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1 Introduction

The discovery of the Higgs boson at the Large Hadron Collider (LHC) was a significant event,
confirming the Standard Model (SM) of particle physics. Yet, it did not provide answers to
all our questions. Mysteries such as the constituents of dark matter, the small but non-zero
neutrino masses [1–3], the imbalance between matter and antimatter, the recently observed
discrepancies in the W boson’s mass [4], B-physics anomalies [5], the muon g − 2 anomaly
from Fermilab [6], and the enigmatic hierarchy problem remain unresolved. These open
questions provide a strong motivation for theories beyond the Standard Model (BSM). The
LHC, along with future collider projects, is poised to explore these mysteries by venturing
into uncharted energy territories where new physics — including supersymmetry (SUSY),
extra spatial dimensions, and composite Higgs models — may be discovered.

Searches for alternative Higgs bosons other than the observed 125 GeV particle, as
well as for hypothetical Z ′ and W ′ bosons, are central to probing BSM phenomena, each
characterized by unique coupling patterns not seen in the SM. For simulating such collider
events, multi-purpose event generators like Herwig 7 [7–11], PYTHIA 8 [12], and Sherpa [13–15]
are indispensable tools. Sherpa often operates independently to integrate both the calculation
of the hard process and the subsequent parton shower, whereas PYTHIA 8 and Herwig 7 utilize
auxiliary programs like MadGraph5 [16, 17] to generate BSM hard processes and concentrate
on an accurate description of the parton showering and hadronization of those processes.
These computational frameworks have been validated through their success in accurately
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reproducing experimental data and in their capability to handle both SM and BSM scenarios,
incorporating perturbative QCD computations as well.

Nevertheless, at the heightened centre-of-mass energies probed by the LHC, the production
of massive weakly interacting bosons often features collinear and soft kinematics, necessitating
the inclusion of massive boson radiation in data analyses [18, 19]. A notable advancement
in general-purpose event generators is the refined capability to simulate massive boson
radiation accurately [20–23]. Leveraging this capability, it is now feasible to model the
radiative production of BSM bosons. However, adapting current parton shower algorithms
to accommodate BSM bosons poses a challenge due to their unique kinematic properties
compared to their SM counterparts. This includes the need to account for CP-odd couplings
associated with non-SM Higgs and vector bosons, which interact through right-handed
couplings absent in the SM framework.

The LHC collaborations have recently intensified their search for low-mass BSM par-
ticles [24–27]. This shift in focus is primarily because the last decade did not yield direct
evidence of new particles at higher mass scales. For low-mass particles, the likelihood of
their production through radiative processes is relatively higher than for their high-mass
counterparts. Accurate simulation of such radiative production is crucial; otherwise, it
could significantly alter the kinematic features expected from matrix element calculations.
Consequently, this necessitates the development of new, more general splitting functions
to properly model the BSM parton showers.

As well as the theoretical advantage of implementing BSM showers to simulate multi-
emission processes, there is also an important practical advantage. The shower algorithms
already work through all final-state particles considering whether to generate QCD, QED
or EW radiation from them. The additional time taken by adding BSM radiation is small
and grows only slowly with the number of emitted particles. On the other hand, the time
needed for fixed order calculations grows at least factorially with the number of produced
particles so, at high energies, only the showering approach is viable. This speed advantage is
particularly important because, when probing BSM model space, it is usually necessary to
make multiple runs over many different parameter value sets. Moreover, the angular-ordered
(AO) parton shower in Herwig 7, which implements intrajet and interjet effects due to colour
coherence [28], has recently been adapted to keep track of the opening angle conditions for
EW radiation [21] making it ready also for BSM radiation. The main missing ingredients
are the set of splitting functions needed and the important infrastructure to import the
model data needed to initialise these.

In this paper, we present generalized spin-unaveraged splitting functions for the AO
parton shower algorithm applicable to fermions, scalar bosons, and vector bosons. These
functions are model-independent and are designed to cover a broad spectrum of particle
splittings, including ϕ → ϕ′ϕ′′, f → f ′ϕ, V → V ′ϕ, ϕ → ϕ′V , V → ϕϕ′, f → f ′V , and
V → V ′V ′′ transitions. The advantage of spin-unaveraged splitting functions lies in their
ability to incorporate the spin-dependence of interactions, which is particularly critical in
BSM physics where couplings between quarks and bosons are spin-sensitive. For instance,
the interaction of a scalar boson with a fermion pair is characterized by:

Vqq′H = −igκ (for a CP-even scalar)
Vqq′H = −igκ̃γ5 (for a CP-odd scalar)

(1.1)
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Note that the Standard Model does not include a CP-odd Higgs boson. For vector bosons
interacting with fermions, the Standard Model prescribes specific left- and right-handed
couplings, represented by:

Vqq′V = −ig(gLPL + gRPR)γµ. (1.2)

To accurately simulate these interactions, modifications to the internal mechanisms of event
generators like Herwig 7 are necessary. These changes allow the generators to interpret values
from Universal FeynRules Output (UFO) models [29, 30] and correctly apply them to the
splittings. In BSM scenarios, where complex couplings often occur, spin-unaveraged splitting
functions are indispensable not only for correctly handling polarization effects but also for
managing the influence of heavy particles, where spin orientations significantly affect the
kinematic distributions of final-state particles.

The Angular-Ordered Parton Shower algorithm in Herwig 7 [7, 8, 21, 31, 32] and transverse-
momentum ordered parton showers, such as DIRE [33], along with those in PanScales [34] and
Alaric [35], differ fundamentally in their ordering mechanisms, which significantly influences
the phenomenological outcomes of the simulations. Despite these differences, the calculation
of quasi-collinear, helicity-dependent splitting functions is based on universal principles, chiefly
the spins of the interacting particles and the Feynman rules governing their interactions. This
foundational aspect implies that, aside from minor convention adjustments, these splitting
functions are transferable across different parton shower models. This transferability allows
for a unified approach in improving the accuracy of simulations, though the incorporation
of these functions into a specific parton shower algorithm may still need to account for the
algorithm’s unique features and approximations.

Furthermore, although we accurately calculate these spin-unaveraged splitting functions,
there are challenges when simulating massive particle splittings. Specifically, longitudinally
polarized vector bosons can lead to divergences as their mass approaches zero, which poses
numerical difficulties in event generators. To circumvent this, we adopt Dawson’s method [36],
which mitigates the issue by eliminating terms that are inversely proportional to the boson
mass, mi. Another nuanced problem arises from the inapplicability of the collinear limit of
massless splittings to massive ones. However, the quasi-collinear approach can be utilized to
achieve a comparable suppression in the forward region, analogous to the collinear limits [7, 37].
The resultant splitting functions bear similarities to those in the Standard Model [38–40],
suggesting their credibility even prior to detailed verification. Ultimately, these generalized
splitting functions are integrated into the Herwig 7 event generator, enabling BSM simulations.
Validation of these results, alongside comparative studies with MadGraph5 leading-order
computations, was conducted across diverse model configurations, including the general
two-Higgs-doublet model (2HDM) [41–43], the minimal B-L extension of the SM [44–46], and
the W ′ effective model [47, 48]. These models were provided in the UFO format, facilitating
their integration and testing within the event generator framework.

The structure of this paper is outlined as follows: section 2 details the essential components
for computing quasi-collinear, spin-dependent splitting functions, encompassing the kinematics
and dynamics of partons in the quasi-collinear limit. We elucidate the steps necessary to
derive these splitting functions in a universal form, suitable for integration with the Herwig 7
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event generator. In subsequent sections, we address the emissions of particles with various
spins. Specifically, section 3 discusses the emission of spin-0 particles from parents of spin-0,
-1/2, and -1, while section 4 explores the emission of spin-1 particles, covering all relevant
electroweak (EW) BSM couplings for both massive and massless partons. In section 5, we
present a comparative analysis between fixed-order MadGraph5 simulations of n + 1 final
state particle processes and the resummed results of showers for n final state particle hard
processes from MadGraph5 with an accompanying Herwig 7 shower that permits only a single
radiation event, thus emulating the n + 1 particle process of MadGraph5. This comparison
allows us to evaluate the effects of a full Herwig 7 SM+BSM shower against the MadGraph5
matrix element calculations that only incorporate SM showers (both cases include interleaved
QCD+QED+EW AO showers). The concluding section, section 6, encapsulates our findings,
with a particular focus on the model-independent utility of the generalized splitting functions.
Further practical guidance on executing BSM showers within the Herwig 7 framework is
furnished in section A.

2 Parton shower kinematics in the quasi-collinear limit

In this section, we provide an overview of the essential components required to compute
generalized angular-ordered splitting functions within the quasi-collinear limit [21, 37, 49].
Considering a generic splitting 0 → 1, 2, an AO parton shower can be characterized by
the light-cone momentum fraction, z, which parameterizes the momentum component of
the parent particle in the direction of the child particle, and the evolution scale, q̃. The
evolution scale by default is defined as

q̃2 = 2q1 · q2 + m2
1 + m2

2 − m2
0

z(1 − z) , (2.1)

within Herwig’s so-called “dot-product-preserving” scheme [31, 32], although other choices are
also available, i.e. the pT -preserving [50, 51] and q2-preserving [52, 53] schemes. In eq. (2.1),
the momenta of the participating partons are defined using the Sudakov decomposition as

qi = αip + βin + γiqT , (2.2)

where p is a four-vector of the on-shell progenitor before branching, n is a reference vector,
and qT is the transverse part of the particle momentum. If we choose the z axis in the
direction of the incoming parton, we obtain p = (

√
p2 + m2

0, 0, 0, p) and n = (1, 0, 0,−1).
The Sudakov parameters αi, βi and γi are defined as

αi =


1
z

1 − z

 , βi =


β1 + β2

p2
T +m2

1−z2m2
0

2zp·n
p2

T +m2
2−(1−z)2m2

0
2(1−z)p·n

 , γi =


0
1
−1

 , for i =


0
1
2

 .

(2.3)
In attempting to calculate the splitting function for the generic 0 → 1, 2 splitting, one

needs to define the spinors and polarization vectors of the progenitor and the children. The
spinors are conventionally defined in the Chiral basis as

u 1
2
(p) =

[
m0√

2p
; 0;
√

2p

(
1 + m2

0
8p2

)
; 0
]

, (2.4a)
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u− 1
2
(p) =

[
0;
√

2p

(
1 + m2

0
8p2

)
; 0; m0√

2p

]
, (2.4b)

u 1
2
(q1) =

[
m1√
2zp

; ejϕm1pT

(2zp)3/2 ;
√

2zp

(
1 + m2

0
8p2

)
; ejϕpT√

2zp

]
, (2.4c)

u− 1
2
(q1) =

[
−e−jϕpT√

2zp
;
√

2zp

(
1 + m2

0
8p2

)
;−e−jϕm1pT

(2zp)3/2 ; m1√
2zp

]
, (2.4d)

with ū± 1
2
(qi) = u†

± 1
2
(qi)γ0 and j denotes

√
−1. Note that within Herwig’s parton shower

algorithm, a splitting is boosted to a reference frame where the progenitor propagates along
the z axis, without loss of generality. After determining the kinematics of the splitting, the
entire frame is then boosted back to the original frame, and the cascade continues.

The polarization vectors of incoming vector bosons are given as follows:

ϵµ
λ0=±1(p) = − 1√

2
(0; λ0; j; 0) , (2.5a)

ϵµ
λ0=0(p) = 1

m0

(
p; 0; 0;

√
m2

0 + p2
)

. (2.5b)

On the other hand, the polarization vectors of the outgoing vector bosons can be derived
in the following forms [21];

ϵµ
λi=±1(qi) =

[
0;− λi√

2

(
1 − p2

T ejλiϕ cos ϕ

2α2
i p2

)
;− j√

2
+ λip

2
T ejλiϕ sin ϕ

2
√

2α2
i p2 ; γi

λipT ejλiϕ

√
2αip

]
(2.6a)

ϵµ
λi=0(qi) =

[
αip

mi
+ p2

T + α2
i m2

0 − m2
i

4αipmi
; γi cos ϕ

(
pT

mi
+ mipT

2α2
i p2

)
; γi sin ϕ

(
pT

mi
+ mipT

2α2
i p2

)
;

αip

mi
− p2

T − α2
i m2

0 − m2
i

4αipmi

]
, (2.6b)

when i = 1, 2.
One immediately notes the presence of qi/mi terms in eqs. (2.6) that are expected to

diverge in either the Breit momentum frame or for an unbroken electroweak theory. It is,
however, possible to utilise Dawson’s approach [36] and subtract all the terms proportional
to qi/mi from the polarisation vector in order to deal with these terms in the longitudinal
polarizations [21]. Following this disposition, the longitudinal part of a vector boson is
curtailed to

ϵµ
λi=0∗(qi) = ϵµ

λi=0(qi) −
qi

mi
= mi

2αip

(
−1; cos ϕpT

αip
; sin ϕpT

αip
; 1
)

(2.7)

Finally, we can calculate the splitting functions of showering processes following Altarelli
and Parisi’s method introduced in ref. [38]. This paper introduces a master formula to
compute the splitting probability1 using a matrix element of a local process independent
of the hard process, which is

P0→12(z, q̃) = 1
2(q2

0 − m2
0)

∑
s0,s1,s2

|Ms0,s1,s2 |2, (2.8)

1The functions P (z, q̃) we introduce give the probability distributions in both z and q̃, so we refer to
them as splitting probabilities. They are proportional to the conventional splitting functions, which are the
probability distributions in z at fixed q̃.
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where si (i = 0, 1, 2) denotes the spins of the particles participating in the process. We
will thus calculate matrix elements for all incoming and outgoing spin combinations, insert
them into the above equation, and then evaluate the splitting function for all kinds of
branching processes.

3 Scalar particle splittings

Given the inherently simpler Feynman rules for the incoming/outgoing scalar particles, we
begin the calculation of the generalized splitting functions with scalar particle emissions from
various types of currents, starting from spin-0 Higgs-like currents to spin-1/2 fermion and
spin-1 vector boson currents. We have calculated these splitting functions and compared the
results with the SM Higgs splitting outcomes [21], as well as with the branching behaviours
of massless squarks and gluinos, which possess spins of 0 and 1/2 respectively, in the context
of SUSY theory [37, 54]. A notable distinction from the SM EW boson splitting functions
is the potential for the incoming fermion or vector boson to change its flavour via charged
scalars or flavour-changing neutral currents (FCNCs).

3.1 ϕ → ϕ′ϕ′′ splitting function

We begin with the ϕ → ϕ′ϕ′′ splitting notably via the triple Higgs couplings. This type
of splitting is a common feature not only in the SM but also in theories with additional
Higgs bosons, such as 2HDM [42, 43, 55, 56] and SUSY [57, 58]. The vertex factor for this
splitting is given by a coupling constant itself without any additional factors, ig, leading
to the invariant matrix element:

−iM


 = −ig. (3.1)

This invariant matrix element, in conjunction with (2.8), yields the splitting probability for
the triple scalar boson coupling as follows:

Pϕ→ϕ′ϕ′′(z, q̃) = g2

2Sz(1 − z)q̃2 , (3.2)

where the symmetry factor S is 1 for ϕ′ ̸= ϕ′′ and 2 for ϕ′ = ϕ′′. It is important to note that
this symmetry factor becomes unity in the broken electroweak limit, where the scalar boson is
produced with asymmetric kinematics, rendering the two final state partons distinguishable.

In general, the coupling is given by g = n!vλ, where the factor n is a symmetry factor,
v represents the vacuum expectation value, and λ is the value of the triple Higgs coupling
associated with the Higgs quartic potential. Typical forms of λ in 2HDM are detailed in
appendix A of ref. [55]. For the SM Higgs boson, where mh =

√
2λv2 and mW = 1

2vgW , the
coupling is expressed as ghhh = 3

2gW
m2

h
mW

. Consequently, the SM Higgs to di-Higgs splitting
probability is formulated as:

Ph→hh(z, q̃) = g2
W

z(1 − z)q̃2
9m4

h

16m2
W

. (3.3)
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Mf→f ′ϕ
λ0, λ1

λ1

λ0 ↑ ↓

↑ κ(zm0+m1)−κ̃(zm0−m1)√
z

− (κ+κ̃)pT√
z

↓ (κ−κ̃)pT√
z

κ(zm0+m1)+κ̃(zm0−m1)√
z

Table 1. Matrix elements of f → f ′ϕ splitting functions, where all phase terms, ei(λ0−λ1)ϕ, are
factored out for simplicity.

3.2 f → f ′ϕ splitting function

The q → q′ϕ branching in BSM scenarios exhibits richer phenomenology compared to the
SM Higgs boson branchings. One notable aspect is the presence of flavour-changing currents,
which can occur via charged scalar bosons or FCNCs, both commonly found in many BSM
theories. Another aspect is the CP-odd (pseudoscalar) coupling, characterized by an additional
γ5 term in the vertex factor, in contrast to the CP-even (scalar) coupling, whose vertex
factor is simply iκ. Our analysis takes into account all these additional characteristics
inherent to BSM theories.

The matrix element of a generic q → q′ϕ branching is given as

−iM


 = ū(q1)

[
− i(κ + κ̃γ5)

]
u(p), (3.4)

where we use the onshell incoming parton momentum (p), rather than the offshell momentum
(q0), not to spoil the kinematics of the incoming partons. κ and κ̃ are the CP-even and
the CP-odd couplings, respectively.

With simple calculations, we can get the spin-unaveraged matrix elements Mf→f ′ϕ
λ0, λ1

as
shown in table 1. It shows an interesting symmetry from parity as follows:

• Parity transformation [39, 40] — The splitting function of a total helicity flipped process
should satisfy

Mf→f ′ϕ
λ0,λ1

= (−1)1+s1+s2
(
Mf→f ′ϕ

−λ0,−λ1

)∗
,

where si is a spin of the ith fermion given by si = ±1/2.
The sum of the matrix element squares weighted by the spin density matrix can be

written as∑
pol

|M|2 = ρ+|M↑↑|2 + ρ+|M↑↓|2 + ρ−|M↓↑|2 + ρ−|M↓↓|2

= ρ+

∣∣κ(zm0 + m1) − κ̃(zm0 − m1)
∣∣2 + |κ + κ̃|2p2

T

z

+ ρ−

∣∣κ(zm0 + m1) + κ̃(zm0 − m1)
∣∣2 + |κ − κ̃|2p2

T

z

=
(
ρ+|κ + κ̃|2 + ρ−|κ − κ̃|2

) [
z(1 − z)2q̃2 − m2

2
]

+ (ρ+ + ρ−)
[
|κ|2(m0 + m1)2

+ |κ̃|2(m0 − m1)2]+ 2(ρ+ − ρ−)ℜ(κκ̃∗)
[
(1 − 2z)m2

0 + m2
1
]
,

(3.5)
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where
∑

means that the sum is weighted by the spin density of the incoming parton, and
ℜ(·) stands for the real part of a complex number. Hence, ρ+ and ρ− are the first and second
diagonal elements of the spin density matrix. We use p2

T = z2(1 − z)2q̃2 + z(1 − z)m2
0 −

(1 − z)m2
1 − zm2

2 to derive the last line.
Finally, the splitting probability takes on the following form:

Pf→f ′ϕ(z, q̃) = 1
2(q2

0−m2
0)
∑
pol

|M|2

= g2

2
[(

ρ+|κ+κ̃|2+ρ−|κ−κ̃|2
)[

(1−z)−m2
2,t

]
+(ρ++ρ−)

[
|κ|2(m0,t+m1,t)2

+|κ̃|2(m0,t−m1,t)2]+2(ρ+−ρ−)ℜ(κκ̃∗)
[
(1−2z)m2

0,t+m2
1,t

]]
, (3.6)

where mi,t = mi√
z(1−z)q̃

is used for convenience.
Herwig7 does not treat leptons as progenitors because of the complexities and potential

divergences associated with lepton splittings. For instance, while we can mitigate divergence
in coloured particles by assigning a constituent mass as a minimum cut, such a workaround
does not exist for leptons. As a result, Herwig7 does not handle processes like ℓ → ℓ′ϕ,
meaning lepton-induced processes such as ℓ → ℓZ ′ are not included.

In the context of squark, gluino, and quark splitting functions, ignoring all mass terms
yields results consistent with those described in appendix C of ref. [54]. For example, the
g̃ → qq̃ splitting probability is given by Pq̃L/Rg̃(x) = 1

2Tf x, and the g̃ → qq̃L/R splitting
probability is Pqg̃(x) = 2 · 1

2Tf (1 − x). These are special cases of eq. (3.6) with κ = 1, κ̃ = 0,
ρ0 + ρ1 = 1, matching the colour factors of the corresponding Standard Model splittings,
and an additional factor of 2 in the second function due to the sum of the g̃ → qq̃L and
g̃ → qq̃R splittings.

For the SM coupling with g = gW m0/2mW , where

gW = e/ sin θW , m0 = m1, κ = 1, κ̃ = 0, ρ0 + ρ1 = 1,

the splitting probability is expressed as:

P SM
f→fϕ(z, q̃) = g2

W

8

(
m0
mW

)2 [
(1 − z) + 4m2

0 − m2
2

z(1 − z)q̃2

]
. (3.7)

This formulation successfully replicates the EW splitting result as described in eq. (3.21)
of ref. [21]. A noteworthy aspect of the BSM f → f ′ϕ splitting is the possibility of the
incoming and outgoing fermions having different flavours. This is reflected in the appearance
of the m1 term in eq. (3.6).

3.3 V → V ′ϕ splitting function

−iM


 = ϵ∗µ(q1)(igBSMgµν)ϵν(p). (3.8)

In the V → V ϕ splittings, the SM vertex factor is defined as imV gV gµν , with

gW = e/ sin θW , gZ = e/ sin θW cos θW .

– 8 –



J
H
E
P
0
8
(
2
0
2
4
)
0
6
4

MV →V ′ϕ
λ0, λ1

/ig λ1

λ0 + - 0 0∗

+ −1 0 pT√
2m1

-

- 0 −1 − pT√
2m1

-

0 − pT√
2zm0

pT√
2zm0

−z2m2
0−m2

1+p2
T

2zm0m1
-

0∗ - - - 0

Table 2. Matrix elements of V → V ′ϕ splitting functions, where a coupling constant, g, and phase
terms, ei(λ0−λ1)ϕ, are factored out.

This vertex factor inherently includes a mass term. A similar approach is used for the BSM
vertices, where the mass term is typically incorporated into the BSM coupling constant,
denoted as gBSM(∼ mg′), indicating an order of mass. Therefore, for consistency, it is
essential to compute M/gBSM up to the 0th order in the small quantities of the quasi-collinear
approximation, pT and mi, which results in a cross section to the 2nd order. By employing
the matrix element defined in eq. (3.8), table 2 is obtained, showcasing the matrix elements
of V → V ′ϕ splittings for all vector boson polarization combinations. This table illustrates
the symmetry arising from parity, expressed as MV →V ′ϕ

λ0,λ1
= (−1)λ0+λ1

(
MV →V ′ϕ

−λ0,−λ1

)∗
[39, 40].

While we can eliminate the single pole phenomena in MV →V ′ϕ
±,0 or MV →V ′ϕ

0,± using an
additional mass term in the coupling constant, a double pole still appears in the (λ0, λ1) = (0, 0)
branching. To address this, we apply Dawson’s approach [36], and the results are denoted
as 0∗. It is important to note that Dawson’s method is applied only in cases where the
splitting function exhibits a double pole.

Putting the above notes together, the matrix element for a generic V → V ϕ splitting
can be calculated as∑

pol
|M|2 = ρ+

(
|M++|2 + |M+0|2

)
+ ρ−

(
|M−−|2 + |M−0|2

)
+ ρ0

(
|M0+|2 + |M0−|2 + |M0∗0∗ |2

)
= g2

BSM

[
ρ+

(
1 + p2

T

2m2
1

)
+ ρ−

(
1 + p2

T

2m2
1

)
+ ρ0

(
p2

T

z2m2
0

)]
= g2

BSM

[
ρ+ + ρ−

2m2
1

(
z2(1 − z)2q̃2 + z(1 − z)m2

0 + (1 + z)m2
1 − zm2

2

)
+ ρ0

z2m2
0

(
z2(1 − z)2q̃2 + z(1 − z)m2

0 − (1 − z)m2
1 − zm2

2

)]
,

(3.9)

where ρ+,0,−’s are the first, the second, and the third diagonal elements of the spin density
matrix respectively. This gives the splitting probability for the V → V ′ϕ branching with
the convention of m2

i,t = m2
i /(q̃2z(1 − z)) as

PV →V ′ϕ(z, q̃) = g2
BSM
2

[
ρ+ + ρ−

2m2
1

(
z(1 − z) + z(1 − z)m2

0,t + (1 + z)m2
1,t − zm2

2,t

)
+ ρ0

z2m2
0

(
z(1 − z) + z(1 − z)m2

0,t − (1 − z)m2
1,t − zm2

2,t

)]
.

(3.10)
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Here we want to re-emphasize that the coupling constant for V V ϕ vertices should have an
order of mass so that m2

0,1 terms in the denominators do not diverge even though pT /m → ∞.
The SM splitting probability can be obtained by setting m0 = m1 and replacing gBSM

with gSMm0. This yields the following expression:

PV →V ϕ(z, q̃) = g2
SM

[1 − z

4z

(
(ρ+ + ρ−)z2 + 2ρ0

)
−

m2
2,t

4z

(
(ρ+ + ρ−)z2 + 2ρ0

)
−

m2
0,t

4z2

(
ρ0(2z2 − 4z + 2) + (ρ+ + ρ−)(z4 − 2z3 − z2)

)]
.

(3.11)

As anticipated, all singularities are successfully eliminated [21]. The notable difference
between the generalized spin-0 particle radiation and the SM Higgs radiation from vector
bosons is again the former can induce a flavour change in the bosonic flow leading to the
emergence of the m1 term in the function.

Despite the inclusion of an additional mass term in the coupling constant, eq. (3.10)
numerically diverges for massless vector bosons. A distinctive feature of BSM theories
regarding the V V ϕ interactions is the capability of massless particles to interact with spin-0
particles, such as a γZh interaction in the 2HDM. Therefore, it is prudent to individually
consider massless splittings to properly address the singular behaviours arising from 1/m

terms. When the incoming parton is massless, the splitting function omits the component
derived from the longitudinal polarization of the incoming parton. Consequently, the splitting
probability for a massless incoming vector boson is:

PVmassless→V ′ϕ(z, q̃) = g2
BSM
4m2

1

[
z(1 − z) + (1 + z)m2

1,t − zm2
2,t

]
, (3.12)

noting that ρ+ + ρ− is invariably unity for a massless incoming parton. The second scenario
involves a massless outgoing vector boson, namely V → V ′

masslessϕ. In this case, terms
corresponding to λ1 = 0 should be excluded, leading to a modified splitting probability:

PV →V ′
masslessϕ(z, q̃) = g2

BSM
2m2

0

[
(ρ++ρ−)m2

0,t+
ρ0
z2

(
z(1−z)+z(1−z)m2

0,t−zm2
2,t

)]
. (3.13)

Finally, let us consider a scenario where both the incoming and outgoing vector bosons
are massless. In general, scalar particles do not interact when both incoming and outgoing
particles are massless. However, some limiting cases could be conceivable at future colliders
operating at much higher energy scales, where vector bosons are exceedingly light. This
limiting scenario yields the following splitting probability:

PVmassless→V ′
masslessϕ(z, q̃) = g2

BSM
2z(1 − z)q̃2 . (3.14)

It is important to note that this resulting formula aligns exactly with the ϕ → ϕ′ϕ′′ splitting
probability expressed in eq. (3.2). This indicates that in the context of our universal analysis,
the vector bosons involved in the V → V ′ϕ splitting assume the properties of Goldstone
modes in the massless limit, despite the exclusion of longitudinal polarization contributions.

4 Vector boson splittings

In this section, we detail the emission dynamics for vector bosons off scalar, fermionic, and
bosonic flows. The ϕ → ϕ′V splitting represents a pure BSM phenomenon, and thus we
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λ2 + - 0∗

Mϕ→ϕ′V
λ2

−
√

2 pT
1−z

√
2 pT

1−z −1+z
1−z m2

Table 3. Matrix elements for the ϕϕV splitting functions (denoted as Mϕ→ϕ′V
λ2

) are presented, where
the coupling constant g, and phase factors e−iλ2 , have been factored out.

introduce this splitting function here. Following this, the generalized f → f ′V and V → V ′V ′′

splitting functions are presented. Unlike scalar particle splittings, SM vector boson splittings
have already introduced a flavour-changing current through the CKM matrix. This implies
that for the f → f ′V and V → V ′V ′′ processes, there isn’t a significant distinction between
the EW vector boson splitting functions [21] and their BSM counterparts. The notable
difference in BSM theories is again the occurrence of FCNC. We have therefore calculated the
splitting functions to be as general as possible, compared them with the EW functions [21],
and closely examined their properties.

4.1 ϕ → ϕ′V splitting

The ϕ → ϕ′V branching is a distinctive aspect of BSM theories like 2HDM or SUSY. For
the ϕϕV coupling, the vertex factor is represented as ig(p1 − p2)µ, where all momenta are
directed inward. This leads to the following matrix element:

−iM


 = ig(p + q1)µϵ∗µ(q2). (4.1)

By substituting eqs. (2.2), (2.6), and (2.7), the matrix elements are detailed in table 3. When
integrating these terms and employing the abbreviation for mass terms described in eq. (3.2),
the splitting probability for a ϕ → ϕ′V branching is formulated as follows:

Pϕ→ϕ′V (z, q̃) = g2
[

2z

1 − z
(1 + m2

0,t) −
2

1 − z
m2

1,t + 1
2m2

2,t

]
. (4.2)

Significantly, this splitting probability aligns with the massless SUSY q̃ → q̃g splitting function,
disregarding all mass terms, expressed as Pq̃→q̃g(z) = 2CF z/(1 − z), as documented in [54].

For ϕϕV couplings, the V → ϕϕ′ branchings are also among notable phenomena in
BSM theories. A splitting function for this process can be derived using the following
symmetry properties:

• Crossing symmetry [59] — Swapping two final state particles entails a change
(
z ⇔

(1 − z), m1 ⇔ m2
)
, along with appropriate adjustments to the phase factors. Thus,

MA→BC
λ0,λ1,λ2(z, q̃; m0, m1, m2) ∝ MA→CB

λ0,λ2,λ1(1 − z, q̃; m0, m2, m1).

• Drell-Levy-Yan crossing relation [60–62] — Switching the incoming and outgoing partons
results in

P A→BC
λA,λB ,λC

(z) = (−1)λA+λB+λC zP B→AC
λB ,λA,λC

(1/z).
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Mf→f ′V
λ0,λ1,λ2

λ2

λ0 λ1 + - 0 0∗

+ +
√

2gRpT√
z(1−z) −

√
2zgRpT
1−z

gL(1−z)2m0m1+gR(p2
T −zm2

2)√
z(1−z)m2

−2gR
√

zm2
1−z

+ - −
√

2(gLzm0−gRm1)√
z

0 − (gLm0−gRm1)pT√
zm2

0

- + 0 −
√

2(gRzm0−gLm1)√
z

(gRm0−gLm1)pT√
zm2

0

- -
√

2zgLpT
1−z −

√
2gLpT√
z(1−z)

gR(1−z)2m0m1+gL(p2
T −zm2

2)√
z(1−z)m2

−2gL
√

zm2
1−z

Table 4. Matrix elements of f → f ′V splitting functions where phase terms ei(λ0−λ1−λ2) are
factored out.

Notably, for the ϕ → ϕ′V process, one needs to sum all polarization states of the final vector
boson. However, for the V → ϕϕ′ process, an average should be taken, as the vector boson
now enters the vertex. The resulting splitting probability is:

PV →ϕϕ′(z, q̃) = g2
[
(ρ+ + ρ−)

(
z(1 − z)(1 + m2

0,t) − (1 − z)m2
1,t − zm2

2,t

)

+ ρ0
(1 − 2z)2

2 m2
0,t

]
.

(4.3)

It can be observed that this function aligns with the massless SUSY g → q̃ ¯̃q splitting function,
Pg→q̃ ¯̃q(z) = Tf z(1 − z) [54], when ρ+ + ρ− = 1 and m0,1,2 → 0. The V → ϕϕ′ splitting,
although technically viable, is not introduced as a part of this generalized parton shower
implementation since it can be only realized for m = 0 orbital angular moment of the parent
gauge vector boson. This constraint significantly limits the applicability of such a splitting
in a generalized parton shower algorithm, which aims to be as universally applicable as
possible across various processes and conditions.

4.2 f → f ′V splitting

The invariant matrix element of the vector boson radiation from a fermion is given as

−iM


 = ū(q1)

[
− i(gLPL + gRPR)γµ]ϵ∗µ(q2)u(p). (4.4)

The explicit forms of these spin-unaveraged matrix elements are given in table 4.
To address the divergences arising from the longitudinal polarization, Dawson’s approach,

denoted as 0∗, is again employed. The resulting splitting probability for f → f ′V is:

Pf→f ′V (z, q̃) = (|gR|2ρ+ + |gL|2ρ−)
(1 + z2

1 − z
(1 + m2

0,t) −
1 + z

1 − z
m2

1,t − m2
2,t

)
+ (|gR|2ρ− + |gL|2ρ+)zm2

0,t − 2ℜ(gLg∗R)(ρ+ + ρ−)m0,tm1,t.

(4.5)

As anticipated, this formulation aligns precisely with the Standard Model (SM) q → q′V

splitting function [21] when gL and gR are pure imaginary numbers, as is the case in the SM.

– 12 –



J
H
E
P
0
8
(
2
0
2
4
)
0
6
4

4.3 V → V ′V ′′ splitting

In this subsection, we discuss branchings of the V to V ′V ′′ process, where the invariant
matrix element of this evolution can be calculated by

−iM




= −g[gµν(p + q1)λ + gνλ(−q1 + q2)µ − gλµ(q2 + p)ν ]ϵµ(p)ϵ∗ν(q1)ϵ∗λ(q2).

(4.6)

However, this formula cannot be used directly because the longitudinal polarization vectors
revised by Dawson’s approach are not orthogonal to the momentum vector, i.e.

ϵ0∗(qi) · qi = −q2
i /mi ̸= 0. (4.7)

We therefore impose the orthogonality by requiring ϵ0∗(qi) · qi = 0. It is then handy to write
down the matrix element in the following form:

−iMV →V ′V ′′ = − 2g [(q1 · ϵ∗2)(ϵ0 · ϵ∗1) + (q2 · ϵ0)(ϵ∗1 · ϵ∗2) − (q2 · ϵ∗1)(ϵ0 · ϵ∗2)]
+ g β0n · [ϵ∗2(ϵ0 · ϵ∗1) + ϵ0(ϵ∗1 · ϵ∗2) − ϵ∗1(ϵ0 · ϵ∗2)] .

(4.8)

This formula can be employed for any polarization combination. It will give the explicit forms
of matrix elements with regard to the polarizations of the particles that participated in the
process given in table 5, where we adopt Dawson’s approach to deal with the divergence due to
the longitudinal polarization states. Although the V → V ′V ′′ process is much more complex
than the ϕ → ϕ′ϕ′′ process, it exhibits all the aforementioned symmetric features such as the
crossing symmetry, the Drell-Levy-Yan relation, and the parity transformation relation, since
it is a maximally symmetric process as well. Finally, the splitting probability is given as

PV →V ′V ′′(z, q̃) = 2g2
[(1−z(1−z))2

z(1−z) (ρ++ρ−)+2ρ0(1−z)2m2
0,t

+
(1−z(1−z))2 m2

0,t−(1−z2(1−z))m2
1,t−(1−z(1−z)2)m2

2,t

z(1−z) (ρ++ρ−)
]
.

(4.9)

It recovers the g → gg splitting function when all mass terms are neglected.

5 Results and discussions

In this section, we showcase the validation and outcomes from incorporating generalized
splitting functions, encompassing BSM boson radiation schemes, into Herwig 7. Our study
centres on an extensive performance assessment of BSM parton showers, covering an array of
BSM scenarios, as well as the SM Triple Higgs Coupling (THC), a phenomenon within the
SM framework that had not been implemented in the previous iterations of Herwig 7.

To rigorously validate the generalized parton shower scheme, several SM and BSM
scenarios were meticulously chosen. We selected n + 1 particle processes, each sensitive
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h

h
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Figure 1. Feynman diagrams for the Z → Zhh process.

to distinct types of splittings, and ensured their phase spaces were minimally affected by
interference with non-parton shower-like diagrams. For each process, we conducted two
different calculations: one with and one without a final state emission resulting in the same
Feynman diagram. Specifically, we first generated a hard matrix element (ME, denoted as
M) using MadGraph5, then simulated shower processes with Herwig 7, limiting the parton
shower (PS) to allow only one corresponding FS BSM emission, denoted as Mn + PSn→n+1.
This approach enabled us to gather single-step resummation data (RS). These events were
then compared to the corresponding n + 1 particle processes generated by MadGraph5, i.e.,
Mn+1, which represents the fixed-order (FO) contribution. The UFO model files [30], based
on the FeynRules [29] framework, were input into both MadGraph5 and Herwig 7 to accurately
calculate FO and RS data for BSM scenarios.

For the ϕ → ϕ′ϕ′′ splitting outlined in section 3.1, the SM THC provides a straightforward
example for examination. We utilize the pp → Z0h process (simulated with MadGraph5) as a
basis for the RS contributions of the h → hh splitting (modelled in Herwig 7). Corresponding
FO calculations are performed using the pp → Z0h → Z0hh process. It is noteworthy that
we specifically configure this process in MadGraph5 to generate a diagram featuring the triple
Higgs coupling2 (illustrated in figure 1(a)), while deliberately excluding irrelevant diagrams
such as the double-splitting of Higgs bosons from a Z boson (shown in figure 1(b)) or a
quartic coupling (depicted in figure 1(c)).

All results plots are presented at the end of the paper, where figure 4 shows the results
for the SM Higgs with mass 125 GeV at a centre-of-mass energy of

√
s = 100 TeV, chosen for

its capability to facilitate a sufficient number of massive particle emissions. Panels (a), (b),
(c), and (d) illustrate the differential rates of Higgs boson emissions as a function of the h

momentum transverse to the hh axis (pT ), light-cone momentum fraction (z), the mass of the
di-Higgs system (m(h, h)), and the angular separation between two Higgs bosons (∆R(h, h)),
respectively. The red histogram represents the kinematics of the Higgs bosons emitted as a
result of the newly implemented parton shower algorithms, labelled as RS, while the blue
histogram corresponds to their FO counterparts.

2One might worry that this choice is not gauge-invariant, but we have verified with MadGraph5 that for this
process, within the phase space dominated by the parton shower kinematics, interference with the non-emission
diagrams is numerically small, so any associated ambiguities must also be small.
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The h → hh splitting RS shows a good correspondence with its FO counterpart. However,
notable discrepancies are observed in regions characterized by high pT , large m(h, h), or
substantial ∆R(h, h), where hard emissions predominate. In these areas, the collinear
factorization theorem is less effective, but this issue can be addressed by integrating MEs that
include additional hard jets. Furthermore, although the RS tends to slightly underestimate
the extremities of the light-cone momentum fraction distribution, it aligns quite well at the
central part, which contributes significantly to the overall results.

We further broadened our analysis to encompass BSM Higgs branchings within the
general 2HDM. Figure 5 displays the results for the H → h+h− branching, derived from the
pp → Hj process at a center-of-mass energy of

√
s = 13.6 TeV, reflecting the current LHC

energy configuration. In this context, H represents an additional neutral CP-even Higgs
boson, and h± denotes charged Higgs bosons characteristic of 2HDM, all set to a mass of
10 GeV. Heavy flavour quarks are excluded from jet constituents, thus eliminating the need
to consider additional Higgs radiation from a jet. The panels exhibit the differential rates
of emissions as functions of pT , z, ∆R(j, h+), and ∆R(h+, h−), respectively. The overall
shapes are quite similar, largely due to the ratio of the Higgs bosons’ mass to the energy
scale (m/

√
s ∼ 0.001) being almost the same as in the previous SM h → hh case. The reason

the RS overestimates the FO result more than in the SM scenario is due to the smaller
masses of the Higgs bosons in this case, which amplifies soft and collinear enhancements.
Nonetheless, figure 5(c) confirms that the ϕ → ϕ′ϕ′′ splitting function performs exceedingly
well within the parton shower regime, supporting the notion that the ϕ → ϕ′ϕ′′ RS is capable
of reasonably describing the FO data.

The performance testing of the f → f ′ϕ splitting, as detailed in section 3.2, utilizes the
e+e− → bb̄ process at a center-of-mass energy of

√
s = 1 TeV. Utilizing this hard process,

single-step radiation of a b → bH emission and a b → sH emission are simulated separately
with Herwig 7, where CP-even and -odd couplings are encompassed in both cases. The latter
case specifically examines an FCNC process. Generating e+e− → qq′H with MadGraph5
includes contributions from not only Final State Shower (FSS)-like diagrams, exemplified in
figure 2(a), which are the target of our test, but also non-FSS-like diagrams such as those
depicted in figure 2(b). Consequently, figures 6 and 7 display the results for the b → bH

emission, while figures 8 and 9 illustrate the outcomes of the b → sH emission. In each case,
Higgs bosons with masses of 10 GeV and 130 GeV are simulated. These figures showcase the
distributions of q̃, z, m(H, branching partner), and ∆R(H, branching partner), presented in
sequence. The branching partner of the H boson is an s-quark in the b → sH emission.
However, selecting a branching partner in the b → bH case is more challenging. For the
latter scenario, we compute the transverse momentum of the H boson relative to both b-
and b̄-quarks in the parton shower frame in which the bH or b̄H pair is on the axis, and
select the quark that exhibits the lower transverse momentum.

The RS results match the shapes of the FO histograms. A notable decline at around
m(H, branching partner) ∼ 500 GeV in figure 6(c) can be attributed to the maximal momen-
tum constraint on the b-quark emanating from the 1 TeV e+e− collision. This phenomenon
is similarly observed in figures 7, 8, and 9. Particularly noticeable are the sharp cutoffs in
the q̃ distributions at q̃ = 1 TeV, with minor remnants above this threshold resulting from
energy-momentum redistribution during the final stages of parton showering, in line with the
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Figure 2. Representative Feynman diagrams for the e+e− → bb̄H process.

recoil scheme. This effect leads to more pronounced downturns at both extremes of the z

distributions, becoming more apparent in scenarios involving massive Higgs bosons. This is
because the mass terms in equation (3.6) invariably include a 1/z(1−z)q̃ factor. Moreover, by
juxtaposing figures 6(a) and 7(a), it is discerned that a smaller Higgs boson mass correlates
with the initiation of parton radiation from lower q̃, thereby allowing a greater expanse of
phase space to be permitted. This phenomenon, notwithstanding the coupling constants
being equivalent in both scenarios, amplifies the total cross section more considerably when
the mass of the Higgs boson is smaller. This effect is notably accentuated at lower ∆R(b, H).
Finally, we note that the normalisation of the RS curves for SM b(b̄) → b(b̄)H is considerably
higher than for FO. This comes about because the RS approach is able to use dynamical scale
choices at vertices and, in the case of the bb̄H vertex uses the running b quark mass, which can
be considerably larger at small scales than at the global event scale used in a FO calculation.

The V → V ′ϕ branching, as outlined in section 3.3, is evaluated using a pp → W±j

underlying Born process, incorporating a W± → W±H emission, at a center-of-mass energy of
13.6 TeV. For this analysis, the mass of the H boson is set at 1 GeV. To minimize interference
from other diagrams yielding the same final states, the FO calculation is configured to
specifically ensure that the H boson is emitted from the W boson. The results of this evaluation
are depicted in figure 10, where the four panels display the same types of distributions as
those shown in figure 6. It is evident from these results that all RS distributions exhibit
trends that are similar to their FO counterparts, especially in the regions where the RS
approach should work well: small q̃ and m, and ∆R ≲ π/2.

We then proceeded to examine the f → f ′V splitting function as described in section 4.2,
under the conditions of the current LHC setup at

√
s = 13.6 TeV. To validate our results across

different models, we utilized two distinct frameworks: firstly, the q → qZ ′ branching within
the minimal B-L model, a U(1) extension of the Standard Model featuring a gauged baryon-
minus-lepton number [44–46]; and secondly, the q → q′W ′ branching in the W ′ effective
model [47, 48]. To mitigate interference with non-FSS-like diagrams, as illustrated in figure 3,
we exclusively selected incoming and outgoing quark flavours. The Z ′ branching involved
uū → dd̄ processes, while the W ′ model employed uū → cc̄ as the underlying Born processes.
Within MadGraph5, initial-state radiation contributions were eliminated using diagram filters.
The masses for the Z ′ and W ′ bosons were set to 10 GeV and 50 GeV, respectively.

The results presented in figures 11 and 12 illustrate a generally accurate representation
of the FO calculations. A notable peculiarity observed in these figures is a wiggle in
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(a) (b)

Figure 3. Non-FSS-like Feynman diagrams for the pp → V jj process.

the high z region. This feature arises from the 1/(1 − z) dependency of the mass terms
in equation (4.5). As a consequence, figure 12(b) exhibits more pronounced fluctuations
compared to figure 11(b), owing to the larger mass of the W ′ boson. This effect is also
evident in lab frame distributions like figure 12(d). However, it does not significantly alter
the overall trends in the results, indicating the robustness of the analysis in capturing the
key dynamics of the processes under study.

The observed fluctuations in the plots for processes f → f ′V and V → V ′ϕ are attributed
to the dependency on the mass terms within the splitting functions, especially pronounced
for bosons with significant mass such as the W ′. These phenomena are indicative of the
intricate dynamics at play when incorporating BSM physics into parton shower simulations,
particularly under scenarios involving high transverse momentum or wide-angle emissions.
The slight mismatches and the presence of wiggles, especially in regions of high z and pT ,
suggest the limitations of the collinear approximation, pointing towards the integration of
matrix elements that include additional hard jets for enhanced precision in these regions.
Moreover, the mass terms in the splitting functions significantly influence the kinematic
distributions, such as m(H, branching partner) and ∆R, by affecting the phase space and the
probabilities of radiation at different scales. The dependence introduced by the mass terms,
particularly through the 1/z(1 − z) factor, is crucial for ensuring suppression in the forward
region, underscoring the validity of the quasi-collinear approach. The comprehensive analysis
across different models, including the minimal B-L model and the W ′ effective model, and
the comparison of RS to FO calculations, underline the effectiveness of the generalized parton
shower scheme in capturing the essence of BSM radiation dynamics.

Figure 13 provides additional validation for the q → q′V splitting by comparing the z

distribution under the same conditions as presented in figures 11(b) and 12(b). The primary
distinction between them lies in the masses of the W ′ and Z ′ bosons, with the current figures
depicting scenarios where m(W ′) = 10 GeV (figure 13(a)), m(W ′) = 100 GeV (figure 13(b)),
and m(Z ′) = 200 GeV (figure 13(c)), respectively. Notably, consistent wiggles are observed
near z → 1 when the masses of the vector bosons are large, whereas this feature is absent
in scenarios with lower boson masses, irrespective of the vector boson types.

6 Conclusion

In this study, we have presented a novel extension of the AO parton shower scheme to
incorporate BSM splittings by examining generalized splitting functions. We began by
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systematically deriving explicit expressions of the quasi-collinear matrix elements in helicity-
dependent forms. The splitting functions correspond well with preceding results [21–23, 37, 54]
in the EW or SUSY limits.

Existing AO shower functions are augmented with these BSM splitting functions, which
have been integrated into the shower process of Herwig 7. To ensure the accuracy and
reliability of our implementation, we compared the results of the implemented BSM parton
shower against corresponding FO expectations from MadGraph5 [16, 17]. Specifically, we
calculated the kinematic distributions of H, W ′, and Z ′ bosons accompanied by high-
transverse momentum jets under various settings: a current LHC setup at a centre-of-mass
energy of

√
s = 13.6 TeV, a future proton-proton collider at

√
s = 100 TeV, and a future e+e−

collider at
√

s = 10 TeV. We demonstrated that our BSM parton shower effectively captures
the sequential BSM radiation under the collinear factorization approximation. Moreover, our
simplified framework predicts that the behaviour of BSM events can be significantly altered
by the emission of BSM bosons in future high-energy collider experiments, particularly when
the mass of the BSM particle is relatively small. We intend to extend these generalized
splitting functions to address coloured particles such as a dark shower [63], or extra-spin
particles like gravitino or graviton in the next phase.

These novel parton shower schemes will be available with the Herwig 7.4 public release.
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A BSM parton shower in Herwig 7 interface

Herwig 7 is now equipped to handle all types of BSM boson showers, particularly those
without colour structure or additional charges [7–9]. The tutorial section titled “Using UFO
Models” provides comprehensive guidance on automatically setting up BSM features using
any UFO model file [30]. Preparing Herwig 7 for these simulations involves a few essential
steps detailed in this documentation. First, users should allow the BSM shower as follows:

ufo2herwig <UFO_directory> --enable-bsm-shower
make

To prevent any kind of disorder caused by including FCNC processes, this command auto-
matically suppresses all FCNC-inducing splittings. One, however, can allow the inclusion
of the FCNC processes by adding the “–allow-fcnc” flag:

ufo2herwig <UFO_directory> --enable-bsm-shower --allow-fcnc
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Through Herwig 7’s ufo2herwig module, spin information, interaction types, coupling values,
and others related to the parton shower process are written in a “FRModel.model” file,
which can be read by

read FRModel.model

in any input file with the suffix “.in”. Note that if there are any changes in the UFO internal
files, you should re-do

ufo2herwig <UFO\_directory> --enable-bsm-shower
make

to update Herwig 7 modules, particularly the corresponding coupling values.
Inside the above-mentioned FRModel.model file, all BSM splittings are systematically

defined. For example, if the model has a u-ū-Zp vertex, a u->u,Zp splitting will be generated as

create Herwig::HalfHalfOneEWSplitFn uuZpSplitFnEW

and

do /Herwig/Shower/SplittingGenerator:AddFinalSplitting u->u,Zp;
uuZpSudakovEW
u->u,Zp; uuZpSudakovEW

which actually executes the radiation.
Generally speaking, only two types of coupling values are written in the model file:

cd /Herwig/FRModel/Particles
set uuZpSplitFnEW:CouplingValue.Im <value>
set uuZpSplitFnEW:CouplingValue.Re <value>

where “Im” and “Re” are imaginary and real parts of the coupling value, respectively.
However, for the spin-1/2 to spin-1/2 plus spin-1 splittings, left and right-handed couplings
are considered separately

cd /Herwig/FRModel/Particles
set uuZpSplitFnEW:CouplingValue.Left.Im <value>
set uuZpSplitFnEW:CouplingValue.Left.Re <value>
set uuZpSplitFnEW:CouplingValue.Right.Im <value>
set uuZpSplitFnEW:CouplingValue.Right.Re <value>

In the same way, CP-even and -odd couplings in spin-1/2 to spin-1/2 plus spin-0 splittings
are handled by

set bbh2SplitFnEW:CouplingValue.CP0.Im <value>
set bbh2SplitFnEW:CouplingValue.CP0.Re <value>
set bbh2SplitFnEW:CouplingValue.CP1.Im <value>
set bbh2SplitFnEW:CouplingValue.CP1.Re <value>
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where CP0 (CP1) means CP-even (CP-odd) coupling. It is recommended that the user do
not change the values directly in the FRModel.model file, but to do it in their input file.

As a final remark, BSM radiation is turned on automatically when the EW parton
shower is switched, i.e.

set /Herwig/Shower/ShowerHandler:Interactions EWOnly

or

set /Herwig/Shower/ShowerHandler:Interactions ALL

where the first switches on only EW and BSM radiation but the second command does
QED, QCD, EW, and BSM.

– 21 –



J
H
E
P
0
8
(
2
0
2
4
)
0
6
4

FO
RS

10−4

10−3

pT spectrum in h → hh splittings at √spp = 100 TeV

dσ
/
dp

T
[f
b/

G
eV

]

0 50 100 150 200
0

0.5

1

1.5

2

pT [GeV]

R
at
io

(a)

FO
RS

10−3

10−2

10−1

1

z spectrum in h → hh splittings at √spp = 100 TeV

dσ
/
dz

[f
b]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

z

R
at
io

(b)

FO
RS

10−4

10−3

m(h, h) spectrum in h → hh splittings at √spp = 100 TeV

dσ
/
dm

(h
,h
)
[f
b/

G
eV

]

200 250 300 350 400 450 500
0

0.5

1

1.5

2

m(h, h)[GeV]

R
at
io

(c)

FO
RS

10−2

10−1

∆R(h, h) spectrum in h → hh splittings at √spp = 100 TeV

dσ
/
d∆

R
(h
,h
)
[f
b]

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

∆R(h, h)

R
at
io

(d)

Figure 4. Performance test for the SM h → hh splitting in Herwig 7 for
√

s = 100 TeV. 4(a), 4(b),
4(c), and 4(d) show the differential rate of h boson radiation as functions of the transverse momentum,
the light-cone momentum, the mass of the di-Higgs system, and the ∆R between the two emitted
Higgs bosons respectively in resummed EW (blue) and FO calculations (red).
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Figure 5. Performance test for H → h+h− branching in Herwig 7 for
√

s = 13.6 TeV. 5(a), 5(b), 5(c),
and 5(d) show the differential rate of charged Higgs boson radiation as functions of the transverse
momentum, the light-cone momentum, the ∆R between the recoiled particle and the emitted charged
Higgs boson, and the ∆R between two emitted Higgs bosons respectively. H and h± masses are both
10 GeV.
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Figure 6. Performance test for b(b̄) → b(b̄)H branching in Herwig 7 with the 1 TeV e+e− collision
setup, where the mass of the H boson is assumed as 10 GeV. 6(a), 6(b), 6(c), and 6(d) show the
differential rate of BSM H boson radiation as functions of the q̃, the light-cone momentum, and mass
and ∆R between two emitted particles respectively.
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Figure 7. Performance test for b(b̄) → b(b̄)H branching in Herwig 7, where the mass of the H boson
is assumed as 130 GeV. The notation of the figure is the same as in figure 6.
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Figure 8. Performance test for b(b̄) → s(s̄)H branching in Herwig 7, where the mass of the H boson
is assumed as 10 GeV. The notation of the figure is the same as in figure 6.
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Figure 9. Performance test for b(b̄) → s(s̄)H branching in Herwig 7, where the mass of the H boson
is assumed as 130 GeV. The notation of the figure is the same as in figure 6.
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Figure 10. Performance test for W± → W±H branching at the pp → W±j process with the
centre-of-mass energy of 13.6 TeV in Herwig 7, where the mass of the H boson is assumed as 1 GeV.
The notation of the figure is the same as in figure 6.
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Figure 11. Performance test for q → qZ ′ branching in Herwig 7, where the mass of the Z ′ boson is
assumed as 10 GeV. The notation of the figure is the same as in figure 6.
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Figure 12. Performance test for q → qW ′ branching in Herwig 7, where the mass of the W ′ boson is
assumed as 50 GeV. The notation of the figure is the same as in figure 6.
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Figure 13. z distributions for q → q′V ′ branching in Herwig 7 at the
√

s = 13.6 TeV proton-proton
collision. (a) q → q′W ′ branching with m(W ′) = 10 GeV. (b) q → q′W ′ branching with m(W ′) =
100 GeV. (c) q → q′Z ′ branching with m(Z ′) = 200 GeV.
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