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The (Perfect) Matching Cut problem is to decide if a graph 𝐺 has a (perfect) matching cut, i.e., 
a (perfect) matching that is also an edge cut of 𝐺. Both Matching Cut and Perfect Matching 
Cut are known to be NP-complete. A perfect matching cut is also a matching cut with maximum 
number of edges. To increase our understanding of the relationship between the two problems, we 
perform a complexity study for the Maximum Matching Cut problem, which is to determine a 
largest matching cut in a graph. Our results yield full dichotomies of Maximum Matching Cut for 
graphs of bounded diameter, bounded radius and 𝐻-free graphs. A disconnected perfect matching 
of a graph 𝐺 is a perfect matching that contains a matching cut of 𝐺. We also show how our new 
techniques can be used for finding a disconnected perfect matching with a largest matching cut for 
special graph classes. In this way we can prove that the decision problem Disconnected Perfect 
Matching is polynomial-time solvable for (𝑃6 + 𝑠𝑃2)-free graphs for every 𝑠 ≥ 0, extending a 
known result for 𝑃5-free graphs (Bouquet and Picouleau, 2020).

1. Introduction

A matching 𝑀 (i.e., a set of pairwise disjoint edges) of a connected graph 𝐺 = (𝑉 , 𝐸) is a matching cut if 𝑉 can be partitioned 
into a set of blue vertices 𝐵 and a set of red vertices 𝑅, such that 𝑀 consists of all the edges with one end-vertex in 𝐵 and the other 
one in 𝑅. Graphs with matching cuts were introduced in 1970 by Graham [24] (as decomposable graphs) to solve a problem on cube 
numbering. Other relevant applications include ILFI networks [15], WDM networks [1], graph drawing [39] and surjective graph 
homomorphisms [21].

The decision problem is called Matching Cut: does a given connected graph have a matching cut? In 1984, Chvátal [11]

proved that it is NP-complete even for graphs of maximum degree at most 4. Afterwards, parameterized and exact algorithms were 
given [2,8,20,23,29,30]. A variant called Disconnected Perfect Matching “does a connected graph have a perfect matching that 
contains a matching cut?” has also been studied [7,17,37] (see Section 1.2 for more on this problem). Moreover, Matching Cut was 
generalized, for every 𝑑 ≥ 1, to 𝑑-Cut “does a connected graph have an edge cut where each vertex has at most 𝑑 neighbours across 
the cut?” [3,23]. In particular, many results have appeared where the input for Matching Cut was restricted to some special graph 
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Fig. 1. The graphs 𝐻∗
1 (left) and 𝐻∗

𝑖
(right).

class, and this is what we do in our paper as well. We first discuss related work, restricting ourselves mainly to those classes relevant 
to our paper (see, for example, [8] for a more comprehensive overview):

• graphs of bounded diameter;

• graphs of bounded radius;

• hereditary graph classes; in particular 𝐻 -free graphs.

The distance between two vertices 𝑢 and 𝑣 in a connected graph 𝐺 is the length (number of edges) of a shortest path between 𝑢
and 𝑣 in 𝐺. The eccentricity of a vertex 𝑢 is the maximum distance between 𝑢 and any other vertex of 𝐺. The diameter, denoted by 
𝖽𝗂𝖺𝗆𝖾𝗍𝖾𝗋(𝐺), and radius, denoted by 𝗋𝖺𝖽𝗂𝗎𝗌(𝐺), are the maximum and minimum eccentricity, respectively, over all vertices of 𝐺; note 
that 𝗋𝖺𝖽𝗂𝗎𝗌(𝐺) ≤ 𝖽𝗂𝖺𝗆𝖾𝗍𝖾𝗋(𝐺) ≤ 2 ⋅ 𝗋𝖺𝖽𝗂𝗎𝗌(𝐺) for every graph 𝐺.

The Matching Cut problem is polynomial-time solvable for graphs of diameter at most 2 [6,31]. This result was extended 
to graphs of radius at most 2 [35]. In contrast, the problem is NP-complete for graphs of diameter at most 3 [31], yielding two 
dichotomies:

Theorem 1 ([31,35]). For an integer 𝑑 ≥ 1, Matching Cut for graphs of diameter 𝑑 and for graphs of radius 𝑑 is polynomial-time solvable 
if 𝑑 ≤ 2 and NP-complete if 𝑑 ≥ 3.

A class of graphs is hereditary if it is closed under vertex deletion. Hereditary graph classes include many well-known classes, such 
as those that are 𝐻 -free for some graph 𝐻 . A graph 𝐺 is 𝐻 -free if 𝐺 does not contain 𝐻 as an induced subgraph, that is, 𝐺 cannot 
be modified into 𝐻 by a sequence of vertex deletions. For a set of graphs , a graph 𝐺 is -free if 𝐺 is 𝐻 -free for every 𝐻 ∈. 
If  = {𝐻1, … , 𝐻𝑝} for some 𝑝 ≥ 1, we also say that 𝐺 is (𝐻1, … , 𝐻𝑝)-free. Note that a class of graphs  is hereditary if and only if 
there is a set of graphs , such that every graph in  is -free. Hence, for a systematic complexity study, it is natural to first focus 
on the case where  has size 1; see, e.g., [9,10,12,19,27,41].

For an integer 𝑟 ≥ 1, let 𝑃𝑟 denote the path on 𝑟 vertices, 𝐾1,𝑟 the star on 𝑟 +1 vertices, and 𝐾1,𝑟+𝑒 the graph obtained from 𝐾1,𝑟 by 
adding one edge (between two leaves). The graph 𝐾1,3 is also known as the claw. For 𝑠 ≥ 3, let 𝐶𝑠 denote the cycle on 𝑠 vertices. Let 𝐻∗

1
be the graph that looks like the letter “𝐻”, and for 𝑖 ≥ 2, let 𝐻∗

𝑖
be the graph obtained from 𝐻∗

1 by subdividing the middle edge of 𝐻∗
1

exactly 𝑖 −1 times; see also Fig. 1. We denote the disjoint union of two graphs 𝐺1 and 𝐺2 by 𝐺1 +𝐺2 = (𝑉 (𝐺1) ∪𝑉 (𝐺2), 𝐸(𝐺1) ∪𝐸(𝐺2)). 
We denote by 𝑠𝐺 the disjoint union of 𝑠 copies of 𝐺, for 𝑠 ≥ 1.

Polynomial-time algorithms for Matching Cut exist for subcubic graphs (graphs of maximum degree at most 3) [11], 𝐾1,3-free 
graphs [5], 𝑃6-free graphs [35], (𝐾1,4, 𝐾1,4 + 𝑒)-free graphs [30] and quadrangulated graphs, i.e., (𝐶5, 𝐶6, …)-free graphs [38]; the 
latter class contains the class of chordal graphs, i.e., (𝐶4, 𝐶5, 𝐶6, …)-free graphs. Moreover, if Matching Cut is polynomial-time 
solvable for 𝐻 -free graphs, then it is so for (𝐻 + 𝑃3)-free graphs [35]. The problem is NP-complete even for graphs of maximum 
degree at most 4 [11]; 𝐾1,4-free graphs [11] (see [5,30]); planar graphs of girth 5 [5]; 𝐾1,5-free bipartite graphs [33]; graphs of girth 
at least 𝑔, for every 𝑔 ≥ 3 [17]; (3𝑃5, 𝑃15)-free graphs [37] (improving a result of [16]); bipartite graphs where the vertices in one 
bipartition class all have degree exactly 2 [38] and thus for 𝐻∗

𝑖
-free graphs for every odd 𝑖 ≥ 1; and for 𝐻∗

𝑖
-free graphs for every 

even 𝑖 ≥ 2 [17]. Recently, Le and Le [32] proved that Matching Cut is NP-complete even for (3𝑃6, 2𝑃7, 𝑃14)-free graphs. In fact, 
their hardness gadget also works for Perfect Matching Cut (defined below) and Disconnected Perfect Matching and can be 
readily checked to have diameter 4 and radius 3.

The above results imply the following partial complexity classification, which leaves open only a number of cases where 𝐻 is a 
forest, each connected component of which is either a path or a subdivided claw (tree with one vertex of degree 3 and all other vertices 
of degree at most 2). For two graphs 𝐻 and 𝐻 ′, we write 𝐻 ⊆𝑖 𝐻

′ if 𝐻 is an induced subgraph of 𝐻 ′.

Theorem 2 ([5,11,17,32,37,35,38]). For a graph 𝐻 , Matching Cut on 𝐻 -free graphs is

• polynomial-time solvable if 𝐻 ⊆𝑖 𝑠𝑃3 +𝐾1,3 or 𝑠𝑃3 + 𝑃6 for some 𝑠 ≥ 0, and

• NP-complete if 𝐻 ⊇𝑖 𝐾1,4, 𝑃14, 2𝑃7, 3𝑃5, 𝐶𝑟 for some 𝑟 ≥ 3 or 𝐻∗
𝑗

for some 𝑗 ≥ 1.

1.1. Our focus

We already mentioned the known generalization of Matching Cut (i.e. 1-Cut) to 𝑑-Cut. In our paper, we consider a different 
kind of generalization, namely Maximum Matching Cut, which is to determine a largest matching cut of a connected graph (if 
2

a matching cut exists). So far, it is known that Matching Cut is fixed-parameter tractable when parameterized by the size of the 
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Fig. 2. The graph 𝑃6 with a matching cut of size 2 that is not contained in a (disconnected) perfect matching (left), a disconnected perfect matching with a matching 
cut of size 2 (middle) and a perfect matching cut (of size 3) (right). In each figure, thick edges denote matching cut edges.

cut; this even holds for 𝑑-Cut for every 𝑑 ≥ 1 [3,23]. However, for special graph classes, Maximum Matching Cut has only been 
studied for the extreme case, where the task is to decide if a connected graph has a perfect matching cut which is a matching cut that 
is even a perfect matching, i.e., that saturates every vertex; see also Fig. 2. This variant was introduced as Perfect Matching Cut

by Heggernes and Telle [26], who proved that it is NP-complete. We briefly discuss some very recent results for Perfect Matching 
Cut on special graph classes below.

It is readily seen that the gadget in the NP-hardness reduction of Heggernes and Telle [26] has diameter 6 and radius 3. We recall 
that the NP-hardness gadget of Le and Le [32] for (3𝑃6, 2𝑃7, 𝑃14)-free graphs even has diameter 4 (and radius 3). It is also known 
that Perfect Matching Cut is polynomial-time solvable for graphs of radius (and thus also diameter) at most 2 [37]. Hence, we 
only obtain a dichotomy for graphs of bounded radius but in this case, only a partial complexity classification for graphs of bounded 
diameter.

Theorem 3 ([26,32,37]). For integers 𝑑 and 𝑟, Perfect Matching Cut for graphs of diameter 𝑑 and for graphs of radius 𝑟 is polynomial-

time solvable if 𝑑 ≤ 2 or 𝑟 ≤ 2, respectively, and NP-complete if 𝑑 ≥ 4 or 𝑟 ≥ 3, respectively.

For 1 ≤ ℎ ≤ 𝑖 ≤ 𝑗, the graph 𝑆ℎ,𝑖,𝑗 is the tree of maximum degree 3 with exactly one vertex 𝑢 of degree 3, whose leaves are at 
distance ℎ, 𝑖 and 𝑗, respectively, from 𝑢; note 𝑆1,1,1 =𝐾1,3.

It is known that Perfect Matching Cut is polynomial-time solvable for 𝑆1,2,2-free graphs (and thus for 𝐾1,3-free graphs) [34]; 𝑃6-

free graphs [37]; and for pseudo-chordal graphs [34] (and thus for chordal graphs, i.e., (𝐶4, 𝐶5, …)-free graphs). Moreover, Perfect 
Matching Cut is polynomial-time solvable for (𝐻 + 𝑃4)-free graphs if it is polynomial-time solvable for 𝐻 -free graphs [37]. It is 
also known that Perfect Matching Cut is NP-complete even for 3-connected cubic planar bipartite graphs [4], (3𝑃6, 2𝑃7, 𝑃14)-free 
graphs [32], 𝐾1,4-free bipartite graphs of girth 𝑔 for every 𝑔 ≥ 3 [34] and for 𝐻∗

𝑖
-free graphs for every 𝑖 ≥ 1 [17]. This gives us a 

partial complexity classification:

Theorem 4 ([17,32,34,37]). For a graph 𝐻 , Perfect Matching Cut on 𝐻 -free graphs is

• polynomial-time solvable if 𝐻 ⊆𝑖 𝑠𝑃4 + 𝑆1,2,2 or 𝑠𝑃4 + 𝑃6 for some 𝑠 ≥ 0, and

• NP-complete if 𝐻 ⊇𝑖 𝐾1,4, 𝑃14, 2𝑃7, 3𝑃6, 𝐶𝑟 for some 𝑟 ≥ 3 or 𝐻∗
𝑗

for some 𝑗 ≥ 1.

From Theorem 4 it can be seen that again only cases where 𝐻 is a forest, each connected component of which is either a path 
or a subdivided claw, remain open. However, the number of open cases is smaller than for Matching Cut, as can be seen from 
Theorem 2. So far, all known complexities for Matching Cut and Perfect Matching Cut on special graph classes coincide except 
for (sub)cubic graphs.

We note that whenever Maximum Matching Cut is polynomial-time solvable for some graph class, then so are Matching Cut

and Perfect Matching Cut. Similarly, if one of the latter two problems is NP-complete, then Maximum Matching Cut is NP-

hard. For instance, this immediately yields a complexity dichotomy for graphs of maximum degree at most Δ. Namely, as Maximum 
Matching Cut is trivial if Δ = 2 and Perfect Matching Cut is NP-complete if Δ = 3, we have a complexity jump from Δ = 2 to 
Δ = 3, just like Perfect Matching Cut; recall that for Matching Cut this jump appears from Δ = 3 to Δ = 4. We consider the 
following research question:

For which graph classes is Maximum Matching Cut harder than Matching Cut and Perfect Matching Cut and for which graph 
classes do the complexities coincide?

1.2. Our results for Maximum Matching Cut

In Section 4 we show that Maximum Matching Cut is NP-hard for 2𝑃3-free quadrangulated graphs of diameter 3 and radius 2. 
We note that the restrictions to radius 2 and diameter 3 are not redundant: consider, for example, the 𝑃6, which is 2𝑃3-free but 
which has radius 3 and diameter 5. In the same section, we also show NP-hardness for subcubic line graphs of triangle-free graphs, or 
equivalently, subcubic (𝐾1,3, diamond)-free graphs (the diamond is obtained from the 𝐾4 after removing an edge). These NP-hardness 
results are in stark contrast to the situation for Matching Cut and Perfect Matching Cut, as evidenced by Theorems 1–4 and to 
the aforementioned result of Moshi [38] that Matching Cut is polynomial-time solvable for quadrangulated graphs.

Before proving these results, we first show in Section 3 that Maximum Matching Cut is polynomial-time solvable for graphs 
of diameter 2, generalizing the known polynomial-time algorithms for Matching Cut and Perfect Matching Cut for graphs of 
diameter at most 2. Hence, all three problems have the same dichotomies for graphs of bounded diameter.

We also prove in Section 3 that Maximum Matching Cut is polynomial-time solvable for 𝑃6-free graphs, generalizing the previous 
polynomial-time results for Matching Cut and Perfect Matching Cut for 𝑃6-free graphs. Due to the hardness result for 2𝑃3-free 
graphs, we cannot show polynomial-time solvability for “+𝑃4” (as for Perfect Matching Cut) or “+𝑃3” (as for Matching Cut). 
However, we can prove that if Maximum Matching Cut is polynomial-time solvable for 𝐻 -free graphs, then it is so for (𝐻 +𝑃2)-free 
3

graphs; again, see Section 3. The common proof technique for our polynomial-time results is as follows:
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1. Translate the problem into a colouring problem. We pre-colour some vertices either red or blue, and try to extend the pre-

colouring to a red-blue colouring of the whole graph via reduction rules. This technique has been used for Matching Cut and

Perfect Matching Cut, but our analysis is different. In particular, the algorithms for Matching Cut and Perfect Matching 
Cut on 𝑃6-free graphs use an algorithm for graphs of radius at most 2 as a subroutine. We cannot do this for Maximum Matching 
Cut, as we will show NP-hardness for radius 2.

2. Reduce the set of uncoloured vertices, via a number of branching steps, to an independent set, and then translate the problem 
into a matching problem. This is a new proof ingredient. The matching problem is to find a largest matching that saturates every 
vertex of the independent set of uncoloured vertices. Plesník [40] gave a polynomial time algorithm for this,1 which we will use 
as subroutine.

The above polynomial-time and NP-hardness results yield the following three dichotomies for Maximum Matching Cut shown 
in Section 5; in particular we have obtained a complete complexity classification of Maximum Matching Cut for 𝐻 -free graphs 
(whereas such a classification is only partial for the other two problems, as shown in Theorems 2 and 4).

Theorem 5. For an integer 𝑑, Maximum Matching Cut on graphs of diameter 𝑑 is

• polynomial-time solvable if 𝑑 ≤ 2, and

• NP-hard if 𝑑 ≥ 3.

Theorem 6. For an integer 𝑟, Maximum Matching Cut on graphs of radius 𝑟 is

• polynomial-time solvable if 𝑟 ≤ 1, and

• NP-hard if 𝑟 ≥ 2.

Theorem 7. For a graph 𝐻 , Maximum Matching Cut on 𝐻 -free graphs is

• polynomial-time solvable if 𝐻 ⊆𝑖 𝑠𝑃2 + 𝑃6 for some 𝑠 ≥ 0, and

• NP-hard if 𝐻 ⊇𝑖 𝐾1,3, 2𝑃3 or 𝐻 ⊇𝑖 𝐶𝑟 for some 𝑟 ≥ 3.

1.3. A second application of our proof techniques

In Section 6 we apply our techniques on the optimization variant of the problem Disconnected Perfect Matching. A discon-

nected perfect matching is a perfect matching that contains a matching cut. Disconnected perfect matchings were initially studied for 
cubic graphs from a graph-structural point of view [13,18]. The Disconnected Perfect Matching problem, which asks whether 
a given graph has a disconnected perfect matching, was introduced more recently, by Bouquet and Picouleau [7] (under a different 
name2). The problem is closely related to Perfect Matching Cut. Namely, every perfect matching cut is a disconnected perfect 
matching. However, the reverse might not be true, as illustrated by the 𝐶6 , which has a disconnected perfect matching but no perfect 
matching cut.

Bouquet and Picouleau [7] proved that Disconnected Perfect Matching can be solved in polynomial time for graphs of 
diameter 2 and is NP-complete for graphs of diameter 3 (and thus for graphs of radius 3). As the problem is trivial for graphs of 
radius 1, this leads to the following classification (in which the case where the radius is 2 remains open).

Theorem 8 ([7]). For integers 𝑑 and 𝑟, Disconnected Perfect Matching for graphs of diameter 𝑑 and for graphs of radius 𝑟 is 
polynomial-time solvable if 𝑑 ≤ 2 or 𝑟 ≤ 1, respectively, and NP-complete if 𝑑 ≥ 3 or 𝑟 ≥ 3, respectively.

Bouquet and Picouleau [7] also proved that Disconnected Perfect Matching is polynomial-time solvable for bipartite graphs 
of diameter 3, 𝐾1,3-free graphs and 𝑃5-free graphs, and that it is NP-complete for bipartite graphs of diameter 4, 𝐾1,4-free planar 
graphs, planar graphs of maximum degree 4, planar graphs of girth 5, and bipartite 5-regular graphs. As one of their open problems, 
they asked about the complexity for 𝑃𝑟-free graphs for 𝑟 ≥ 6. In [37] we showed that the problem is NP-complete for (3𝑃7, 𝑃19)-free 
graphs. This result was latter improved by Le and Le [32] to (3𝑃6, 2𝑃7, 𝑃14)-free graphs (we recall that they used the same gadget 
to prove the complexity of three problems simultaneously). Finally, NP-completeness has recently been shown for graphs of girth at 
least 𝑔 for all fixed 𝑔 ≥ 3 [17], and thus for 𝐶𝑠-free graphs for all 𝑠 ≥ 3.

1 The polynomial-time algorithm of Plesník [40] solves a more general problem. It takes as input a graph 𝐺 with an edge weighting 𝑤, a vertex subset 𝑆 and two 
integers 𝑎 and 𝑏. It then finds a maximum weight matching over all matchings that saturate 𝑆 and whose cardinality is between 𝑎 and 𝑏.

2 Bouquet and Picouleau [7] use the name Perfect Matching-Cut instead of Disconnected Perfect Matching. To avoid confusion with Perfect Matching 
Cut we follow the terminology of Le and Telle [34] and use the name Disconnected Perfect Matching instead of Perfect Matching-Cut. We also note that in 
the literature the slightly similar name Disconnected Matching appears [22,25]. However, this name stands for the problem of determining the size of a largest 
4

matching whose vertex set induces a disconnected graph, so it is used for a different problem that does not involve edge cuts.
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We now introduce the Maximum Disconnected Perfect Matching problem. This problem is to determine a disconnected 
perfect matching of a connected graph 𝐺 with a largest matching cut over all disconnected perfect matchings of 𝐺. This problem 
might seem artificial at first sight, but turns out to be highly useful for obtaining results for Disconnected Perfect Matching; 
note that polynomial-time results from the optimization version immediately carry over to the original variant.

By making minor modifications to our proofs, we can show exactly the same results for Maximum Disconnected Perfect 
Matching as for Maximum Matching Cut. So, in particular we prove that Maximum Disconnected Perfect Matching is 
polynomial-time solvable for 𝑃6-free graphs and for (𝐻 + 𝑃2)-free graphs, if it is so for 𝐻 -free graphs. Hence, combining these two 
results with the aforementioned result of [7] for 𝐾1,3-free graphs, we immediately find that Disconnected Perfect Matching is 
polynomial-time solvable for (𝐾1,3 + 𝑠𝑃2)-free graphs and (𝑃6 + 𝑠𝑃2)-free graphs. This means that we made further progress on the 
aforementioned open problem of [7]. By combining our new results with the above results from [7,17,32], we can now update the 
state-of-art summary from [17]:

Theorem 9. For a graph 𝐻 , Disconnected Perfect Matching on 𝐻 -free graphs is

• polynomial-time solvable if 𝐻 ⊆𝑖 𝑠𝑃2 +𝐾1,3 or 𝑠𝑃2 + 𝑃6 for some 𝑠 ≥ 0, and

• NP-complete if 𝐻 ⊇𝑖 𝐾1,4, 𝑃14, 3𝑃6, 2𝑃7, 𝐶𝑟 for some 𝑟 ≥ 3 or 𝐻∗
𝑗

for some 𝑗 ≥ 1.

Our new results for Maximum Disconnected Perfect Matching, proven in Section 6, also lead to the following three di-

chotomies, as we will show in Section 6 as well.

Theorem 10. For an integer 𝑑, Maximum Disconnected Perfect Matching on graphs of diameter 𝑑 is

• polynomial-time solvable if 𝑑 ≤ 2, and

• NP-hard if 𝑑 ≥ 3.

Theorem 11. For an integer 𝑟, Maximum Disconnected Perfect Matching on graphs of radius 𝑟 is

• polynomial-time solvable if 𝑟 ≤ 1, and

• NP-hard if 𝑟 ≥ 2.

Theorem 12. For a graph 𝐻 , Maximum Disconnected Perfect Matching on 𝐻 -free graphs is

• polynomial-time solvable if 𝐻 ⊆𝑖 𝑠𝑃2 + 𝑃6 for some 𝑠 ≥ 0, and

• NP-hard if 𝐻 ⊇𝑖 𝐾1,3, 2𝑃3 or 𝐻 ⊇𝑖 𝐶𝑟 for some 𝑟 ≥ 3.

In Section 7 we conclude our paper by stating a number of open problems.

2. Preliminaries

We consider finite, undirected graphs without multiple edges and self-loops. Let 𝐺 = (𝑉 , 𝐸) be a connected graph. For 𝑢 ∈ 𝑉 , the 
set 𝑁(𝑢) = {𝑣 ∈ 𝑉 | 𝑢𝑣 ∈𝐸} is the neighbourhood of 𝑢 in 𝐺, where |𝑁(𝑢)| is the degree of 𝑢. For 𝑆 ⊆ 𝑉 , the neighbourhood of 𝑆 is the 
set 𝑁(𝑆) =

⋃
𝑢∈𝑆 𝑁(𝑢) ⧵𝑆 . The graph 𝐺[𝑆] is the subgraph of 𝐺 induced by 𝑆 ⊆ 𝑉 , that is, 𝐺[𝑆] is the graph obtained from 𝐺 after 

deleting the vertices not in 𝑆 . We say that 𝑆 is a dominating set of 𝐺, and that 𝐺[𝑆] dominates 𝐺 if every vertex of 𝑉 ⧵𝑆 has at least 
one neighbour in 𝑆 . The domination number of 𝐺 is the size of a smallest dominating set of 𝐺. The set 𝑆 is an independent set if no 
two vertices in 𝑆 are adjacent and 𝑆 is a clique if every two vertices in 𝑆 are adjacent. A matching 𝑀 is 𝑆-saturating if every vertex 
in 𝑆 is an end-vertex of an edge in 𝑀 . An 𝑆-saturating matching is maximum if there is no 𝑆-saturating matching of 𝐺 with more 
edges. We will use the following result.

Theorem 13 ([40]). For a graph 𝐺 and set 𝑆 ⊆ 𝑉 (𝐺), it is possible in polynomial time to find a maximum 𝑆-saturating matching or conclude 
that 𝐺 has no 𝑆-saturating matching.

The line graph of a graph 𝐺 is the graph 𝐿(𝐺) whose vertices are the edges of 𝐺, such that for every two vertices 𝑒 and 𝑓 , there 
exists an edge between 𝑒 and 𝑓 in 𝐿(𝐺) if and only if 𝑒 and 𝑓 share an end-vertex in 𝐺. A linear forest is a forest, each connected 
component of which is a path. A bipartite graph with non-empty partition classes 𝑉1 and 𝑉2 is complete if there is an edge between 
every vertex of 𝑉1 and every vertex of 𝑉2. If |𝑉1| = 𝑘 and |𝑉2| = 𝓁, then we denote the complete bipartite graph by 𝐾𝑘,𝓁 . We will 
need the following theorem.

Theorem 14 ([42]). A graph 𝐺 on 𝑛 vertices is 𝑃6-free if and only if each connected induced subgraph of 𝐺 contains a dominating induced 
5

𝐶6 or a dominating (not necessarily induced) complete bipartite graph. We can find such a dominating subgraph of 𝐺 in 𝑂(𝑛3) time.
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A red-blue colouring of a connected graph 𝐺 colours every vertex of 𝐺 either red or blue. If every vertex of a set 𝑆 ⊆ 𝑉 has the same 
colour (red or blue), then 𝑆 , and also 𝐺[𝑆], are called monochromatic. An edge with a blue and a red end-vertex is called bichromatic. 
A red-blue colouring is valid if every blue vertex has at most one red neighbour; every red vertex has at most one blue neighbour; 
and both colours red and blue are used at least once. A valid red-blue colouring is perfect-extendable if there is a perfect matching in 
𝐺 containing all bichromatic edges. For a valid red-blue colouring of 𝐺, we let 𝑅 be the red set consisting of all vertices coloured 
red and 𝐵 be the blue set consisting of all vertices coloured blue (so 𝑉 (𝐺) = 𝑅 ∪ 𝐵). Moreover, the red interface is the set 𝑅′ ⊆ 𝑅

consisting of all vertices in 𝑅 with a (unique) blue neighbour, and the blue interface is the set 𝐵′ ⊆ 𝐵 consisting of all vertices in 𝐵
with a (unique) red neighbour in 𝑅. The value of a valid red-blue colouring is its number of bichromatic edges, or equivalently, the 
size of its red (or blue) interface. A valid red-blue colouring is maximum if there is no valid red-blue colouring of the graph with a 
larger value. Similarly, a perfect-extendable red-blue colouring is maximum if there is no perfect-extendable red-blue colouring of the 
graph with a larger value.

We can now make the following observations, which can be easily verified (the notion of red-blue colourings has been used before; 
see, for example, [16,35]).

Observation 15. For every connected graph 𝐺 and integer 𝑘, it holds that

• 𝐺 has a matching cut with at least 𝑘 edges if and only if 𝐺 has a valid red-blue colouring of value at least 𝑘.

• 𝐺 has a disconnected perfect matching with at least 𝑘 edges belonging to a matching cut if and only if 𝐺 has a perfect-extendable 
red-blue colouring of value at least 𝑘.

Observation 16. Every complete graph 𝐾𝑟 with 𝑟 ≥ 3 and every complete bipartite graph 𝐾𝑟,𝑠 with min{𝑟, 𝑠} ≥ 2 and max{𝑟, 𝑠} ≥ 3
is monochromatic.

3. Polynomial-time results for Maximum Matching Cut

In this section we prove three polynomial-time results that we need for obtaining the three dichotomies for Maximum Matching 
Cut, as shown in Theorems 5–7. We first explain our general approach and some helpful lemmas.

The proof of our first lemma for Maximum Matching Cut is very similar to the proofs of corresponding lemmas for Matching 
Cut [16] and Perfect Matching Cut [37]. We include this proof for completeness. On an aside, the lemma implies that Maximum 
Matching Cut is in XP when parameterized by the domination number of a graph.

Lemma 17. For a connected 𝑛-vertex graph 𝐺 with domination number 𝑔, it is possible to find a maximum red-blue colouring (if a red-blue 
colouring exists) in 𝑂(2𝑔𝑛𝑔+2) time.

Proof. Let 𝐷 be a dominating set of 𝐺 with |𝐷| = 𝑔. We consider all 2|𝐷| = 2𝑔 options of colouring the vertices of 𝐷 red or blue. 
For every red vertex of 𝐷 with no blue neighbour, we consider all 𝑂(𝑛) options of colouring at most one of its neighbours blue (and 
thus all of its other neighbours will be coloured red). Similarly, for every blue vertex of 𝐷 with no red neighbour, we consider all 
𝑂(𝑛) options of colouring at most one of its neighbours red (and thus all of its other neighbours will be coloured blue). Finally, for 
every red vertex in 𝐷 with already one blue neighbour in 𝐷, we colour all its yet uncoloured neighbours red. Similarly, for every 
blue vertex in 𝐷 with already one red neighbour in 𝐷, we colour all its yet uncoloured neighbours blue.

As 𝐷 is a dominating set, the above means that we guessed a red-blue colouring of the whole graph 𝐺. We can check in 𝑂(𝑛2)
time if a red-blue colouring is valid and count its number of bichromatic edges. We take the valid red-blue colouring with largest 
value. The total number of red-blue colourings that we must consider is 𝑂(2𝑔𝑛𝑔). □

Our general approach is to guess some “partial” red-blue colouring that we then try to extend to a maximum valid red-blue 
colouring of a graph. To explain this approach we first modify some terminology from [37] for matching cuts to work for maximum 
matching cuts as well.

Let 𝐺 = (𝑉 , 𝐸) be a connected graph and 𝑆, 𝑇 , 𝑋, 𝑌 ⊆ 𝑉 be four non-empty sets with 𝑆 ⊆ 𝑋, 𝑇 ⊆ 𝑌 and 𝑋 ∩ 𝑌 = ∅. A red-blue 
(𝑆, 𝑇 , 𝑋, 𝑌 )-colouring of 𝐺 is a red-blue colouring of 𝐺, with a red set containing 𝑋; a blue set containing 𝑌 ; a red interface containing 
𝑆 and a blue interface containing 𝑇 . To obtain a red-blue (𝑆, 𝑇 , 𝑋, 𝑌 )-colouring, we start with two disjoint subsets 𝑆′′ and 𝑇 ′′ of 𝑉 , 
called a starting pair, such that

(i) every vertex of 𝑆′′ is adjacent to at most one vertex of 𝑇 ′′, and vice versa, and

(ii) at least one vertex in 𝑆′′ is adjacent to a vertex in 𝑇 ′′.

Let 𝑆∗ consist of all vertices of 𝑆′′ with a (unique) neighbour in 𝑇 ′′, and let 𝑇 ∗ consist of all vertices of 𝑇 ′′ with a (unique) 
neighbour in 𝑆′′; so, every vertex in 𝑆∗ has a unique neighbour in 𝑇 ∗, and vice versa. We call (𝑆∗, 𝑇 ∗) the core of (𝑆′′, 𝑇 ′′). Note 
that |𝑆∗| = |𝑇 ∗| ≥ 1.

We now colour every vertex in 𝑆′′ red and every vertex in 𝑇 ′′ blue. Propagation rules will try to extend 𝑆′′ to a set 𝑋, and 𝑇 ′′
6

to a set 𝑌 , by finding new vertices whose colour must always be either red or blue. That is, we place new red vertices in the set 𝑋, 
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𝑇 ′

𝑆′

𝑌 ′

𝑋′

Fig. 3. An example (from [37]) of a red-blue (𝑆′, 𝑇 ′, 𝑋′, 𝑌 ′)-colouring of a graph with an intermediate 4-tuple (𝑆′, 𝑇 ′, 𝑋′, 𝑌 ′). (For interpretation of the colours in 
the figure(s), the reader is referred to the web version of this article.)

which already contains 𝑆′′, and new blue vertices in the set 𝑌 , which already contains 𝑇 ′′. If a red and blue vertex are adjacent, 
then we add the red one to a set 𝑆 ⊆𝑋 and the blue one to a set 𝑇 ⊆ 𝑌 . So initially, 𝑆 ∶= 𝑆∗, 𝑇 ∶= 𝑇 ∗, 𝑋 ∶= 𝑆′′ and 𝑌 ∶= 𝑇 ′′. We 
let 𝑍 ∶= 𝑉 ⧵ (𝑋 ∪ 𝑌 ).

Our task is to try to extend the partial red-blue colouring on 𝑋 ∪ 𝑌 to a maximum valid red-blue (𝑆, 𝑇 , 𝑋, 𝑌 )-colouring of 𝐺, that 
is, a valid red-blue (𝑆, 𝑇 , 𝑋, 𝑌 )-colouring that has largest value over all valid red-blue (𝑆, 𝑇 , 𝑋, 𝑌 )-colourings of 𝐺. In order to do 
this, we present three propagation rules, which indicate necessary implications of previous choices.

We start with rules R1 and R2, which together correspond to the five rules from [31]. Rule R1 detects cases where we cannot 
extend the partial red-blue colouring defined on 𝑋 ∪ 𝑌 . Rule R2 tries to extend the sets 𝑆, 𝑇 , 𝑋, 𝑌 as much as possible. While the 
sets 𝑆, 𝑇 , 𝑋, 𝑌 grow, Rule R2 ensures that we keep constructing a (maximum) valid red-blue (𝑆, 𝑇 , 𝑋, 𝑌 )-colouring (assuming 𝐺 has 
a valid red-blue (𝑆, 𝑇 , 𝑋, 𝑌 )-colouring).

R1. Return no (i.e., 𝐺 has no red-blue (𝑆, 𝑇 , 𝑋, 𝑌 )-colouring) if a vertex 𝑣 ∈𝑍 is

(i) adjacent to a vertex in 𝑆 and to a vertex in 𝑇 , or

(ii) adjacent to a vertex in 𝑆 and to two vertices in 𝑌 ⧵ 𝑇 , or

(iii) adjacent to a vertex in 𝑇 and to two vertices in 𝑋 ⧵𝑆 , or

(iv) adjacent to two vertices in 𝑋 ⧵ 𝑆 and to two vertices in 𝑌 ⧵ 𝑇 .

R2. Let 𝑣 ∈𝑍 .

(i) If 𝑣 is adjacent to a vertex in 𝑆 or to two vertices of 𝑋 ⧵𝑆 , then move 𝑣 from 𝑍 to 𝑋. If 𝑣 is also adjacent to a vertex 𝑤 in 
𝑌 , then add 𝑣 to 𝑆 and 𝑤 to 𝑇 .

(ii) If 𝑣 is adjacent to a vertex in 𝑇 or to two vertices of 𝑌 ⧵ 𝑇 , then move 𝑣 from 𝑍 to 𝑌 . If 𝑣 is also adjacent to a vertex 𝑤 in 
𝑋, then add 𝑣 to 𝑇 and 𝑤 to 𝑆 .

Suppose that exhaustively applying rules R1 and R2 on a starting pair (𝑆′′ , 𝑇 ′′) does not lead to a no-answer but to a tuple 
(𝑆′, 𝑇 ′, 𝑋′, 𝑌 ′). Then, we call (𝑆′, 𝑇 ′, 𝑋′, 𝑌 ′) an intermediate tuple; see also Fig. 3. A propagation rule is safe if for every integer 𝜈 the 
following holds: 𝐺 has a valid red-blue (𝑆, 𝑇 , 𝑋, 𝑌 )-colouring of value 𝜈 before the application of the rule if and only if 𝐺 has a valid 
red-blue (𝑆, 𝑇 , 𝑋, 𝑌 )-colouring of value 𝜈 after the application of the rule. Le and Le [31] proved the following lemma, which shows 
that R1 and R2 can be used safely and which is not difficult to verify. The fact that the value 𝜈 is preserved in Lemma 18 (ii) below 
is implicit in their proof.

Lemma 18 ([31]). Let 𝐺 be a connected graph with a starting pair (𝑆′′, 𝑇 ′′) with core (𝑆∗, 𝑇 ∗), and with an intermediate tuple 
(𝑆′, 𝑇 ′, 𝑋′, 𝑌 ′). The following three statements hold:

(i) 𝑆∗ ⊆ 𝑆′, 𝑆′′ ⊆𝑋′ and 𝑇 ∗ ⊆ 𝑇 ′, 𝑇 ′′ ⊆ 𝑌 ′ and 𝑋′ ∩ 𝑌 ′ = ∅,

(ii) for every integer 𝜈, 𝐺 has a valid red-blue (𝑆∗, 𝑇 ∗, 𝑆′′, 𝑇 ′′)-colouring of value 𝜈 if and only if 𝐺 has a valid red-blue (𝑆′, 𝑇 ′, 𝑋′, 𝑌 ′)-
colouring of value 𝜈 (note that the backward implication holds by definition), and

(iii) every vertex in 𝑆′ has exactly one neighbour in 𝑌 ′, which belongs to 𝑇 ′; every vertex in 𝑇 ′ has exactly one neighbour in 𝑋′, which 
belongs to 𝑆′; every vertex in 𝑋′ ⧵ 𝑆′ has no neighbour in 𝑌 ′; every vertex in 𝑌 ′ ⧵ 𝑇 ′ has no neighbour in 𝑋′; and every vertex of 
𝑉 ⧵ (𝑋′ ∪ 𝑌 ′) has no neighbour in 𝑆′ ∪ 𝑇 ′, at most one neighbour in 𝑋′ ⧵𝑆′, and at most one neighbour in 𝑌 ′ ⧵ 𝑇 ′.

Moreover, (𝑆′, 𝑇 ′, 𝑋′, 𝑌 ′) is obtained in polynomial time.

Let (𝑆′, 𝑇 ′, 𝑋′, 𝑌 ′) be an intermediate tuple of a graph 𝐺. Let 𝑍 = 𝑉 ⧵ (𝑋′ ∪ 𝑌 ′). A red-blue (𝑆′, 𝑇 ′, 𝑋′, 𝑌 ′)-colouring of 𝐺 is 
called monochromatic if all connected components of 𝐺[𝑍] are monochromatic. We say that an intermediate tuple (𝑆′, 𝑇 ′, 𝑋′, 𝑌 ′) is 
monochromatic if every connected component of 𝐺[𝑉 ⧵ (𝑋′ ∪ 𝑌 ′)] is monochromatic in every valid red-blue (𝑆′, 𝑇 ′, 𝑋′, 𝑌 ′)-colouring 
of 𝐺. A propagation rule is mono-safe if for every integer 𝜈 the following holds: 𝐺 has a valid monochromatic red-blue (𝑆, 𝑇 , 𝑋, 𝑌 )-
colouring of value 𝜈 before the application of the rule if and only if 𝐺 has a valid monochromatic red-blue (𝑆, 𝑇 , 𝑋, 𝑌 )-colouring of 
value 𝜈 after the application of the rule.
7

We now present Rule R3 (which is used implicitly in [31]) and prove that R3 is mono-safe.
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𝑌
𝑈

𝑍

𝑋

𝑌
𝑈

𝑍

Fig. 4. A 𝑈 -saturating matching (left) and the corresponding valid red-blue colouring (right). Note that not every vertex in 𝑋 ∪ 𝑌 belongs to 𝑊 .

R3. If there are two distinct vertices 𝑢 and 𝑣 in a connected component 𝐷 of 𝐺[𝑍] with a common neighbour 𝑤 ∈𝑋 ∪𝑌 , then colour 
every vertex of 𝐷 with the colour of 𝑤.

Lemma 19. Rule R3 is mono-safe.

Proof. Say 𝑤 ∈𝑋 ∪ 𝑌 is in 𝑋, so 𝑤 is red. Then, at least one of 𝑢 and 𝑣 must be coloured red. Hence, as 𝐷 must be monochromatic, 
every vertex of 𝐷 must be coloured red. Note that the value of a maximum monochromatic red-blue (𝑆, 𝑇 , 𝑋, 𝑌 )-colouring (if it 
exists) is not affected. □

Suppose that exhaustively applying rules R1–R3 on an intermediate tuple (𝑆′ , 𝑇 ′, 𝑋′, 𝑌 ′) does not lead to a no-answer but to a 
tuple (𝑆, 𝑇 , 𝑋, 𝑌 ). We call (𝑆, 𝑇 , 𝑋, 𝑌 ) the final tuple. The following lemma can be proved by a straightforward combination of the 
arguments of the proof of Lemma 18 with Lemma 19 and the observation that an application of R3 takes polynomial time, just as a 
check to see if R3 can be applied.

Lemma 20. Let 𝐺 be a connected graph with a monochromatic intermediate tuple (𝑆′, 𝑇 ′, 𝑋′, 𝑌 ′) and a resulting final tuple (𝑆, 𝑇 , 𝑋, 𝑌 ). 
The following three statements hold:

(i) 𝑆′ ⊆ 𝑆 , 𝑋′ ⊆𝑋, 𝑇 ′ ⊆ 𝑇 , 𝑌 ′ ⊆ 𝑌 , and 𝑋 ∩ 𝑌 = ∅,

(ii) For every integer 𝜈, 𝐺 has a valid (monochromatic) red-blue (𝑆′, 𝑇 ′, 𝑋′, 𝑌 ′)-colouring of value 𝜈 if and only if 𝐺 has a valid monochro-

matic red-blue (𝑆, 𝑇 , 𝑋, 𝑌 )-colouring of value 𝜈 (note that the backward implication holds by definition), and

(iii) every vertex in 𝑆 has exactly one neighbour in 𝑌 , which belongs to 𝑇 ; every vertex in 𝑇 has exactly one neighbour in 𝑋, which belongs 
to 𝑆 ; every vertex in 𝑋 ⧵ 𝑆 has no neighbour in 𝑌 and no two neighbours in the same connected component of 𝐺[𝑉 ⧵ (𝑋 ∪ 𝑌 )]; every 
vertex in 𝑌 ⧵ 𝑇 has no neighbour in 𝑋 and no two neighbours in the same connected component of 𝐺[𝑉 ⧵ (𝑋 ∪ 𝑌 )]; and every vertex 
of 𝑉 ⧵ (𝑋 ∪ 𝑌 ) has no neighbour in 𝑆 ∪ 𝑇 , at most one neighbour in 𝑋 ⧵𝑆 , and at most one neighbour in 𝑌 ⧵ 𝑇 .

Moreover, (𝑆, 𝑇 , 𝑋, 𝑌 ) is obtained in polynomial time.

The following lemma will be the final step in each of our polynomial-time results. It is an application of Theorem 13.

Lemma 21. Let 𝐺 = (𝑉 , 𝐸) be a connected graph with a monochromatic intermediate tuple (𝑆′, 𝑇 ′, 𝑋′, 𝑌 ′) and a final tuple (𝑆, 𝑇 , 𝑋, 𝑌 ). If 
𝑉 ⧵ (𝑋 ∪ 𝑌 ) is an independent set, then it is possible to find in polynomial time either a maximum valid red-blue (𝑆, 𝑇 , 𝑋, 𝑌 )-colouring of 𝐺, 
or conclude that 𝐺 has no valid red-blue (𝑆, 𝑇 , 𝑋, 𝑌 )-colouring.

Proof. Let 𝑍 = 𝑉 ⧵ (𝑋 ∪ 𝑌 ). Let 𝑊 =𝑁(𝑍). Recall that 𝑍 is independent. Hence, by Lemma 20-(iii), every vertex of 𝑊 belongs to 
(𝑋 ⧵ 𝑆) ∪ (𝑌 ⧵ 𝑇 ). Let 𝑈 ⊆ 𝑍 consist of all vertices of 𝑍 that have a neighbour in both 𝑋 ⧵ 𝑆 and 𝑌 ⧵ 𝑇 . We claim that the set of 
bichromatic edges of every valid red-blue (𝑆, 𝑇 , 𝑋, 𝑌 )-colouring is the union of a 𝑈 -saturating matching in 𝐺[𝑊 ∪𝑍] (if it exists) 
and the set of edges with one end-vertex in 𝑆 and the other one in 𝑇 .

First suppose that 𝐺[𝑊 ∪𝑍] has a 𝑈 -saturating matching 𝑀 . We colour every vertex in 𝑋 red and every vertex in 𝑌 blue. Let 
𝑧 ∈ 𝑍 . First assume that 𝑧 is incident to an edge 𝑧𝑤 ∈𝑀 . If 𝑤 ∈𝑋 ⧵ 𝑆 , then colour 𝑧 blue. If 𝑤 ∈ 𝑌 ⧵ 𝑇 , then colour 𝑧 red. Now 
suppose 𝑧 is not incident to an edge in 𝑀 . Then 𝑧 ∉ 𝑈 , as 𝑀 is 𝑈 -saturating. Hence, either every neighbour of 𝑧 belongs to 𝑋 ⧵ 𝑆
and is coloured red, in which case we colour 𝑧 red, or every neighbour of 𝑧 belongs to 𝑌 ⧵ 𝑇 and is coloured blue, in which case we 
colour 𝑧 blue. This gives us a valid red-blue (𝑆, 𝑇 , 𝑋, 𝑌 )-colouring of 𝐺. See also Fig. 4.

Now suppose that 𝐺 has a valid red-blue (𝑆, 𝑇 , 𝑋, 𝑌 )-colouring. By definition, every vertex of 𝑋 is coloured red, and every vertex 
of 𝑌 is coloured blue. By Lemma 20-(iii), every edge with an end-vertex in 𝑆 and the other one in 𝑇 is bichromatic, and there are 
8

no other bichromatic edges in 𝐺[𝑋 ∪ 𝑌 ]. Let 𝑀 be the set of other bichromatic edges. Then, every vertex of 𝑀 has one vertex in 𝑍
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and the other one in 𝑊 . Moreover, if 𝑧 ∈𝑈 , then 𝑧 has a red neighbour (its neighbour in 𝑋 ⧵𝑆) and a blue neighbour (its neighbour 
in 𝑌 ⧵ 𝑇 ). Hence, no matter what colour 𝑧 has itself, 𝑧 is incident to a bichromatic edge of 𝑀 . We conclude that 𝑀 is 𝑈 -saturating, 
and the claim is proven.

From the above claim, it follows that all we have to do is to find a maximum 𝑈 -saturating matching in 𝐺[𝑊 ∪𝑍]. By Theorem 13, 
this takes polynomial time. □

We are now ready to prove our first polynomial-time result.

Theorem 22. Maximum Matching Cut is solvable in polynomial time for 𝑃6-free graphs.

Proof. Let 𝐺 = (𝑉 , 𝐸) be a connected 𝑃6-free graph. By Observation 15 it suffices to find a maximum valid red-blue colouring of 
𝐺. By Theorem 14, we find in polynomial time either a dominating induced 𝐶6 or a dominating (not necessarily induced) complete 
bipartite graph 𝐾𝑟,𝑠 in 𝐺.

If 𝐺 has a dominating induced 𝐶6, then 𝐺 has domination number at most 6, and we apply Lemma 17. Suppose that 𝐺 has a 
dominating complete bipartite graph 𝐹 with partition classes {𝑢1, … , 𝑢𝑟} and {𝑣1, … , 𝑣𝑠}. We may assume without loss of generality 
that 𝑟 ≤ 𝑠. If 𝑠 ≤ 2, then 𝐺 has domination number at most 4, and we apply Lemma 17 again. So we assume that 𝑠 ≥ 3.

If 𝑟 ≥ 2, then 𝑉 (𝐹 ) must be monochromatic in any valid red-blue colouring of 𝐺 by Observation 16. In this case we colour every 
vertex of 𝑉 (𝐹 ) blue. If 𝑟 = 1, then we may assume without loss of generality that 𝑁(𝑢1) = {𝑣1, … , 𝑣𝑠}. In this case we colour 𝑢1 blue, 
and we branch over all 𝑂(𝑛) options of colouring at most one vertex of 𝑁(𝑢1) red.

So, now we consider a red-blue colouring of 𝐹 . It might be that 𝐹 is monochromatic (in particular, this will be the case if 𝑟 ≥ 2). 
If 𝐹 is monochromatic, then every vertex of 𝐹 is blue. In order to get a starting pair with a non-empty core, we branch over all 𝑂(𝑛2)
options of choosing a bichromatic edge (one end-vertex of which may belong to 𝐹 ). Let 𝐷 be the set of all coloured vertices, that 
is, 𝐷 contains 𝑉 (𝐹 ) and possibly one or two other vertices. By construction, exactly one vertex of 𝐷 is coloured red, and all other 
vertices of 𝐷 are blue.

Let 𝑆∗ = 𝑆′′ be the set containing the red vertex of 𝐷. Let 𝑇 ∗ be the singleton set containing the blue neighbour of the vertex 
in 𝑆∗. Let 𝑇 ′′ be the set of blue vertices, so 𝑇 ∗ ⊆ 𝑇 ′′. We exhaustively apply rules R1 and R2 on the starting pair (𝑆′′, 𝑇 ′′). By 
Lemma 18 we either find in polynomial time that 𝐺 has no valid red-blue (𝑆∗, 𝑇 ∗, 𝑆′′, 𝑇 ′′)-colouring, and we discard the branch, or 
we obtain an intermediate tuple (𝑆′, 𝑇 ′, 𝑋′, 𝑌 ′) of 𝐺. Suppose the latter case holds. We prove the following two claims for the set 
𝑍′ = 𝑉 ⧵ (𝑋′ ∪ 𝑌 ′) of uncoloured vertices.

Claim 22.1. Every vertex 𝑧 ∈𝑍′ has a neighbour in 𝑌 ′ ⧵ 𝑇 ′ that belongs to 𝐹 .

Proof. As 𝐹 is dominating, 𝑧 has a neighbour in 𝐹 . Since 𝐷 ⊇ 𝑉 (𝐹 ) contains exactly one red vertex 𝑥, which has a blue neighbour 
in 𝐷, all neighbours of 𝑥 in 𝐺 −𝐷 are coloured red, that is, belong to 𝑋. As 𝑧 ∈ 𝐺 −𝐷 belongs to 𝑍′, this means that 𝑥 and 𝑧 are 
non-adjacent. So, the neighbour of 𝑧 in 𝐹 must belong to 𝑌 ′ ⧵ 𝑇 ′ (as else we could have applied R2). □

Claim 22.2. The intermediate tuple (𝑆′, 𝑇 ′, 𝑋′, 𝑌 ′) is monochromatic.

Proof. Suppose for a contradiction that there is an edge 𝑢𝑣 ∈ 𝐸(𝐺[𝑍′]) such that 𝑢 is blue and 𝑣 is red. Then 𝑣 has two blue neighbours 
by Claim 22.1, a contradiction. □

Since Claim 22.2 holds, we may now exhaustively apply R1–R3 to the intermediate tuple (𝑆′ , 𝑇 ′, 𝑋′, 𝑌 ′). By Lemma 20 we either 
find in polynomial time that 𝐺 has no valid red-blue (𝑆′, 𝑇 ′, 𝑋′, 𝑌 ′)-colouring, and thus no valid red-blue (𝑆∗, 𝑇 ∗, 𝑆′, 𝑇 ′)-colouring, 
and we discard the branch, or we obtain a final tuple (𝑆, 𝑇 , 𝑋, 𝑌 ) of 𝐺. Again, we let 𝑍 = 𝑉 ⧵ (𝑋 ∪ 𝑌 ). By the same lemma and 
Claim 22.1, the following holds for every (uncoloured) vertex 𝑧 ∈𝑍 :

• 𝑧 has at most one neighbour in 𝑋 ⧵𝑆 ,

• 𝑧 has exactly one neighbour in 𝑌 ⧵ 𝑇 , which belongs to 𝐹 , and

• if 𝑧′ is in the same connected component of 𝐺[𝑍] as 𝑧, then 𝑧 and 𝑧′ do not share a neighbour in 𝐺 −𝑍 .

Claim 22.3. In any valid red-blue (𝑆, 𝑇 , 𝑋, 𝑌 )-colouring at most one red component of 𝐺[𝑍] may have more than one vertex.

Proof. Let 𝑐 be a valid red-blue (𝑆, 𝑇 , 𝑋, 𝑌 )-colouring of 𝐺. For a contradiction, assume that 𝑍1 and 𝑍2 are connected components 
of size at least 2 that are both coloured red. For 𝑖 = 1, 2, let 𝑧𝑖 and 𝑧′

𝑖
be two adjacent vertices in 𝑍𝑖, and let 𝑤𝑖 be the blue neighbour 

of 𝑧𝑖 in 𝐹 (which exists due to Claim 22.1). As 𝑐 is valid, no blue vertex of 𝐺 has two red neighbours. Hence, we find that 𝑤1 and 𝑤2
are distinct vertices, and also that 𝑤1 is not adjacent to any vertex of {𝑧′1, 𝑧2, 𝑧

′
2}, and 𝑤2 is not adjacent to any vertex of {𝑧1, 𝑧′1, 𝑧

′
2}. 

Hence, if 𝑤1 and 𝑤2 are adjacent, then 𝑧′1𝑧1𝑤1𝑤2𝑧2𝑧
′
2 is an induced 𝑃6; see also Fig. 5 (left side). As 𝐺 is 𝑃6-free, this is not possible. 

Hence, 𝑤1 and 𝑤2 are not adjacent.

We now use the fact that 𝑤1 and 𝑤2 both belong to 𝐹 and that 𝐹 is a complete bipartite graph. As 𝑤1𝑤2 ∉ 𝐸, the latter means 
9

that there exists a vertex 𝑤3 ∈ 𝑉 (𝐹 ) that is adjacent to both 𝑤1 and 𝑤2, so 𝑤3 is blue as well. As 𝑧′1 and 𝑧′2 are both coloured red, at 
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𝑤3

𝑤1 𝑤2

𝑧′1 𝑧1

𝑍1

𝑧2 𝑧′2

𝑍2

𝑤3

𝑤1 𝑤2

𝑧′1 𝑧1

𝑍1

𝑧2 𝑧′2

𝑍2

Fig. 5. The situation in Claim 22.3 where two connected components 𝑍1, 𝑍2 of 𝐺[𝑍], each with at least two vertices, are both coloured red. This will always yield an 
induced path on at least six vertices, even if 𝑤1 and 𝑤2 are not adjacent, as at most one of 𝑧′1, 𝑧′2 is adjacent to 𝑤3 .

most one of 𝑧′1, 𝑧
′
2 can be adjacent to 𝑤3. Hence, we may assume without loss of generality that 𝑤3 is not adjacent to 𝑧′1. As 𝑧1 and 𝑧2

have 𝑤1 and 𝑤2, respectively, as their matching partner, 𝑤3 is adjacent neither to 𝑧1 nor to 𝑧2. Now, 𝑧′1𝑧1𝑤1𝑤3𝑤2𝑧2 is an induced 
𝑃6, a contradiction. See also Fig. 5 (right side). □

Due to Claim 22.3, we can now branch over all 𝑂(𝑛) options to colour at most one connected component of 𝐺[𝑍] of size at least 2
red, and all other components of size at least 2 blue. We then exhaustively apply rules R1-R3 again. This takes polynomial time. In 
essence, we merely pre-coloured some more vertices red. So, in the end we either find a new tuple of 𝐺 with the same properties as 
those listed in Lemma 20, or we find that 𝐺 has no such tuple, in which case we discard the branch. Suppose we have not discarded 
the branch. Now the set of uncoloured vertices form an independent set. Hence, we can apply Lemma 21 to find in polynomial time 
a red-blue colouring of 𝐺 that is a maximum red-blue (𝑆∗, 𝑇 ∗, 𝑆′′, 𝑇 ′′)-colouring due to Lemmas 18-(ii) and 20-(ii).

If somewhere in the above process we discarded a branch, that is, if 𝐺 has no valid red-blue (𝑆∗, 𝑇 ∗, 𝑆′′, 𝑇 ′′)-colouring, we consider 
the next one. If we did not discard the branch, then we remember the value of the maximum red-blue (𝑆∗ , 𝑇 ∗, 𝑆′′, 𝑇 ′′)-colouring that 
we found. Afterwards, we pick one with the largest value to obtain a maximum valid red-blue colouring of 𝐺.

The correctness of our branching algorithm follows from its description. The running time is polynomial: each branch takes 
polynomial time to process, and the number of branches is 𝑂(𝑛3). This completes our proof. □

The proof of our second polynomial-time result combines Lemma 21 with arguments used in the proof that Matching Cut is 
polynomial-time solvable for (𝐻 + 𝑃3)-free graphs if it is so for 𝐻 -free graphs [35].

Theorem 23. Let 𝐻 be a graph. If Maximum Matching Cut is polynomial-time solvable for 𝐻 -free graphs, then it is so for (𝐻 +𝑃2)-free 
graphs.

Proof. Assume that Maximum Matching Cut is polynomial-time solvable for 𝐻 -free graphs. Let 𝐺 = (𝑉 , 𝐸) be a connected (𝐻 +
𝑃2)-free graph on 𝑛 vertices. If 𝐺 is 𝐻 -free, we are done by assumption. Suppose 𝐺 has an induced subgraph 𝐺′ isomorphic to 
𝐻 . Let 𝐺∗ be the graph obtained from 𝐺 after removing the vertices of 𝑉 (𝐺′) ∪𝑁(𝑉 (𝐺′)). Since 𝐺′ is isomorphic to 𝐻 and 𝐺 is 
(𝐻 + 𝑃2)-free, 𝐺∗ is 𝑃2-free. Hence, 𝑉 (𝐺∗) is an independent set. By Observation 15 it suffices to find a maximum valid red-blue 
colouring of 𝐺. Below we explain how to do this.

We first branch over all options of colouring every 𝑢 ∈ 𝑉 (𝐺′) red or blue, and colouring at most one neighbour of every 𝑢 ∈ 𝑉 (𝐺′)
with a different colour than 𝑢. If in a branch we only used one colour, we branch over all 𝑂(𝑛2) options of choosing a bichromatic 
edge. In this way we obtain, for each branch, a starting pair with a non-empty core.

Consider a branch with a starting pair (𝑆′′, 𝑇 ′′) and core (𝑆∗, 𝑇 ∗). We apply rules R1 and R2 exhaustively. If we obtain a no-

answer, we may discard the branch due to Lemma 18. Else, we obtain an intermediate tuple (𝑆, 𝑇 , 𝑋, 𝑌 ). Note that every vertex 
in 𝑍 = 𝑉 ⧵ (𝑋 ∪ 𝑌 ) belongs to 𝐺∗. Hence, 𝑍 is an independent set, and thus (𝑆, 𝑇 , 𝑋, 𝑌 ) is a final tuple. This means that we may 
apply Lemma 21. Then, in polynomial time, we either find that 𝐺 has no valid red-blue (𝑆, 𝑇 , 𝑋, 𝑌 )-colouring, in which case we may 
discard the branch due to Lemma 18, or we find a maximum valid red-blue (𝑆, 𝑇 , 𝑋, 𝑌 )-colouring. The latter is also a maximum valid 
red-blue (𝑆∗, 𝑇 ∗, 𝑆′′, 𝑇 ′′)-colouring, again due to Lemma 18. We remember its value. In the end, after the last branch, we output a 
colouring with largest value as a maximum valid red-blue colouring of 𝐺.

The correctness of our branching algorithm follows from its description. The running time is polynomial: each branch takes 
polynomial time to process, and the number of branches is 𝑂(2|𝑉 (𝐻)|𝑛|𝑉 (𝐻)|) +𝑂(𝑛2). This completes our proof. □

We now show our third polynomial-time result. Again, the idea is to branch over a polynomial number of options, each of which 
reduces to the setting where we can apply Lemma 21.
10

Theorem 24. Maximum Matching Cut is solvable in polynomial time for graphs with diameter at most 2.
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Proof. Let 𝐺 = (𝑉 , 𝐸) be a graph of diameter at most 2. If 𝐺 has diameter 1, then the problem is trivial to solve. Assume that 𝐺 has 
diameter 2. By Observation 15 it suffices to find a maximum valid red-blue colouring of 𝐺. By definition, such a colouring has at 
least one bichromatic edge (has value at least 1). We branch over all 𝑂(𝑛2) options of choosing the bichromatic edge.

Consider a branch, where 𝑒 = 𝑢𝑣 is the bichromatic edge, say 𝑢 is blue and 𝑣 is red. Now all other neighbours of 𝑢 must be coloured 
blue. We let 𝐷 = {𝑢} ∪𝑁(𝑢) and note that 𝐷 dominates 𝐺, as 𝐺 has diameter 2.

We set 𝑆∗ = {𝑣}, 𝑇 ∗ = {𝑢}, 𝑆′′ = {𝑣}, and 𝑇 ′′ =𝐷⧵{𝑣}. This gives us a starting pair (𝑆′′ , 𝑇 ′′) with core (𝑆∗, 𝑇 ∗). We exhaustively 
apply rules R1 and R2 on (𝑆′′, 𝑇 ′′). By Lemma 18 we either find in polynomial time that 𝐺 has no valid red-blue (𝑆∗, 𝑇 ∗, 𝑆′′, 𝑇 ′′)-
colouring, and we discard the branch, or we obtain an intermediate tuple (𝑆′, 𝑇 ′, 𝑋′, 𝑌 ′) of 𝐺. Suppose the latter case holds. We 
prove the following two claims for the set 𝑍′ = 𝑉 ⧵ (𝑋′ ∪ 𝑌 ′) of uncoloured vertices.

Claim 24.1. Every vertex 𝑧 ∈𝑍′ has a neighbour in 𝑌 ′ ⧵ 𝑇 ′ that belongs to 𝐷.

Proof. As 𝑧 ∈𝑍′, we have that 𝑧 ∉𝐷. As 𝐷 is dominating, 𝑧 has a neighbour 𝑏 in 𝐷. As every neighbour of 𝑢 belongs to 𝐷 and 𝑧 is 
not in 𝐷, we find that 𝑏 ≠ 𝑢. Since 𝐷 contains exactly one red vertex 𝑣, which has a blue neighbour in 𝐷 (namely 𝑢), all neighbours 
of 𝑣 in 𝐺 −𝐷 are coloured red, that is, belong to 𝑋. As 𝑧 belongs to 𝐺 −𝐷 and 𝑧 is not coloured red, this means that 𝑣 and 𝑧 are 
non-adjacent, and thus 𝑏 ≠ 𝑣. So, 𝑏 must belong to 𝑇 ′′ ⧵ {𝑢}, and thus to 𝑌 ′ ⧵ 𝑇 ′, as else we could have applied R2. □

Claim 24.2. The intermediate tuple (𝑆′, 𝑇 ′, 𝑋′, 𝑌 ′) is monochromatic.

Proof. Suppose for a contradiction that there is an edge 𝑝𝑞 ∈𝐸(𝐺[𝑍′]) such that 𝑝 is blue and 𝑞 is red. Then 𝑞 has two blue neighbours 
by Claim 24.1, a contradiction. □

Since Claim 24.2 holds, we may exhaustively apply R1–R3 to the intermediate tuple (𝑆′, 𝑇 ′, 𝑋′, 𝑌 ′). By Lemma 20 we either find 
in polynomial time that 𝐺 has no valid red-blue (𝑆′, 𝑇 ′, 𝑋′, 𝑌 ′)-colouring, and thus no valid red-blue (𝑆∗, 𝑇 ∗, 𝑆′, 𝑇 ′)-colouring, and 
we discard the branch, or we obtain a final tuple (𝑆, 𝑇 , 𝑋, 𝑌 ) of 𝐺. Again, we let 𝑍 = 𝑉 ⧵ (𝑋 ∪𝑌 ). By the same lemma and Claim 24.1, 
the following holds for every (uncoloured) vertex 𝑤 ∈𝑍 :

(i) 𝑤 has at most one neighbour in 𝑋 ⧵𝑆 ,

(ii) 𝑤 has exactly one neighbour in 𝑌 ⧵ 𝑇 , which belongs to 𝐷, and

(iii) if 𝑤′ is in the same connected component of 𝐺[𝑍] as 𝑤, then 𝑤 and 𝑤′ do not share a neighbour in 𝐺 −𝑍 .

We strengthen (i) by proving the following claim.

Claim 24.3. Every vertex 𝑤 ∈𝑍 has exactly one neighbour in 𝑋 ⧵𝑆 .

Proof. By (i), we find that 𝑤 has at most one neighbour in 𝑋 ⧵ 𝑆 . For a contradiction, suppose that 𝑤 has no neighbours in 𝑋 ⧵ 𝑆 . 
We also know that 𝑤 has no neighbours in 𝑆 , as else we could have applied R1 or R2. Recall that 𝑣 was the only red vertex of 𝐷. As 
𝑣 has a blue neighbour, namely 𝑢, all the other neighbours of 𝑣 are coloured red due to R2. Hence, 𝑤 is adjacent neither to 𝑣 nor to 
any vertex in 𝑁(𝑣) ⧵ {𝑢}. As all neighbours of 𝑢 that are not equal to 𝑣 are coloured blue and 𝑤 ∈𝑍 is uncoloured, we find that 𝑤 is 
not adjacent to 𝑢 either. Hence, the distance between 𝑣 and 𝑤 is at least 3, contradicting our assumption that 𝐺 has diameter 2. □

We continue by proving the following claim.

Claim 24.4. If 𝐺[𝑍] contains two connected components 𝐹1 and 𝐹2 of size at least 2, then 𝐺[𝑍] = 𝐹1 + 𝐹2.

Proof. Let 𝐹1 contain 𝑢1 and 𝑢2. Let 𝐹2 contain 𝑣1 and 𝑣2. By combining Claim 24.3 with (ii) and (iii), we find that the vertices 𝑢1
and 𝑢2 have each a different red (respectively, blue) neighbour and the same holds for 𝑣1 and 𝑣2. However, as 𝐺 has diameter 2, 
it holds that 𝑢1 and 𝑢2 each have a common neighbour with both 𝑣1 and 𝑣2. Thus, without loss of generality, 𝑢1 and 𝑣1 have a red 
common neighbour, 𝑢1 and 𝑣2 a blue one, while 𝑢2 and 𝑣1 have a blue common neighbour, 𝑢2 and 𝑣2 a red one. See also Fig. 6 (a).

For a contradiction, assume that 𝐺[𝑍] contains a third connected component 𝐹3. Let 𝑤 be a vertex in 𝐹3. Then 𝑤 has a common 
neighbour with each of 𝑢1, 𝑢2, 𝑣1 and 𝑣2. Furthermore, 𝑤 has exactly one red and one blue neighbour. As can be seen in Figs. 6 (b) 
and (c), there do not exist vertices 𝑥 ∈𝑋 and 𝑦 ∈ 𝑌 such that {𝑢1, 𝑢2, 𝑣1, 𝑣2} ⊆𝑁𝐺({𝑥, 𝑦}). Hence, 𝑤 has no common neighbour with 
some vertex of {𝑢1, 𝑢2, 𝑣1, 𝑣2}, contradicting our assumption that 𝐺 has diameter 2. □

From Claim 24.4, it follows that 𝐺[𝑍] has at most two components with more than one vertex, which are both monochromatic in 
every valid red-blue (𝑆, 𝑇 , 𝑋, 𝑌 )-colouring of 𝐺 (if such a colouring exists) due to Claim 24.2. Hence, we can branch over all possible 
colourings of these connected components (there are at most four branches).

For each branch, we propagate the obtained partial red-blue colouring by exhaustively applying rules R1–R3. This takes polynomial 
11

time. In essence, we merely pre-coloured some more vertices red or blue. So, in the end we either find a new tuple of 𝐺 with the same 
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𝐹1 𝐹2

(a)

𝑤

𝐹1 𝐹2

(b)

𝑤

𝐹1 𝐹2

(c)

Fig. 6. The unique way (up to symmetry) to connect two components 𝐹1 and 𝐹2 of 𝐺[𝑍] of size 2 (a) and the two options to connect a vertex 𝑤 in a third component 
𝐹3 to the coloured part of the graph (b) and (c). We can see that there is always an uncoloured vertex without a common neighbour with 𝑤.

𝐺 𝐺′

Fig. 7. A graph 𝐺 (left) where the tick red edges form a maximum edge cut, and the graph 𝐺′ (right) from the proof of Theorem 25, where the thick red edges form 
a maximum matching cut.

properties as those listed in Lemma 20, or we find that 𝐺 has no such tuple, in which case we discard the branch. Suppose we have 
not discarded the branch. Now the set of uncoloured vertices form an independent set. Hence, we can apply Lemma 21 to find in 
polynomial time a red-blue colouring of 𝐺 that is a maximum red-blue (𝑆∗, 𝑇 ∗, 𝑆′′, 𝑇 ′′)-colouring due to Lemmas 18-(ii) and 20-(ii).

If somewhere in the above process we discarded a branch, that is, if 𝐺 has no valid red-blue (𝑆∗, 𝑇 ∗, 𝑆′′, 𝑇 ′′)-colouring, we consider 
the next one. If we did not discard the branch, then we remember the value of the maximum red-blue (𝑆∗ , 𝑇 ∗, 𝑆′′, 𝑇 ′′)-colouring that 
we found. Afterwards, we pick one with the largest value to obtain a maximum valid red-blue colouring of 𝐺.

The correctness of our branching algorithm follows from its description. The running time is polynomial: each branch takes 
polynomial time to process, and the number of branches is 𝑂(𝑛2). This completes our proof. □

4. Hardness results for Maximum Matching Cut

In the following we will prove that Maximum Matching Cut is NP-hard for subcubic line graphs and 2𝑃3-free quadrangulated 
graphs of diameter 3 and radius 2. To prove the first hardness result, we reduce from Maximum Cut. The problem takes as input a 
graph 𝐺 and an integer 𝑘. The question is whether 𝐺 has an edge cut of size at least 𝑘. This problem is well known to be NP-complete 
even for subcubic graphs, as shown by Yannakakis [43].

Theorem 25. Maximum Matching Cut is NP-hard for subcubic line graphs of triangle-free graphs.

Proof. Let (𝐺, 𝑘) be an instance of Maximum Cut, where 𝐺 is a subcubic graph. From 𝐺, we construct a graph 𝐺′ as follows. First 
replace every vertex 𝑣 ∈ 𝑉 (𝐺) by a triangle 𝐶𝑣. Next, for every edge 𝑢𝑣 ∈ 𝐸(𝐺), add an edge between a vertex in 𝐶𝑣 and a vertex 
in 𝐶𝑢, such that every vertex in 𝐶𝑣 has at most one neighbour outside of 𝐶𝑣. This is possible since 𝐺 is subcubic. See Fig. 7 for an 
example. The graph 𝐺′ is subcubic, as every vertex in 𝐺′ has two neighbours inside a triangle and at most one neighbour outside. 
Moreover, 𝐺 is (𝐾1,3, diamond)-free, or equivalently, the line graph of a triangle-free graph.

We claim that 𝐺 has an edge cut of size at least 𝑘 if and only if 𝐺′ has a matching cut of size at least 𝑘.

First suppose that 𝐺 has an edge cut 𝑀 of size at least 𝑘. So, 𝑉 (𝐺) can be partitioned into sets 𝑅 and 𝐵, such that for every 
𝑒 ∈𝐸(𝐺), it holds that 𝑒 ∈ 𝐶 if and only if 𝑒 has one end-vertex in 𝑅 and the other one in 𝐵. We define the edge set

𝑀 ′ =
{
𝑢′𝑣′ ∈𝐸(𝐺′) | 𝑢′ ∈ 𝐶𝑢, 𝑣

′ ∈ 𝐶𝑣, 𝑢𝑣 ∈𝑀
}
.

Note that |𝑀 ′| = |𝑀| ≥ 𝑘. Moreover, 𝑀 ′ contains no edge from any triangle 𝐶𝑢, so 𝑀 ′ is a matching. For every 𝑣 ∈ 𝑉 (𝐺), we put 
all vertices of 𝐶𝑣 in a set 𝐵′ if 𝑣 ∈ 𝐵, and else we put all vertices of 𝐶𝑣 in a set 𝑅′. We now find that for every edge 𝑒 ∈ 𝐸(𝐺′), it 
holds that 𝑒 belongs to 𝑀 ′ if and only if 𝑒 has one end-vertex in 𝑅′ and the other one in 𝐵′. Hence, 𝑀 ′ is an edge cut, and thus a 
matching cut, of 𝐺′ with |𝑀 ′| ≥ 𝑘.

Now suppose that 𝐺′ has a matching cut 𝑀 ′ of size at least 𝑘. Let 𝑅′ and 𝐵′ be the corresponding sets of red and blue vertices, 
12

respectively. We define the edge set



Theoretical Computer Science 1017 (2024) 114795F. Lucke, D. Paulusma and B. Ries

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6

𝑥1 𝑥2 𝑥4 𝑥2 𝑥4 𝑥5 𝑥3 𝑥5 𝑥6

Fig. 8. The graph 𝐺 for 𝑋 =
{
𝑥1,… , 𝑥6

}
and  =

{{
𝑥1, 𝑥2, 𝑥4

}
,
{
𝑥2, 𝑥4, 𝑥5

}
,
{
𝑥3, 𝑥5, 𝑥6

}}
. The vertices in the rectangle form a clique, whose edges we did not draw 

for readability. For the same reason, we also omitted the superscripts of the vertices in the three triangles. The set  ′ =
{{

𝑥1, 𝑥2, 𝑥4
}
,
{
𝑥3, 𝑥5, 𝑥6

}}
is an exact 3-cover 

of 𝑋. The thick red edges in the graph show the corresponding matching cut of size 3𝑞 = 6.

𝑀 =
{
𝑢𝑣 ∈𝐸(𝐺) | 𝑢′𝑣′ ∈𝑀 ′, 𝑢′ ∈ 𝐶𝑢, 𝑣

′ ∈ 𝐶𝑣

}
.

Note that |𝑀| = |𝑀 ′| ≥ 𝑘. Due to Lemma 16, every triangle 𝐶𝑢 is monochromatic. For every 𝑢 ∈ 𝑉 (𝐺), we put 𝑢 in a set 𝑅 if 𝐶𝑢 is 
coloured red, else we put 𝑢 in a set 𝐵. We now find for every edge 𝑒 ∈ 𝐸(𝐺) that 𝑒 belongs to 𝑀 if and only if one end-vertex of 𝑒
belongs to 𝑅 and the other one to 𝐵. Hence, 𝑀 is an edge cut in 𝐺 of size at least 𝑘. □

For our next NP-hardness result, we reduce from the following problem. An exact 3-cover of a set 𝑋 is a collection  of 3-element 
subsets of 𝑋, such that every 𝑥 ∈𝑋 is in exactly one 3-element subset of . The Exact 3-Cover problem has as input a set 𝑋 with 
3𝑞 elements and a collection  of 3-element subsets of 𝑋. The question is if  contains an exact 3-cover of 𝑋 (which will be of size 
𝑞). This problem is well known to be NP-complete (see [28]).

Theorem 26. Maximum Matching Cut is NP-hard for 2𝑃3-free quadrangulated graphs of radius at most 2 and diameter at most 3.

Proof. Let (𝑋, ) be an instance of Exact 3-Cover where 𝑋 = {𝑥1, … , 𝑥3𝑞} and  = {𝑆1, … , 𝑆𝑘}, such that each 𝑆𝑖 contains exactly 
three elements of 𝑋. From (𝑋, ) we construct a graph 𝐺. We first define a clique 𝐾𝑋 = {𝑥1, … , 𝑥3𝑞}. For each 𝑆 ∈  , we do as 
follows. Let 𝑆 = {𝑥ℎ, 𝑥𝑖, 𝑥𝑗}. We add a triangle 𝐾𝑆 on vertices 𝑥𝑆

ℎ
, 𝑥𝑆

𝑖
and 𝑥𝑆

𝑗
. We add an edge between a vertex 𝑥𝑖 ∈𝐾𝑋 and a vertex 

𝑢 ∉𝐾𝑋 if and only if 𝑢 = 𝑥𝑆
𝑖

for some 𝑆 ∈  . This completes the construction of 𝐺. See Fig. 8 for an example.

As every induced 𝑃3 must contain at least one vertex from the clique 𝐾𝑋 , we find that 𝐺 is 2𝑃3-free. As 𝐺 is not only 2𝑃3-free, but 
also (𝐶5, 𝐶6)-free, 𝐺 is quadrangulated. Consider some 𝑥𝑖 ∈𝐾𝑋 . Then every other vertex is of distance at most 2 from 𝑥𝑖. Consider 
some 𝑥𝑆

𝑖
∈𝐾𝑆 for some 𝑆 ∈  . Then every other vertex is of distance at most 3 from 𝑥𝑆

𝑖
. Hence, the radius of 𝐺 is at most 2 and the 

diameter of 𝐺 is at most 3.

We claim that  contains an exact 3-cover of 𝑋 if and only if 𝐺 has a matching cut of size 3𝑞. First suppose that  contains an 
exact 3-cover  of 𝑋. We colour every vertex of 𝐾𝑋 red. We colour a triangle 𝐾𝑆 blue if 𝑆 ∈  and otherwise we colour it red. This 
yields a valid red-blue colouring of value 3𝑞, and thus a matching cut of size 3𝑞.

Now suppose that 𝐺 has a matching cut 𝑀 of size 3𝑞. As 𝐾𝑋 is a clique of size 3𝑞 ≥ 3, the corresponding valid red-blue colouring 
assigns every vertex of 𝐾𝑋 the same colour, say red. As every triangle 𝐾𝑆 is monochromatic, this means that exactly 𝑞 triangles must 
be coloured blue. Moreover, no two blue triangles have a common red neighbour in 𝐾𝑋 . Hence, the blue triangles correspond to an 
exact 3-cover of 𝑋. See again Fig. 8. □

5. Dichotomies for Maximum Matching Cut

In this section we prove our three dichotomy results, which we restate below.

Theorem 5 (restated). For an integer 𝑑, Maximum Matching Cut on graphs of diameter 𝑑 is

• polynomial-time solvable if 𝑑 ≤ 2, and

• NP-hard if 𝑑 ≥ 3.

Proof. The two results follow from Theorems 24 and 26, respectively. □

Theorem 6 (restated). For an integer 𝑟, Maximum Matching Cut on graphs of radius 𝑟 is

• polynomial-time solvable if 𝑟 ≤ 1, and

• NP-hard if 𝑟 ≥ 2.

Proof. A graph of radius 1 has a dominating vertex, and thus it has a matching cut if and only if it has a vertex of degree 1. This can 
13

be checked in polynomial time and thus proves the first result. The second result follows from Theorem 26. □
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Theorem 7 (restated). For a graph 𝐻 , Maximum Matching Cut on 𝐻 -free graphs is

• polynomial-time solvable if 𝐻 ⊆𝑖 𝑠𝑃2 + 𝑃6 for some 𝑠 ≥ 0, and

• NP-hard if 𝐻 ⊇𝑖 𝐾1,3, 2𝑃3 or 𝐻 ⊇𝑖 𝐶𝑟 for some 𝑟 ≥ 3.

Proof. Let 𝐻 be a graph. If 𝐻 contains a cycle, then Matching Cut, and thus Maximum Matching Cut, is NP-hard due to 
Theorem 2. Now suppose that 𝐻 has no cycle, so 𝐻 is a forest. If 𝐻 contains a vertex of degree at least 3, then the class of 𝐻 -free 
graphs contains the class of 𝐾1,3-free graphs. The latter class contains the class of line graphs, and thus we can apply Theorem 25.

Now suppose that 𝐻 is a forest of maximum degree at most 2, that is, 𝐻 is a linear forest. If 𝐻 ⊆𝑖 𝑠𝑃2 + 𝑃6 for some 𝑠 ≥ 0, then 
we apply Theorem 22 in combination with 𝑠 applications of Theorem 23. Else 𝐻 contains an induced 2𝑃3 and we apply Theorem 26. 
This completes the proof. □

6. Dichotomies for Maximum Disconnected Perfect Matching

In this section we prove the results of Section 1.3. We first need a similar lemma as Lemma 17, which is proven by copying the 
arguments of the proof of Lemma 17 and using the fact that we can check if a graph has a perfect matching in polynomial time by 
using, for instance, Edmonds’ Blossom algorithm [14].

Lemma 27. For a connected 𝑛-vertex graph 𝐺 with domination number 𝑔, it is possible to find a maximum perfect-extendable red-blue 
colouring (if a red-blue colouring exists) in 𝑂(2𝑔𝑛𝑔+2) time.

Note that Lemmas 18 and 20 can be adapted to perfect-extendable red-blue colourings in a straightforward way, since the propaga-

tion rules R1–R3 hold for valid red-blue colourings and every perfect-extendable red-blue colouring is valid (that is, the propagation 
of any partial red-blue colouring does not influence if the resulting partial red-blue colouring is perfect-extendable or not). In other 
words, we immediately obtain the following two lemmas.

Lemma 28. Let 𝐺 be a connected graph with a starting pair (𝑆′′, 𝑇 ′′) with core (𝑆∗, 𝑇 ∗), and with an intermediate tuple (𝑆′, 𝑇 ′, 𝑋′, 𝑌 ′). 
The following three statements hold:

(i) 𝑆∗ ⊆ 𝑆′, 𝑆′′ ⊆𝑋′ and 𝑇 ∗ ⊆ 𝑇 ′, 𝑇 ′′ ⊆ 𝑌 ′ and 𝑋′ ∩ 𝑌 ′ = ∅,

(ii) for every integer 𝜈, 𝐺 has a perfect-extendable red-blue (𝑆∗, 𝑇 ∗, 𝑆′′, 𝑇 ′′)-colouring of value 𝜈 if and only if 𝐺 has a perfect-extendable 
red-blue (𝑆′, 𝑇 ′, 𝑋′, 𝑌 ′)-colouring of value 𝜈 (note that the backward implication holds by definition), and

(iii) every vertex in 𝑆′ has exactly one neighbour in 𝑌 ′, which belongs to 𝑇 ′; every vertex in 𝑇 ′ has exactly one neighbour in 𝑋′, which 
belongs to 𝑆′; every vertex in 𝑋′ ⧵ 𝑆′ has no neighbour in 𝑌 ′; every vertex in 𝑌 ′ ⧵ 𝑇 ′ has no neighbour in 𝑋′; and every vertex of 
𝑉 ⧵ (𝑋′ ∪ 𝑌 ′) has no neighbour in 𝑆′ ∪ 𝑇 ′, at most one neighbour in 𝑋′ ⧵𝑆′, and at most one neighbour in 𝑌 ′ ⧵ 𝑇 ′.

Moreover, (𝑆′, 𝑇 ′, 𝑋′, 𝑌 ′) is obtained in polynomial time.

Lemma 29. Let 𝐺 be a connected graph with a monochromatic intermediate tuple (𝑆′, 𝑇 ′, 𝑋′, 𝑌 ′) and a resulting final tuple (𝑆, 𝑇 , 𝑋, 𝑌 ). 
The following three statements hold:

(i) 𝑆′ ⊆ 𝑆 , 𝑋′ ⊆𝑋, 𝑇 ′ ⊆ 𝑇 , 𝑌 ′ ⊆ 𝑌 , and 𝑋 ∩ 𝑌 = ∅,

(ii) For every integer 𝜈, 𝐺 has a perfect-extendable (monochromatic) red-blue (𝑆′, 𝑇 ′, 𝑋′, 𝑌 ′)-colouring of value 𝜈 if and only if 𝐺 has a 
perfect-extendable monochromatic red-blue (𝑆, 𝑇 , 𝑋, 𝑌 )-colouring of value 𝜈 (note that the backward implication holds by definition), 
and

(iii) every vertex in 𝑆 has exactly one neighbour in 𝑌 , which belongs to 𝑇 ; every vertex in 𝑇 has exactly one neighbour in 𝑋, which belongs 
to 𝑆 ; every vertex in 𝑋 ⧵ 𝑆 has no neighbour in 𝑌 and no two neighbours in the same connected component of 𝐺[𝑉 ⧵ (𝑋 ∪ 𝑌 )]; every 
vertex in 𝑌 ⧵ 𝑇 has no neighbour in 𝑋 and no two neighbours in the same connected component of 𝐺[𝑉 ⧵ (𝑋 ∪ 𝑌 )]; and every vertex 
of 𝑉 ⧵ (𝑋 ∪ 𝑌 ) has no neighbour in 𝑆 ∪ 𝑇 , at most one neighbour in 𝑋 ⧵𝑆 , and at most one neighbour in 𝑌 ⧵ 𝑇 .

Moreover, (𝑆, 𝑇 , 𝑋, 𝑌 ) is obtained in polynomial time.

We prove our next lemma by similar but simpler arguments as in the proof of Lemma 21.

Lemma 30. Let 𝐺 = (𝑉 , 𝐸) be a connected graph with a final tuple (𝑆, 𝑇 , 𝑋, 𝑌 ). If 𝑉 ⧵ (𝑋∪𝑌 ) is an independent set, then it is possible to find 
in polynomial time either a maximum perfect-extendable red-blue (𝑆, 𝑇 , 𝑋, 𝑌 )-colouring of 𝐺, or conclude that 𝐺 has no perfect-extendable 
red-blue (𝑆, 𝑇 , 𝑋, 𝑌 )-colouring.

Proof. Let 𝑍 = 𝑉 ⧵ (𝑋 ∪ 𝑌 ). Let 𝑊 =𝑁(𝑍). Recall that 𝑍 is independent. Hence, by Lemma 29-(iii), every vertex of 𝑊 belongs to 
(𝑋 ⧵𝑆) ∪ (𝑌 ⧵ 𝑇 ). By combining this observation with Lemma 29-(iii), we find that every bichromatic edge of any perfect-extendable 
14

red-blue (𝑆, 𝑇 , 𝑋, 𝑌 )-colouring (if it exists) is
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(i) either an edge with one end-vertex in 𝑆 and the other one in 𝑇 , or

(ii) an edge with one end-vertex in 𝑍 and the other one in either 𝑋 ⧵𝑆 or 𝑌 ⧵ 𝑇 .

By Lemma 29-(iii), the subgraph of 𝐺 induced by 𝑆 ∪ 𝑇 has a perfect matching that consist of every edge with one end-vertex in 
𝑆 and the other one in 𝑇 . Hence, a maximum perfect-extendable red-blue (𝑆, 𝑇 , 𝑋, 𝑌 )-colouring (if it exists) is the union of

(i) the set of edges with one end-vertex in 𝑆 and the other one in 𝑇 ; and

(ii) a perfect matching in 𝐺 ⧵ (𝑆 ∪ 𝑇 ) that contains as many edges with one end-vertex in 𝑍 (and the other one in either 𝑋 ⧵ 𝑆 or 
𝑌 ⧵ 𝑇 ) as possible.

We first check in polynomial time if 𝐺 ⧵ (𝑆 ∪𝑇 ) has a perfect matching (for example, by using Edmonds’ Blossom algorithm [14]). 
If not, then 𝐺 has no perfect-extendable red-blue (𝑆, 𝑇 , 𝑋, 𝑌 )-colouring, and we stop. Otherwise, we found a perfect matching 𝑀 of 
𝐺 ⧵ (𝑆 ∪ 𝑇 ), and we continue as follows.

We colour every vertex in 𝑋 red and every vertex in 𝑌 blue. By Lemma 29-(iii), every vertex in 𝑍 has at most one neighbour in 𝑋, 
which belongs to 𝑋 ⧵𝑆 , and at most one neighbour in 𝑌 , which belongs to 𝑌 ⧵𝑇 . As 𝑍 is independent, we can do as follows for every 
𝑢 ∈𝑍 . If 𝑢 has degree 1 in 𝐺 and a neighbour 𝑥 ∈𝑋, then 𝑢𝑥 must belong to 𝑀 , and we colour 𝑢 blue. If 𝑢 has degree 1 in 𝐺 and a 
neighbour 𝑦 ∈ 𝑌 , then 𝑢𝑦 must belong to 𝑀 , and we colour 𝑢 red. If 𝑢 has degree 2 in 𝐺, and a neighbour 𝑥 ∈𝑋 and a neighbour 
𝑦 ∈ 𝑌 , then we colour 𝑢 blue if 𝑢𝑥 ∈𝑀 and red if 𝑢𝑦 ∈𝑀 . This takes polynomial time. As every edge of 𝑀 with one end-vertex in 𝑍
and the other one in either 𝑋 ⧵𝑆 or 𝑌 ⧵𝑇 is monochromatic, we found, in polynomial time, a maximum perfect-extendable red-blue 
(𝑆, 𝑇 , 𝑋, 𝑌 )-colouring of 𝐺. □

The following result is proven in exactly the same way as the proof of Theorem 22 after replacing Lemma 17 by Lemma 27; 
Lemma 18 by Lemma 28; Lemma 20 by Lemma 29; and Lemma 21 by Lemma 30.

Theorem 31. Maximum Disconnected Perfect Matching is solvable in polynomial time for 𝑃6-free graphs.

Our following result can be proven in the same way as Theorem 23 after replacing Lemma 18 by Lemma 28; and Lemma 21 by 
Lemma 30.

Theorem 32. Let 𝐻 be a graph. If (Maximum) Disconnected Perfect Matching is polynomial-time solvable for 𝐻 -free graphs, then 
it is so for (𝐻 + 𝑃2)-free graphs.

The following result is proven in exactly the same way as the proof of Theorem 24 after replacing Lemma 18 by Lemma 28; 
Lemma 20 by Lemma 29; and Lemma 21 by Lemma 30.

Theorem 33. Maximum Disconnected Perfect Matching is solvable in polynomial time for graphs with diameter at most 2.

We now show the following result by modifying the proof of Theorem 25; note that the maximum degree bound is no longer 3
but 6.

Theorem 34. Maximum Disconnected Perfect Matching is NP-hard for graphs of maximum degree 6 that are line graphs of triangle-

free graphs.

Proof. We make the following changes in the hardness construction of Theorem 25. First, we replace every vertex 𝑢 of the input 
graph 𝐺 by a clique 𝐶𝑢 of size 6 instead of a triangle. Then, for each edge 𝑢𝑣 ∈ 𝐸(𝐺), we add two edges between 𝐶𝑢 and 𝐶𝑣, such 
that (again) every vertex in 𝐶𝑣 has at most one neighbour outside 𝐶𝑣. The resulting graph 𝐺′ is still (𝐾1,3, diamond)-free but has 
maximum degree is 6. We can now show that 𝐺 has an edge cut of size at least 𝑘 if and only if 𝐺′ has a matching cut of size at least 
𝑘, using the same arguments as in the proof of Theorem 25. The proof follows from the observation that we can extend a matching 
cut 𝑀 of 𝐺′ to a perfect matching by the fact that the number of vertices in a clique 𝐶𝑢 that are not incident with any edge of 𝑀 ′ is 
even. □

We now show the following result by modifying the proof of Theorem 26.

Theorem 35. Maximum Disconnected Perfect Matching is NP-hard for 2𝑃3-free quadrangulated graphs of radius at most 2 and 
diameter at most 3.

Proof. We reduce from Exact 4-Cover instead of Exact 3-Cover. This allows us to modify the construction of the proof of Theo-

rem 26, such that the triangles 𝐾𝑆 become cliques of size 4. This does not change the size of the matching cut. Moreover, all vertices 
in the clique 𝐾𝑋 still need to be matched to the cliques 𝐾𝑆 to obtain a matching cut of maximum size. However, all previously 
15

unmatched vertices, which exist only inside the cliques 𝐾𝑆 , may now be matched to a vertex inside 𝐾𝑆 . □
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We are now ready to prove Theorems 10–12, which we restate below.

Theorem 10 (restated). For an integer 𝑑, Maximum Disconnected Perfect Matching on graphs of diameter 𝑑 is

• polynomial-time solvable if 𝑑 ≤ 2, and

• NP-hard if 𝑑 ≥ 3.

Proof. The two results follow from Theorems 33 and 35, respectively. □

Theorem 11 (restated). For an integer 𝑟, Maximum Disconnected Perfect Matching on graphs of radius 𝑟 is

• polynomial-time solvable if 𝑟 ≤ 1, and

• NP-hard if 𝑟 ≥ 2.

Proof. Recall that a graph 𝐺 of radius 1 has a dominating vertex 𝑢, and hence the only matching cuts are of the form {𝑢𝑣}, where 
𝑣 is a vertex of degree 1 in 𝐺. Notice that such an edge 𝑢𝑣 must belong to any perfect matching of 𝐺. Hence, we just need to check 
if 𝐺 has a perfect matching and if 𝐺 contains a vertex of degree 1. Both can be checked in polynomial time and thus proves the first 
result. The second result follows from Theorem 35. □

Theorem 12 (restated). For a graph 𝐻 , Maximum Disconnected Perfect Matching on 𝐻 -free graphs is

• polynomial-time solvable if 𝐻 ⊆𝑖 𝑠𝑃2 + 𝑃6 for some 𝑠 ≥ 0, and

• NP-hard if 𝐻 ⊇𝑖 𝐾1,3, 2𝑃3 or 𝐻 ⊇𝑖 𝐶𝑟 for some 𝑟 ≥ 3.

Proof. Let 𝐻 be a graph. First suppose that 𝐻 has a cycle. Recall that Disconnected Perfect Matching is NP-complete for 𝐶𝑠-

free graphs [17] and thus for 𝐻 -free graphs. Hence, the same holds for Maximum Disconnected Perfect Matching. If 𝐻 is not 
a cycle, then 𝐻 is a forest. If 𝐻 contains a vertex of degree at least 3, then the class of 𝐻 -free graphs contains the class of 𝐾1,3-free 
graphs, which contains the class of line graphs, so we apply Theorem 34. Otherwise 𝐻 is a linear forest. If 𝐻 ⊆𝑖 𝑠𝑃2 + 𝑃6 for some 
𝑠 ≥ 0, then we apply Theorem 31 in combination with 𝑠 applications of Theorem 32. Else 𝐻 contains an induced 2𝑃3 and we apply 
Theorem 35. □

7. Conclusions

We considered the optimization version Maximum Matching Cut of the classical Matching Cut problem after first observing 
that the Perfect Matching Cut problem is a special case of the former problem. We generalized known algorithms for graphs of 
diameter at most 2 and 𝑃6-free graphs from Matching Cut and Perfect Matching Cut to Maximum Matching Cut. We also 
showed that the latter problem is computationally harder (assuming 𝖯 ≠ 𝖭𝖯) than Matching Cut and Perfect Matching Cut for 
various graph classes. Our results led to three new dichotomy results, namely a computational complexity classification of Maximum 
Matching Cut for 𝐻 -free graphs, and complexity classifications for graphs of bounded diameter and bounded radius. Classification 
for 𝐻 -free graphs is still unsettled for Matching Cut and Perfect Matching Cut, as can be observed from Theorems 2 and 4. We 
also pose the following open problem, which is the missing case from Theorem 3.

Open Problem 1. Determine the complexity of Perfect Matching Cut for graphs of diameter 3.

To prove the dichotomies for Maximum Matching Cut, we showed that Maximum Matching Cut is NP-hard for 2𝑃3-free 
quadrangulated graphs of diameter 3 and radius 2, whereas Matching Cut is known to be polynomial-time solvable for quadrangu-

lated graphs [38]. We recall an open problem of Le and Telle [34] who asked, after proving polynomial-time solvability for chordal 
graphs, the following question (a graph is 𝑘-chordal for some 𝑘 ≥ 3 if it is (𝐶𝑘+1, 𝐶𝑘+2, …)-free, so 3-chordal graphs are the chordal 
graphs).

Open Problem 2 ([34]). Determine the complexity of Perfect Matching Cut for quadrangulated graphs, or more general, 𝑘-

chordal graphs for 𝑘 ≥ 4.

We also showed how our proofs could be adapted to hold for Maximum Disconnected Perfect Matching, the optimization 
version of Disconnected Perfect Matching. This led to exactly the same dichotomies for the former problem as for Maximum 
Matching Cut for bounded diameter, bounded radius and 𝐻 -free graphs. Moreover, it implied new results for Disconnected Per-

fect Matching as well, including a polynomial-time algorithm for 𝑃6-free graphs. The complexity classification of Disconnected 
Perfect Matching for 𝐻 -free graphs is still not complete (see Theorem 9). We also pose the following open problem, which is the 
16

missing case from Theorem 8.
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Open Problem 3. Determine the complexity of Disconnected Perfect Matching for graphs of radius 2.

Our final open problem is related to 𝐻 -free graphs.

Open Problem 4. For every graph 𝐻 , is Disconnected Perfect Matching polynomial-time solvable for (𝐻 + 𝑃3)-free graphs if 
it is polynomial-time solvable for 𝐻 -free graphs?

We now know from Theorem 9 that the above result holds for 𝑃2, while for Matching Cut we have this result for 𝑃3 [35] and 
for Perfect Matching Cut even for 𝑃4 [37].
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