyr

to + = 0Gyr with time increasing from top to bottom. Going from left to right across the columns shows the MW dipole, MW quadrupole, MW full
expansion harmonic, and LMC full expansion. The potentials are computed in the x = 0 Galactocentric plane in a slab of 10 kpc thickness. The colour
map represents the potential contrast, A® = (P — g ;)/ Do mw, Where g ; corresponds to the monopole potential computed using only the / = 0 order
of either the MW (first three columns) or LMC expansion (final column). The track of the LMC through this plane is shown as the black line. Halo
deformations due to the MW disc are omitted as they are subdominant with respect to the outer halo deformations. A video version of this figure is available at
https://www.youtube.com/watch?v=i18zbNxNyf8. A similar version of this figure using the dark matter densities can be found in Appendix A.

Nevertheless, these deformations would be subdominant with respect
to the outer halo deformations. The infall of the LMC, as the
satellite galaxy, on to the MW, as the central galaxy, generates
density wakes (Chandrasekhar 1943). The classical ‘conic’ wake
trailing the LMC is described as the transient response, whereas
the response elsewhere in the MW halo is the collective response
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(Garavito-Camargo et al. 2021). These effects will also be reflected
in the gravitational potential as the density and potential are related
by Poisson’s equation. In Fig. 1, we demonstrate the temporal
development of the MW halo potential contrast for both isolated
harmonic subsets and the full basis expansion simulation in the
MW-LMC simulations of Lilleengen et al. (2023). We show only
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the harmonic subsets that are considered in this paper; i.e. harmonic
orders above the octupole, / = 3, are not shown. Additionally, we
show the potential contrast for the LMC halo described by the full
basis expansion in the rightmost column. The potential contrast is
defined as AP = (P — Dy ;)/ Do mw, Where Py ; corresponds to the
monopole potential computed using only the n = 0 order of either
the MW (first three columns) or LMC expansion (final column).
As the system evolves towards the present day (going from top
to bottom of Fig. 1), the amplitude of the potential contrast of all
harmonic subsets increases. The MW dipole potential contrast that
is generated is stronger than that of the MW quadrupole. This is
expected as the MW dipole deformation is known to have the largest
effect on the OC stream track (Lilleengen et al. 2023). The potential
contrast of the full expansion LMC is more localized than that of
the MW, while also being weaker by a factor of ~4-5, consistent
with the expectation of infalling satellites (Weinberg 1989). Analysis
using the dark matter densities, with comparison to the similar yet
distinct MW-LMC BFE of Garavito-Camargo et al. (2021), can be
found in Appendix A.

2.2 Actions in spherical potentials

An integral of motion, /;(x,v), is any function of phase-space
coordinates, (x, v), thatis a constant along an orbit. The action—angle
variables, (J, ©), use a particular set of canonical coordinates where
the three momenta are integrals called actions and the conjugate
coordinates are the angles. This choice of coordinate system makes
the Hamiltonian independent of the angle variables, i.e. H = H(J),
so the angles increase linearly in time. As the actions are conserved
quantities on bound orbits, the full orbit can be explored by varying
the angles only, ®, the orbital three-tori (Arnold 1989; Binney
& Tremaine 2008). The actions quantify the rotation around the
symmetry axis, the oscillation amplitude in the radial direction, and
the direction perpendicular to the symmetry axis.

Following Binney & Tremaine (2008), we define the radial action:

1 Ta L2
J,:—/ dry/2[E = ®(N)] — —, 3)
7 J, r

where L is the angular momentum, E is the energy, & is the gravita-
tional potential, and integral limits are the orbital perihelion, r,, and
aphelion, r,. The other two actions are the azimuthal action J, = L,
and the latitudinal action J, = L — |L,|. This completes the triplet
of actions, J = (J,, Jg, Jy). When variations in the potential are
slow compared to the typical orbital frequencies, €2, these potentials
are labelled adiabatic (Binney & Tremaine 2008, section 3.6). The
actions of particles in an adiabatic potential are constant and for this
reason, the actions are called adiabatic invariants.

Throughout this work, we calculate actions in spherical potentials
only. Often, there will be asymmetry in our chosen MW-LMC
potential to generate a stream. We discuss the process of spherically
averaging the potential in Section 4.2. There are very few instances
where analytical solutions for equation (3) exist, therefore requiring
us to make a numerical estimate. To do this, we have implemented
a numerical version of equation (3) in JAX (Bradbury et al. 2018)
by approximating the integral as a Gauss—Legendre summation over
radial bins in the interval between the pericentre and apocentre.
To check whether our numerical implementation is successful, we
perform a check against radial actions calculated for a mock OC
stream generated over 3 Gyr in an analytical isochrone MW potential
(Henon 1959a, b), with a total mass Myw = 10'2 M, and scale radius
rs = 15kpc, using AGAMA (Vasiliev 2019). We find an agreement
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between the analytical and numerical action calculation of ~1076
per cent.

2.2.1 Jax automatic differentiation

A key part of our formalism to analyse streams requires the
knowledge of the phase- and action-space derivatives with respect
to the quantities that parametrize them. These derivatives are useful
in the context of information theory (see Section 4.1) and maximum
likelihood estimation (MLE; see Section 4.2). We choose JAX to
implement these derivatives because it employs automatic differen-
tiation. The premise of automatic differentiation exploits the fact
that for any given algorithm, it will execute elementary arithmetic
operations, e.g. addition, multiplication, division, and functions, e.g.
sine, cosine, and log. By repeatedly applying the chain rule to these
operations, the partial derivatives up to an arbitrary derivative order
can be calculated automatically.

To be able to calculate the derivatives of e.g. the potential and
forces from the BFE code, we wrap functions from the MWLMC
package in a JAX environment. Once wrapped, we can automatically
differentiate functions with respect to their input parameters. Impor-
tant derivatives to obtain are those of the potential. The derivative
with respect to the position is simply the negative of the force at that
position, 0®(x)/0x = — F(x). From equation (2), the derivative of
the potential with respect to a time-varying basis function coefficient
is

0d(x, 1)

6AM = d);t(x)v (4)

t

which is simply the basis function corresponding to the coefficient
evaluated at a given position. An advantage of the automatic
differentiation framework is that any subsequent function that de-
pends on the function with calculable derivatives will also have
its derivatives automatically calculated. For example, the radial
action J,(x, v, {A,}) has automatic derivatives with respect to the
basis function coefficients, 9J,/0A,,, because it is a function of the
potential where we know the coefficient derivatives.

To determine the accuracy of the automatic differentiation scheme,
we perform a check against derivatives calculated numerically from
finite differencing for 10* test particles in the MW halo described by
the full BFE. We find that the numerical and automatic derivatives
for the potential with respect to the coefficients differ by no more
than ~10~° per cent, while the radial action shows ~10~" per cent
differences. Taken in comparison to the stream dispersions of ~20
per cent, this accuracy is more than sufficient for our problem. By
using the JAXgrad function to calculate the derivatives automati-
cally, we are able to find the derivatives with respect to the positions,
velocities, and coefficients for both the potential and radial action
across all stream particles. For the 10* test particles, calculating the
derivatives for the radial action over 3 position elements, 3 velocity
elements, and 882 coefficients takes <30 s when executing the code
in a local environment.

2.3 Dynamical modelling of stellar streams

2.3.1 Stream generation

To produce realistic models of stellar streams, we use a ‘modified
Lagrange Cloud Stripping’ (mLCS) technique (Kiipper, Lane &
Heggie 2012; Bonaca et al. 2014; Gibbons, Belokurov & Evans
2014; Bowden, Belokurov & Evans 2015; Fardal, Huang & Weinberg
2015). Modifications were developed to include the forces from the
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LMC and reflex motion of the MW in Erkal et al. (2019). The stream
progenitors are modelled as Plummer spheres (Plummer 1911) with
initial masses and scale radii as defined in Section 2.3.2. From the
progenitor’s present-day position, we rewind the phase-space orbit
for 3 Gyr in chosen MW-LMC potentials (see Section 2.1.3). The
system is subsequently forward-evolved in the same potential, and
stream particles are released from the progenitor’s Lagrange points,
Tprog & 77, at each time-step. The Lagrange, or tidal, radius is found
by

Iy = )

2 _ &2
dr?

13
GMpmg(t)]

where o is the angular velocity of the progenitor with respect to the
MW and d?>®/dr? is the second derivative of the MW potential along
the radial direction. We model the mass-loss of progenitors as linearly
decreasing in time since the progenitors are not seen in observational
data (Koposov et al. 2023). We account for the velocity dispersion
of the progenitor, o,, by randomly drawing velocities from a 3D
isotropic Gaussian centred on the velocities of the stripped particles,
Vsuip, With standard deviation o, = \/ G Moo (1) /(r? + a2)'/?, where
as is the scale radius of the progenitor. The radial component of vy
is the same as the progenitor, while the tangential components are set
to those at the point halfway between the progenitor and the Lagrange
point. We use the same right-handed coordinate system as Lilleengen
et al. (2023) with the Sun’s position at x = (—8.249, 0, 0) kpc
and its velocity v = (11.1, 245, 7.3) kms~'. We include the self-
gravity of the progenitors during the mLCS such that stream particles
experience forces due to the progenitor.

At each time-step during the forward evolution of the system, we
compute the forces acting on each particle. In the same fashion as
Erkal et al. (2019) and Lilleengen et al. (2023), motivated by the
results of Dehnen & Read (2011), we implement an adaptive time-
step such that computational efficiency and precision are achieved
during the integration. To capture the orbit around the MW, we
calculate At mw = n+/r;/]a;|, where i is the index over stream
members, r; is the distance of each particle to the MW centre, a; is the
acceleration each particle feels due to the combined MW and LMC
haloes, and n = 0.01. To capture the orbit around the progenitor, we
compute At prog = N+/7i prog/ @i prog|, Where 7 prog is the distance
of each particle to the progenitor and a; ., is the acceleration each
particle feels due to the progenitor. We then determine the minimum
time-step over all particles At =min;(Af; mw, At prog) With a
minimum allowed time-step of 0.5 Myr. Similar to Lilleengen et al.
(2023), including an LMC time-step criterion makes no observable
difference to the stream.

We make the connection to observations of stellar streams as
follows. Having generated and evolved a stream through the total
integration time, we take a random sample of the stream particles to
match the number of likely stream members. The OC stream includes
360 likely members (Koposov et al. 2023) based on the combination
of the Southern Stellar Stream Spectroscopy Survey (Li et al.
2019), Apache Point Observatory Galactic Evolution Experiment
(Majewski et al. 2017), Sloan Digital Sky Survey (SDSS), and
Large Sky Area Multi-Object Fiber Spectroscopic Telescope (Cui
et al. 2012) survey data. To be conservative, we assume that only
250 members are observationally confirmed and generate a random
sample of the idealized OC streams to match this number. Meanwhile,
the GD-1 stream has 1155 likely members (Viswanathan et al. 2023)
identified using Gaia Early Data Release 3 (Gaia Collaboration 2021;
Babusiaux et al. 2023), of which 783 are main-sequence stars and
we choose to generate random samples to match this value as a
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conservative estimate for the number of observationally confirmed
stream members.

2.3.2 Milky Way stream selection

We choose two MW streams with distinct radial ranges and proxim-
ities to the LMC such that we infer information about the underlying
density/potential fields across different parts of the MW. These
streams are as follows:

(i) OC: The Orphan and Chenab streams were discovered sep-
arately (Belokurov et al. 2006; Grillmair 2006; Shipp et al. 2018)
before being discovered that they formed two parts of the same stream
(Koposov et al. 2019). This confusion was due to the Chenab part
of the OC stream being actively perturbed by the LMC (Erkal et al.
2019). The OC stream is very long, extending radially ~15—80 kpc
with sections passing close to the LMC, making it ideal to investigate
the MW and LMC potentials (Koposov et al. 2023). To match
observational constraints, we model it as a Plummer sphere (Plummer
1911) with an initial mass of M, = 107 Mg, and a scale radius of
1kpc (Koposov et al. 2019). We set the progenitor’s present-day
location using the same initial conditions as Lilleengen et al. (2023):
¢ = 6.340°, ¢, = —0.456°, d = 18.975kpc, v, = 93.786kms™!,
e = —3.590mas yr~!, and p; = 2.666 mas yr~!, following the no-
tion of Koposov et al. (2019) and Erkal et al. (2019). The stream
track coordinates (¢, ¢,) are given in a coordinate system provided
by Koposov et al. (2019). Appendix B of Koposov et al. (2019) gives
the rotation matrix for this coordinate transformation.

(ii) GD-1: The GD-1 stream was discovered in the SDSS (York
et al. 2000) as a very thin and long, ~63° structure (Grillmair &
Dionatos 2006). The progenitor for GD-1 is unknown and has likely
fully dispersed. We model the progenitor as a Plummer sphere with
an initial mass of My, =2 X 10* Mg, and a scale radius of 5 pc.
The total stellar mass of the observed GD-1 stream is estimated
to be 1.8 x 10* My (de Boer, Erkal & Gieles 2020), hence our
choice of My, is above the lower bound for the initial mass
of the GD-1 progenitor. We load the present-day 6D phase-space
position of the GD-1 progenitor in Webb & Bovy (2019) via the
GALPY module (Bovy 2015). The progenitor’s initial conditions are
¢ = —39.640°, ¢, = —0.493°, d = 7.485kpc, v, = 6.337km s
e = —13.097 masyr~!, and pus = —3.248masyr~'. The stream
track coordinates (¢, ¢) are given in a coordinate system provided
by Koposov et al. (2010).

Fig. 2 shows a mock GD-1 stream generated in an MW-LMC
potential described by the full basis set for each halo. The colour
gradient represents the time at which stream particles were released
from the Lagrange points relative to the present day, = 0 Gyr.

3 RADIAL ACTION DISTRIBUTIONS OF
STREAMS IN TIME-EVOLVING POTENTIALS

We adopt the following process to demonstrate how the radial
action distribution of stream members changes in the different time-
evolving MW-LMC potentials. We take the positions and velocities
of all stream particles at the present-day snapshot. The spherical
radial action is calculated using equation (3) by using the spherically
averaged potential, i.e. described by the monopole subset of the MW
halo BFE only. The resulting 1D distributions of radial actions for
the GD-1 (left) and OC (right) streams are shown in Fig. 3. To
compare the distributions for streams generated in different MW—
LMC potentials, we have normalized each distribution by its mean
radial action.
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Figure 2. A mock GD-1 stream generated in an MW + LMC potential
described by the full basis sets for each dark matter halo. The rows show the
stream sky coordinates (Koposov, Rix & Hogg 2010), heliocentric distance,
radial velocity, and reflex-corrected proper motions, respectively. The colour
scale shows the time at which the stream particle was released during the
forward integration of the progenitor relative to the present day.
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The actions of a stream specify its path through phase space.
The stream members share similar orbits to their progenitor, hence
sharing similar actions (Helmi & White 1999; Helmi 2020; Deason &
Belokurov 2024). As action variables are adiabatic invariants (Binney
& Tremaine 2008), any changes to the potential that are slower than
the typical orbital frequency of a stream will retain a Gaussian-
distributed, or at least well-clustered, set of actions over time (Eyre
& Binney 2011; Sanders & Binney 2016). This is because stream
stars, before a perturbation to the Galaxy e.g. by the merger with the
LMC, will initially share similar orbits (but at different phases) and
will still share similar orbits after any slow changes to the potential
are complete.

Streams will interact with the infalling LMC, dynamically altering
them. These interactions are adiabatic if the present-day distribution
of stream actions is clustered. For GD-1-like streams (left panel of
Fig. 3) irrespective of the degree of time dependence allowed in the
MW halo, the action distribution remains clustered at present day.
Conversely, OC-like streams (right panel of Fig. 3) are significantly
affected by the inclusion of anmy time dependence in the MW
halo potential. Spherical actions computed for streams generated in
potentials that allow an evolving MW halo monopole or quadrupole
show long tails to their distributions. Moreover, the MW halo
dipole manifests as a bimodality in the action distribution. The
non-Gaussian nature of these action distributions suggests that the
MW halo has deformed non-adiabatically with respect to the OC
stream. As we are evaluating the spherical action, there may be
contributions to the action evolution due to non-spherical changes in
the potential. We explore the distinction between non-adiabatic and
non-spherical contributions to the action evolution in Appendix B.
Briefly, for the OC stream generated in the full expansion MW-LMC
potential, we find that the action evolution is dominated by non-
adiabatic changes to the potential. Whereas for GD-1, non-adiabatic
contributions are insignificant compared to contributions from the
non-spherical changes to the potential. For both streams generated
using a static monopole MW halo potential, the distributions are well

Monopole + Dipole + Quadrupole

Full Expansion

GD-1 |

0.8 0.9 1.0 1.1 1.2
Jr/{Jr)

[ oC ]

05 1.0 15
Jr/(Jr)

Figure 3. The distribution of radial actions n(J,) for the GD-1 (left) and OC (right) streams generated in the full basis expansion LMC halo potential plus the
MW halo described by six distinct BFE subsets: static monopole (pink), evolving monopole (indigo), monopole + dipole (yellow), monopole + quadrupole
(green), monopole + dipole + quadrupole (cyan), and the full expansion (thick black). The spherical radial action is calculated using the spherically averaged
MW halo potential. For each mock stream, the distribution is normalized by the mean radial action and shown using a kernel density estimate. A radial action
distribution that appears non-Gaussian suggests non-adiabatic behaviour in the potential with respect to the stream generated. For GD-1, all action distributions
appear Gaussian implying adiabatic potential behaviour locally. For OC streams generated in deforming potentials, they show non-Gaussian action distributions,

implying non-adiabatic behaviour locally.
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clustered as expected. Indeed, the spreads of these distributions are
dominated by the intrinsic properties of tidal stripping as opposed to
the perturbative effects of the LMC, i.e. 0 exc.Lmc/07,inc. LMc ~ 1.

We note that GD-1 has been associated with perturbations due to
the Sagittarius dwarf galaxy merger (Bonaca et al. 2020; Dillamore
et al. 2022). The simulations considered in this work do not
include Sagittarius and future work will determine whether the GD-
1-Sagittarius interaction causes its action distribution to disperse
further.

3.1 Actions as adiabatic invariants

The theoretical attraction of using action variables is their property of
adiabatic invariance. This means, that for a time-dependent system,
the energies of particles will not be conserved. However, for a
slowly varying system, there exists a combination of energy and
time-dependent parameters, which make up the actions, that remain
approximately constant (Vandervoort 1961; Landau & Lifshitz 1969;
Wells & Siklos 2007; Binney & Tremaine 2008). For our Galaxy,
when the potential is assumed as static or slowly-evolving, the actions
of a stream remain approximately constant and clustered. In this
instance, action clustering methods are appropriate to infer global
system properties, e.g. mass profiles. For an MW-LMC system
described by BFEs, the conditions under which actions remain
clustered are outlined in Appendix B. We consider changes in radial
action as a function of lookback time for two neighbouring particles
evolved in a time-dependent MW-LMC potential compared to the
static potential. Our equation (B6) demonstrates this, connecting
changes in the potential to changes in actions. This equation high-
lights how each basis function coefficient will affect the action
evolution uniquely. Namely, the ratio A,,(t)/<2 is a global indicator
for adiabatic invariance in the actions. The bracketed terms modulate
this global quantity to the location of the stream particles, with
the first term measuring the change in the actions of the particles
orbiting in a time-dependent system, while the second term measures
the change in actions around a particle’s orbit in a static system.
In general, non-adiabatic potentials translate themselves to a total
change in actions, A J,(¢) ~ O(o,,), i.e. comparable to the spread
of the original distribution of actions.

4 RESULTS

4.1 Information theory

The Fisher information (Fisher 1925) is a way of measuring the
amount of information that a random variable y carries about an un-
known parameter x of a distribution that models that random variable.
Bonaca & Hogg (2018) developed an information framework for cold
stellar streams in static potentials where the random variables y are
the tracks of the stream observations (on-sky track, distance, radial
velocity, and proper motions), while the model x includes parameters
for the progenitor, the baryonic potential components, and the dark
matter potential components.

For a more general case where there are N model parameters x =
[x1, X2, ..., xx]T that describe the variable y, the Fisher information
is given by the N x N positive semidefinite matrix called the Fisher
information matrix (FIM) with the elements

0 0
[I(x);; =L Ka 10gf(y;x)> (fIng(y;x)> x], (6)
Xi 0

Xj
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where [I(x)];; is the information that the variable y carries about
the covariances between the model parameters x; and x;. The
probability distribution for the random variable y conditioned on
the value of the model parameters, x, is labelled f(y;x). In our case,
we are calculating the present-day information that a radial action
distribution of a stellar stream carries about the set of BFE coefficients
that are used to model the Galactic potential. Inverting the FIM
returns the matrix of Cramér—Rao lower bounds (Rao 1945; Cramér
1946). The square roots of the diagonal elements are the bounds
on the individual coefficient model parameters. The Cramér—Rao
lower bounds are interpreted as the lower bounds for the best-case
uncertainties given the data and their uncertainties.

The radial action J, is calculated starting from the phase-space
coordinates of stream members and the model parameters as the BFE
coefficients A, that define the potential, i.e. J, = J.(x, v, {A,}).
For the radial action, we assume a Gaussian distribution cen-
tred on the mean action (J.) with a standard deviation, o , i.e.
f A = N, 0,2'_). For adiabatic invariant systems, this is a
good approximation (Eyre & Binney 2011; Sanders & Binney 2016).

To account for the stream observational uncertainties, we take
the uncertainties for the GD-1 stream based on values given in
Gaia Collaboration (2018), Malhan & Ibata (2019), and Dillamore
et al. (2022), while for the OC stream, we use the values given in
Koposov et al. (2023). Each stream member’s positions and velocities
are convolved with these uncertainties. Using these observation-like
positions and velocities, we calculate the actions of each stream, J,,
and the spread of the action distribution, a},.

Assuming that the actions are separable, the BFE-relevant ele-
ments of the FIM for the (ath, bth) coefficients are given by

(Pa — (D) (@6 — () (J, — (J,))?
[] (Al")}u,b = Z bQ2 a}tb s (7)

stars

where ¢; are the basis functions evaluated at the particles’ positions,
and with the frequency €2,. This expression looks similar to minimum
entropy methods developed in Pefarrubia et al. (2012) as will be
discussed in Section 5. A full derivation and discussion of the radial
action FIM expression for the general and Gaussian distribution cases
can be found in Appendix C.

4.2 Spherically averaged Milky Way acceleration profiles

Our derivation of the information using the radial action assumes
the potential to be spherical. Hence, we only use the Cramér—Rao
lower bounds of the spherically averaged monopole BFE coefficients
as these terms are independent of angular contributions. For all
generated streams, we seek the combination of monopole coefficients
that best describe the MW halo potential given the action distribution
of the stream generated in the various time-dependent potentials.
We employ an MLE to achieve this by minimizing a log-likelihood
function for the radial action that is assumed to be Gaussian (Eyre &
Binney 2011; Sanders & Binney 2016), i.e.

2

In[f(J)] = —% In (2707 ) + M : (8)
oj

The returned spherically averaged coefficients are then used to re-

evaluate the potential, the actions plus their derivatives, and the Fisher

information for the streams generated in time-evolving systems.

In Fig. 4, we show the logarithmic ratio of the acceleration
field described by the MLE coefficients to the ‘true’ spherically
averaged MW acceleration field described by the original monopole
coefficients. In the left (right) panel, we show the ratio across the
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Figure 4. Logarithmic ratio of the spherically averaged BFE acceleration profile, described by the maximum likelihood estimates of the MW halo monopole
coefficients, to the original spherically averaged MW halo acceleration profile. Left: For a GD-1 stream generated in a full basis expansion LMC plus an MW
halo potential described by the following harmonic subsets: static monopole (pink), evolving monopole (indigo), monopole + dipole (yellow), monopole +
quadrupole (green), monopole + dipole + quadrupole (cyan), and the full expansion (thick black). Right: The same as the left panel but for an OC stream. The
grey-shaded region indicates regions outside the average 10th—90th percentiles of the radial distribution of stream particles.

stream radial range for the GD-1 (OC) streams. The grey-shaded
region indicates regions outside the average 10th—90th percentiles
of the radial distribution of stream particles. In both cases, the
acceleration field is only well recovered across the stream range
(Bonaca & Hogg 2018). For GD-1, the expected acceleration profile
across the majority of the stream can be recovered reasonably well
for all potentials in which we generate streams. For OC, only in the
static monopole case can the acceleration be recovered well across
the radial stream range. All other cases that include the dipole and/or
quadrupole harmonic of the MW halo BFE description demonstrate
large deviations from the expected acceleration profile across the
stream range implying that we cannot recover useful information
about the MW when it has undergone non-adiabatic evolution.

4.3 Action clustering — Milky Way mass profile

We now investigate recovering the MW mass profile using action
clustering. Using the MLE spherically averaged monopole coeffi-
cients determined in Section 4.2, we calculate the radial actions and
quantities required to determine the FIM (see Section 4.1, equation
7). To make the FIM realistic in connection with observation, we
make conservative matches for the counts of likely stream members
(see Section 2.3.1). To avoid biases from outlier stream particles, we
select our random samples from the distribution of particles within
the 10th—90th distance percentile. Once the FIM is known, we take its
inverse to return the Cramér—Rao matrix. We draw random samples of
spherically averaged coefficients from a multivariate normal distribu-
tion with the mean being the MLE spherically averaged coefficients
and the covariance matrix being the Cramér—Rao matrix. Using these
samples of spherically averaged coefficients in combination with the
force basis function weights, we compute the radial acceleration
profile. We can then infer the spherically averaged mass profiles
for the GD-1 streams (top row, Fig. 5) and OC streams (bottom
row, Fig. 5). For an assumed spherically symmetric potential, the
acceleration and mass are related, a(r) = 0®/r = GM(< r)/r>.
In Fig. 5, the median mass profiles are shown as the dashed black
line with 1o (dark red) and 2o (light red) confidence intervals. If the
system in which the stream was generated is adiabatic, we expect to

be able to recover the true MW mass profile (thick black line) across
the radial range where there are stream members. The lower panels
in both rows of Fig. 5 show the number density, normalized by bin
width, of stream members as a function of radius.

For the mock GD-1 streams (top row, Fig. 5), we can recover the
mass profiles within 2o across the stream range in all cases. Although
the stream has visited smaller and larger radii on its orbit, the action
clustering method is only sensitive to local accelerations. Hence, we
are only locally constraining the flexible BFE description of the mass
profile across the radial extent of the stream. Outside this range, there
is a dearth of information and the confidence intervals widen. This
is in contrast to static parametrizations of potential models, which
can lead to constraints being placed on regions outside of the stream
range (e.g. Erkal et al. 2019; Malhan & Ibata 2019; Koposov et al.
2023). These results imply that any time dependence in the MW—
LMC potential is adiabatic over the evolution of a GD-1-like stream.
Hence, for GD-1-like streams, we can use the clustering of actions
to infer the MW mass profile.

For the mock OC streams (bottom row, Fig. 5), we can recover
the MW mass enclosed profile, within 1o across the stream range,
in the static monopole case. This result is expected as the MW halo
is not deforming; i.e. it is time-independent, and so the potential will
be adiabatic during the evolution of the OC stream. However, the
inclusion of any time dependence in the MW halo potential leads
to an inability to recover the mass profile across the stream range.
This suggests that the deformations of the MW halo introduce non-
adiabatic behaviour in the potential that is sustained throughout the
evolution of OC-like streams. This effect is reflected as the non-
physical negative mass dips seen in Fig. 5. These perturbations to
the mass profile mean that we are not able to recover the expected
profile within the confidence intervals. Given the definition of BFEs,
if the coefficients assign ‘extra’ weight to specific fine-tuning higher
radial orders with smaller periodicity, the combination with the
basis function weights can generate negative masses. These negative
masses should be addressed in future work, although this is a non-
trivial exercise. This could be achieved by putting constraints on
regions of the coefficient parameter space that permit negative masses
to exist. Indeed, allowing negative masses has likely improved the
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Figure 5. Constraints on the spherically averaged MW mass profile using the generated GD-1 streams (top row) and generated OC streams (bottom row) from
their radial action distribution. The resulting median mass profile (black dashed lines) is shown with the 1o (dark red) and 2o (light red) confidence intervals
as shaded bands. The number density of stream members as a function of radius is shown in the lower panels; the total number of stream members matches
observational counts in Section 2.3.1. The grey-shaded regions indicate radial regions where there are no stream members. The thick black line represents the
true MW halo monopole potential governing the spherical part of the BFE. From left to right are shown these mass profiles for the streams generated in the
fully live LMC + MW halo harmonic subset potentials: static monopole, evolving monopole, monopole + dipole, monopole + quadrupole, monopole + dipole
+ quadrupole, and the full expansion. Streams that cannot recover the mass profile across their radial extent imply that their actions have been impacted by

non-adiabatic behaviour in the underlying potential.

returned mass-profile constraints. Nevertheless, these results imply
that for OC-like streams created in MW haloes, which are time-
dependent due to the merger with the LMC, we are unable to use
action clustering methods to recover the mass profile as the potential
is non-adiabatic and action clustering is no longer preserved. We
note, for mock OC streams generated in potentials with an evolving
monopole or monopole + quadrupole MW halo, the mass profile is
biased low. A possible source of this bias is seen in these streams’
radial action distributions (see Fig. 3). In both cases, their action
distributions are biased to lower values relative to the mean of the
distribution and display larger spreads. It is possible that the MLE
procedure picks up on this bias and larger action spread to produce
a set of basis coefficients that return a mass profile that is lower than
expected.

4.4 Energy clustering — Milky Way mass profile

The entire action clustering method presented so far can be replicated
by replacing the actions of stream members with their energies.
The energies can be simply described as the sum of the kinetic
and potential energy. By assuming that the energies of stream
members should be normally distributed, we can find similar sets
of MLE monopole coefficients that best describe the gravitational
potential given the energy distribution of the streams generated
in the various time-dependent potentials. In the case of energy,
each element of the FIM has a slightly different calculation and
is detailed in Appendix D. Energy clustering is expected to be
sensitive even to adiabatic changes to the potential. Hence, we
could expect energy clustering methods to ‘break down’ faster than
action clustering. Further, spherical radial actions will change in non-
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spherical potentials regardless of the adiabatic state of the potential.
Whereas, energies do not suffer this problem but are more sensitive
to time dependence.

Using these spherically averaged coefficients, we calculate the
energies and quantities required to determine the FIM. Again, to
make the FIM realistic in connection with observation, we make
conservative matches for the counts of likely stream members in
the same fashion as the actions in Section 2.3.1. Once we have the
energy FIM, we take its inverse to return the energy Cramér—Rao
covariance matrix. Again, we draw random samples of spherically
averaged coefficients from a multivariate normal distribution with the
mean being the MLE coefficients and the covariance matrix being
the Cramér—Rao matrix. Using these samples of MLE coefficients
in combination with the force basis function weights, we compute
the MW mass profiles for the GD-1 streams (top row, Fig. 6) and
OC streams (bottom row, Fig. 6). Fig. 6 mimics Fig. 5 but for
the constraints made by using the stream energies instead of radial
actions.

For the GD-1 streams (top row, Fig. 6), we can recover the
mass profile across a portion of the stream within 2o in all cases.
The deformations of the MW halo in its monopole and quadrupole
harmonics are the mildest (see fig. 5 of Lilleengen et al. 2023) and we
could expect that the energies are the least affected by their inclusion
in the potential. However, these deformations seem to affect the
energies in such a way that the recovered spherically averaged mass
profile is underestimated across portions of the stream radial range.

For the OC streams (bottom row, Fig. 6), we obtain similar results
to the action clustering method with less obvious deviations when
including the time-dependent MW halo harmonics. For the static
monopole case, we can recover the mass profile within 2o across
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Figure 6. Constraints on the spherically averaged MW mass profile using the generated GD-1 streams (top row) and generated OC streams (bottom row) from
their energy distribution. A multivariate normal sampling of the maximum likelihood monopole BFE coefficients from the Cramér—Rao covariance matrix is
carried out to obtain the median mass profile (black dashed lines) with the 1o (dark red) and 2o (light red) confidence intervals as shaded bands. The number
density of stream members as a function of radius is shown in the lower panels; the total number of stream members matches observational counts in Section
2.3.1. The grey-shaded regions indicate radial regions where there are no stream members. The thick black line represents the true MW halo monopole potential
governing the spherical part of the BFE. From left to right are shown these mass profiles for the streams generated in the fully live LMC + MW halo harmonic
subset potentials: static monopole, evolving monopole, monopole + dipole, monopole + quadrupole, monopole + dipole + quadrupole, and the full expansion.
Streams that cannot recover the mass profile across their radial extent suggest that their energies have been impacted by the time dependence of the MW halo

potential.

the stream range. However, similarly to action clustering, we are
unable to recover the mass profile across the full stream range when
including time dependence in the MW halo potential. The non-
physical negative mass dips seen in Fig. 6 are damped in comparison
to the same dips seen in the mass profile from action clustering (see
Fig. 5). This is a positive result if one wishes to measure the mass
profile of galaxies using stream clustering methods when a system is
in disequilibrium.

5 DISCUSSION

5.1 Context of results

We have demonstrated that OC-like streams generated in MW-
LMC potentials including any deformations to the MW halo will
sufficiently break down action clustering, such that we cannot locally
recover the spherically averaged mass profile (see Fig. 5). Whereas,
for GD-1-like streams, we are still able to locally recover the mass
profile even when the MW halo is allowed to be fully deforming.
These results highlight the importance of considering deformations
to the Galactic potential when modelling streams that are hotter,
longer, and near the LMC, e.g. OC.

The leading order deformation to the MW halo is the dipole
harmonic (Lilleengen et al. 2023), i.e. the displacement in the MW
halo centre due to the LMC'’s gravitational effect. This could imply
that a better frame of reference for evaluating the actions is the
shared centre of mass frame. Re-centring the MW-LMC system
could remove the non-adiabatic behaviour that is implied by the
stream actions, while simultaneously offering a possible explanation

as to why energy clustering seems to be less sensitive to the halo
deformations.

We showed that a similar analysis can be carried out using the
clustering of the stream energies. We found tentative evidence that
energy clustering is less susceptible to MW halo deformations as
the deviations in the spherically averaged mass profile are damped
with respect to the results from action clustering (see Fig. 6).
Pefiarrubia et al. (2012) used the energies of stream members
in a distinct statistical technique to constrain the MW potential
by the minimization of entropy. This method is related to ours,
although our Fisher information approach is more clearly related to
Bayesian statistics. This work is the first formalism of using Fisher
information to determine the model uncertainties when using a time-
dependent BFE model of the gravitational potential while acting as
a complementary effort to other studies pushing information theory
into time dependence [Erkal et al. (in preparation); Lilleengen et al.
(in preparation)]. Via this approach, the accuracy in recovering the
MW mass profile is sensitive to where stream members exist in
the Galaxy, i.e. a localized constraint (Bonaca & Hogg 2018), and
any model assumptions made, e.g. Gaussian distributions for the
actions. Current state-of-the-art MW mass estimates using streams
have extrapolated mass enclosed estimates further out in the MW halo
to the virial radius (Wang et al. 2020; Reino et al. 2021, 2022; Vasiliev
et al. 2021; Ibata et al. 2024). However, any constraint using a non-
parametric description for the potential, e.g. a BFE, can only produce
a localized constraint. Also, for a Fisher information approach, the
precision on the returned mass profile is controlled by the number
of stars observed in a stream, their associated uncertainties in their
positions/velocities, and the intrinsic stream width. This will vary on
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a stream-by-stream basis. Recent review papers for MW (e.g. Wang
et al. 2020; Bonaca & Price-Whelan 2024) show that we know the
mass to a precision of ~10 per cent where we have visible tracers.

5.2 Caveats

Our action clustering method contains sources of bias that are
unaccounted for in our model. The first is biases introduced due to the
energy (phase) sorting of stars along stellar streams. For individual
streams, maximal clustering can occur for the wrong potential
because we do not include action—phase information. Neglecting
the phase information could in principle find a potential that exactly
cancels action—angle correlations, producing a more tightly clustered
action distribution than that for the true potential. The bias on the
potential will differ for each stream and will likely cancel when
considering populations of streams simultaneously (Sanderson et al.
2015; Reino et al. 2021).

Another source of bias is the energy bimodality of stars in stellar
streams: a bias that also affects entropy-based techniques (Pefiarrubia
et al. 2012). As stars are stripped from the progenitor’s Lagrange
points during its orbit in the MW halo, they form two distinct tidal
tails: the leading and trailing stream arms. If sufficiently separated,
the leading and trailing tails can have distinct energy distributions
(i.e. they do not overlap in energy space) with orbital energies that
are higher and lower than those of the progenitor, respectively (Eyre
& Binney 2011; Pefiarrubia et al. 2012). Similarly to phase sorting,
this effect translates into action space as the radial action depends on
the energy of stars producing a ‘clumps within clumps’ effect.

Throughout this work, we are limited by the necessity to spher-
ically average the BFE coefficients given our use of spherical
actions. Future work to extend the current formalism to recover
asymmetries in the MW-LMC system would require a larger set of
basis coefficients to be constrained, i.e. the harmonic orders / > 0.
Such an approach could improve the recovered properties, but it
would require using axisymmetric actions. Further extensions could
be to include the conjugate angles and the MW disc in the potential.

Finally, there is possible insensitivity of the action clustering due
to non-adiabatic perturbations to the potential. Given a stream that is
clumped in phase space, i.e. a short and cold stream, it is possible that
large-scale and low harmonic order deformations to the potential,
i.e. the lowest order radial functions and the dipole/quadrupole of
the BFE, respectively, could be non-adiabatic but will affect the
actions of all stream members in the same way. This would shift the
entire distribution of stream actions without causing the clustering
to disperse. Hence, non-adiabatic changes to the potential could still
allow action clustering methods to work. This is most likely for
the coldest and shortest streams in the Galaxy. Hotter and longer
streams are likely to show dispersion in their clustering when there
are non-adiabatic changes to the potential.

6 CONCLUSIONS

The merger event of the LMC with the MW is causing significant
disruption in the system (e.g. Erkal et al. 2019; Garavito-Camargo
et al. 2019; Petersen & Pefiarrubia 2020; Conroy et al. 2021), in
particular, the deformations of both the MW and LMC dark matter
haloes (Petersen et al. 2022; Lilleengen et al. 2023). Stellar streams
in the MW will be affected (Erkal et al. 2019; Koposov et al. 2019,
2023; Shipp et al. 2021; Lilleengen et al. 2023). The clustering of
stream actions has been used to constrain the mass profile of the
MW when the potential is assumed to be static or adiabatically time-
dependent (Sanderson et al. 2015; Yang et al. 2020; Reino et al. 2021,
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2022). When time dependence is introduced into the potential in the
form of galaxy mergers, the clustering of actions is subject to biases
(Arora et al. 2022). The deformations to the MW dark matter halo
due to the LMC are an example of such a system. Whether these
deformations perturb the potential in an adiabatic way is unknown
and would impact upon using action clustering to constrain the MW
mass enclosed profile.

We have demonstrated the ability of action clustering methods
to constrain the MW mass profile by using the N-body simulations
of Lilleengen et al. (2023), which model the deforming MW-LMC
system using a BFE description using the EXP toolkit (Petersen et al.
2022). We use the spherical action clustering of GD-1 and OC streams
generated in various MW-LMC potentials to infer the mass profiles.
This allows us to investigate which harmonic modes of the MW halo
become sufficiently non-adiabatic such that we are unable to recover
the mass profile. Our uncertainties are provided using an information
theory approach. This is the first time such a formalism has been used
for a BFE description of the MW-LMC potential.

Our main conclusions are as follows:

(1) Using the action clustering of GD-1-like streams, i.e. cold,
globular cluster streams well separated from the LMC, we can
recover the mass profiles within 20 irrespective of the level of
deformations to the MW halo. This implies that any time dependence
is adiabatic over their evolution, allowing action clustering of these
streams to be used to infer the mass profile of the MW halo.

(i1) Using the action clustering of OC-like streams, i.e. hot,
dwarf galaxy streams close to the LMC, the inclusion of any time
dependence in the MW halo potential leads to an inability to recover
the mass profile within 2¢. This suggests that deformations to the
MW halo introduce non-adiabatic behaviour in the potential that is
sustained throughout the evolution of an OC-like stream.

(iii) Using the energy clustering of GD-1-like streams, we can
recover the mass profiles within 2o.

(iv) Using the energy clustering of OC-like streams, we find sim-
ilar results to those from action clustering. However, the deviations
away from the expected mass are not as extreme.

(v) All mass-profile constraints made using action or energy
clustering are only local to the radial extent of the stream.

Our results have demonstrated using action clustering methods to
constrain the Galaxy properties when the MW halo is deforming due
to the merger with the LMC. An interesting takeaway is that the
energies of the streams seem to be less strongly affected, particularly
for the OC stream. Recent observational studies using stellar streams
hosted around external galaxies have been able to constrain the mass
distribution of the host galaxy (Pearson et al. 2022a, b; Nibauer,
Bonaca & Johnston 2023). As the prospect of detecting more low
surface brightness streams in external galaxies is set to increase
with the Nancy Grace Roman Space Telescope (Spergel et al. 2015),
the increased number of streams opens up the exciting prospect for
using energy clustering of external streams as a method to measure
the masses of other galaxies within the Local Volume as well. To
achieve this, the next step would be to apply the current methodology
to phase-space data with missing information, e.g. without distances
to the stream.
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APPENDIX A: MILKY WAY DARK MATTER
HALO DENSITY CONTRAST

In Fig. A1, we demonstrate the temporal development of the MW
halo density contrast due to the LMC’s passage for both isolated
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harmonic subsets and the full basis expansion simulation in the MW—
LMC simulations of Lilleengen et al. (2023). This figure replicates
Fig. 1 using the densities instead of the potentials.

Garavito-Camargo et al. (2019, 2021) present similar, yet distinct,
cold dark matter simulations of the MW-LMC system and high-
lighted a similar scenario for the density contrast at present day in
the latter’s fig. 1f. They state that the LMC imposes effects on the MW
that are threefold: the collective response is primarily due to the shift
of the inner halo relative to the outer halo; a global underdensity
surrounds the transient response; and the transient response itself.
The strength of the collective response density contrast at present
day is much higher in these simulations than in the ones considered
in this work (Lilleengen et al. 2023). However, this discrepancy
can be explained given the differences between the two MW-LMC
simulations: first, the degree of the system’s radial anisotropy will
cause orbits of simulation particles to vary and redistribute them.
Garavito-Camargo et al. (2021) explored the possibility of radially
biased and isotropic MW kinematics, although both have similar
effects on the inner halo at radii <3050 kpc, i.e. their fig. 15.
Secondly, the mass of the LMC in Garavito-Camargo et al. (2021)
is around 5-6 times more massive than Lilleengen et al. (2023) with
the former finding the strength of the / = 1 term (dipole) to be most
impacted by varying the LMC mass. The adopted LMC mass affects
the density distribution, which translates into characteristic visible
changes to the stellar halo distribution (Foote et al. 2023; Vasiliev
2024). Other subdominant differences include the resolution of the
dark matter particles and basis expansion. All of the above can impact
the final density distribution and strength of the LMC’s dynamical
friction properties. Future work devoted to understanding the extent
to which the properties of the LMC, such as its mass and orbital
trajectory, affect the strength of its dynamical friction signature is
crucial to fully understanding the recent merger.
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Figure Al. Temporal development of various MW dark matter halo harmonics and the LMC over the live simulation time: t = —2.5 Gyr to t = 0 Gyr with

time increasing from top to bottom. Going from left to right across the columns shows the MW dipole, MW quadrupole, MW full expansion harmonic, and
LMC full expansion. The densities are computed in the x = 0 Galactocentric plane in a slab of 10 kpc thickness. The colour map represents the density contrast,
Ap = (p — po.i)/Po.mw. Where pg ; corresponds to the monopole density computed using only the / = 0 order of either the MW (first three columns) or LMC
expansion (final column). The track of the LMC through this plane is shown as the black line. Halo deformations due to the MW disc are omitted as they are

subdominant with respect to the outer halo deformations.

APPENDIX B: ADIABATIC INVARIANTS

This derivation is based on concepts outlined in Landau & Lifshitz

(1969), Wells & Siklos (2007), and Binney & Tremaine (2008).
Consider a system with a potential ®(x; A(¢)). This potential is a

function of the time-dependent parameter A(¢) such that the energy

is no longer conserved, i.e. E = E(t),

= aHi B
T

where the dotted notation indicates a time derivative. There are some
combinations of E and A that will remain constant. These are called
adiabatic invariants. The actions, J, are functions of energy E and

E
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GD-1 (Full Expansion)
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Figure B1. The instantaneous time derivative of the radial action calculated
using equation (B6), normalized by the action of the progenitor at each time,
Jy/J, for the OC (black) and GD-1 (grey) streams in a full expansion,
time-dependent MW-LMC potential over their last full orbit. We determine
the fraction of the orbit that is subject to ‘significant’ action evolution, i.e.
J. ], 2> /27 (dashed lines, same colours). For spherical actions, significant
action evolution can arise from non-spherical and/or non-adiabatic evolution
of the potential. We find the fraction of the orbit that is subject to non-
adiabatic/non-spherical changes in the potential for the OC and GD-1 streams
as ~50 and ~10 per cent, respectively.

the time-dependent parameter, A. Varying either of these will change

J as
j=l e (B2)
COE|, Oy

E

An adiabatic invariant is when E and A are related in such a way that
the two terms in equation (B2) cancel. These two terms can be dealt
with individually and be written as

0J 1 T

= ===5, (B3)
0E|,  2&m

oJ 1 [ToH

— =—-—=— — | dt, (B4)

where Q is the frequency of an orbit in the system, and 7T is
the corresponding time period. The final result can be found by
combining equations (B1), (B2), (B3), and (B4) to give

i 1 [0H 1 T oH
T Q { o, T /0 oA

Now, we can make equation (B5) specific to our analysis. The time-
dependent parameter A(¢) is replaced by the basis function coefficient,
A, (¢). This makes the partial derivative of the Hamiltonian with
respect to the time-dependent parameter straightforward as we know
this derivative to be, 0H/0A, = ¢,(x) from equation (4). This
makes equation (B5) read as

S| 17 :
=5 {Zq’m(x) - ;/0 Zm(x)dt’} A (B6)
" "

where A «(1) is the time derivative of the basis function coefficients.
The ratio A,,(t)/ Q2 is a global indicator of adiabaticity in the potential
considered. The bracketed terms modulate this global quantity to the
location of the particles. The first term in the brackets is the variation
in particle energy. The second term is an integral of the changes in
basis function over the orbital time period of a particle. Cancellation
of these two terms for the integral around an orbit gives rise to
adiabatic invariance. In Fig. B1, we evaluate equation (B6) for an
orbit of the OC and GD-1 streams evolved in the full expansion MW
halo potential. We define ‘significant’ action evolution as J,/J, >

dt’] i (BS)
E
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Q/2m; i.e. the radial action will change by itself over an orbital
period. As we are evaluating the spherical action, significant action
evolution arises from non-spherical and/or non-adiabatic evolution
of the potential. We find that the fraction of the orbit that is subject
to significant action evolution for the OC and GD-1 streams are
~50 and ~10 per cent, respectively. This agrees with the present-day
action distributions in Fig. 3 for each stream generated in the full
expansion MW halo potential. The GD-1 stream has a well-clustered
action distribution as expected for only adiabatic spherical changes
to the potential, but the OC stream is multimodal, hinting at non-
adiabatic/non-spherical changes in the potential.

As noted, the computation of the radial action only uses the
spherical terms of the BFE, i.e. the monopole terms, so neglects non-
spherical contributions. To evaluate the relative importance of the
action evolution from non-adiabatic and non-spherical contributions,
we determine equation (B6) for the evolving monopole MW halo
potential. As this potential is spherical, all action evolution can be
attributed to the non-adiabatic time dependence of the potential.
We find significant action changes for the OC and GD-1 streams
over ~50 and ~2.5 per cent of the orbits, respectively. For OC, this
implies that most, if not all, of the action evolution is driven by
non-adiabatic changes in the potential. For GD-1, this suggests that
the action evolution is mainly driven by the non-spherical evolution
of the potential, while contributions from non-adiabatic changes are
negligible.

APPENDIX C: DERIVATION OF FISHER
INFORMATION MATRIX ELEMENTS -
ACTIONS

C1 General distribution

Given the observation of an ensemble of particles, for N model
parameters so that @ = [a;, as, ..., ay]" that define the action J,
the Fisher information is given by the N x N positive semidefinite
matrix called the FIM:

a]

El (2o % s

Kaa; n f( ,a)> (ale n f( ,a)>
d d

> Kaai lnf(J,a)) (ajlnf(J,a)ﬂ, (C1)

particles
where [ (a)]; ; is the information about the model parameters a; and
a; given the action J. The choice of the distribution of actions f(J; @)
is arbitrary. In the following section, we demonstrate its application
to the Gaussian distribution.

[I(a)];,;

C2 Gaussian distribution

For a case of a Gaussian distribution of radial actions centred on
a mean action (J,) with standard deviation, o, , i.e. f(J;a)=
N{J,), 012’_), the log-likelihood is

2
(J.(a) — (J.(a))) } ' @

1 2
In[f(J:;@)] = ) [111 Qraj)+ o2
From equation (C1), the Fisher information element for the (ith, jth)
combination of parameters is
0J.(a) 0(J(a)\ (0J:.(a) 0(J:(a))
I@); = —~ —~
[ (a)] K Z |: ( aa,- 6a; 6(1/- aa/-

particles

o (C3)

A

(Jr(a) - (Jr(a)))2:|
X———mm—| .
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We now replace the general Gaussian distribution f(J,;a) with
the model-specific distribution. Our radial action J, has the model
variables of phase-space coordinates and is parametrized by the
BFE coefficients, i.e. a = [Ag, 41, ..., Ay]T = {A,}, such that its
distribution is described by J, = J.(x, v, {A,}). Using Leibniz’s rule
for differentiation, the derivative of the radial action with respect to
the BFE coefficients is

oJ, 1 r”d @i(ro) — ¢i(r)
94, 1w g [ZE —20(r) — L2/r2 172
i p r) L /r ]
_ ¢ilr))
-Q 1), (C4

where ¢; is the basis function evaluated at the particle’s position 7y,
the frequency is 2, = dH /dJ,, and I(J) is some integral (constant)
that is the same for all particles with the same action. Now, we can
substitute equation (C4) into equation (C3) to give

A, = Z |:(¢i(r0) - <¢i(ro)))Q(2¢j(r0) — (¢j(r0)>)

particles

o (C5)

£

(r = <J,>)2}
X————|»
which is as per the expression given in Section 4.1 (equation 6).

APPENDIX D: DERIVATION OF FISHER
INFORMATION MATRIX ELEMENTS -
ENERGIES

D1 General distribution

Given the observation of an ensemble of particles, for N model
parameters so that @ = [ay, ay, ..., ay]T that define the energies E,
the FIM is

a]

U@, =E Kazi 1nf(E;a)) <%1nf(E;a))
0 0
> Kaa,- lnf(E;a)) (af‘jlnfw;a))} , (D)

J
particles

where [/ (a)]; ; is the information about the model parameters a; and
a; given the energy E. The choice of the distribution of energies
f(E;a) is arbitrary. In the following section, we demonstrate its
application to the Gaussian distribution.

© 2024 The Author(s).
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D2 Gaussian distribution

For a case of a Gaussian distribution of energies centred on a mean
energy (E) with standard deviation, o, i.e. f(E;a) = N((E), U‘%),
the log-likelihood is

2
(E(a) — (E(a))) } ' D2)

1
In[f(E;a)] = -3 {m Qrod)+ s
E

From equation (D1), the Fisher information element for the (ith, jth)
combination of parameters is

_ 0E(a) 0O(E(a)) 0E(a) 0(E(a))
[I(u)]i,j - Z |:< aa,- h aa,' >< 661] a aaj )

particles

o (D3)

(E(a) — <E(a>>)2}
X—|.

We now replace the general Gaussian distribution f(E;a) with

the model-specific distribution. The particle energies E have the
model variables of phase-space coordinates and are parametrized

by the BFE coefficients, i.e. @ = [Ag, A1, ..., Ay]T = {A,}, such
that E = E(x, v, {A,}) = [v*/24 3, A,¢u(x). The derivative
of the particle energy with respect to the BFE coefficients is
0E(x,v,{A,})/0A, = ¢,(x). Substituting this derivative into equa-
tion (D3) gives the final FIM element expression:

[I(AD]):,; = Z |:(¢i(r0) — (@i (ro)) (¢;(ro) — (¢;(r0)))
particles
2
xi(E iE» ] (D4)
O
where ¢; is the basis function evaluated at the particle’s position
ro. This expression for the energy Fisher information is closely
connected to the action Fisher information by the simple relations:
Q, =dE/dJ, and 0 = 0, X £,.

One important difference between the Fisher information expres-
sions for the actions and energies is that for the latter, we do not
have to assume that I(J) (equation D3) is the same for all particles.
This simplification makes the action spread smaller and hence we
can linearly propagate the action Fisher information in equation (C5)
to get the energy Fisher information in equation (D4).
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