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Abstract
Persistence diagrams are objects that play a central role in topological data analysis.
In the present article, we investigate the local and global geometric properties of
spaces of persistence diagrams. In order to do this, we construct a family of functors
Dp, 1 ≤ p ≤ ∞, that assign, to each metric pair (X , A), a pointed metric space
Dp(X , A). Moreover, we show that D∞ is sequentially continuous with respect to
the Gromov–Hausdorff convergence of metric pairs, and we prove that Dp preserves
several usefulmetric properties, such as completeness and separability, for p ∈ [1,∞),
and geodesicity and non-negative curvature in the sense of Alexandrov, for p = 2.
For the latter case, we describe the metric of the space of directions at the empty
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diagram. We also show that the Fréchet mean set of a Borel probability measure on
Dp(X , A), 1 ≤ p ≤ ∞, with finite secondmoment and compact support is non-empty.
As an application of our geometric framework, we prove that the space of Euclidean
persistence diagrams, Dp(R

2n,�n), 1 ≤ n and 1 ≤ p < ∞, has infinite covering,
Hausdorff, asymptotic, Assouad, and Assouad–Nagata dimensions.

Keywords Alexandrov spaces · Asymptotic dimension · Metric pairs ·
Gromov–Hausdorff convergence · Persistence diagram · Fré chet mean set

Mathematics Subject Classification 53C23 · 55N31 · 54F45 · 64R40
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1 Introduction

After first appearing in the pioneering work of Edelsbrunner et al. (2000), in recent
years, persistent homology has become an important tool in the analysis of scientific
datasets, covering a wide range of applications (Adcock et al. 2014; Buchet et al. 2018;
Edelsbrunner andHarer 2008;Kovacev-Nikolic et al. 2016;Munch 2013;Cássio 2015;
Zhu 2013) and playing a central role in topological data analysis.

In Zomorodian and Carlsson (2005), Carlsson and Zomorodian introduced persis-
tence modules indexed by the natural numbers as the algebraic objects underlying
persistent homology. The successful application of persistent homology in data anal-
ysis is, to a great extent, due to the notion of persistence diagrams. These were
introduced by Cohen-Steiner, Edelsbrunner, and Harer as equivalent representations
for persistence modules indexed by the positive real numbers (Cohen-Steiner et al.

2007). More precisely, a persistence diagram is a multiset of points (b, d) ∈ R
2
≥0,

where R
2
≥0 = {(x, y) ∈ R × R : 0 ≤ x < y} and R = R ∪ {−∞,∞}. Persistence

diagrams are objects that, in a certain sense, are easier to visualize than persistence
modules.Moreover, the set of persistence diagrams supports a family ofmetrics, called
p-Wasserstein metrics, parametrized by 1 ≤ p ≤ ∞ (see Cohen-Steiner et al. 2010),
with the metric corresponding to p = ∞ also known as the bottleneck distance. We
will denote by Dp(R

2,�), where � is the diagonal of R
2, the metric space defined

by the set of persistence diagrams that arise in persistent homology equipped with the
p-Wasserstein metric.
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Several authors have extensively studied the geometry and topology of the spaces
Dp(R

2,�). For instance, Mileyko et al. (2011) examined the completeness, sepa-
rability, and compactness of subsets of the space Dp(R

2,�) with the p-Wasserstein
metric, 1 ≤ p < ∞. Turner et al. (2014) showed that D2(R

2,�) is an (infinite dimen-
sional) Alexandrov space with non-negative curvature. The results in Mileyko et al.
(2011) imply the existence of Fréchet means for certain probability distributions on
Dp(R

2,�). For p = 2, the results in Turner et al. (2014) imply the convergence of cer-
tain algorithms used to find Fréchet means of finite sets in Dp(R

2,�). Turner (2020)
studied further statistical properties, such as the median of finite sets in Dp(R

2,�),
and its relation to the mean. All these results are crucially based on the presence of
the p-Wasserstein metric and, when p=2, on the Alexandrov space structure.

Our contributions

Motivated by the preceding considerations, we develop a general framework for the
geometric study of generalized spaces of persistence diagrams. To the best of our
knowledge, the present article is the first attempt to systematically analyze the geo-
metric properties of such spaces. Our departure point is the existence of a family
of functors Dp : MetPair → Met∗, 1 ≤ p < ∞ (resp. D∞ : MetPair → PMet∗),
from the category MetPair of metric pairs equipped with relative Lipschitz maps into
the category Met∗ of pointed metric spaces equipped with pointed Lipschitz maps
(resp. the category PMet∗ of pointed pseudometric spaces equipped with pointed Lip-
schitz maps), which assign to each metric pair (X , A), where X is a metric space
and A ⊂ X is a closed and non-empty subset, a space of persistence diagrams
Dp(X , A). In particular, for (X , A) = (R2,�), where � = {(x, y) ∈ R

2 : x = y}
is the diagonal of R

2, we recover the spaces Dp(R
2,�), that arise in persistent

homology, equipped with the p-Wasserstein distance. These spaces were studied
in Mileyko et al. (2011), Turner et al. (2014). Bubenik and Elchesen studied such
functors from an algebraic point of view in Bubenik and Elchesen (2022). Here,
we disregard the algebraic structure and focus on the behavior of several basic
topological, metric, and geometric properties and invariants under the functors Dp.
When X = R

2n≥0 = {(x1, y1, . . . , xn, yn) : 0 ≤ xi ≤ yi for i = 1, . . . , n} and

A = �n = {(x1, y1, . . . , xn, yn) ∈ R
2n≥0 : xi = yi for i = 1, . . . , n} for n ≥ 2, the

resulting spaces Dp(R
2n≥0,�n), that we call from now on spaces of Euclidean per-

sistence diagrams, can be considered as the parameter spaces for rectangle persistent
modules. These modules arise in the context of multiparameter persistent homology
and have been investigated by several authors (see, for example, Bjerkevik 2021;
Botnan et al. 2022; Cochoy and Oudot 2020; Skryzalin and Carlsson 2017).

Our aim is twofold: first, to show thatmany basic results useful in statistical analysis
on spaces of Euclidean persistence diagrams hold for the generalized persistence
diagram spacesDp(X , A), and, second, to study the intrinsic geometry of such spaces,
which is of interest in its own right. As an application of our framework, we show that
different notions of dimension are infinite for spaces the spaces of Euclidean diagrams
Dp(R

2n,�n).
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Given that each metric pair (X , A) gives rise to a pointed metric space Dp(X , A),
it is natural to ask whether some form of continuity holds with respect to (X , A).
To address this question, we introduce the Gromov–Hausdorff convergence of metric
pairs, a mild generalization of the usual Gromov–Hausdorff convergence of pointed
metric spaces (see Definition 3.1), and obtain our first main result.

Theorem A The functor Dp, 1 ≤ p ≤ ∞, is sequentially continuous with respect to
the Gromov–Hausdorff convergence of metric pairs if and only if p = ∞.

One may think of Theorem A as providing formal justification for using persis-
tence diagrams calculated by computers in applications. Since computers have finite
precision, such diagrams are elements of a discrete space that approximates the ideal
space of persistence diagrams in the Gromov–Hausdorff sense. Theorem A ensures
that this approximation is continuous. In particular, a small perturbation of the space
of parameters (X , A) (which is (R2,�) in the Euclidean case) will result in a small
perturbation in the corresponding space of persistence diagrams.

Our second main result is the invariance of several basic metric properties under
Dp, 1 ≤ p < ∞, generalizing results in Mileyko et al. (2011), Turner et al. (2014)
for spaces of Euclidean persistence diagrams. These properties include completeness
and geodesicity (which we require of Alexandrov spaces), as well as non-negative
curvature when p = 2.

Theorem B Let (X , A) ∈ MetPair and let 1 ≤ p < ∞. Then the following assertions
hold:

(1) If X is complete, then Dp(X , A) is complete.
(2) If X is separable, then Dp(X , A) is separable.
(3) If X is a proper geodesic space, then Dp(X , A) is a geodesic space.
(4) If X is a proper Alexandrov space with non-negative curvature, then D2(X , A) is

an Alexandrov space with non-negative curvature.

One may show that Dp(X , A) is complete if and only if X/A is complete for any
p ∈ [1,∞] (see Che et al. (2024)). The behavior of D∞ is substantially different to
that of Dp, 1 ≤ p < ∞. Indeed, Theorem B fails for D∞, as shown in Che et al.
(2024).

The functor Dp allows us to carry over, with some minor modifications, the
Euclidean proofs of completeness and separability in Mileyko et al. (2011) to prove
items (1) and (2) in Theorem B. Items (3) and (4) generalize the correspond-
ing Euclidean results in Turner et al. (2014), asserting that the spaces Dp(R

2,�),
1 ≤ p < ∞, are geodesic and thatD2(R

2,�) is an Alexandrov space of non-negative
curvature. Our proofs differ from those in Turner et al. (2014) and rely on a character-
ization of geodesics in persistence diagram spaces originally obtained by Chowdhury
in Chowdhury (2019) in the Euclidean case.

Motivated by results in Turner et al. (2014) on the Alexandrov spaceD2(R
2,�), we

analyze the infinitesimal geometry of Alexandrov spaces arising via Theorem B (4)
at their distinguished point, the empty diagram σ∅. The infinitesimal structure of an
Alexandrov space at a point is captured by the space of directions, which is itself a
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metric space and corresponds to the unit tangent sphere in the case of Riemannian
manifolds.

First, we show that the space of directions �σ∅
at σ∅ ∈ D2(X , A) has diameter at

most π/2 (Proposition 6.1). Second, we show that directions in �σ∅
corresponding

to finite diagrams are dense in �σ∅
(Proposition 6.2). Finally, we use this to obtain an

explicit description of the metric structure of �σ∅
. These results are new, even in the

case of Euclidean persistence diagrams.

Theorem C The space of persistence diagrams �σ∅
at σ∅ ∈ D2(X , A) has diameter

at most π/2 and directions in �σ∅
corresponding to finite diagrams are dense in

�σ∅
. Moreover, consider elements in �σ∅

given by geodesics ξσ = {ξa}a∈σ and
ξσ ′ = {ξa′ }a′∈σ ′ joining σ∅ with σ, σ ′ ∈ D2(X , A), where ξa and ξa′ are geodesics in
X joining points in A with a and a′, respectively. Then

d2(σ, σ∅)d2(σ
′, σ∅) cos∠(ξσ , ξσ ′) = sup

φ : τ→τ ′

∑

a∈τ

d(a, A)d(a′, A) cos∠(ξa, ξφ(a)),

where d is the metric on X, d2 is the 2-Wasserstein metric, and φ ranges over all
bijections between subsets τ and τ ′ of points in σ and σ ′, respectively, such that
ξa(0) = ξφ(a)(0) for all a ∈ τ .

InD2(R
2,�), persistence diagrams in a neighborhood of the empty diagrammaybe

thought of as coming from noise. Thus, the space of directions at the empty diagram
may be interpreted as directions coming from noise. Theorem C implies that the
geometry at the empty diagram is singular, as directions at this point make an angle
of at most π/2. In particular, the infinitesimal geometry is not Euclidean. Hence,
embedding noisy sets of persistence diagrams into a Hilbert space might require large
metric distortions. This might be of relevance in the vectorization of sets of persistence
diagrams where noise might be present, which in turn plays a role in applying machine
learning to such sets (see, for example, Bubenik 2015; Carrière and Bauer 2019;
Kusano et al. 2017).

A further advantage of the metric pair framework is that it yields the existence of
Fréchet mean sets for certain classes of probability measures on generalized spaces
of persistence diagrams, as shown in Mileyko et al. (2011) in the Euclidean case.
The elements of Fréchet mean sets (which, a priori, may be empty) are also called
barycenters (see, for example, Afsari 2011) and may be interpreted as centers of mass
of the given probability measure. In the case of the spacesDp(X , A), we may interpret
a finite collection of persistence diagrams as a measure μ on Dp(X , A) with finite
support. An element of the corresponding Fréchet mean set then may be interpreted
as an average of the diagrams determining the measure. For the spacesDp(X , A), we
have the following result.

Theorem D Let μ be a Borel probability measure on Dp(X , A), 1 ≤ p < ∞. Then
the following assertions hold:

(1) If μ has finite second moment and compact support, then the Fréchet mean set of
μ is non-empty.

123



M. Che et al.

(2) If μ is tight and has rate of decay at infinity q > max{2, p}, then the Fréchet mean
set of μ is non-empty.

The proof of this theorem follows along the lines of the proofs of the corresponding
Euclidean statements in Mileyko et al. (2011), and hinges on the fact, easily shown,
that the characterization of totally bounded subsets of spaces of Euclidean persistence
diagrams given in Mileyko et al. (2011) also holds in the setting of metric pairs (see
Proposition A.11).

As mentioned above, our constructions include, as a special case, spaces of
Euclidean persistence diagrams, such as the classical space Dp(R

2,�). Our fourth
main result shows that different notions of dimension for this space are all infinite. We
let �n = {(v, v) ∈ R

2n : v ∈ R
n}.

Theorem E The space Dp(R
2n,�n), 1 ≤ n and 1 ≤ p < ∞, has infinite covering,

Hausdorff, asymptotic, Assouad, and Assouad–Nagata dimension.

It is known that every metric space of finite asymptotic dimension admits a coarse
embedding into some Hilbert space (see Roe 2003, Example 11.5). The spaces
Dp(R

2,�), 2 < p ≤ ∞, do not admit such embeddings (see Bubenik and Wagner
2020, Theorem 21; Wagner 2021, Theorem 3.2). Hence, their asymptotic dimension
is infinite (cf. Bubenik and Wagner 2020, Corollary 27). These observations, along
with Theorem E, immediately imply the following.

Corollary F The space Dp(R
2,�), 1 ≤ p ≤ ∞, has infinite asymptotic dimension.

Our analysis also shows that other spaces of Euclidean persistence diagrams appear-
ing in topological data analysis, such asDp(R

2n+ ,�n) andDp(R
2n≥0,�n), have infinite

asymptotic dimension as well (see Sect. 7 for precise definitions). One may think of
these spaces as parameter spaces for persistence rectangles in multidimensional per-
sistent homology (Bjerkevik 2021; Skryzalin andCarlsson 2017).We point out that the
proof of Theorem E is based on different arguments to those in Bubenik and Wagner
(2020), Wagner (2021) and provides a unified approach for all 1 ≤ p < ∞. The cru-
cial point in our proof is the general observation that, if a metric pair (X , A) contains
a curve whose distance to A grows linearly, then Dp(X , A) has infinite asymptotic
dimension (see Proposition 7.3). We point out that our arguments to prove Theo-
rem E can be used to prove an analogous result for the spaces of persistence diagrams
with finitely (but arbitrarily) many points equipped with the p-Wasserstein distance,
1 ≤ p < ∞, as defined, for example, in Bubenik and Elchesen (2022). Thus, all such
spaces have infinite Hausdorff, covering, asymptotic, Assouad, and Assouad–Nagata
dimensions (see Corollary 7.7).

Note that Theorem B (4) provides a systematic way of constructing examples of
Alexandrov spaces of non-negative curvature. In particular, by Theorem E, the space
D2(R

2n,�n) is an infinite-dimensional Alexandrov space. In contrast to the finite-
dimensional case, where every Alexandrov space is proper, there are few results about
infinite-dimensional Alexandrov spaces in the literature (see, for example, Plaut 2002,
Sect. 13, andmore recently,Mitsuishi 2010;Yokota 2012, 2014). Technical difficulties
occur that do not arise in finite dimensions (see, for example, Halbeisen 2000), and a
more thorough understanding of the infinite-dimensional case is lacking.
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Related work

Different generalizations of persistence diagrams have appeared in the persistent
homology literature, as well as their corresponding spaces of persistence diagrams. In
Patel (2018), Patel generalizes persistent diagram invariants of persistence modules
to cases where the invariants are associated to functors from a poset P to a sym-
metric monoidal category. In Kim and Mémoli (2021), Kim and Mémoli define the
notion of rank invariant for functors with indices in an arbitrary poset, which allows
defining persistence diagrams for any persistence module F over a poset regardless of
whether F is interval-decomposable or not. In Divol and Lacombe (2021), Divol and
Lacombe considered a persistence diagram as a discrete measure, expressing the dis-
tance between persistence diagrams as an optimal transport problem. In this context,
the authors introduced Radon measures supported on the upper half plane, general-
izing the notion of persistence diagrams, and studied the geometric and topological
properties of spaces of Radonmeasures. Bubenik and Elchesen considered a functor in
Bubenik and Elchesen (2022), which sends metric pairs to free commutative pointed
metric monoids and studied many algebraic properties of such a functor.

In Bubenik and Hartsock (2024), which followed the first version of the present
article, Bubenik and Hartsock studied topological and geometric properties of spaces
of persistence diagrams and also considered the setting of pairs (X , A). To address
the existence of optimal matchings and geodesics, non-negative curvature in the sense
of Alexandrov, and the Hausdorff and asymptotic dimension of spaces of persistence
diagrams, Bubenik and Hartsock require the set A ⊂ X to be distance minimizing,
i.e., for all x ∈ X , there exists a ∈ A such that dist(x, A) = d(x, a). This property
holds when X is proper and A is closed, which we assume in items (3) and (4) of
Theorem B. The authors of Bubenik and Hartsock (2024) also show that Dp(X , A)

has infinite asymptotic dimension when X is geodesic and proper, X/A is unbounded,
and A is distance minimizing. The spaces of Euclidean persistence diagrams on n ≥ 1
points equipped with the p-Wasserstein distance, 1 ≤ p ≤ ∞, have finite asymptotic
dimension and therefore admit a coarse embedding into a Hilbert space (see Mitra and
Virk 2021). On the other hand, the space of Euclidean persistence diagrams on finitely
many points equipped with the bottleneck distance has infinite asymptotic dimension
(Bubenik and Hartsock 2024, Corollary 27) and cannot be coarsely embedded into a
Hilbert space (see Mitra and Virk 2021, Theorem 4.3). Bubenik and Hartsock have
extended these results to metric pairs in Bubenik and Hartsock (2024). Carrière and
Bauer have studied the Assouad dimension and bi-Lipschitz embeddings of spaces of
finite persistence diagrams in Carrière and Bauer (2019). More recently, Bate et al.
(2024) have shown that the space of persistence barcodes with at most m-points can
be bi-Lipschitz embedded into 	2. They point out that their results also hold for gen-
eralized persistence diagrams as considered in the present article whenever X = 
,
A = ∂
, and 
 is a proper, open subset of R

n .
With respect to Fréchet means of probability measures defined on the spaces of

persistence diagrams, Divol and Lacombe in Divol and Lacombe (2021) investigated
the existence of such Fréchet means for probability measures defined on the space of
persistence measures in (R2,�) equipped with the optimal partial transport, which in
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particular contain the spaces Dp(R
2,�). Our results, although more particular in the

hypotheses that we impose on the probability measures considered, are more general
with respect to the spaces they are defined on.

Organization

Our article is organized as follows. In Sect. 2, we present the background on metric
pairs,metricmonoids, andAlexandrov spaces, and introduce the functorDp . In Sect. 3,
we define Gromov–Hausdorff convergence for metric pairs and prove Theorem A.
The proofs of items (1) and (2) in Theorem B and of Theorem D follow, with minor
modifications, along the same lines as those for the corresponding statements in the
Euclidean case. For the sake of completeness, we have included a full treatment of
these results in Appendix A. In Sect. 4, we analyze the geodesicity of the spaces
Dp(X , A) and prove item (3) of Theorem B. In Sect. 5, we analyze the existence of
lower curvature bounds for our spaces of persistence diagrams and prove item (4) of
Theorem B. In Sect. 6, we make some remarks about their local structure. Finally, in
Sect. 7we specialize our constructions to the spaces of Euclidean persistence diagrams,
which include the classical space of persistence diagrams, and prove Theorem E (cf.
Corollary 7.5).

2 Preliminaries

In this section, we collect preliminary material that we will use in the rest of the article
and prove some elementary results on the spaces of persistence diagrams. Our primary
reference for metric geometry will be Burago et al. (2001).

2.1 Metric pairs

Let X be a set. A map d : X × X → [0,∞) is a metric on X if d is symmetric,
satisfies the triangle inequality, and is definite, i.e. d(x, y) = 0 if and only if x = y. A
pseudometric space is defined similarly; while keeping the other properties, and still
requiring that d(x, x) = 0 for all x ∈ X , we allow for points x, y in X with x �= y
and d(x, y) = 0, in which case d is a pseudometric. We obtain extended metric and
extended pseudometric spaces if we allow for d to take the value ∞. Note that when
d is a pseudometric, points at distance zero from each other give a partition of X , and
d induces a metric in the corresponding quotient set.

Let (X , dX ), (Y , dY ) be two extended pseudometric spaces. A Lipschitz map
f : X → Y with Lipschitz constant C is a map such that dY ( f (x), f (x ′)) ≤
C · dX (x, x ′) for all x, x ′ ∈ X and y, y′ ∈ Y .

Definition 2.1 Let MetPair denote the category of metric pairs, whose objects,
Obj(MetPair), are pairs (X , A) such that (X , dX ) is a metric space and A ⊆ X is
closed and non-empty, and whose morphisms, Hom(MetPair), are relative Lipschitz
maps, i.e. Lipschitz maps f : (X , A) → (Y , B) such that f (A) ⊆ B. When A is a
point, we will talk about pointed metric spaces and pointed Lipschitz maps, i.e. Lips-
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chitz maps f : (X , {x}) → (Y , {y}) such that f (x) = y. We will denote the category
of pointed metric spaces byMet∗. Similarly, we define the category PMet∗ of pointed
pseudometric spaces, whose objects Obj(PMet∗), are pairs (D, {σ }) such that D is
a pseudometric space and σ is a point in D. The morphisms of PMet∗ are pointed
Lipschitz maps.

2.2 Commutative metric monoids and spaces of persistence diagrams

Some of the definitions and results in this subsection may be found in Bubenik and
Elchesen (2022), Bubenik and Elchesen (2022). For completeness, we provide full
proofs of all the statements. We will denote multisets by using two curly brackets {{·}}
and will usually denote persistence diagrams by Greek letters.

Let (X , d) be a metric space and fix p ∈ [1,∞]. We define the space (D̃(X), d̃p)

on X as the set of countable multisets {{x1, x2, . . .}} of elements of X equipped with
the p-Wasserstein pseudometric d̃p, which is given by

d̃p (̃σ , τ̃ )p = inf
φ : σ̃→τ̃

∑

x∈σ̃

d(x, φ(x))p (2.1)

if p < ∞, and

d̃p (̃σ , τ̃ ) = inf
φ : σ̃→τ̃

sup
x∈σ̃

d(x, φ(x)) (2.2)

if p = ∞, where φ ranges over all bijections between σ̃ and τ̃ in D̃(X). Here, by
convention, we set inf ∅ = ∞, that is, we have d̃p (̃σ , τ̃ ) = ∞ whenever σ̃ and τ̃ do
not have the same cardinality.

The function d̃p defines an extended pseudometric in D̃(X), since it is clearly
non-negative, symmetric, and the triangle inequality may be proved as follows: if
ρ̃, σ̃ , τ̃ ∈ D̃(X) have the same cardinality and φ : ρ̃ → σ̃ and ψ : σ̃ → τ̃ are
bijections, then ψ ◦ φ : ρ̃ → τ̃ is also a bijection and, if p < ∞, then

d̃p(ρ̃, τ̃ ) ≤
⎛

⎝
∑

x∈ρ̃

d(x, ψ ◦ φ(x))p

⎞

⎠
1/p

≤
⎛

⎝
∑

x∈ρ̃

(d(x, φ(x)) + d(φ(x), ψ ◦ φ(x)))p

⎞

⎠
1/p

≤
⎛

⎝
∑

x∈ρ̃

d(x, φ(x))p

⎞

⎠
1/p

+
⎛

⎝
∑

x∈ρ̃

d(φ(x), ψ ◦ φ(x))p

⎞

⎠
1/p

=
⎛

⎝
∑

x∈ρ̃

d(x, φ(x))p

⎞

⎠
1/p

+
⎛

⎝
∑

y∈σ̃

d(y, ψ(y))p

⎞

⎠
1/p

.
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Taking the infimum over bijections φ and ψ we get the claim. If the cardinalities of
ρ̃, σ̃ , τ̃ are not the same, the inequality is trivial, since both sides or just the right-hand
side would be infinite. For p = ∞ the argument is analogous and easier.

Given twomultisets σ̃ and τ̃ , we define their sum σ̃ +τ̃ to be their disjoint union.We
can make D̃(X) into a commutative monoid with monoid operation given by taking
sums of multisets, and with identity σ̃∅ the empty multiset. It is easy to check that d̃p

is (left-)contractive, that is, d̃p (̃σ , τ̃ ) ≥ d̃p(ρ̃ + σ̃ , ρ̃ + τ̃ ) for all σ̃ , τ̃ , ρ̃ ∈ D̃(X).
From now on, let (X , A) ∈ MetPair. Given σ̃ , τ̃ ∈ D̃(X), we write σ̃ ∼A τ̃ if

there exist α̃, β̃ ∈ D̃(A) such that σ̃ + α̃ = τ̃ + β̃. It is easy to verify that ∼A

defines an equivalence relation on D̃(X) such that, if α̃1 ∼A α̃2 and β̃1 ∼A β̃2, then
α̃1 + β̃1 ∼A α̃2 + β̃2, i.e. ∼A is a congruence relation on D̃(X) (see, for example,
Hungerford 1974, p. 27). We denote by D(X , A) the quotient set D̃(X)/∼A. Given
σ̃ ∈ D̃(X), we write σ for the equivalence class of σ̃ in D(X , A). Note that σ̃ ∼A τ̃

if and only if σ̃ \ A = τ̃ \ A, that is, σ̃ and τ̃ share the same points with the same
multiplicities outside A. The monoid operation on D̃(X) induces a monoid operation
on D(X , A) by defining σ + τ as the congruence class corresponding to σ̃ + τ̃ .

The function d̃p on D̃(X) induces a non-negative function
dp : D(X , A) × D(X , A) → [0,∞] defined by

dp(σ, τ ) = inf
α̃,β̃∈D̃(A)

d̃p (̃σ + α̃, τ̃ + β̃). (2.3)

Note that dp is also contractive, that is, dp(σ, τ ) ≥ dp(ρ + σ, ρ + τ) for all σ, τ,

ρ ∈ D(X , A).

Definition 2.2 The space of p-persistence diagrams on the pair (X , A), denoted by
Dp(X , A), is the set of all σ ∈ D(X , A) such that dp(σ, σ∅) < ∞.

Lemma 2.3 If σ̃ ∈ D̃(X) is a finite multiset, then σ ∈ Dp(X , A).

Proof Let σ̃ ∈ D̃(X) be a multiset of cardinality k < ∞. Since A ⊂ X is non-empty,
we can pick an element a∈A, and so there exists amultiset k {{a}} = {{a, . . ., a}} ∈D̃(A)

of cardinality k. Therefore, there exists a bijection between the finite multisets σ̃ and
k {{a}} = σ̃∅ + k {{a}}, implying that dp(σ, σ∅) ≤ d̃p (̃σ , σ̃∅ + k {{a}}) < ∞. ��
Lemma 2.4 The following assertions hold:

(1) If p = ∞, then the function dp is an extended pseudometric on D(X , A) and a
pseudometric on Dp(X , A).

(2) If p < ∞, then the function dp is an extended metric on D(X , A) and a metric on
Dp(X , A).

Proof We will first show that dp, 1 ≤ p ≤ ∞, is an extended pseudometric. We will
then show that, for p < ∞, the function dp is an extended metric.

It is clear that, for all p ∈ [1,∞], the function dp is symmetric, non-negative, and
dp(σ, σ ) = 0 for all σ ∈ D(X , A). The triangle inequality follows from the facts that
D̃(X) is commutative and that d̃p is contractive. More precisely, fix ρ̃, σ̃ , τ̃ ∈ D̃(X),
and let ε > 0. By the definition of dp, there exist α̃, β̃, γ̃ , δ̃ ∈ D̃(A) such that
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d̃p(ρ̃ + α̃, σ̃ + β̃) ≤ dp(ρ, σ ) + ε and d̃p (̃σ + γ̃ , τ̃ + δ̃) ≤ dp(σ, τ ) + ε. Using the
commutativity of D̃(X), the contractivity of d̃p, and the triangle inequality for d̃p, we
get

dp(ρ, τ ) ≤ d̃p(ρ̃ + α̃ + γ̃ , τ̃ + β̃ + δ̃)

≤ d̃p(ρ̃ + α̃ + γ̃ , σ̃ + β̃ + γ̃ ) + d̃p (̃σ + β̃ + γ̃ , τ̃ + β̃ + δ̃)

≤ d̃p(ρ̃ + α̃, σ̃ + β̃) + d̃p (̃σ + γ̃ , τ̃ + δ̃)

≤ dp(ρ, σ ) + dp(σ, τ ) + 2ε.

Our choice of ε > 0 was arbitrary, implying that dp(ρ, τ ) ≤ dp(ρ, σ ) + dp(σ, τ ),
as required. Hence, dp is an extended pseudometric on D(X , A). By the triangle
inequality, dp is a pseudometric on Dp(X , A). Indeed, if σ, τ ∈ Dp(X , A), then
dp(σ, τ ) ≤ dp(σ, σ∅) + dp(τ, σ∅) < ∞. This completes the proof of part (1).

Now, we prove part (2). Fix p < ∞ and let σ̃ , τ̃ ∈ D̃(X) be multisets such that
σ �= τ . It then follows that there exists a point u ∈ X \ A which appears in σ̃ and τ̃ with
different multiplicities (which includes the case when it has multiplicity 0 in one of the
diagrams andpositivemultiplicity in the other).Without loss of generality, suppose that
u appears with higher multiplicity in σ̃ . Now let ε1 = inf{d(u, v) : v ∈ τ̃ , v �= u}.
Observe that ε1 > 0 since, otherwise, there would be a sequence of points in τ̃

converging to u in X , which in turn would imply that dp(τ, σ∅) = ∞. Let ε2 > 0 be
such that d(u, a) ≥ ε2 for all a ∈ A, which exists since u ∈ X \ A and X \ A is open
in X . We set ε = min{ε1, ε2}. Now, for any α̃, β̃ ∈ D̃(A), if φ : σ̃ + α̃ → τ̃ + β̃ is a
bijection, then φ must map some copy of u ∈ σ̃ to a point v ∈ τ̃ + β̃ with d(u, v) ≥ ε,
implying that d̃p (̃σ + α̃, τ̃ + β̃) ≥ ε. By taking the infimum over all α̃, β̃ ∈ D̃(A), it
follows that dp(σ, τ ) ≥ ε > 0, as required. This shows that dp is an extended metric
on D(X , A). The triangle inequality implies, as in part (1), that dp is a metric on
Dp(X , A). This completes the proof of part (2). ��

For p < ∞, the metric dp is the p-Wasserstein metric. The following example
shows that, for p = ∞, the function dp is not a metric, only a pseudometric.

Example 2.5 Let (X , A) be a metric pair such that there exists a sequence {xn}n∈N of
different points which converges to some x∞ ∈ X \ A and x∞ �= xn for all n ∈ N.
Then the multisets σ̃ = {{xn : n ∈ N}} and τ̃ = {{xn : n ∈ N}}∪ {x∞} induce diagrams
σ, τ ∈ D∞(X , A) such that σ �= τ and d∞(σ, τ ) = 0 as can be seen considering the
sequence of bijections φn : σ̃ → τ̃ given by

φn(xi ) =

⎧
⎪⎨

⎪⎩

xi if i < n

xi−1 if i > n

x∞ if i = n

.

Thus D∞(X , A) is a pseudometric space but not a metric space.

From now on, unless stated otherwise, we will only consider metric pairs (X , A)

where X is a metric space. Also, for the sake of simplicity, we will treat elements
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in Dp(X , A) as multisets, with the understanding that whenever we do so we are
actually dealing with representatives of such elements in D̃(X). Thus, for instance,
we will consider things like x ∈ σ for σ ∈ Dp(X , A) or bijections φ : σ → τ for
σ, τ ∈ Dp(X , A),meaning there are representatives σ̃ and τ̃ and a bijection φ̃ : σ̃ → τ̃ .
We point out that the constructions discussed above can be carried out for extended
pseudometric spaces with straightforward adjustments.

Given two metric pairs (X , A) and (Y , B), their disjoint union is the space
(X � Y , A � B). We can form the extended pseudometric space (X � Y , dX�Y ),
where dX�Y |(X×X) = dX , dX�Y |(Y×Y ) = dY and dX�Y (x, y) = ∞ for all x ∈ X
and y ∈ Y . The following result is an immediate consequence of the definition of the
space (Dp(X , A), dp).

Proposition 2.6 If (X , A) and (Y , B) are metric pairs, then

Dp(X � Y , A � B) = Dp(X , A) ×p Dp(Y , B),

where U ×p V denotes the space U × V endowed with the metric

dU ×p dV ((u1, v1), (u2, v2)) = (
dU (u1, u2)

p + dV (v1, v2)
p)1/p

if p < ∞, and

dU ×p dV ((u1, v1), (u2, v2)) = max{dU (u1, u2), dV (v1, v2)}

if p = ∞.

Proof It is clear that for any σ ∈ Dp(X �Y , A� B), we can write σ = σ(X ,A) +σ(Y ,B)

with σ(X ,A) ∈ Dp(X , A) and σ(Y ,B) ∈ Dp(Y , B). Therefore, given σ, τ ∈ Dp(X �
Y , A � B), we have

dp(σ, τ )p = dp(σ(X ,A), τ(X ,A))
p + dp(σ(Y ,B), τ(Y ,B))

p

= dp ×p dp((σ(X ,A), σ(Y ,B)), (τ(X ,A), τ(Y ,B)))
p

if p < ∞, and

dp(σ, τ ) = max{dp(σ(X ,A), τ(X ,A)), dp(σ(Y ,B), τ(Y ,B))}

if p = ∞. ��
Remark 2.7 Note that, if we allow (X , A) and (Y , B) to be extended metric pairs, then
the disjoint union (X � Y , A � B) with the metric dX�Y defines a coproduct in the
categoryMetPair of extended metric pairs whose objects are extended metric pairs and
whose morphisms are relative Lipschitz maps (cf. Definition 2.1).
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Definition 2.8 Given a metric pair (X , A), and a relative map f : (X , A) → (Y , B)

(i.e. such that f (A) ⊂ B), we define a pointed map f∗ : (Dp(X , A), σ∅) →
(Dp(Y , B), σ∅) as follows. Given a persistence diagram σ ∈ Dp(X , A), we let

f∗(σ ) = {{ f (x) : x ∈ σ }} . (2.4)

We now define the functor Dp, which we will study in the remaining sections.

Proposition 2.9 Consider the map Dp : (X , A) �→ (Dp(X , A), σ∅).

(1) If p = ∞, then Dp is a functor from the category MetPair of metric pairs equipped
with relative Lipschitz maps to the category PMet∗ of pointed pseudometric spaces
with pointed Lipschitz maps.

(2) If p < ∞, then Dp is a functor from the category MetPair of metric pairs equipped
with relative Lipschitz maps to the category Met∗ of pointed metric spaces with
pointed Lipschitz maps.

Proof Consider a C-Lipschitz relative map f : (X , A) → (Y , B), i.e. dY ( f (x), f (y))

≤ CdX (x, y) holds for all x, y ∈ X for some C > 0. We will prove that the pointed
map f∗, defined in (2.4), restricts to a C-Lipschitz map Dp(X , A) → Dp(Y , B).

First, given σ ∈ Dp(X , A) a p-diagram, we need to prove that f∗(σ ) ∈ Dp(Y , B).
For any σ , we have

dp( f∗(σ ), σ∅)p =
∑

x∈σ

dY ( f (x), B)p ≤
∑

x∈σ

dY ( f (x), f (ax ))
p ≤ C p

∑

x∈σ

dX (x, ax )
p

for any choice {ax }x∈σ ⊂ A. Since this choice is arbitrary,

dp( f∗(σ ), σ∅)p ≤ C p
∑

x∈σ

dX (x, A)p = C pdp(σ, σ∅) < ∞.

Now consider two diagrams σ, σ ′ ∈ Dp(X , A). Observe that, if φ : σ → σ ′ is
a bijection, then it induces a bijection f∗φ : f∗(σ ) → f∗(σ ′) given by f∗φ(y) =
f (φ(x)) whenever y = f (x) for some x ∈ σ . Therefore

dp( f∗(σ ), f∗(σ ′))p ≤
∑

y∈ f∗(σ )

d(y, f∗φ(y))p =
∑

x∈σ

d( f (x), f (φ(x)))p

≤ C p
∑

x∈σ

d(x, φ(x))p.

Since φ : σ → σ ′ is an arbitrary bijection, we get that

dp( f∗(σ ), f∗(σ ′)) ≤ Cdp(σ, σ ′).

Thus, f∗ : Dp(X , A) → Dp(Y , B) is C-Lipschitz.
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Now consider two relative Lipschitz maps f : (X , A) → (Y , B) and g : (Y , B) →
(Z , C). Let σ ∈ Dp(X , A). Then

(g ◦ f )∗(σ ) = {{g ◦ f (x) : x ∈ σ }} = g∗({{ f (x) : x ∈ σ }}) = g∗ ◦ f∗(σ ).

Thus, (g ◦ f )∗ = g∗ ◦ f∗.
Finally, if Id : (X , A) → (X , A) is the identity map, it is clear that

Id∗ : Dp(X , A) → Dp(X , A) is also the identity map. Thus, Dp defines a functor. ��
Remark 2.10 Note that we could have proved that Dp defines a functor on the cate-
gory of metric spaces equipped with isometries or even bi-Lipschitz maps. However,
Proposition 2.9 is more general.

Remark 2.11 Proposition 2.9 implies that, if (X , A) is a metric pair and (g, x) �→ g · x
is an action of a group G on (X , A) via relative bi-Lipschitz maps, then we get an
action of G on Dp(X , A) given by

g · σ = {{g · a : a ∈ σ }} .

Observe that the Lipschitz constant of the bi-Lipschitz maps in the group action is
preserved by the functor Dp. Hence, if G acts by relative isometries on (X , A) (i.e.,
by isometries f : X → X such that f (A) ⊆ A) then so does the induced action on
Dp(X , A).

Remark 2.12 We point out that Dp is, in fact, a functor fromMetPair to CMon(Met∗),
the categoryof commutative pointedmetricmonoids (seeBubenik andElchesen2022).
In this case, given a map f : (X , A) → (Y , B), the induced map f∗ : Dp(X , A) →
Dp(Y , B) is a monoid homomorphism. Composing the functor Dp with the forgetful
functor one obtains the map toMetPair. In this work we consider this last composition,
since we are mainly focused on the metric properties of the spaces Dp(X , A), and
leave the study of the algebraic properties of the monoids Dp(X , A) for future work.

Consider now the quotient metric space X/A, namely, the quotient space induced
by the partition {{x} : x ∈ X \ A} � {A} endowed with the metric given by

d([x], [y]) = min{d(x, y), d(x, A) + d(y, A)}

for any x, y ∈ X (cf. Munkres 2000, Ch. 2, Sect. 22 and Burago et al. 2001, Definition
3.1.12). It follows from (Bubenik and Elchesen 2022, Remark 4.14 and Lemma 4.24)
thatDp(X , A) andDp(X/A, [A]) are isometrically isomorphic.Wehave the following
commutative diagrams of functors. For p = ∞,

MetPair PMet∗

Met∗ PMet∗

D∞

Q ∼=
D∞

(2.5)
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and, for p < ∞,

MetPair Met∗

Met∗ Met∗

Dp

Q ∼=
Dp

(2.6)

both given by

(X , A) (Dp(X , A), σ∅)

(X/A, [A]) (Dp(X/A, [A]), σ∅)

.

Observe that the map Dp(X , A) �→ Dp(X/A, [A]) is a natural isomorphism. There-
fore, diagrams (2.6) and (2.5) show that the functor Dp factors through the quotient
functorQ : (X , A) �→ (X/A, [A]) and the functor (X/A, [A]) �→ Dp(X/A, [A]) for
p ∈ [1,∞].
Remark 2.13 Note that we also have the following commutative diagrams of functors.
For p = ∞,

MetPair PMetPair

Met∗ PMet∗

Q ∼= (2.7)

and, for p < ∞,

MetPair MetPair

Met∗ Met∗

Q ∼= (2.8)

both given by

(X , A) (D̃(X), D̃(A), d̃p)

(X/A, [A]) (D(X/A, [A]), σ∅, dp)

.

here the categories PMetPair, PMet∗, MetPair and Met∗ consist of extended
(pseudo)metric pairs and pointed (pseudo)metric spaces respectively.

Remark 2.14 Observe that the subspace of Dp(X , A) ∼= Dp(X/A, [A]) consisting
of diagrams with finitely many points can be identified, as a set, with the infinite
symmetric product of the pointed space (X/A, [A]) (see Hatcher 2002, p. 282, for
the relevant definitions). These two spaces, however, might not be homeomorphic in
general, as the infinite symmetric product is not metrizable unless A is open in X (see,
for instance, Wofsey 2015).
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2.3 Alexandrov spaces

Let X be a metric space. The length of a continuous path ξ : [a, b] → X is given by

L(ξ) = sup

{
n−1∑

i=0

d(ξ(ti ), ξ(ti+1))

}
,

where the supremum is taken over all finite partitions a = t0 ≤ t1 ≤ · · · ≤ tn = b of
the interval [a, b]. A geodesic space is a metric space X where for any x, y ∈ X there
is a shortest path (or minimizing geodesic) between x, y ∈ X , i.e. a path ξ such that

d(x, y) = L(ξ). (2.5)

In general, a path ξ : J → X , where J is an interval, is said to be geodesic if each
t ∈ J has a neighborhood U ⊂ J such that ξ |U is a shortest path between any two of
its points.

We will also consider the model spaces M
n
k given by

M
n
κ =

⎧
⎪⎪⎨

⎪⎪⎩

S
n
(

1√
κ

)
, if κ > 0,

R
n, if κ = 0,

H
n
(

1√−κ

)
, if κ < 0.

Definition 2.15 A geodesic triangle �pqr in X consists of three points p, q, r ∈ X
and three minimizing geodesics [pq], [qr ], [r p] between those points. A comparison
triangle for �pqr in M

2
k is a geodesic triangle �̃k pqr = � p̃q̃r̃ in M

2
k such that

d( p̃, q̃) = d(p, q), d(q̃, r̃) = d(q, r), d (̃r , p̃) = d(r , p).

Definition 2.16 We say that X is an Alexandrov space with curvature bounded below
by k if X is complete, geodesic and can be covered with open sets with the following
property (cf. Fig. 1):

(T) For any geodesic triangle �pqr contained in one of these open sets, any com-
parison triangle �̃k pqr in M

2
k and any point x ∈ [qr ], the corresponding point

x̃ ∈ [̃qr̃ ] such that d(q̃, x̃) = d(q, x) satisfies

d(p, x) ≥ d( p̃, x̃).

ByToponogov’sGlobalizationTheorem, if X is anAlexandrov spacewith curvature
bounded below by k, then property (T) above holds for any geodesic triangle in X
(see, for example, Plaut 2002, Sect. 3.4). Well-known examples of Alexandrov spaces
include complete Riemannian n-manifolds with a uniform lower sectional curvature
bound, orbit spaces of such manifolds by an effective, isometric action of a compact
Lie group, and, in infinite dimension,Hilbert spaces. The latter are instances of infinite-
dimensional Alexandrov spaces of non-negative curvature.
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r

p

q
x

X

r

p

qx

M
2
κ

Fig. 1 The condition for a complete geodesic metric space X to be an Alexandrov space with curvature
≥ κ . Here, the curves [pq], [qr ], [r p], [px], [ p̃q̃], [̃qr̃ ], [̃r p̃], [ p̃x̃] are geodesics, and the length of [pq]
(respectively, [r p], [qx], [xr ]) is equal to the length of [ p̃q̃] (respectively, [̃r p̃], [̃qx̃], [̃xr̃ ]). Condition (T)
then says that the length of [ p̃x̃] is not greater than the length of [px]

The angle between two minimizing geodesics [pq], [pr ] in an Alexandrov space
X is defined as

∠qpr = lim
q1,r1→p

{∠q̃1 p̃̃r1 : q1 ∈ [pq], r1 ∈ [pr ]}.

Geodesics that make an angle zero determine an equivalence class called tangent
direction. The set of tangent directions at a point p ∈ X is denoted by �′

p. When
equipped with the angle distance ∠, the set �′

p is a metric space. Note that the metric
space (�′

p,∠) may fail to be complete, as one can see by considering directions at a
point in the boundary of the unit disc D in the Euclidean plane, D being anAlexandrov

space of non-negative curvature. The completion of
(
�′

p,∠
)
is called the space of

directions of X at p, and is denoted by�p. Note that in a complete, finite-dimensional
Riemannian manifold Mn with sectional curvature uniformly bounded below, the
space of directions at any point is isometric to the unit sphere in the tangent space to
the manifold at the given point. For further basic results on Alexandrov geometry, we
refer the reader to Burago et al. (2001), Burago et al. (1992), Plaut (2002).

We conclude this section by briefly recalling the definition of the Hausdorff dimen-
sion of a metric space (see Burago et al. 2001, Sect. 1.7, for further details). One may
show that the Hausdorff dimension of an Alexandrov space is an integer or infinite
(see Burago et al. 2001, Corollary 10.8.21 and Exercise 10.8.22).

Let X be a metric space and denote the diameter of a subset S ⊂ X by diam(S).
For any δ ∈ [0,∞) and any ε > 0, let

Hδ
ε(X) = inf

{
∑

i∈N

(diam(Si ))
δ : X ⊂

⋃

i∈N

Si and diam(Si ) < ε

}
,

where {Si }i∈N is a countable covering of X by sets of diameter less than ε. Note that
if no such covering exists, then Hδ

ε(X) = ∞. The δ-dimensional Hausdorff measure
of X is given by

123



M. Che et al.

Hδ(X) = ωδ · lim
ε↘0

Hδ
ε(X),

where ωδ > 0 is a normalization constant such that, if δ is an integer n, the n-
dimensional Hausdorff measure of the unit cube in n-dimensional Euclidean spaceR

n

is 1. This is achieved by letting ωn be the Lebesgue measure of the unit ball in R
n . As

its name indicates, the Hausdorff measure is a measure on the Borel σ -algebra of X .
One may show that there exists 0 ≤ δo ≤ ∞ such that Hδ(X) = 0 for all δ > δo and
Hδ(X) = ∞ for all δ < δo. We then define the Hausdorff dimension of X , denoted
by dimH (X), to be δo. Thus,

dimH (A) = sup{ δ : Hδ(X) > 0 } = sup{ δ : Hδ(X) = ∞}
= inf{ δ : Hδ(X) = 0 } = inf{ δ : Hδ(X) < ∞}.

3 Gromov–Hausdorff convergence and sequential continuity

In this section, we investigate the continuity of the functors Q and Dp defined in the
preceding section. Since Dp, p < ∞, takes values in Met∗, the category of pointed
metric spaces, whileD∞ takes values in PMet∗, the category of pointed pseudometric
spaces, we will consider each case separately. As both Q and Dp are defined on
MetPair, the category ofmetric pairs, wewill first define a notion ofGromov–Hausdorff
convergence ofmetric pairs (X , A).We do this in such away that when A is a point, our
definition implies the usual pointedGromov–Hausdorff convergence of pointedmetric
spaces (see Burago et al. 2001, Definition 8.1.1 and Herron 2016; cf. Jansen 2017,
Definition 2.1 for the case of proper metric spaces; see also Definition 3.4 below).
After showing that Q : MetPair → Met∗ is sequentially continuous with respect to
the Gromov–Hausdorff convergence of metric pairs, and that Dp : MetPair → Met∗,
p < ∞, is not always sequentially continuous, we will prove the sequential continuity
of D∞ : MetPair → PMet∗ with respect to the Gromov–Hausdorff convergence of
metric pairs onMetPair and pointed Gromov–Hausdorff convergence of pseudometric
spaces on PMet∗.

Definition 3.1 (Gromov–Hausdorff convergence for metric pairs) A sequence
{(Xi , Ai )}i∈N of metric pairs converges in the Gromov–Hausdorff topology to a met-
ric pair (X , A) if there exist sequences {εi }i∈N and {Ri }i∈N of positive numbers with
εi ↘ 0, Ri ↗ ∞, and εi -approximations from B Ri (Ai ) to B Ri (A) for each i ∈ N,
i.e. maps fi : B Ri (Ai ) → X satisfying the following three conditions:

(1) |dXi (x, y) − dX ( fi (x), fi (y)| ≤ εi for any x, y ∈ B Ri (Ai );
(2) dH ( fi (Ai ), A) ≤ εi , where dH stands for the Hausdorff distance in X ;
(3) B Ri (A) ⊂ Bεi ( fi (B Ri (Ai ))).

We will denote the Gromov–Hausdorff convergence of metric pairs by

(Xi , Ai )
G HPair−−−−→ (X , A) and the pointed Gromov–Hausdorff convergence by

(Xi , xi )
G H∗−−→ (X , x).
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With Definition 3.1 in hand, we now show that the functor Q is continuous, while
Dp is not necessarily continuous when p < ∞.

Proposition 3.2 The quotient functor Q : MetPair → Met∗, given by (X , A) �→
(X/A, [A]), is sequentially continuous with respect to the Gromov–Hausdorff con-
vergence of metric pairs.

Proof We will prove that, if there exist sequences {εi }i∈N and {Ri }i∈N of posi-
tive numbers with εi ↘ 0, Ri ↗ ∞ and εi -approximations from B Ri (Ai ) to
B Ri (A), then there exist (5εi )-approximations from B Ri ([Ai ]) ⊂ (Xi/Ai , [Ai ]) to
B Ri ([A]) ⊂ (X/A, [A]). For ease of notation, we will omit the subindices in the
metric which indicate the corresponding metric space.

Let fi be an εi -approximation from B Ri (Ai ) to B Ri (A) in the sense of Defini-
tion 3.1. Then, for any x ∈ B Ri (Ai ), ai ∈ Ai , we have

|d(x, ai ) − d( fi (x), fi (ai ))| ≤ εi

which implies

|d(x, Ai ) − d( fi (x), fi (Ai ))| ≤ εi . (3.1)

Moreover, for any ai ∈ Ai and a ∈ A, we have

|d( fi (x), fi (ai )) − d( fi (x), a)| ≤ d( fi (ai ), a)

and, since dH ( fi (Ai ), A) ≤ εi , this yields

|d( fi (x), fi (Ai )) − d( fi (x), A)| ≤ εi . (3.2)

Combining inequalities (3.1) and (3.2), we get

|d(x, Ai ) − d( fi (x), A)| ≤ 2εi .

Now, for each i , define f
i
: B Ri ([Ai ]) → X/A by

f
i
([x]) =

{
[ fi (x)] if [x] �= [Ai ],
[A] if [x] = [Ai ].

We will prove that f is a (5εi )-approximation from B Ri ([Ai ]) to B Ri ([A]). Indeed,
consider [x], [y] ∈ B Ri ([Ai ]). Then x, y ∈ BRi (Ai ) and therefore

|d([x], [y]) − d( f
i
([x]), f

i
([y]))| = |min{d(x, y), d(x, Ai ) + d(y, Ai )}

− min{d( fi (x), fi (y)), d( fi (x), A) + d( fi (y), A)}|
≤ |d(x, y) − d( fi (x), fi (y))| + |d(x, Ai )

− d( fi (x), A)| + |d(y, Ai ) − d( fi (y), A)|
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≤ εi + 2εi + 2εi = 5εi .

If [x] �= [Ai ] and [y] = [Ai ], then

|d([x], [y]) − d( f
i
([x]), f

i
([y]))| = |d(x, Ai ) − d( fi (x), A)| ≤ 2εi .

A similar inequality is obtained when [y] �= [Ai ] and [x] = [Ai ]. When both
[x] = [Ai ] and [y] = [Ai ], we get

|d([x], [y]) − d( f
i
([x]), f

i
([y]))| = 0.

In any case, we see that the distortion of f
i
is ≤ 5εi , which is item (1)xm(1) in

Definition 3.1.
For item (2) in Definition 3.1, we simply observe that by definition of f

i
they are

pointed maps.
Finally, we see that for [y] ∈ BRi ([A]) we have d(y, A) ≤ Ri , so given that fi

is an εi -approximation from BRi (Ai ) to BRi (A) there exists x ∈ BRi (Ai ) such that
d(y, fi (x)) ≤ εi . Therefore,

d([y], f
i
([x])) ≤ d(y, fi (x)) ≤ εi .

Thus [y] ∈ Bεi ( f
i
(BRi (Ai ))). This gives item (3) in Definition 3.1. ��

Example 3.3 (Dp : MetPair → Met∗with p < ∞ is not sequentially continuous) Let
Xi = [− 1

i ,
1
i ] ⊂ R and set Ai = X = A = {0}. Then Dp(X , A) = {σ∅}. Observe

that for p �= ∞, the spaceDp(Xi , Ai ) is unbounded. Indeed, if σn is the diagram that
contains a single point, 1/i , with multiplicity n, then dp(σn, σ∅) = p

√
n/i → ∞ as

n → ∞.
Now, let σ i

∅
∈ Dp(Xi , Ai ) be the empty diagram and suppose, for the sake of

contradiction, that there exist εi -approximations fi : B Ri (σ
i
∅

) → Dp(X , A) for some
εi ↘ 0 and Ri ↗ ∞. Then

|dp(σ, σ i
∅

) − dp( fi (σ ), fi (σ
i
∅

))| ≤ εi

for all σ ∈ B Ri (σ
i
∅

). However, we have dp( fi (σ ), f (σ i
∅

)) = dp(σ∅, σ∅) = 0,
implying that

dp(σ, σ i
∅

) ≤ εi (3.3)

for all σ ∈ B Ri (σ
i
∅

). As εi → 0 and Ri → ∞ as i → ∞, inequality (3.3) contradicts
the fact that Dp(Xi , Ai ) is unbounded for each i .

Finally, we turn our attention to the functorD∞. Recall, from Sect. 2, thatD∞ takes
values in PMet∗, the category of pointed pseudometric spaces. Thus, to discuss the
continuity ofD∞, wemust first define a notion of Gromov–Hausdorff convergence for
pointed pseudometric spaces. We define this convergence in direct analogy to pointed
Gromov–Hausdorff convergence of pointed metric spaces.
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Definition 3.4 (Gromov–Hausdorff convergence for pointed pseudometric spaces) A
sequence {(Di , σi )}i∈N of pointed pseudometric spaces converges in the Gromov–
Hausdorff topology to a pointed pseudometric space (D, σ ) if there exist sequences
{εi }i∈N and {Ri }i∈N of positive numberswith εi ↘ 0, Ri ↗ ∞, and εi -approximations
from B Ri (σi ) to B Ri (σ ) for each i ∈ N, i.e. maps fi : B Ri (σi ) → D satisfying the
following three conditions:

(1) |dDi (x, y) − dD( fi (x), fi (y)| ≤ εi for any x, y ∈ B Ri (σi );
(2) d( fi (σi ), σ ) ≤ εi ;
(3) B Ri (σ ) ⊂ Bεi ( fi (B Ri (σi ))).

As for metric spaces, we will also denote the Gromov–Hausdorff convergence of

pseudometric pairs by (Di , σi )
G H∗−−→ (D, σ ).

Given a pseudometric space D, we will denote by D the metric quotient D/ ∼,
where c ∼ d if and only if dD(c, d) = 0. We also denote sometimes by x the image
of x ∈ D under the metric quotient. The following proposition shows that pointed
Gromov–Hausdorff convergence of pseudometric spaces induces pointed Gromov–
Hausdorff convergence of the corresponding metric quotients.

Proposition 3.5 Let {(Di , σi )}i∈N, (D, σ ) be pointed pseudometric spaces and let
πi : Di → Di , π : D → D be the canonical metric identifications. Then the following
assertions hold:

(1) If (Di , σi )
G H∗−−→ (D, σ ), then (Di , σ i )

G H∗−−→ (D, σ ).

(2) If (Di , σ i )
G H∗−−→ (D, σ ), then (Di , σi )

G H∗−−→ (D, σ ).

Proof For each i , consider si : Di → Di such that πi (si (x)) = x for all x ∈ Di
and s : D → D similarly. These maps exist due to the axiom of choice. Let fi be
εi -approximations from B Ri (σi ) to B Ri (σ ). Define f

i
: B Ri (σ i ) → D as

f
i
(x) = π( fi (si (x)))

for any x ∈ Di . Then f
i
is a (2εi )-approximation from B Ri (σ i )) to B Ri (σ ). Indeed,

|d(x, y) − d( f
i
(x), f

i
(y))| = |d(si (x), si (y)) − d( fi (si (x)), fi (si (y)))| ≤ εi .

Also

d( f
i
(σ i ), σ ) = d( fi (si (σ i )), σ )

≤ d( fi (si (σ i )), fi (σi )) + d( fi (σi ), σ )

≤ d(si (σ i ), σi ) + εi + d( fi (σi ), σ )

≤ 2εi .

Moreover, if d(x, π(σ )) ≤ Ri then d(s(x), σ ) ≤ Ri . Then there is some y ∈ Di with
d(y, σi ) ≤ Ri such that d(s(x), fi (y)) ≤ εi . Therefore,
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d(x, f
i
(y)) = d(s(x), fi (si (y)))

≤ d(s(x), fi (y)) + d( fi (y), fi (si (y)))

≤ εi + d(y, si (y)) + εi

= 2εi .

This proves item (1).
Conversely, given f

i
an εi -approximation from B Ri (σ i ) to B Ri (σ ), we can define

fi : B Ri (σi ) → D as

fi (x) = s( f
i
(x))

for any x ∈ Di . Then fi is an εi -approximation from B Ri (σi ) to B Ri (σ ). Indeed,

|d(x, y) − d( fi (x), fi (y))| = |d(x, y) − d( f
i
(x), f

i
(y))| ≤ εi .

Moreover

d( fi (σi ), σ ) = d( f
i
(σ i ), σ ) ≤ εi .

Finally, if d(x, σ ) ≤ Ri then there exists y ∈ Di such that d(y, σ i ) ≤ Ri and
d(x, f

i
(y)) ≤ εi , or equivalently, d(x, fi (y)) ≤ εi . This proves item (2). ��

In particular, if we consider the following commutative diagram

MetPair PMet∗

Met∗

D∞

π◦D∞
π

where π : PMet∗ → Met∗ is the canonical metric identification functor, then D∞ is
continous if and only if π ◦ D∞ is continuous.

We will now show that, if (Xi , Ai )
G HPair−−−−→ (X , A), then

(D∞(Xi , Ai ), σ
i
∅

)
G H∗−−→ (D∞(X , A), σ∅).

Proposition 3.6 The functor (X , A) �→ (D∞(X , A), σ∅) is sequentially continuous
with respect to the Gromov–Hausdorff convergence of metric pairs.

Proof Let (Xi , Ai )
G H−→ (X , A), Ri ↗ ∞, εi ↘ 0, and fi be εi -approximations from

B Ri (Ai ) to B Ri (A). We can define a map ( fi )∗ : B Ri (σ
i
∅

) → D∞(X , A) as

( fi )∗(σ ) = {{ fi (x) : x ∈ σ \ Ai }} .

We will prove that ( fi )∗ is a (3εi )-approximation from B Ri (σ
i
∅

) to B Ri (σ∅).

123



Metric geometry of spaces of persistence diagrams

Let σ, σ ′ ∈ D∞(Xi , Ai ). We now show that, for any bijection φ : σ → σ ′, there
exists a bijection φ∗ : ( fi )∗(σ ) → ( fi )∗(σ ′) such that

∣∣∣∣∣supx∈σ
dXi (x, φ(x)) − sup

y∈( fi )∗(σ )

dX (y, φ∗(y))

∣∣∣∣∣ ≤ 3εi , (3.4)

and, conversely, that for any bijection φ∗ : ( fi )∗(σ ) → ( fi )∗(σ ′), there exists a bijec-
tion φ : σ → σ ′ such that inequality (3.4) holds.

Indeed, let φ : σ → σ ′ be a bijection, and let x ∈ σ and x ′ ∈ σ ′ be such that
φ(x) = x ′. We set φ∗(̂x) = x̂ ′, where, given any z ∈ Xi , we set ẑ = fi (z) if z /∈ Ai ,
and we set ẑ ∈ A to be a point such that dX ( fi (z), ẑ) ≤ εi if z ∈ Ai . In the latter
case, such a choice is possible by item (2) in Definition 3.1. In particular, in either case
we have dX ( fi (z), ẑ) ≤ εi . Up to changing representatives of ( fi )∗(σ ) and ( fi )∗(σ ′)
in D∞(X , A), this completely defines a bijection φ∗ : ( fi )∗(σ ) → ( fi )∗(σ ′), and we
have

∣∣dXi (x, x ′) − dX (̂x, x̂ ′)
∣∣ ≤ ∣∣dXi (x, x ′) − dX ( fi (x), fi (x ′))

∣∣

+ ∣∣dX ( fi (x), fi (x ′)) − dX (̂x, fi (x ′))
∣∣

+ ∣∣dX (̂x, fi (x ′)) − dX (̂x, x̂ ′)
∣∣

≤ εi + dX ( fi (x), x̂) + dX ( fi (x ′), x̂ ′)
≤ 3εi

by item (1) in Definition 3.1 and the triangle inequality. Taking the supremum over
all x ∈ σ yields inequality (3.4).

Conversely, let θ : ( fi )∗(σ ) → ( fi )∗(σ ′) be a bijection, and let y ∈ ( fi )∗(σ ) and
y′ ∈ ( fi )∗(σ ′) be such that θ(y) = y′. We define a bijection θ̆ : σ → σ ′ by setting
θ̆ (y̆) = y̆′, where, given any z ∈ X (viewed as an element in the multiset ( fi )∗(σ ) or
( fi )∗(σ ′)), we set z̆ ∈ Xi to be such that fi (z̆) = z if z is defined as fi (x) for some
x ∈ Xi , and such that z̆ ∈ Ai and dX ( fi (z̆), z) ≤ εi otherwise. In the latter case, we
must have z ∈ A and hence such a choice is possible by item (2) in Definition 3.1.

Similarly as above, we can then show that
∣∣∣dXi (y̆, y̆′) − dX (y, y′)

∣∣∣ ≤ 3εi , and hence

(3.4) holds with φ = θ̆ and φ∗ = θ .
Therefore, for any σ, σ ′ ∈ B Ri (σ

i
∅

), we have

|d∞(σ, σ ′) − d∞( fi (σ ), fi (σ
′))|

=
∣∣∣∣∣infφ sup

x∈σ
{d(x, φ(x))} − inf

θ
sup

y∈( fi )∗(σ )

{d(y, θ(y))}
∣∣∣∣∣ ≤ 3εi .

On the other hand, by definition, we have that

d∞( fi (σ
i
∅

), σ∅) = d∞(σ∅, σ∅) = 0 ≤ 3εi .
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Finally, if d∞(σ, σ∅) ≤ Ri , then d(y, A) ≤ Ri for any y ∈ σ , and since fi is an
εi -approximation from B Ri (Ai ) to B Ri (A), we know that there is some xy ∈ B Ri (Ai )

such that d(y, fi (xy)) ≤ εi . Hence, the diagram σ̂ ∈ D∞(Xi , Ai ) given by

σ̂ = {{
xy : x ∈ σ

}}

satisfies d∞(σ, ( fi )∗(σ̂ )) ≤ εi ≤ 3εi and d∞(σ̂ , σ i
∅

) ≤ Ri , so we conclude that
B Ri (σ∅) ⊂ B3εi (B Ri (σ

i
∅

)).
Thus, ( fi )∗ is a 3εi -approximation from B Ri (σ

i
∅

) to B Ri (σ∅). ��

Proof of Theorem A

The result follows from Proposition 3.6 and Example 3.3. ��
Remark 3.7 Note thatwe have only shown thatD∞ is sequentially continuous. To show
continuity, wemust first introduce topologies onMetPair,Met∗, and PMet∗ compatible
with the definitions of Gromov–Hausdorff convergence on each of these categories.
Herron has done this forMet∗ in Herron (2016). The arguments in Herron (2016) may
be generalized toMetPair and PMet∗, allowing to show the continuity ofD∞. This has
been carried out in Ahumada Gómez and Che (2023).

4 Geodesicity

In this section, we show that the functor Dp, with p ∈ [1,∞), preserves the property
of being a geodesic space and, in the case p = 2 and assuming X is a proper geodesic
space, we characterize geodesics in the spaceD2(X , A). This section adapts the work
of Chowdhury (2019) to the context of general metric pairs.

The following two lemmas are generalizations of Chowdhury (2019, Lemmas 17
and 18) and the proofs are similar. For a general metric pair (X , A)where X is assumed
to be proper, points in X always have a closest point in A. Here, however, as opposed
to Chowdhury (2019), such a point is not necessarily unique.

Lemma 4.1 Let (X , A) ∈ MetPair. Let σ, τ ∈ Dp(X , A) be diagrams, φk : σ → τ be
a sequence of bijections such that

∑
x∈σ d(x, φk(x))p → dp(σ, τ )p as k → ∞. Then

the following assertions hold:

(1) If x ∈ σ , y ∈ τ \ A are such that limk→∞ φk(x) = y, then there exists k0 ∈ N

such that φk(x) = y for all k ≥ k0.
(2) If x ∈ σ\A, y ∈ A are such that limk→∞ φk(x) = y, then d(x, y) = d(x, A).

Proof (1) Since p ∈ [1,∞) and τ ∈ Dp(X , A), there is some ε > 0 such that
Bε(y)∩ τ = {y}. Since φk(x) ∈ Bε(y)∩ τ for sufficiently large k, the conclusion
follows.

(2) For the sake of contradiction, if d(x, y)>d(x, A), then d(x, φk(x))>d(x, A)+2ε
and d(φk(x), A) < ε for sufficiently large k, where ε = (d(x, y) − d(x, A))/3.
This contradicts the fact that

∑
x∈σ d(x, φk(x))p → dp(σ, τ )p as k → ∞.

��
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Lemma 4.2 Let (X , A) ∈ MetPair and assume X is a proper metric space. Let
σ, τ ∈ Dp(X , A), and let φk : σ → τ be a sequence of bijections such that∑

x∈σ d(x, φk(x))p → dp(σ, τ )p as k → ∞. Then there exists a subsequence
{φkl }l∈N and a limiting bijection φ∗ such that φkl → φ∗ pointwise as l → ∞ and∑

x∈σ d(x, φ∗(x))p = dp(σ, τ )p.

Proof Since dp(σ, τ ) < ∞, for each point x ∈ σ \ A the sequence {φk(x)}k∈N consists
of a bounded set of points in X and at most countably many points in A. In particular,
thanks to Lemma 4.1 and the fact that X is proper, and using a diagonal argument, we
can assume that for each x ∈ σ \ A, the sequence {φk(x)}k∈N is eventually constant
equal to some point y ∈ τ \ A or it is convergent to some point y ∈ A such that
d(x, y) = d(x, A). In any case, we can define φ∗ : σ \ A → τ as

φ∗(x) = lim
k→∞ φk(x).

Bymapping enough points in A to all the points in τ that were not matched with points
in σ \ A, we get the required bijection φ∗ : σ → τ . ��
Corollary 4.3 (Existence of optimal bijections) Let (X , A) ∈ MetPair and assume X
is a proper space, then for any σ, σ ′ ∈ Dp(X , A) there exists an optimal bijection
φ : σ → τ , i.e. dp(σ, τ )p = ∑

x∈σ d(x, φ(x))p.

Definition 4.4 A convex combination in Dp(X , A) is a path ξ : [0, 1] → Dp(x, A)

such that there exist an optimal bijection φ : ξ(0) → ξ(1) and a family of geodesics
{ξx }x∈ξ(0) in X such that ξx joins x with φ(x) for each x ∈ ξ(0) and ξ(t) =
{{ξx (t) : x ∈ ξ(0)}} for each t ∈ [0, 1]. Sometimes we also write ξ = (φ, {ξx }x∈ξ(0))

to indicate ξ is the convex combination with associated optimal bijection φ and family
of geodesics {ξx }x∈ξ(0).

With this definition in hand, the proof of geodesicity follows along the lines of
Chowdhury (2019, Corollary 19).

Proposition 4.5 Let (X , A) ∈ MetPair. If X is a proper geodesic space, thenDp(X , A)

is a geodesic space.

Proof Let σ, σ ′ ∈ Dp(X , A) be diagrams, φ : σ → τ be an optimal bijection as in
Corollary 4.3 and let ξ = (φ, {ξx }x∈σ ) be some convex combination. Then ξ is a
geodesic joining σ and τ . Indeed, if we consider the bijection φt

s : ξ(s) → ξ(t) given

by φt
s(ξ

φ
x (s)) = ξ

φ
x (t), then

dp(ξ(s), ξ(t))p ≤
∑

x ′∈ξ(s)

d(x ′, φt
s(x ′)p =

∑

x∈σ

d(ξφ
x (s), ξφ

x (t))p

= |s − t |p
∑

x∈σ

d(x, φ(x))p = |s − t |pdp(σ, τ )p.

Therefore ξ is a geodesic from σ to τ . ��
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5 Non-negative curvature

In this section, we prove that the functor D2 preserves non-negative curvature in
the sense of Definition 2.16 (cf. Turner et al. 2014, Theorem 2.5; Chowdhury 2019,
Theorems 10 and 11). On the other hand, it is known that the functor Dp does not
preserve the non-negative curvature for p �= 2 (see Turner 2020). Also, Dp does not
preserve upper curvature bounds in the sense of CAT spaces for any p (cf. Turner
et al. 2014, Proposition 2.4; Turner 2020, Proposition 2.4). Whether the functor D2
preserves strictly negative lower curvature bounds remains an open question. Addi-
tionally, observe that we cannot use the usual ∞-norm in R

2 to get lower curvature
bounds on any space of persistence diagrams, as the following result shows.

Proposition 5.1 The space Dp(R
2,�) is not an Alexandrov space for any p ∈ [1,∞]

when R
2 is endowed with the metric d∞.

Proof For p = ∞, the spaceD∞(R2,�) is only a pseudometric space, so it cannot be
an Alexandrov space. Suppose now that 1 ≤ p < ∞. Consider the points x1 = (0, 5),
x2 = (0, 7) and x3 = (2, 6), and let σi = {{xi }} for i = 1, 2, 3. We may check
that d∞(xi , x j ) = 2 ≤ d∞(xi ,�) for all i �= j , implying that for each i �= j
there will be a geodesic ξi, j : [0, 2] → Dp(R

2,�) between σi and σ j such that
ξi, j (t) has only one point for all t . Such geodesics are precisely paths of the form
ξi, j (t) = {{

ηi, j (t)
}}
, where ηi, j : [0, 2] → (R2, d∞) is a geodesic between xi and

x j . But for each i �= j we can pick ηi, j so that ηi, j (1) = y = (1, 6). This implies
that, for instance, ξ1,3(t) = ξ2,3(t) for t ≥ 1 but not for t < 1, implying that there
is a branching of geodesics at the point {{y}}, which cannot happen in an Alexandrov
space. ��

Wewill use the following lemma,whichdoes not require any curvature assumptions,
to prove this section’s main result.

Lemma 5.2 Let ξ : [0, 1] → D2(X , A) be a geodesic. Let φi : ξ(1/2) → ξ(i),
i = 0, 1, be optimal bijections. Then φ = φ1 ◦ φ−1

0 : ξ(0) → ξ(1) is an optimal
bijection and, for all x ∈ ξ(1/2), x is a midpoint between φ0(x) and φ1(x).

Proof By the triangle inequality, it is clear that

d(φ0(x), φ1(x))2 ≤ 2d(φ0(x), x)2 + 2d(x, φ1(x))2

holds for all x ∈ ξ(1/2). Therefore,

d2(ξ(0), ξ(1))2 ≤
∑

z∈ξ(0)

d(z, φ(z))2

=
∑

x∈ξ(1/2)

d(φ0(x), φ1(x))2

≤
∑

x∈ξ(1/2)

2d(φ0(x), x)2 + 2d(x, φ1(x))2
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= 2
∑

x∈ξ(1/2)

d(φ0(x), x)2 + 2
∑

x∈ξ(1/2)

d(x, φ1(x))2

= 2d2(ξ(0), ξ(1/2))2 + 2d2(ξ(1/2), ξ(1))2

= d2(ξ(0), ξ(1))2.

Thus,

d2(ξ(0), ξ(1))2 =
∑

z∈ξ(0)

d(z, φ(z))2 =
∑

x∈ξ(1/2)

d(φ0(x), φ1(x))2

and

d(φ0(x), φ1(x))2 = 2d(φ0(x), x)2 + 2d(x, φ1(x))2

for all x ∈ ξ(1/2). In particular, φ is an optimal bijection between ξ(0) and ξ(1), and
x is a midpoint between φ0(x) and φ1(x) for all x ∈ ξ(1/2). ��

Proposition 5.3 Let (X , A) ∈ MetPair. If X is a proper Alexandrov space with non-
negative curvature, then, D2(X , A) is also an Alexandrov space with non-negative
curvature.

Proof Since X is an Alexandrov space, it is complete and geodesic. Thus, by The-
orem A.1, the space D2(X , A) is complete, and, since X is assumed to be proper,
Proposition 4.5 implies thatD2(X , A) is geodesic. Now we must show thatD2(X , A)

has non-negative curvature.
Let σ1, σ2, σ3 ∈ D2(X , A) be diagrams and ξ : [0, 1] → D2(X , A) be a geodesic

from σ2 to σ3. We want to show that the inequality

d2(σ1, ξ(1/2))2 ≥ 1

2
d2(σ1, σ2)

2 + 1

2
d2(σ1, σ3)

2 − 1

4
d2(σ2, σ3)

2

holds. This inequality characterizes non-negative curvature (see, for example, Ohta
2012, Sect. 2.1).

Let φi : ξ(1/2) → σi , i = 1, 2, 3, be optimal bijections, and define φ = φ3 ◦
φ−1
2 : σ2 → σ3. From the formula for the distance in D2(X , A) we observe that the

following inequalities hold:

d2(σ1, ξ(1/2))2 =
∑

x∈ξ(1/2)

d(x, φ1(x))2;

d2(σ1, σ2)
2 ≤

∑

x∈ξ(1/2)

d(φ1(x), φ2(x))2;

d2(σ1, σ3)
2 ≤

∑

x∈ξ(1/2)

d(φ1(x), φ3(x))2.
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Now, since curv(X) ≥ 0, we have that

d(x, φ1(x))2 ≥ 1

2
d(φ1(x), φ2(x))2 + 1

2
d(φ1(x), φ3(x))2 − 1

4
d(φ2(x), φ3(x))2

for all x ∈ ξ(1/2). Therefore, thanks to Lemma 5.2,

d2(σ1, ξ(1/2))2 =
∑

x∈ξ(1/2)

d(x, φ1(x))2

≥
∑

x∈ξ(1/2)

1

2
d(φ1(x), φ2(x))2 + 1

2
d(φ1(x), φ3(x))2

− 1

4
d(φ2(x), φ3(x))2

≥ 1

2
d2(σ1, σ2)

2 + 1

2
d2(σ1, σ3)

2 − 1

4
d2(σ2, σ3)

2.

��
Lemma 5.2 implies the following corollary, which one can use to give an alternative

proof of Proposition 5.3 along the lines of the proof for the Euclidean case in Turner
et al. (2014).

Corollary 5.4 Let (X , A) ∈ MetPair and assume X is a proper geodesic space. Then
every geodesic in D2(X , A) is a convex combination.

Proof This argument closely follows the proofs of Theorems 10 and 11 in Chowdhury
(2019). We repeat some of the constructions for the convenience of the reader.

Let ξ : [0, 1] → D2(X , A) be a geodesic. We first claim there exists a sequence of
convex combinations ξn = (φn, {ξx,n}x∈ξ(0)) such that ξ(i2−n) = ξn(i2−n) for each
n ∈ N and i ∈ {0, . . . , 2n}

Indeed, given n ∈ N, we define φn and {ξx,n}x∈ξ(0) as follows. For each
i ∈ {1, . . . , 2n−1} consider optimal bijections φ±

n,i : ξ((2i − 1)2−n) → ξ((2i − 1 ±
1)2−n). By Lemma 5.2,

φn = φ+
n,2n−1 ◦ (φ−

n,2n−1)
−1 ◦ · · · ◦ φ+

n,1 ◦ (φ−
n,1)

−1 : ξ(0) → ξ(1)

is an optimal bijection.Moreover, Lemma5.2 implies that, for each x ∈ ξ((2i−1)2−n),
there is some geodesic joining φ−

n,i (x) with φ+
n,i (x) which has x as its midpoint. This

way, starting from some point x ∈ ξ(0) and following the bijections φ±
n,i , we construct

a geodesic ξx,n joining x with φn(x).
Now, thanks to Lemma 4.2, there is a subsequence of {φn}n∈N which pointwise

converges to some optimal bijection φ : ξ(0) → ξ(1). Moreover, we can extract a
further subsequence {φnk }k∈N such that, for fixed dyadic rationals l2− j and l ′2− j , the
sequence of bijections ξ(l2− j ) → ξ(l ′2− j ) induced by {φnk ,i }k∈N pointwise converge
as well. By Arzelà–Ascoli theorem and a applying one more diagonal argument, we
may assume that for each x ∈ ξ(0) the sequence {ξx,nk }k∈N uniformly converges to
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some geodesic ξx joining x with φ(x). By the continuity of ξ and ξ̂ = (φ, {ξx }x∈ξ(0))

it easily follows that ξ(t) = ξ̂ (t) for each t ∈ [0, 1]. ��
Remark 5.5 We note that D2(X , A) cannot in general be an Alexandrov space with
curvature bounded below by κ for any κ > 0. To see this, let (X , A) be a metric pair,
where X is proper and geodesic. For i ∈ {1, 2, 3}, let xi ∈ X \ A and let ξi : [0, 1] → X
be a constant speed geodesic with ξi (0) ∈ A and ξi (1) = xi of minimal length, i.e. of
length d(xi , A) = mina∈A d(xi , a); such ξi exists since X is proper and A is closed.
Suppose that

d(ξi (s), ξ j (t))
2 ≥ d(ξi (0), ξi (s))

2 + d(ξ j (0), ξ j (t))
2 whenever i �= j . (5.1)

For i = 1, 2, 3, let σi = {{xi }} ∈ D2(X , A). It follows from (5.1) that d(xi , x j )
2 ≥

d(xi , A)2+d(x j , A)2 for i �= j , and therefore d2(σi , σ j ) =
√

d(xi , A)2 + d(x j , A)2.
It is then easy to see that the path ηi, j : [0, 1] → D2(X , A), where

ηi, j (t) = {{
ξi (1 − t), ξ j (t)

}}
,

is a constant speed geodesic in D2(X , A) from σi to σ j . But it is then easy to verify,
again using (5.1), that

d2(σk, ηi, j (t)) =
√

d(xk, A)2 + d(ξi (1 − t), A)2 + d(ξ j (t), A)2,

where k /∈ {i, j}. In particular, it follows that the geodesic triangle inD2(X , A) formed
by geodesics η1,2, η2,3 and η3,1 is isometric to the geodesic triangle inR

3 with vertices
(d(x1, A), 0, 0), (0, d(x2, A), 0) and (0, 0, d(x3, A)). It follows thatD2(X , A) cannot
be κ-Alexandrov for any κ > 0.

The condition (5.1) is not hard to achieve: it can be achieved whenever X is a
connected Riemannian manifold of dimension ≥ 2 and A �= X , for instance. Indeed,
in that case, if |∂ A| ≥ 3 then (5.1) is satisfied for any x1, x2, x3 ∈ X \ A with
d(xi , ai ) ≤ ε/6, where a1, a2, a3 ∈ ∂ A are distinct elements and ε = min{d(ai , a j ) :
i �= j}. On the other hand, if |∂ A| ≥ 2 then |A| ≤ 2 since X is connected of dimension
≥ 2, and so we may pick x1, x2, x3 ∈ X \ A in such a way that d(x1, a) = d(x2, a) =
d(x3, a) = ε < d(xi , b) for any i and any b ∈ A \ {a}, where a ∈ A is a fixed
element. It then follows that ξi (0) = a for each i . Since dim X ≥ 2, we may do this
in such a way that the angle between ξi and ξ j at a is > π/2 when i �= j ; but then,
as a consequence of the Rauch comparison theorem, (5.1) will be satisfied whenever
ε > 0 is chosen small enough.

Remark 5.6 Let X be an Alexandrov space and let K ⊂ X be a convex subset, i.e.
such that any geodesic joining any two points in K remains inside K (cf. Burago et al.
2001, p. 90). It is a direct consequence of the definition that K is also an Alexandrov
space with the same lower curvature bound as X . In particular, if (X , A) ∈ MetPair
with X an Alexandrov space of non-negative curvature, and K ⊂ X is a convex subset
with A ⊂ K , then D2(K , A) is an Alexandrov space of non-negative curvature.
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Proof of Theorem B

The result follows from Theorem A.1, Propositions A.7, 4.5, and 5.3. ��

6 Spaces of directions: the local geometry of noise

In this section we prove some metric properties of the space of directions �σ∅
at

the empty diagram σ∅ ∈ D2(X , A) for (X , A) ∈ MetPair with X an Alexandrov
space with non-negative curvature. As mentioned in the introduction, the space of
directions at the empty diagram in D2(R

2,�) could be interpreted as controlling the
local geometry of small noise perturbations.

Proposition 6.1 The space of directions �σ∅
has diameter at most π/2

Proof Consider σ, σ ′ ∈ D2(X , A). We can always consider a bijection φ : σ → σ ′
such that φ(a) = A for every a ∈ σ different from A and φ−1(a′) = A for every
a′ ∈ σ ′ different from A. Thus, by definition of the distance function d2, we have

d2(σ, σ ′)2 ≤
∑

a∈σ

d(a, A)2 +
∑

a′∈σ ′
d(a′, A)2 = d2(σ, σ∅)2 + d2(σ

′, σ∅)2.

Therefore,

cos ∠̃σσ∅σ ′ = d2(σ, σ∅)2 + d2(σ ′, σ∅)2 − d2(σ, σ ′)2

2d2(σ, σ∅)d2(σ ′, σ∅)
≥ 0,

i.e. ∠̃σσ∅σ ′ ≤ π/2. This immediately implies the result. ��
Proposition 6.2 Directions in �σ∅

corresponding to diagrams with finitely many
points are dense in �σ∅

.

Proof Consider an arbitrary diagram σ ∈ D2(X , A) and an enumeration {ai }i∈N of its
points. We can define a sequence of finite diagrams {σn}n∈N given by

σn = {{a1, . . . , an}} .

Let ξ be aminimizing geodesic joiningσ with the empty diagramσ∅. ByCorollary 5.4,
we know that ξ is a convex combination, i.e. ξ = (φ, {ξx }x∈σ ) for some optimal
bijection φ : σ → σ∅ and some collection of geodesics {ξx }x∈σ such that ξx joins
x ∈ σ with φ(x) ∈ A. Let ξn = (φ|σn , {ξx }x∈σn ) be the restricted convex combination
between σn and σ∅. Then the inclusion is : ξn(s) → ξ(s) induces a bijection between
the corresponding diagrams, which in turn implies that

d2(ξn(s), ξ(s))2 ≤
∑

x∈ξn(s)

d(x, is(x))2
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=
∑

x∈σ\σn

d(ξx (s), A)2

= s2
∑

x∈σ\σn

d(x, A)2

= s2(d2(σ, σ∅)2 − d2(σn, σ∅)2).

Thus, using the definition of the angle between geodesics in an Alexandrov space (see,
for example, Burago et al. 2001, Definition 3.6.26) and the law of cosines, we get that

1 ≥ cos∠σnσ∅σ

= lim
s→0

s2(d2(σn, σ∅)2 + d2(σ, σ∅)2) − d2(ξn(s), ξ(s))2

2s2d2(σn, σ∅)d2(σ, σ∅)

≥ lim
s→0

s2(d2(σn, σ∅)2 + d2(σ, σ∅)2 − d2(σ, σ∅)2 + d2(σn, σ∅)2)

2s2d2(σn, σ∅)d2(σ, σ∅)

= d2(σn, σ∅)

d2(σ, σ∅)
,

and the last quotient converges to 1. Thus, ∠σnσ∅σ converges to 0. This way, we can
conclude that the set of directions in �σ∅

induced by finite diagrams can approximate
any geodesic direction, and since �σ∅

is the metric completion of that set, the result
follows. ��

We can calculate explicitly the angle between any two directions at�σ∅
determined

by finite diagrams, as the following result show.

Lemma 6.3 Let σ = {{a1, . . . , am}} and σ ′ = {{
a′
1, . . . , a′

n

}}
be two diagrams

with finitely many points, and let ξσ , ξσ ′ : [0, 1] → D2(X , A) be geodesics join-
ing σ∅ to σ, σ ′, respectively, so that ξσ (t) = {{

ξa1(t), . . . , ξam (t)
}}

and ξσ ′(t) ={{
ξa′

1
(t), . . . , ξa′

n
(t)
}}

for some geodesics ξai , ξa′
j
: [0, 1] → X joining ξai (0) ∈ A to

ai and ξa′
j
(0) ∈ A to a′

j , respectively. Then

d2(σ, σ∅)d2(σ
′, σ∅) cos∠(ξσ , ξσ ′)

= max
φ : τ→τ ′

∑

a∈τ

d(a, A)d(φ(a), A) cos∠(ξa, ξφ(a)),

where φ ranges over all bijections between subsets τ and τ ′ of points in σ and σ ′,
respectively, such that ξa(0) = ξφ(a)(0) for all a ∈ τ .

Proof For each s, t ∈ (0, 1], let φ′
s,t : ξσ (s) → ξσ ′(t) be a bijection realizing the

distance d2(ξσ (s), ξσ ′(t)). Then there exists a bijection φs,t between subsets τ = τs,t

and τ ′ = τ ′
s,t of points in σ and σ ′, respectively, such that φ′

s,t (ξx (s)) = ξx ′(t) for
x ∈ τ and x ′ = φs,t (x) ∈ τ ′ and such that φ′

s,t matches all the other points of
ξσ (s) ∪ ξσ ′(t) to A. Moreover, by the construction we have
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d(ξa(0), ξφ(a)(0)) − sd(ξa(0), a) − td(ξφ(a)(0), φ(a)) ≤ d(ξa(s), ξφ(a)(t))

≤
(

s2d(a, A)2 + t2d(φ(a), A)2
)1/2

for all a ∈ τs,t (where φ = φs,t ), implying that ξa(0) = ξφs,t (a)(0) for all a ∈ τs,t

when s and t are small enough (which we will assume from now on).
Now we can compute that

d2(ξσ (s), ξσ ′(t))2=s2
∑

a∈σ\τ
d(a, A)2 + t2

∑

a′∈σ ′\τ ′
d(a′, A)2+

∑

a∈τ

d(ξa(s), ξφ(a)(t))
2,

and therefore

s2d2(σ, σ∅)2 + t2d2(σ
′, σ∅)2 − d2(ξσ (s), ξσ ′(t))2

=
∑

a∈τ

(
s2d(a, A)2 + t2d(φ(a), A)2 − d(ξa(s), ξφ(a)(t))

2
)

,
(6.1)

where τ = τs,t and φ = φs,t . Moreover, note that since φ′
s,t minimizes

d2(ξσ (s), ξσ ′(t)), the bijection φ : τ → τ ′ maximizes the right hand side of (6.1).
It follows that

d2(σ, σ∅)d2(σ
′, σ∅) cos∠(ξσ , ξσ ′)

= lim
s,t→0

s2d2(σ, σ∅)2 + t2d2(σ ′, σ∅)2 − d2(ξσ (s), ξσ ′(t))2

2st

= lim
s,t→0

∑

a∈τs,t

s2d(a, A)2 + t2d(φs,t (a), A)2 − d(ξa(s), ξφs,t (a)(t))2

2st

= lim
s,t→0

max
φ : τ→τ ′

∑

a∈τ

s2d(a, A)2 + t2d(φ(a), A)2 − d(ξa(s), ξφ(a)(t))2

2st
,

(6.2)

where φ ranges over all bijections between subsets τ and τ ′ of points in σ and σ ′,
respectively, such that ξa(0) = ξφ(a)(0) for all a ∈ τ . Since σ and σ ′ each has finitely
many points, there are only finitely many such bijections φ, allowing one to swap the
limit and the maximum on the last line of (6.2). The result follows. ��

Proof of Theorem C

Propositions 6.1 and 6.2 correspond to the first two assertions in Theorem C. Using
Lemma 6.3 and the density of the directions in �σ∅

corresponding to diagrams with
finitely many points yields the third assertion in the theorem. ��
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7 Dimension of spaces of Euclidean persistence diagrams

In this section, we analyze some aspects of the global geometry of the spaces of
Euclidean persistence diagrams.We denote such spaces byDp(R

2n,�n), 1 ≤ p < ∞
and 1 ≤ n ∈ N, where we let �n = {(v, v) ∈ R

2n : v ∈ R
n} (and for simplicity we

write� = �1) andR
2n is endowedwith the Euclideanmetric. The investigation of the

geometric properties of the spaces Dp(R
2,�), where the metric in R

2 is induced by
the∞-norm inR

2, was carried out inMileyko et al. (2011). In Turner et al. (2014), the
authors showed thatD2(R

2,�), where R
2 has the Euclidean metric, is an Alexandrov

space of non-negative curvature.
We will also consider the sets

R
2n≥0 = {(x1, . . . , xn, y1, . . . , yn) ∈ R

2n : 0 ≤ xi ≤ yi , i = 1, . . . , n}

and

R
2n+ = {(x1, . . . , xn, y1, . . . , yn) ∈ R

2n : xi ≤ yi , i = 1, . . . , n},

which are convex subsets of the Euclidean space R
2n . In particular, the space

D2(R
2≥0,�), is the classical space of persistence diagrams which arises in persistent

homology, is also an Alexandrov space of non-negative curvature (cf. Remark 5.6).
The interest in studying the spaces Dp(R

2n,�n) when n ≥ 2 is motivated by the fact
that the subspaces Dp(R

2n≥0,�n) ⊂ Dp(R
2n,�n) can be thought of as the parameter

spaces of a family of n-dimensional persistencemodules, namely, persistent rectangles
(cf. Bjerkevik 2021, Theorem 4.3; Skryzalin and Carlsson 2017, Lemma 1).

As an application of our geometric results, we now show that the asymptotic
dimension of Dp(R

2n,�n), Dp(R
2n+ ,�n), and Dp(R

2n≥0,�n) is also infinite, for any
1 ≤ p < ∞. It may be feasible to also obtain these results by extending the work of
Mitra and Virk in Mitra and Virk (2021), where they consider spaces of persistence
diagrams with finitely many points in R

2. The asymptotic dimension, introduced by
Gromov in the context of finitely generated groups (see Gromov 1991), is a large scale
geometric version of the covering dimension. For an introduction to this invariant,
we refer the reader to Bell (2017), Bell and Dranishnikov (2008), Piotr (2012), Roe
(2003).

Definition 7.1 (cf. Piotr 2012, Definition 2.2.1) Let U = {Ui }i∈I be a cover of a metric
space X . Given R > 0, the R-multiplicity of U is the smallest integer n such that,
for every x ∈ X , the ball B(x, R) intersects at most n elements of U . The asymptotic
dimension of X , which we denote by asdim X , is the smallest non-negative integer
n such that, for every R > 0, there exists a uniformly bounded cover U with R-
multiplicity n + 1. If no such integer exists, we let asdim X = ∞.

The following lemma should be compared with (Mitra and Virk 2021, Lemma
3.2), where the authors compute the asymptotic dimension of spaces of persistence
diagrams with n points.

Lemma 7.2 The asymptotic dimension of Dp([0,∞), {0}), 1 ≤ p < ∞, is infinite.
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Proof Consider the subspace DN
p ([0,∞), {0}) ⊂ Dp([0,∞), {0}) consisting of dia-

grams with ≤ N points. As a set, DN
p ([0,∞), {0}) can be identified with the

quotient [0,∞)N /SN , where the symmetric group SN acts by permutations of coor-
dinates. Consider two diagrams σ = {{a1, . . . , aN }} and σ ′ = {{

a′
1, . . . , a′

N

}}
in

DN
p ([0,∞), {0}), where a1 ≥ · · · ≥ aN ≥ 0 and a′

1 ≥ · · · ≥ a′
N ≥ 0. We then claim

that

dp(σ, σ ′)p =
N∑

i=1

|ai − a′
i |p. (7.1)

Indeed, by regarding σ and σ ′ as atomic measures in [0,∞) with the same total
mass, and applying the classical theory of optimal transport in dimension one, the
monotone map φ : ai �→ a′

i induces an optimal bijection between σ and σ ′. See
for example (Santambrogio 2015, Theorem 2.9). But this implies that the metric dp

on DN
p ([0,∞), {0}) agrees with the quotient metric on ([0,∞)N , ‖ · ‖p)/SN , where

‖ · ‖p denotes the 	p metric. This implies that the inclusion DN
p ([0,∞), {0}) into

Dp([0,∞), {0}) is isometric.
Finally, we claim that the asymptotic dimension of DN

p ([0,∞), {0}) is N . Indeed,
([0,∞)N , ‖ · ‖p) equipped with the metric is a quotient of an action of (Z/2Z)N on
(RN , ‖ · ‖p) by isometries, and DN

p ([0,∞), {0}) is a quotient of an action of SN on
([0,∞)N , ‖ · ‖p) by isometries. As (RN , ‖ · ‖p) and ([0,∞)N , ‖ · ‖p) are proper,
it follows by Kasprowski (2017, Theorem 1.1) that the asymptotic dimensions of
(RN , ‖·‖p), ([0,∞)N , ‖·‖p) andDN

p ([0,∞), {0}) are the same. Thus the asymptotic
dimension of DN

p ([0,∞), {0}) is N , as claimed. As DN
p ([0,∞), {0}) is an isometric

subspace of Dp([0,∞), {0}) for each N , it follows that Dp([0,∞), {0}) has infinite
asymptotic dimension, as required. ��
Proposition 7.3 Let (X , A) ∈ MetPair and let C ≥ 1. Suppose that there exists
a C-bi-Lipschitz map f : [0,∞) → X such that f −1(A) = {0} and such that
dX ( f (x), A) ≥ x/C for all x ∈ [0,∞). Then Dp(X , A), 1 ≤ p < ∞, has infi-
nite asymptotic dimension.

Proof Note that f induces a map of pairs f : ([0,∞), {0}) → (X , A), and therefore
a map

f∗ : Dp([0,∞), {0}) → Dp(X , A).

We will show that f∗ is a C-bi-Lipschitz equivalence onto its image. The result will
then follow from Lemma 7.2. By Proposition 2.9, the map f∗ is C-Lipschitz. Now, let
φ′
0 : f∗(σ ) → f∗(σ ′) be a bijection realizing the distance dp( f∗(σ ), f∗(σ ′)), and note

that φ′
0( f ′(x)) = f ′(φ′(x)) for some bijection φ′ : σ → σ ′, where f ′(x) = f (x) for

x > 0 and f ′(0) = A. Given any x ∈ σ , we then have

|x − φ′(x)| ≤ C · dX ( f (x), f (φ′(x))),
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since f is C-bi-Lipschitz. Furthermore, if φ′(x) = 0, then we have

|x − φ′(x)| = x ≤ C · dX ( f (x), A),

and, if x = 0, we have

|x − φ′(x)| = φ′(x) ≤ C · dX ( f (φ′(x)), A).

It follows that

|x − φ′(x)| ≤ C · dX ( f ′(x), φ′
0( f ′(x))

in any case, and therefore

dp(σ, σ ′)p ≤
∑

x∈σ

|x − φ′(x)|p ≤ C p
∑

y∈ f∗σ
dX (y, φ′

0(y))p = (C · dp( f∗σ, f∗σ ′))p.

Hence f∗ is C-bi-Lipschitz, as required. ��
Before proving the next result, we recall the definition of covering dimension.

Definition 7.4 (cf. Munkres 2000, Chapter 8) Let U = {Ui }i∈I be an open cover of a
metric space X . The order of U is the smallest number n for which each point p ∈ X
belongs to at most n elements in U . The covering dimension of X is the minimum
number n (if it exists) such that any finite open cover U of X has a refinement V of
order n + 1.

Corollary 7.5 The spaces Dp(R
2n,�n), Dp(R

2n+ ,�n) and Dp(R
2n≥0,�n), for

1 ≤ p < ∞, have infinite Hausdorff, covering and asymptotic dimensions.

Proof For each X ∈ {R2n, R
2n+ , R

2n≥0}, the map f : [0,∞) → X defined by

f (x) = 1√
n
(

n︷ ︸︸ ︷
0, . . . , 0,

n︷ ︸︸ ︷
x, . . . , x)

is an isometric (and so
√
2-bi-Lipshitz) embedding such that f −1(�n) = {0} and

dX ( f (x),�n) = x/
√
2. Hence, by Proposition 7.3, Dp(X ,�n) has infinite asymp-

totic dimension.
To see that Dp(X ,�n) has infinite covering and Hausdorff dimensions, observe

that the same argument in the end the proof of Lemma 7.2, shows that the covering and
Hausdorff dimensions of Dp([0,∞), 0) is infinite. Since
Dp([0,∞), 0) ⊂ Dp(X ,�n), we conclude thatDp(X ,�n) also has infinite covering
and Hausdorff dimensions. ��

Putting the results in this section together yields the proof of our article’s last
main result. Before proceeding, recall that the Assouad dimension of a metric space
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X , when infinite, yields an obstruction to bi-Lipschitz embedding X into a finite-
dimensional Euclidean space (see Jonathan 2021 for a detailed discussion of this
dimension and related results). More precisely, if X has a bi-Lipschitz embedding into
some finite-dimensional Euclidean space, then X must have finite Assouad dimension
(see Jonathan 2021, Ch. 13). The Assouad–Nagata dimension, which Assouad intro-
duced in Assouad (1982), may be thought of as a variant of the asymptotic dimension
(see Lang and Schlichenmaier 2005 for basic properties of this dimension).

Proof of Theorem E

The result for theHausdorff, covering, and asymptotic dimensions follows fromCorol-
lary 7.5.Both theHausdorff and covering dimensions are lower bounds for theAssouad
dimension (see Jonathan 2021), while the asymptotic dimension is a lower bound for
theAssouad–Nagata dimension (see Lang and Schlichenmaier 2005). Therefore, these
dimensions are also infinite. ��
Remark 7.6 Recall that theHausdorff dimension of anAlexandrov spacemust be either
an integer or infinite (see Sect. 2). Using this fact, we can give an alternative proof that
D2(R

2n,�n), n ≥ 1, has infiniteHausdorff dimension. Indeed, the spaceD2(R
2n,�n)

is not locally compact, since one can always construct sequences of points in arbi-
trarily small balls around �n with no convergent subsequence (cf. Mileyko et al.
2011, Example 16). Since an Alexandrov space of finite Hausdorff dimension must be
locally compact (see Burago et al. 2001, Theorem 10.8.1), the Hausdorff dimension
of D2(R

2n,�n) must be infinite.

We point out that our arguments to prove Lemma 7.2, Proposition 7.3, and Corol-
lary 7.5 can be used to prove analogous results for the spaces of persistence diagrams
with finitely (but arbitrarily) many points, DF

p (X , A), as defined, for example, in
Bubenik and Elchesen (2022). Thus, all such spaces also have infinite Hausdorff,
covering, asymptotic Assouad, and Assouad–Nagata dimensions.

Corollary 7.7 The space DF
p (R2n,�n), 1 ≤ n and 1 ≤ p < ∞, has infinite covering,

Hausdorff, asymptotic, Assouad, and Assouad–Nagata dimension.

Appendix A Completeness, separability, and Fréchet means

A.1 Completeness and separability

In this subsection we will show that completeness and separability are both preserved
by the functor Dp : MetPair → Met∗, 1 ≤ p < ∞, as well as the existence of Fréchet
means for probability measures with compact support or with rate of decay at infinity
bounded below by max{2, p}. The proofs in this section follow almost verbatim the
arguments in Mileyko et al. (2011, Sect. 3.1) for the properties of the classical spaces
of persistence diagrams (i.e. when X = R

2+ and A = � in our notation). We include
these arguments in our more general setting for the sake of completeness. Also, we
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will assume throughout this section that p < ∞, since the results do not hold in the
case p = ∞ (see Che et al. 2024).

Wefirst prove completeness ofDp(X , A). This proofwill followby putting together
a series of lemmas.

Theorem A.1 Let (X , A) ∈ MetPair. If X is complete, then Dp(X , A) is complete.

Let {σn} be a Cauchy sequence in Dp(X , A). Let the multiplicity of σ ,
denoted by |σ |, be the number of points of σ outside A and, for α>0, let
uα : Dp(X , A)→Dp(X , A) be the function defined by

uα(σ ) = {{x ∈ σ : d(x, A) ≥ α}} .

We call uα(σ ) the α-upper part of σ . We define in a similar way the α-lower part of
σ by letting lα : Dp(X , A) → Dp(X , A) be given by

lα(σ ) = {{x ∈ σ : d(x, A) < α}} .

Compare with the definition of uα and lα in Mileyko et al. (2011, Sect. 3.1). Observe
that, in general, we cannot define the persistence of points in X with respect to A as
usual (i.e. the difference between the coordinates of the point). However, we can take
the distance to A as the notion of persistence, which in the case of the classical space
of persistence diagrams (either with the norm ‖ · ‖∞ or ‖ · ‖2 in R

2) is some multiple
of the distance to the diagonal �. This will affect the computations in this and the
following two sections.

Since the α-upper part of any diagram has finite multiplicity for arbitrary α, it is
reasonable to consider the convergence of the α-upper parts of the diagrams σn .

Lemma A.2 Let α > 0. There exist Mα ∈ Z+ and δα, 0 < δα < α, such that, for all
δ ∈ [δα, α), there exists an Nδ > 0 such that |uδ(σn)| = Mα whenever n > Nδ .

Proof of Lemma 4.2 For δ with 0 < δ < α, let Mδ
sup = lim supn→∞ |uδ(σn)| and

let Mδ
inf = lim infn→∞ |uδ(σn)|. Since {σn} is a Cauchy sequence, dp(σn, σ∅)

is bounded and this directly implies that Mδ
sup < ∞. Also, if δ1 > δ2, then∣∣uδ1(σn)

∣∣ ≤ ∣∣uδ2(σn)
∣∣ which means that Mδ1

sup ≤ Mδ2
sup and Mδ1

inf ≤ Mδ2
inf . There-

fore, the limits Msup = limδ→α Mδ
sup and Minf = limδ→α Mδ

inf exist and, moreover,

there exists a δα such that Msup = Mδ
sup and Minf = Mδ

inf whenever δα ≤ δ < α. Now
suppose that Minf < Msup. Fix δ ∈ (δα, α) and let ε = δ − δα > 0. Let {σnk } and
{σnl } be two subsequences of {σn} such that

∣∣uδ(σnk )
∣∣ = Msup and

∣∣uδα (σnl )
∣∣ = Minf .

Since {σn} is a Cauchy sequence, there exists C > 0 such that dp(σnk , σnl ) < ε for all
k, l > C . By assumption,

∣∣uδ(σnk )
∣∣ >

∣∣uδα (σnl )
∣∣, which implies that, for any bijection

φ : σnk → σnl , there is a point x ∈ σnk such that d(x, A) ≥ δ and d(φ(x), A) < δα .
This means that d(x, φ(x)) > ε, leading to dp(σnk , σnl ) ≥ ε, which is a contradiction.
We then set Mα = Msup = Minf . ��

Given α > 0, let σα
n = uδα (σn) and σn,α = lδα (σn).
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Lemma A.3 For any α > 0, the sequence {σα
n } is a Cauchy sequence in Dp(X , A).

Proof of Lemma 4.3 Let δα be as in Lemma A.2 and let δ ∈ (δα, α). By Lemma A.2,
there is an N > 0 such that, for all n > N , there is no point x ∈ σn with
d(x, A) ∈ [δα, δ). Let ε > 0 and let ε0 = min{ε, (δ − δα)/2}. If we increase N
so that dp(σm, σn) < ε0 for all m, n > N , then there exists a bijection φ : σm → σn

such that

(
∑

x∈σm

d(x, φ(x))p

) 1
p

< ε0 ≤ δ − δα

2
,

which implies that φ(σα
m) = σα

n . Therefore,

dp(σ
α
m, σα

n ) ≤
⎛

⎝
∑

x∈σα
m

d(x, φ(x))p

⎞

⎠

1
p

< ε0 ≤ ε.

��
The following lemma shows that the sequence {σα

n } converges for arbitrary α > 0.

Lemma A.4 For any α > 0, there is a diagram σα ∈ Dp(X , A) such that
limn→∞ dp(σ

α
n , σα) = 0, hence |σα| = Mα and uα(σα) = σα . Moreover, if α1 > α2,

we have σα1 ⊂ σα2 .

Proof of Lemma 4.4 Let α > 0, δ ∈ (δα, α), and let N > 0 be such that∣∣σα
n

∣∣ = |uδ(σn)| = Mα for all n > N . Let ε ∈ (0, δ/2) and choose a subsequence
{σα

nk
} such that n1 > N and dp(σ

α
nk

, σα
m) < 2−kε for m ≥ nk . Let φk : σα

nk
→ σα

nk+1
be a bijection realizing the p-Wasserstein distance between σα

nk
and σα

nk+1
, which,

by our choice of ε, maps points outside A to points outside A. Let x1, . . . , x Mα be
points outside A in σα

n1 and let {x1k }, . . . , {x Mα

k } be sequences such that xi
1 = xi , for

i = 1, . . . , Mα , and xi
k+1 = φk(xi

k). By the choice of our diagram subsequence, we
get that each {xi

k} is a Cauchy sequence and we denote the corresponding limits by
x̂1, . . . , x̂ Mα (here we are using the fact that X is complete). Let σα be the diagram
whose points outside A are exactly x̂1, . . . , x̂ Mα , where the multiplicity of each x̂ i is
the number of sequences whose limit is x̂ i .

For ε0, we choose K > 0 such that, for all k > K , we have d(xi
k, x̂ i ) < M−1/p

α ε0/2
and dp(σnk , σm) < ε0/2, for m ≥ nk . It follows that

dp(σ
α
m, σα) ≤ dp(σ

α
m, σα

nk
) + dp(σ

α
nk

, σα) < ε0/2 + ε0/2 = ε0.

Hence, σα is the unique limit of σα
n and does not depend on the choice of bijections

φk , subsequences {σα
nk

}, or ε.
Finally, let α1 > α2. Then points x ∈ σ

α2
n such that x /∈ σ

α1
n have d(x, A)<δα1<α1.

Repeating the above argument with α=α2, N>0 such that
∣∣σα1

n
∣∣ = ∣∣uδ1(σn)

∣∣ = Mα1 ,
and

∣∣σα2
n
∣∣ = ∣∣uδ2(σn)

∣∣ = Mα2 , for n > N , where δ1 ∈ (δα1 , α1),δ2 ∈ (δα2 , α2), and
ε > 0 such that ε < min{δ2/2, (δ1 − δ2)/2} leads to the last statement. ��
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Lemma A.5 Let σ ∗ = ⋃
α>0 σα . Then σ ∗ ∈ Dp(X , A) and limα→0 dp(σ

α, σ ∗) = 0.

Proof of Lemma 4.5 Let α > 0 and n ∈ N (big enough) such that dp(σ
α, σα

n ) < 1.
Then

dp(σ
α, σ∅) ≤ dp(σ

α, σα
n ) + dp(σ

α
n , σ∅) ≤ 1 + C

for some constant C > 0, since {σn} is a Cauchy sequence. Since the right-hand side
of the preceding equation is independent of α, we get dp(σ

∗, σ∅) ≤ 1 + C .
Finally, note that

dp(σ
α, σ ∗)p ≤ dp(lα(σ ∗), σ∅)p =

∑

x∈σ ∗
d(x,A)<α

d(x, A)p → 0 as α → 0.

��

The last step in the proof of the completeness ofDp(X , A) is the following lemma.

Lemma A.6 For each ε > 0, there exists an α0 > 0 such that, for all n ∈ N and
α ∈ (0, α0], we have dp(σn,α, σ∅) < ε and, therefore, dp(σ

α
n , σn) < ε.

Proof of Lemma 4.6 Suppose there is an ε > 0 such that, for allα > 0, there exists nα ∈
N with dp(σn,α, σ∅) ≥ ε. Let {αi }i∈N be a sequence of positive values monotonically
decreasing to 0. Since αi → 0, we have nαi → ∞ and we find a subsequence
{σni } such that dp(σni ,αi , σ∅) ≥ ε. Let δ ∈ (0, ε/4) and choose k ∈ N such that
dp(σnk , σni ) < δ, for all i ≥ k. Now, pick j ≥ k such that dp(σnk ,αi , σ∅) < δ for all
i ≥ j . This implies that

dp(σni ,αi , σnk ,α j ) ≥ dp(σni ,αi , σ∅) − dp(σ∅, σnk ,α j ) ≥ ε − δ > 3δ.

For i ≥ j let φi : σni → σnk be a bijection such that
∑

x∈σni
d(x, φi (x))p < 2δ p.

Then also
∑

x∈σni ,αi
d(x, φi (x))p < 2δ p.

Since δα j > 0, we can pick l > j such that δα j > 2αi for all i ≥ l. If we now take
x ∈ σni ,αi such that φi (x) /∈ σnk ,α j , we see that

d(x, φi (x)) ≥ |d(x, A) − d(φi (x), A)| ≥ δα j − αi ≥ αi ≥ d(x, A),

with i ≥ l. Now let φ̂i : σni ,αi → σnk ,α j be a bijection such that

φ̂i (x) =
{

φi (x) if x ∈ σni ,αi and φi (x) ∈ σnk ,α j

A if x ∈ σni ,αi and φi (x) /∈ σnk ,α j

and also points y ∈ σnk ,α j with φ−1
i (y) /∈ σni ,αi are getting mapped to A. Then, for

i ≥ l, we have
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∑

x∈σni ,αi

d(x, φ̂i (x))p =
∑

x∈σni ,αi
φi (x)∈σnk ,α j

d(x, φi (x))p +
∑

x∈σni ,αi
φi (x)/∈σnk ,α j

d(x, A)p +
∑

y∈σnk ,α j

φ−1
i (y)/∈σni ,αi

d(y, A)p

≤
∑

x∈σni ,αi
φi (x)∈σnk ,α j

d(x, φi (x))p +
∑

x∈σni ,αi
φi (x)/∈σnk ,α j

d(x, A)p + δ p < 2δ p + δ p = 3δ p.

Therefore, if i ≥ l, we have that dp(σni ,αi , σnk ,α j )
p < 3δ p, which is a contradiction.

��

The triangle inequality dp(σ
∗, σn) ≤ dp(σ

∗, σα) + dp(σ
α, σα

n ) + dp(σ
α
n , σn)

together with the aforementioned lemmas finally gives us Theorem A.1.
Let us now prove the separability of Dp(X , A).

Proposition A.7 Let (X , A) ∈ MetPair. If X is separable, then Dp(X , A) is separable.

Proof of Proposition 4.7 Let S be a countable dense subset of X and let Ŝ ⊂ Dp(X , A)

be the set of persistence diagrams with finite total multiplicity and with points in S,
that is,

Ŝ = {σ ∈ Dp(X , A) : |σ | < ∞ and x ∈ S for all x ∈ σ }.

Let σ ∈ Dp(X , A). Then, for each ε > 0, we can find α > 0 such that
dp(lα(σ ), σ∅) < ε/2. Then, we have dp(σ, uα(σ )) ≤ dp(lα(σ ), σ∅) < ε/2. Since
S|uα(σ )| is dense in X |uα(σ )|, we can find σs ∈ Ŝ such that dp(σs, uα(σ )) < ε/2. Then,
dp(σ, σs) ≤ dp(σ, uα(σ )) + dp(σs, uα(σ )) < ε, which implies that Ŝ is dense.

Note that Ŝ = ∪∞
m=0 Ŝm , where Ŝm = {σ ∈ Ŝ : |σ | = m}. Each Ŝm can be embedded

into Sm , thus it is countable. Hence, Ŝ is countable. ��

Remark A.8 In Bubenik and Elchesen (2022), the authors consider completions of
spaces of persistence diagrams in the more general context of pairs (X , A) with X an
extended pseudometric space (i.e. a space in which the distance between points could
also be zero or infinite). They define D p(X , A) as the set of countable persistence
diagrams such that, up to removing a finite subdiagram, have finite p-persistence. Let
X/A = (X \ A) ∪ A denote the quotient set obtained by collapsing A to a point and
let (X , A/ ∼0) be the extended metric space obtained by identifying points with zero
distance. Proposition 6.16 in Bubenik and Elchesen (2022) (cf. 5th Theorem on page
350 of Bubenik and Hartsock 2024) asserts that (D p(X , A/ ∼0), dp) is complete
if and only if (X/A, d1) is complete, where d1 is the metric on on X/A given by
d1(x, y) = min(d(x, y), ||(d(x, A), d(y, A))||). In our context, X is a metric space
in the usual sense and, therefore, (D p(X , A/ ∼0), dp) = (Dp(X , A), dp). Thus, one
may obtain an alternative characterization of the completeness of our Dp(X , A) via
Proposition 6.16 in Bubenik and Elchesen (2022).
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A.2 Fréchet means

We now consider the existence of Fréchet means for probability measures on
Dp(X , A). Following the arguments in Mileyko et al. (2011, Sect. 3.2), we will estab-
lish a characterization of totally bounded sets in the space of persistence diagrams
Dp(X , A), 1 ≤ p < ∞ (see Proposition A.11), which is the main ingredient in
Mileyko et al. (2011) to prove the existence of Fréchet mean sets for probability mea-
sures with compact support. Before carrying on, we make the following elementary
observation.

Proposition A.9 If (X , A) ∈ MetPair and X �= A, then Dp(X , A) is not totally
bounded. In particular, Dp(X , A) is not compact.

Proof Fix x ∈ X \A and consider the sequence of diagrams {σn} such that σn = n {{x}}.
Then dp(σn, σ∅) = n1/pd(x, A), which is not bounded. ��

The following definition adaptsDefinitions 17, 18 and 20 fromMileyko et al. (2011)
to our setting.

Definition A.10 Let (X , A) ∈ MetPair and let S ⊂ Dp(X , A).

(1) The set S is birth-death bounded if the set {x ∈ X : x ∈ σ for some σ ∈ S} is
bounded.

(2) The set S is off-diagonally birth-death bounded if, for all ε > 0, the set uε(S) is
birth-death bounded.

(3) The set S is uniform if, for all ε > 0, there exists δ > 0 such that dp(lδ(σ ), σ∅) ≤ ε

for all σ ∈ S.

These conditions allow us to characterize totally bounded subsets of the space of
diagrams, i.e. subsets S ⊂ Dp(X , A) such that, for each ε > 0, there exists a finite
collection of open balls inDp(X , A) of radius ε whose union contains S. The proof of
Proposition A.11 is a slight modification of that of Mileyko et al. (2011, Theorem 21).
Observe again that our definition for the objects uα and lα differs slightly from that in
Mileyko et al. (2011) due to our different definition for the persistence of points.

Recall that a metric space X is proper if it satisfies the Heine–Borel property, i.e.
if every closed and bounded subset of X is compact (equivalently, if every closed ball
in X is compact). Note that every proper metric space is complete.

Proposition A.11 Let (X , A) ∈ MetPair with X a proper metric space. Then, a set
S ⊂ Dp(X , A) is totally bounded if and only if it is bounded, off-diagonally birth-
death bounded, and uniform.

Proof First, we prove the “if” statement. Assume then that S ⊂ Dp(X , A) is totally
bounded. Then, in particular, S is bounded. Now, let ε > 0, take 0 < δ < ε/2, and let
Bn = B(σn, δ), for n = 1, . . . , N , be a collection of balls of radius δ which cover S.
For each σn we can find a ball Cn ⊂ X such that x ∈ Cn for x ∈ σn with d(x, A) ≥ ε,
and d(x, A) < ε/2 for all x ∈ σn with x /∈ Cn . LetC be a ball containingC1∪· · ·∪CN .
Also, we can find α > 0 such that dp(lα(σn), σ∅) ≤ ε/4 for n = 1, . . . , N .
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Let us prove that S is off-diagonally birth-death bounded. We will proceed by
contradiction. Suppose that σ ∈ Bn and there is an x ∈ σ such that d(x, A) ≥ ε and
x /∈ Cε, where Cε ⊂ X is the ball concentric with C and with radius equal to the
radius ofC plus ε. Then, for any bijection φ : σ → σn , we have d(x, φ(x)) > ε−ε/2,
which implies that dp(σ, σn) ≥ ε/2. This contradicts the assumption that σ ∈ Bn and
implies that uε(S) is birth-death bounded since, for all σ ∈ uε(S) and all x ∈ σ , we
have proved that x ∈ Cε.

To prove that S is uniform, we also proceed by contradiction. Suppose that σ ∈ Bn

and dp(lα/2(σ ), σ∅) > ε. Consider a bijection φ : σ → σn and let σb and σt be maxi-
mal subdiagrams of lα/2(σ ) such that d(φ(x), A) < α for x ∈ σb and d(φ(x), A) ≥ α

for x ∈ σt . If dp(σb, σ∅) > ε/2, then

(
∑

x∈σb

d(x, φ(x))p

)1/p

≥ dp(σb, φ(σb)) ≥ dp(σb, σ∅) − dp(φ(σb), σ∅) >
ε

2
− ε

4
,

where φ(σb) denotes the subdiagram of σn which coincides with the image of σb under
φ. Since σb and σt do not have common points outside A and lα/2(σ ) is the union of
σb and σt , we have

dp(lα/2(σ ), σ∅)p = dp(σb, σ∅)p + dp(σt , σ∅)p.

Thus, if dp(σb, σ∅) ≤ ε/2, then

dp(σt , σ∅) >
(
ε p − 2−pε p)1/p ≥ ε/2.

Note also that if x ∈ σt , then d(x, φ(x)) ≥ α − α/2 ≥ d(x, A). Therefore,

(
∑

x∈σt

d(x, φ(x))p

)1/p

≥
(
∑

x∈σt

d(x, A)p

)1/p

= dp(σt , σ∅) >
ε

2
.

Thus, for any bijection φ : σ → σn we have

(
∑

x∈σ

d(x, φ(x))p

)1/p

>
ε

4
.

Therefore, dp(σ, σn) ≥ ε/4, which contradicts our assumption that σ ∈ Bn . Conse-
quently,

dp(lα/2(σ ), σ∅) ≤ ε

for all σ ∈ S, which implies that S is uniform.
We now prove the “only if” statement. Assume that S ⊂ Dp(X , A) is bounded,

off-diagonally birth-death bounded, and uniform. Given ε > 0, let δ > 0 be such
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that dp(lδ(σ ), σ∅) < ε/2 for all σ ∈ S. Take a ball C ⊂ X such that, for all σ ∈ S
and all x ∈ uδ(σ ), we have x ∈ C . Since S is bounded, we can also find a constant
M ∈ N such that |uδ(σ )| ≤ M for all σ ∈ S. On the other hand, since C is a bounded
subset of a proper complete space, C is also totally bounded and we can find points
x1, . . . , xN ∈ C such that, for any x ∈ C , we have d(x, xn) ≤ M−1/pε/2 for some
1 ≤ n ≤ N . Let σ ∗ be the diagram consisting of points xn with 1 ≤ n ≤ N , each with
multiplicity M and let σ1, . . . , σL with L = (M + 1)N be all subdiagrams of σ ∗. If
σ ∈ S, we can find σn and a bijection φ : uδ(σ ) → σn such that

⎛

⎝
∑

x∈uδ(σ )

d(x, φ(x))p

⎞

⎠
1/p

<
ε

2
.

Let φ : σ → σn be the extension of φ to σ obtained by mapping the points in lδ(σ ) to
A. Then,

(
∑

x∈σ

d(x, φ(x))p

)1/p

=
⎛

⎝
∑

x∈uδ(σ )

d(x, φ(x))p +
∑

x∈lδ(σ )

d(x, φ(x))p

⎞

⎠
1/p

<2
1
p −1

ε ≤ ε.

Therefore, dp(σ, σn) < ε and we conclude that S is totally bounded. ��
Wenow recall the definition of Fréchet mean set of probabilitymeasures on ametric

space and state it in our setting.

Definition A.12 Given a Borel probability measure μ on Dp(X , A), the quantity

Var(μ) = inf
σ∈Dp(X ,A)

{
Fμ(σ ) =

∫

Dp(X ,A)

dp(σ, τ )2 dμ(τ)

}

is the Fréchet variance of μ and the Fréchet mean set of μ, denoted by F(μ) is the
set of points in Dp(X , A) that realize Var(μ), i.e.

F(μ) = {σ ∈ Dp(X , A) : Fμ(σ ) = Var(μ)}.

We also recall the definitions of various concepts mentioned in Theorem D.

Definition A.13 Let μ be a Borel probability measure on Dp(X , A).

(1) We say that μ has finite second moment if

Fμ(σ ) < ∞

for any σ ∈ Dp(X , A).
(2) The support ofμ is the smallest closed subset S ofDp(X , A) such thatμ(S) = 1.
(3) We say that μ is tight if, for any ε > 0, there is a compact subset S ⊂ Dp(X , A)

such that μ(Dp(X , A)\S) < ε.
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(4) We say that μ has rate of decay at infinity q if for some (and hence for all)
σ0 ∈ Dp(X , A) there exist C > 0 and R > 0 such that, for all r ≥ R,

μ(Dp(X , A) \ Br (σ0)) ≤ Cr−q .

The following lemma is essential for the proof of Theorem D(1) and is an analog
of Lemma 23 in Mileyko et al. (2011). We include the proof with the necessary
modifications for the reader’s convenience.

Lemma A.14 Let μ be a finite Borel measure on Dp(X , A) with finite second moment
and compact support S ⊂ Dp(X , A), and let {σn}n∈N ⊂ Dp(X , A) be a bounded
sequence which is not off-diagonally birth-death bounded or uniform. Further, let
C1 > 1 and C2 > 1 be bounds on S and {σn}n∈N, respectively, that is, dp(σ, σ∅) ≤ C1
for all σ ∈ S and dp(σn, σ∅) ≤ C2 for all n ∈ N. Then there exists δ > 0 (depending
only on {σn}n∈N), a subsequence {σnk }k∈N, and subdiagrams σ nk such that

∫

S
dp(σ nk , σ )2 dμ(σ) ≤

∫

S
dp(σnk , σ )2dμ(σ) − ε0μ(S),

where

ε0 = (2s/2 − 1)(C1 + C2)
2−sδs, s = max{2, p}.

With these preliminaries in hand, the proof of Theorem D now follows as in the
Euclidean case (see Mileyko et al. 2011, Theorems 24 and 28). We include the proof
of item (1), as it is brief, and indicate the necessary steps to prove item (2), referring
to Mileyko et al. (2011) for further details.

Proof of Lemma 5.6 First, consider the case when {σn}n∈N is not off-diagonally birth-
death bounded. Fix x0 ∈ X . Then there exists 0 < ε < 1 such that, for any C > 0 and
N > 0, there is n > N and x ∈ σn satisfying d(x, A) ≥ ε and d(x, x0) ≥ C . Take
0 < δ < ε/2 and choose C0 > 0 such that for all σ ∈ S we have d(x, x0) ≤ C0 for
x ∈ uδ(σ ). Set C3 = C0 + C1 + C2 + 1. Let {σnk }k∈N be a subsequence of {σn}n∈N

such that each σnk contains a point x with d(x, A) ≥ ε and d(x, x0) ≥ C3, and let σ nk

be the subdiagram of σnk obtained by removing all such points x . Take σ ∈ S and let
γ : σnk → σ be a bijection such that

∑

x∈σnk

d(x, γ (x))p ≤ dp(σnk , σ )p + δ p.

Note that

dp(σnk , σ ) ≤ dp(σnk , σ∅) + dp(σ, σ∅) ≤ C1 + C2.

Hence, for any x ∈ σnk such that d(x, x0) ≥ C3, we have

d(γ (x), x0) ≥ d(x, x0) − d(γ (x), x) ≥ C3 − ((C1 + C2)
p + δ p)1/p > C0,
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since we can take δ to be sufficiently small. Thus, γ (x) ∈ lδ(σ ) for x ∈ σnk with
d(x, x0) ≥ C3 and it follows that, for any x ∈ σnk such that d(x, A) ≥ ε and
d(x, x0) ≥ C3, we have

d(x, γ (x)) ≥ d(x, A) − d(γ (x), A) ≥ ε − δ > δ.

Let γ : σ nk → σ be the bijection obtained from γ by pairing points γ (x) such that
d(x, A) ≥ ε and d(x, x0) ≥ C3 to the diagonal. Then

∑

x∈σnk

d(x, γ (x))p =
∑

x∈σ nk

d(x, γ (x))p +
∑

x∈σnk \σ nk

d(x, γ (x))p

≥
∑

x∈σ nk

d(x, γ (x))p + δ p

≥
∑

x∈σ nk

d(x, γ (x))p + δ p (A.1)

which implies, after applying the inequalities in the proof of Mileyko et al. (2011,
Lemma 23), that

⎛

⎝
∑

x∈σnk

d(x, γ (x))p

⎞

⎠
2/p

≥
⎛

⎝
∑

x∈σ nk

d(x, γ (x))p

⎞

⎠
2/p

+ ε0, (A.2)

where

ε0 = (22/s − 1)(C1 + C2)
2−sδ2, s = max{2, p}.

Therefore, after taking infimum with respect to γ and integrating with respect to μ on
both sides in inequality (A.2), we obtain

∫

S
dp(σnk , σ )2 dμ(σ) ≥

∫

S
dp(σ nk , σ )2 dμ(σ) + ε0μ(S).

This proves the lemma in the case where {σn}n∈N is not off-diagonally birth-death
bounded.

Suppose now that {σn}n∈N is not uniform. Let ε > 0 be such that, for any α >

0 and N > 0, there exists n > N such that dp(lα(σn), σ∅) ≥ ε. If necessary,
decrease the δ from the previous case so that 0 < δ < ε/4 and choose α0 such
that dp(lα0(σ ), σ∅) ≤ δ for all σ ∈ S. Take M ≥ 1 and C > δ such that, for all
σ ∈ S, we have |uα0(σ )| ≤ M and d(x, A) ≤ C for x ∈ σ . Define f : [0, 1] → [0, 1]
as f (x) = 1−(1−x)p . Note that f is a continuous, monotonically increasing function
and f (0) = 0, f (1) = 1. Set δ0 = f −1(M−1C−pδ p), andα1 = min{δ0α0, M−1/pδ}.
Let {σnk }k∈N be a subsequence of {σn}n∈N such that dp(lα1(σnk ), σ∅) ≥ ε, k ≥ 1, and
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let σ nk = uα1(σnk ). Take σ ∈ S and let γ : σnk → σ be a bijection such that

∑

x∈σnk

d(x, γ (x))p ≤ dp(σnk , σ )p + δ p.

Let γ̃ : σ nk → σ be the bijection obtained from γ by pairing points in γ (lα1(σnk )) to
the diagonal. For convenience, let

s0 = σ nk ,

s1 = {x ∈ σnk : d(x, A) < α1, d(γ (x), A) < α0},
s2 = {x ∈ σnk : d(x, A) < α1, d(γ (x), A) ≥ α0}.

Note that

∑

x∈s2

d(x, A)p ≤ Mα
p
1 ≤ δ p.

Thus,

∑

x∈s1

d(x, A)p ≥ ε − δ p.

Consequently,

dp(s1, σ∅) − dp(γ (s1), σ∅) =
(
∑

x∈s1

d(x, A)p

)1/p

−
(
∑

x∈s1

d(γ (x), A)p

)1/p

≥ ε

(
1 −

(
δ

ε

)p)1/p

− δ

≥ βδ

for any 2 ≤ β ≤ (4p − 1)1/p − 1. Thus,

(
∑

x∈s1

d(x, γ (x))p

)1/p

≥ dp(s1, γ (s1)) ≥ dp(s1, σ∅) − dp(γ (s1), σ∅) ≥ βδ.

Also,

∑

x∈s2

d(x, γ (x))p ≥
∑

x∈s2

(d(γ (x), A) − α1)
p

=
∑

x∈s2

(
d(γ (x), A)p − d(γ (x), A)p f

(
α1

d(γ (x), A)

))
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≥
∑

x∈s2

(
d(γ (x), A)p − C p f

(
α1

α0

))

≥ −δ p +
∑

x∈s2

d(γ (x), A)p.

We then have

∑

x∈σnk

d(x, γ (x))p =
∑

x∈s0

d(x, γ (x))p +
∑

x∈s1

d(x, γ (x))p +
∑

x∈s2

d(x, γ (x))p

≥
∑

x∈s0

d(x, γ (x))p + β pδ p − δ p +
∑

x∈s2

d(γ (x), A)p

≥ β pδ p − δ p +
∑

x∈s0

d(x, γ (x))p +
∑

x∈s1

d(γ (x), A)p

+
∑

x∈s2

d(γ (x), A)p

≥ δ p +
∑

x∈σ nk

d(x, γ (x))p.

Thus, we have arrived at inequality (A.1), and we may finish the argument as in the
previous case. This finishes the proof of the lemma. ��

Proof of TheoremD

For the proof of item (1), let S ⊂ Dp(X , A) be the support of μ and let {σn}n∈N be a
sequence Dp(X , A) such that Fμ(σn) → Var(μ).

We will proceed by contradiction. Suppose that {σn}n∈N is not bounded and let

wn = inf
σ∈S

dp(σn, σ ).

Then {wn}n∈N is not bounded either. In particular,

Fμ(σn) =
∫

S
dp(σn, σ )2 dμ(σ) ≥ w2

nμ(S) −→ ∞,

which is absurd. Thus, {σn}n∈N is bounded.
Assume now that {σn}n∈N is not off-diagonally birth-death bounded or it is not

uniform. Then, by Lemma A.14, there exist a subsequence {σnk }k∈N and subdiagrams
σ nk ⊂ σnk such that

∫

S
dp(σ nk , σ )2 dμ(σ) ≤

∫

S
dp(σnk , σ )2dμ(σ) − ε0μ(S).
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Taking the infimum over k, we get that

Var(μ) ≤ Var(μ) − ε0μ(S),

which is a contradiction. This finishes the proof of item (1).
To prove item (2), one first proves an analog of Mileyko et al. (2011, Lemma 27),

with minor modifications necessary to adapt the Euclidean proof to the general setting
of Dp(X , A). This lemma then implies the result, in a similar fashion as in the proof
of Mileyko et al. (2011, Theorem 28). ��
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