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Abstract

3D point clouds are essential for perceiving outdoor scenes, especially within the realm
of autonomous driving. Recent advances in 3D LiDAR Object Detection focus primarily
on the spatial positioning and distribution of points to ensure accurate detection. However,
despite their robust performance in variable conditions, these methods are hindered by
their sole reliance on coordinates and point intensity, resulting in inadequate isometric in-
variance and suboptimal detection outcomes. To tackle this challenge, our work introduces
Transformation-Invariant Local (TraIL) features and the associated TraIL-Det architec-
ture. Our TraIL features exhibit rigid transformation invariance and effectively adapt to
variations in point density, with a design focus on capturing the localized geometry of
neighboring structures. They utilize the inherent isotropic radiation of LiDAR to enhance
local representation, improve computational efficiency, and boost detection performance.
To effectively process the geometric relations among points within each proposal, we
propose a Multi-head self-Attention Encoder (MAE) with asymmetric geometric features
to encode high-dimensional TraIL features into manageable representations. Our method
outperforms contemporary self-supervised 3D object detection approaches in terms of
mAP on KITTI (67.8, 20% label, moderate) and Waymo (68.9, 20% label, moderate)
datasets under various label ratios (20%, 50%, and 100%).

1 Introduction
LiDAR-based point clouds, comprising 3D positions and LiDAR intensity/reflectivity [3, 10,
20, 21, 36], are essential for interpreting outdoor environments, particularly in the context
of autonomous vehicle perception systems. The realm of 3D object detection has seen
significant progress, with a variety of strategies aimed at predicting 3D bounding boxes.
Recent approaches have employed color information [6, 26, 44], range imagery [29, 30], and
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Birds Eye View (BEV) projections [6, 26] to devise multi-modal techniques that merge inputs
from LiDAR and other sensors to improve feature representation and detection accuracy.

Despite these advancements, these methods commonly face challenges with isometric
invariance due to their reliance primarily on coordinates and intensity data, often leading
to suboptimal detection results [44, 48, 57]. These limitations are predominantly caused by
inadequate translational invariance and issues such as occlusions or sparse observations at
longer ranges [18], which adversely affect the spatial distribution of the data.

In this work, we aim to identify features that (1) capture the localized geometric struc-
ture of neighboring points, (2) are invariant to rotation and translation, and (3) function
effectively in noisy LiDAR outdoor scenes. Although various methods meet some of these
criteria individually [15, 25, 28], they often do not satisfy all simultaneously. Given the
necessity for higher-level features that can encapsulate local geometry and potentially include
LiDAR-specific attributes such as intensity and reflectivity, we focus on Pointwise Distance
Distribution (PDD) features [41, 42]. PDD features are noted for their exceptional ability to
provide robust and detailed geometric representations of point clouds, effectively maintaining
both rotational and translational invariance while capturing intricate details of local geometry.

However, the direct use of PDD features is impractical due to their high dimensionality
and the substantial memory and storage demands they impose on large-scale point clouds [22].
Additionally, PDD tends to overlook local features because the inclusion of distant points can
diminish the emphasis on nearby neighborhoods.

To facilitate 3D object detection, we propose the Transformation-Invariant Local (TraIL)
features and the associated TraIL-Det network. It leverages the robustness of TraIL features
against rigid transformations and variability in point cloud density, focusing on extracting
compact features within defined local neighborhoods. Our approach employs inherent LiDAR
isotropic radiation and multi-head self-attention to improve the representation of local features
while reducing computational overhead. To effectively handle the high dimensionality of
TraIL features, we introduce a novel embedding method within our TraIL Proposal Multi-head
self-Attention Encoding (TraIL MAE) module. Additionally, we enhance ability of the model
to precisely localize individual objects and accurately identify different object categories
through a joint optimization of discrimination and separation. This integration into the overall
network is designed to elevate performance and expand generalization capabilities.

We conduct extensive experiments on KITTI [10] and Waymo [36] datasets, where our
methodology outperforms existing state-of-the-art (SoTA) self-supervised methods in 3D
object detection. Overall, our contributions are summarized as follows:

• A novel Transformation-Invariant Local (TraIL) feature for 3D object detection that
ensures robustness to rigid transformations through isometry-invariant metrics.

• A novel method for embedding TraIL with Multi-head self-Attention Encoder
(MAE) to capture the geometric relations between points, jointly attending to informa-
tion from different representation subspaces at different positions.

• A novel open-source pre-training architecture TraIL-Det 1 and supporting train-
ing methodology for 3D object detection that outperform the recent contemporary
approaches of ProposalContrast [52], DepthContrast [55], and PointContrast [46].

1The code is publicly available at: https://github.com/l1997i/rapid_seg.
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2 Related Work
3D LiDAR Object Detection: Initial approaches in the field convert LiDAR point clouds into
2D formats, specifically Bird Eye View (BEV) or range-view images [1, 6] to facilitate 3D
object detection. More recent advancements have shifted towards using voxel-based sparse
convolution techniques [9, 11, 17, 47] and point-based methodologies for set abstraction [32,
33, 49, 50] to create more effective detection frameworks. A common challenge with LiDAR
data is its low resolution for objects at a distance, leading to sparse detection outcomes. To
mitigate this, researchers have delved into multimodal 3D object detection, demonstrating
that the integration of LiDAR with RGB image data improves detection performance. Initial
strategies enrich LiDAR points with image data [35, 38, 39], while others pursue independent
encoding of multimodal features, followed by their fusion either within the local Region of
Interest (RoI) [7, 16] or on the BEV plane [27]. Recent advancements utilize virtual points
for feature fusion [45, 54], which effectively improve the geometric representation of distant
objects through depth estimation, showcasing significant promise for elevated detection
performance. Nonetheless, virtual points introduce challenges related to their density and
noise levels. VirConv [44] integrates RGB image data through virtual points and introduces
StVD and NRConv as effective solutions to address the related challenges.
Pointwise Distance Distribution: Pointwise Distance Distribution (PDD) quantifies the local
context of each point within a unit cell by sequentially measuring distances to nearby points.
This isometry-invariant technique, developed by Widdowson & Kurlin [41], effectively
addresses data ambiguity in periodic crystals, as demonstrated through detailed pairwise
comparisons of atomic 3D clouds from structured periodic environments [41, 42, 43]. Despite
its proven effectiveness in periodic crystals and atomic clouds, PDD has not yet been applied
to outdoor 3D point clouds. In outdoor scenarios, commonly used invariant features [15, 23,
25, 28] often struggle with irregular and sparse data, compounded by increased noise and
environmental complexity [23, 25]. Additionally, the computational intensity of these features
limits their feasibility for large-scale outdoor applications [15, 28]. For instance, Melia et
al. [28] report a rotation-invariant feature that has difficulty scaling across diverse point cloud
densities and sizes due to its computational demand and vulnerability to outdoor interferences.
Recognizing these limitations, we propose the exploration of PDD features in outdoor settings,
where accurately representing the local context of points in a transformation-invariant and
structurally sound manner is paramount. Leveraging the architectural advantages of PDD, we
introduce the TraIL feature, specifically designed for LiDAR-based point clouds to adeptly
capture the local geometric configuration of neighboring structures.
Self-Supervised Learning Methods for Point Cloud: Self-supervised Learning (SSL) [5, 12,
13, 40, 51] have demonstrated exceptional performance on various tasks, at times outperform-
ing supervised methods. This work presents a proposal-level pretraining approach specifically
designed for point cloud object detection. Simultaneously, studies like PointContrast [46],
DepthContrast [55], ProposalContrast [52], GCC-3D [24], and STRL [14] explore the utility
of contrastive SSL in point cloud pretraining. However, these methods encounter several
issues. Firstly, some [14, 55] treat the entire point cloud scene as a single instance, overlook-
ing the multiple object instances typically present [4, 56]. Secondly, methods like [24, 46]
focus on point-/voxel-level discrimination, which hinders the development of object-level
representations crucial for 3D object detection. Thirdly, several approaches [14, 46, 55] ignore
the semantic relationships between instances, concentrating instead on low-level details rather
than more informative high-level patterns. While an additional self-clustering strategy is
implemented to capture semantic features [24], it supervises only moving voxels, which are
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Figure 1: Our proposed TraIL architecture for 3D object detection leverages TraIL fea-
tures from the point cloud. ➊ We take point cloud inputs as input and augment them with
differing views. ➋ The augmented point clouds are sampled to the initial paired region
proposals. ➌ The encoding module (TraIL MAE) extracts expressive proposal representations
by considering the geometric relations among points within each proposal. ➍ We extract
the concatenated features with the Multi-Head Attention Encoding Module (TraIL MAE). ➎
Inter-Proposal Discrimination (IPD) and Inter-Cluster Separation (ICS), i.e. D&S module [52]
are subsequently enforced to optimize the whole network.

too sparse to encompass all potential object candidates, resulting in a cumbersome two-stage
training pipeline for separate 3D and 2D encoders [24].

3 TraIL-Det for 3D Object Detection Pre-Training
As shown in Fig. 1, we propose TraIL-Det architecture for 3D object detection which leverages
TraIL features from the 3D point cloud. The proposed architecture generates the TraIL-based
proposals from different augmented views (Sec. 3.1). The TraIL-based proposals are further
embedded from TraIL MAE (Sec. 3.2) to process the geometric relations among points within
each proposal.

3.1 Transformation-Invariant Local Feature (TraIL) Overview
As illustrated in Fig. 1 ➊➋➌, we present an overview of our TraIL features in terms of their
geometric descriptor (Sec. 3.1.1) and the augmented TraIL proposal (Sec. 3.1.2).

3.1.1 TraIL Descriptor

Spatial transformations, including translation and rotation, are ubiquitous in real-world
scenes, necessitating rotation-invariant representation of 3D point clouds. While translation-
invariance can be achieved through weight sharing in 2D image understanding, 3D rotation-
invariance remains a challenge due to the complexity of 3D geometry.

To achieve a 3D Transformation-Invariant Local (TraIL) representation, we consider a
point cloud patch X ∈ R3×K with K points, where each point xi (i = 1, . . . ,K) represents the
3D coordinates in Euclidean space. We define a transformation-invariant mapping TraIL :
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R3×K → RC×K , where C ∈ N+, to yield a consistent descriptor for geometrically identical
point clouds under different orientations. The mapping should satisfy Eq. (1):

TraIL(X) = TraIL(RX +T ), (1)

where TraIL(·) denotes the translation-invariant operation, and TraIL(X) is the invariant
descriptor of X .

The difficulty in achieving 3D rotation-invariance has led us to seek alternative approaches
that can effectively capture the intrinsic properties of 3D point clouds. Inspired by the concept
of isometric invariance, which states that the properties of an object remain unchanged under
rigid transformations, we hypothesize that features invariant to translation and rotation can
be extracted from the geometric structure of point clouds. This idea is motivated by the fact
that the distances between adjacent points in a point cloud remain constant regardless of the
object orientation or position in 3D space. Therefore, we propose to exploit the Point Distance
Distribution (PDD) [41, 42] as a translation-invariant feature, which measures the distribution
of distances between adjacent points in a point cloud.

PDD is defined for a point cloud patch X with K points where K > k and k is the count of
the nearest neighbours of a point, forming an K×k matrix PDD(X ;k). Each row i of this matrix
includes the ordered distances from the i-th point in X to its k nearest neighbours. Although
the points in X and rows of PDD(X ;k) are unordered, they are stored in lexicographic order
to keep points and PDD matrix permutation-invariant (refer to the Supplementary Materials
for more details on computing PDD of point cloud and the corresponding sort method).

Considering PDD properties under rotations R and translations T , the distances between
points in a point cloud remain unchanged. Subsequently, for a transformed cloud X expressed
as RX +T , the internal distances between points in X and RX +T are identical, preserving
the Euclidean distance invariance under rotation and translation. Consequently, the ordered
distances from any point in X to its k nearest neighbours remain the same in both X and
RX +T , which leads to Eq. (2):

TraIL(X) = TraIL(RX +T ) = PDD(X ;k), (2)

where TraIL(X) effectively captures the invariant spatial relationships within the cloud. Thus,
PDD(X ;k) is a suitable candidate for TraIL(X), fulfilling the requirements for a transformation-
invariant 3D data representation regardless of point cloud orientation or position in space.

3.1.2 TraIL Proposal

In 2D representation learning, some SSL methods utilize image proposals delineated by 2D
bounding boxes. However, directly applying 3D bounding boxes to represent proposals in
point clouds is impractical due to the vast candidate space and high computational cost of 3D
spatial operations. Instead, we opt for spherical proposals.

In Fig. 1, starting with the initial point cloud X0, we remove road plane points to minimize
background sampling [2]. We then apply farthest point sampling (FPS) [31] to select N
distinct points from X0, which serve as the centers for N spherical proposals. Each proposal
is formed by gathering K nearby points within a predetermined radius r, ensuring proposal
diversity. It results in two sets of spherical proposals P1 and P2, derived from two augmented
views of X0, represented as P1 ∈ X1 and P2 ∈ X2. We compute the TraIL features U1 and U2
inside P1 and P2, i.e., U1 = TraIL(P1), and U2 = TraIL(P2). Since P1 and P2 may contain
different numbers of points, the resulting TraIL matrices U1 and U2 may also vary in size.
Following the approach used for image matrices, we scale U1 and U2 to a predefined fixed
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size using bilinear interpolation I(·), making them suitable for input into subsequent neural
networks.

3.2 TraIL Multi-Head Self-Attention Encoding (TraIL MAE)
For the point cloud scene X and corresponding proposals P, we first derive a global scene-wise
representation using a backbone network, e.g., VoxelNet [57] or PointNet++ [31], denoted
as FFF = fBbone (X). Initial representations for the proposals P∗ ∈ RN×K×C, are obtained by
applying a bilinear interpolation function I(·) over FFF , formulated as P∗ = I(P,FFF)⊕ I(P,UUU),
where ⊕ is the concatenate operator, N is the number of proposals per view, K is the
number of points within a proposal, and C is the channel number from the backbone network.

As shown in Fig. 1 ➍, we employ the multi-head attention mechanism to process the
geometric relations among points within each proposal. For each proposal ppp ∈ P∗, with the
size of K ×C, we designate the center point feature xxxc ∈ R1×C of the proposal ppp as the query,
recognizing its informativeness. Neighbor features xxxn ∈ RK×C, derived from ppp, serve as keys,
with their differences to xxxc encoding the asymmetric geometric relations. Mathematically, the
xxxc and xxxn are projected to query Q, key K, and value V embeddings:

Q = δ (xxxc) , K = θ (xxxn − xxxc) , V = γ (xxxn − xxxc) , (3)

where δ ,θ , and γ represent the linear transformations.
The embeddings Q, K, and V are then processed by multi-head self-attention mechanism.

In a H-head attention situation, Q, K, and V are further divided into Q = [Q1, · · · ,QH ], K =

[K1, · · · ,KH ], and V = [V1, · · · ,VH ]. For each h ranging from 1 to H, Qh,Kh,Vh ∈ RN×D′

with D′ = D/H. The output of the multi-head self-attention is computed as follows:

S(att) (Q,K,V) = softmax

(
Qh K⊤

h√
D′

)
·V. (4)

As shown in Fig. 2, a simple Feed-Forward Network (FFN) and residual operator are then
adopted to obtain proposal representations as:

YYY = S(emb)(xxxc,xxxn) = Z
(
N
(
Z
(

S(att )(Q,K,V)
)))

(5)

where Z(·) denotes add and normalization operator, N (·) denotes a FFN with 2× linear
layers and 1× ReLU activation. We observe that a stack of 3 identical self-attention encoding
modules (i.e., H = 3) is ideal for our TraIL-Det framework.
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By implementing these operations across each region proposal in X1 and X2, we obtain
refined proposal representations, YYY 1,YYY 2 ∈ RN×C, which are further optimized through joint
training for both inter-proposal discrimination and inter-cluster separation. This integration of
multi-head attention not only enriches the geometric understanding of the proposals but also
enhances the model capacity to represent complex spatial dependencies effectively.

We follow ProposalContrast [52], taking YYY 111 and YYY 2 to the D&S module (Fig. 1 ➎), to
optimize with inter-proposal discrimination (IPD) and inter-cluster separation (ICS) simul-
taneously in a self-supervised manner for better overall discriminative and classificatory
capabilities. The hyper-parameter settings (e.g., α , β , and τ) for the D&S module are
consistent with those used in ProposalContrast [52].

4 Evaluation
We follow the standard SSL experimental framework, which involves pretraining a backbone
network on extensive unlabeled data and subsequently fine-tuning this pretrained model on
downstream tasks using a smaller set of labeled data. Unlike some previous 3D SSL approaches
that utilize the ShapeNet [19] and ScanNet [8] datasets for pretraining—thereby concentrating
exclusively on indoor environments and encountering significant domain gaps when applied
to self-driving scenarios—we employ a different strategy to mitigate this limitation.

4.1 Experimental Setup
Datasets: We evaluate the transferability of our pre-trained model by pre-training on Waymo
Open Dataset (WOD) [36] then fine-tuning on KITTI dataset [10]. WOD comprises 798
training scenes (158,361 frames) and 202 validation scenes (40,077 frames), which is about
20× larger than KITTI. We leverage the entire WOD training set for pretraining various 3D
backbone architectures, explicitly avoiding the use of labels. KITTI contains 7,481 labeled
samples, which are divided into two groups, i.e. a training set (3,712 samples) and a validation
set (3,769 samples).
Evaluation Protocol: Mean Average Precision (mAP) and Mean Average Precision weighted
by Heading (mAPH) with 40 recall positions (R40) are employed to evaluate detection
performance. We report results on the two difficulty levels and 3 classes, with 3D Intersection
over Union (IoU) thresholds set at 0.7 for cars and 0.5 for pedestrians and cyclists.
Implementation Details: We consider four types of widely-used data augmentations to generate
different views, i.e., random rotation ([−π,+π]), random scaling ([0.5,1.5]), random flipping
(X-axis, Y-axis), and point-wise random drop out. All experiments are conducted on 4× NVIDIA
A100 GPUs (1× for inference). Except for the parameters mentioned in Sec. 4.3, we follow the
configurations from ProposalContrast [52] to facilitate comparison with SoTA approches.

4.2 Experimental Results of Transfer Learning
We explore the effectiveness of self-supervised pre-training within the context of autonomous
driving. We evaluate our methodology on multiple popular LiDAR point cloud datasets for
autonomous driving, i.e., KITTI [10] and WOD [36]. Our evaluation involves a comparative
analysis of our TraIL-Det against SoTA pre-training strategies [46, 52, 55] by fine-tuning de-
tection models on these datasets. We utilize varying amounts of labeled data for fine-tuning to
demonstrate the data efficiency of our approach. We employ a range of contemporary 3D object
detectors as well to illustrate the broad applicability and generalizability of our pre-trained models.
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Table 1: Data-efficient 3D Object Detection on KITTI. We pre-train the backbones of
PointRCNN [32] and PV-RCNN [33] on Waymo and transfer to KITTI 3D object detection
with different label configurations. Consistent improvements are obtained under each set-
ting. Our approach outperforms all the concurrent self-supervised learning methods, i.e.,
DepthContrast [55], PointContrast [46], ProposalContrast [52], GCC-3D [24], and STRL [14].

Fine-tuning with Pre-train. mAP Car Pedestrian Cyclist
various label ratios

Detector
Schedule (Mod.) Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard
Scratch 63.51 88.64 75.23 72.47 55.49 48.90 42.23 85.41 66.39 61.74

Prop.Con. [52] 66.20 88.52 77.02 72.56 58.66 51.90 44.98 90.27 69.67 65.05
20%

(∼ 0.7k frames)

PointRCNN
★ Ours 67.80 89.07 78.86 73.63 59.12 53.37 46.11 92.95 71.16 66.12
Scratch 66.71 91.81 82.52 80.11 58.78 53.33 47.61 86.74 64.28 59.53

Prop.Con. [52] 68.13 91.96 82.65 80.15 62.58 55.05 50.06 88.58 66.68 62.32PV-RCNN
★ Ours 69.30 91.88 82.73 80.39 62.22 56.94 49.85 88.43 68.24 61.19
Scratch 66.73 89.12 77.85 75.36 61.82 54.58 47.90 86.30 67.76 63.26

50%
(∼ 1.8k frames)

Prop.Con. [52] 69.23 89.32 79.97 77.39 62.19 54.47 46.49 92.26 73.25 68.51PointRCNN
★ Ours 69.77 90.47 81.23 76.82 64.15 54.79 47.28 91.16 73.29 71.13
Scratch 69.63 91.77 82.68 81.90 63.70 57.10 52.77 89.77 69.12 64.61

Prop.Con. [52] 71.76 92.29 82.92 82.09 65.82 59.92 55.06 91.87 72.45 67.53PV-RCNN
★ Ours 73.24 90.15 84.20 85.01 64.28 61.43 56.09 92.42 74.10 66.23
Scratch 69.45 90.02 80.56 78.02 62.59 55.66 48.69 89.87 72.12 67.52

DepthCon. [55] 70.26 89.38 80.32 77.92 65.55 57.62 50.98 90.52 72.84 68.22

100%
(∼ 3.7k frames)

Prop.Con. [52] 70.71 89.51 80.23 77.96 66.15 58.82 52.00 91.28 73.08 68.45
PointRCNN

★ Ours 71.41 90.82 81.95 77.85 66.28 58.73 53.96 92.41 73.55 71.53
Scratch 70.57 - 84.50 - - 57.06 - - 70.14 -

GCC-3D [24] 71.26 - - - - - - - - -
STRL [14] 71.46 - 84.70 - - 57.80 - - 71.88 -

PointCon. [46] 71.55 91.40 84.18 82.25 65.73 57.74 52.46 91.47 72.72 67.95
Prop.Con. [52] 72.92 92.45 84.72 82.47 68.43 60.36 55.01 92.77 73.69 69.51

PV-RCNN

★ Ours 73.89 92.10 85.39 84.12 68.01 61.25 54.29 93.46 75.04 72.49

Figure 3: The qualitative results of 3D object detection with our TraIL-Det on the KITTI
dataset. The predicted 3D bounding boxes are marked within the point cloud frame, while
the corresponding 2D bounding boxes are highlighted in the RGB images. In the point cloud
visualization, white points represent those within the camera field of view (FOV), whereas
purple points indicate those outside the camera FOV. Best viewed in color.
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Table 2: Comparisons between our model and other self-supervised learning methods on
WOD. All the detectors are trained by 20% training samples following the OpenPCDet [37]
configuration and evaluated on the validation set. Both PV-RCNN [33] and CenterPoint [53]
are used as baseline detectors.

Transfer Overall Vehicle Pedestrian Cyclist3D Object Detector
Paradigm AP/APH AP/APH AP/APH AP/APH

SECOND [47] Scratch 59.00/54.97 63.81/63.24 56.77/46.66 56.42/55.02
Part-A2-Anchor [34] Scratch 64.81/61.63 69.04/68.49 58.21/50.56 67.19/65.84
PV-RCNN [33] Scratch 60.88/57.20 66.12/65.50 54.73/45.92 61.77/60.20

+ GCC-3D [24] Fine-tuning 61.30/58.18(+0.42/+0.98) 65.65/65.10 55.54/48.02 62.72/61.43
+ Prop.Con. [52] Fine-tuning 62.62/59.28(+1.74/+2.08) 66.04/65.47 57.58/49.51 64.23/62.86
+ TraIL-Det (★ Ours) Fine-tuning 64.16/60.62(+3.28/+3.42) 67.26/66.73 59.31/51.13 65.90/64.01

CenterPoint [53] Scratch 64.56/62.01 62.88/62.36 64.72/58.79 66.09/64.87
+ GCC-3D [24] Fine-tuning 65.29/62.79(+0.73/+0.78) 63.97/63.47 64.23/58.47 67.68/66.44
+ Prop.Con. [52] Fine-tuning 66.42/63.85(+1.86/+1.84) 64.94/64.42 66.13/60.11 68.19/67.01
+ TraIL-Det (★ Ours) Fine-tuning 66.55/ 63.94(+1.99/+1.93) 65.72/65.20 65.49/59.53 68.43/67.09

CenterPoint-Stage2 [53] Scratch 66.41/63.54 65.81/65.21 64.34/59.46 67.06/65.96
+ GCC-3D [24] Fine-tuning 67.29/64.95(+0.88/+1.41) 66.45/65.93 66.82/61.47 68.61/67.46
+ Prop.Con. [52] Fine-tuning 68.06/65.69(+1.65/+2.15) 66.98/66.48 68.15/62.61 69.04/67.97
+ TraIL-Det (★ Ours) Fine-tuning 68.88/66.42(+2.47/+2.88) 68.21/67.67 69.50/63.76 68.92/67.83

4.2.1 Results on KITTI Dataset

We evaluate the transferability of our pre-trained model by initially pre-training on Waymo and
then fine-tuning on KITTI, using PointRCNN [32] and PV-RCNN [33] as baseline detectors.
These detectors employ distinct 3D backbones (point-wise and voxel-wise), representing
common types of 3D detectors. A key benefit of self-supervised pre-training is enhanced
data efficiency, especially with limited annotated data – we thus train the model with 20%
(∼ 0.7k), 50% (∼ 1.8k) and 100% (∼ 3.7k) labeled samples. Tab. 1 demonstrates that our pre-
trained model boosts performance across both detectors compared to training from scratch and
outperforms multiple existing methods. For instance, under the 50% label setting, our model
achieves 73.24% mAP on moderate difficulty using PV-RCNN backbone, surpassing both the
baseline and ProposalContrast [52] by 3.61% and 1.48% respectively. It also significantly
outperforms DepthContrast [55] and PointContrast [46] in detecting cars (+1.40, average,
50% moderate), pedestrians (+2.92, average, 50% moderate) and cyclists (+3.30, average,
50% moderate), highlighting its superior proposal-level representation and ability to handle
imbalanced class distributions. Furthermore, we present supporting qualitative results in
Fig. 3 (more visualization results in the supplementary materials).

4.2.2 Results on Waymo Open Dataset (WOD)

We follow the widely-used OpenPCDet [37] protocol, fine-tuning the detectors on 20% of the
training data for 30 epochs. Tab. 2 shows the results on Level-2 to other SoTA pre-training
methods: GCC3D [24] and ProposalContrast [52]. Initially, we report results for training from
scratch with different detectors, i.e., SECOND [47], Part-A2-Anchor [34], PV-RCNN [33],
and CenterPoint [53] (VoxelNet version), benchmarked against GCC3D [24]. Subsequently,
we deploy our TraIL-Det model with two widely-used detectors, i.e., CenterPoint [53] and
PV-RCNN [33] for evaluation.

As demonstrated in Tab. 2, our self-supervised pre-training significantly enhances the
performance of popular 3D detectors. For PV-RCNN [33], our approach increases the APH
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by 3.42% over training from scratch and surpasses SoTA ProposalContrast [52] by 1.34%
APH on average. Additionally, we apply our pre-training to CenterPoint [53] equipped with a
VoxelNet backbone. The results indicate an improvement of 1.93%. Moreover, utilizing our
model with the two-stage CenterPoint architecture achieves an APH of 67.67%, marking a
2.88% increase over the model trained from scratch.

4.3 Ablation Studies
In Tab. 3, we ablate each component of our TraIL-Det in depth. We pre-train the VoxelNet [57]
backbone on the full WOD [36] training set in an unsupervised manner, and evaluate the per-
formance by finetuning the detector on WOD 20% training data. We choose CenterPoint [53]
which is trained from random initialization as the baseline.
Effectiveness of TraIL Feature: In Tab. 3, we validate the efficacy of the proposed TraIL
feature. The use of the TraIL feature result in a 60.52 mAP (+2.1). We further analysis how
different neighbor sizes k (Eq. (2)) affected the TraIL, finding k = 7 optimal with a 62.29 mAP
(+3.87). A larger k can dilute local feature preservation by incorporating distant point distance,
while a smaller k risks losing important geometric relationships between neighboring points.
Effectiveness of TraIL MAE: In Tab. 3, we evaluate the performance with (w/) and without
(w/o) our proposed multi-head self-attention in our TraIL MAE. Employing the above mech-
anism, the results show a significant improvement of +1.77 mAP and +1.70 mAPH, which
demonstrate the efficacy of the proposed TraIL MAE with multi-head mechanism.

Table 3: Component-wise ablation of our TraIL-Det.
Module Aspect Param. mAP/mAPH ∆
Baseline – – 58.42/55.64

TraIL Feature
Neighbor

5 59.48/57.19 (+1.06/+1.55)

size (k)
7 62.29/59.89 (+3.87/+4.25)
10 60.94/58.60 (+2.52/+2.96)

TraIL MAE Multi-head w/ 62.29/59.89 (+3.87/+4.25)
attention w/o 60.52/58.19 (+2.10/+2.55)

5 Conclusion
In conclusion, our Transformation-Invariant Local (TraIL) Features within the TraIL-Det
architecture effectively address the limitations of traditional 3D LiDAR object detection by
focusing on localized geometry and relationships of points inside proposals. The introduction
of the Multi-head self-Attention Encoder (MAE) efficiently processes and encodes high-
dimensional TraIL features, leveraging inherent LiDAR isotropic radiation for enhanced
representation and computational efficiency. Experimentally, our approach outperforms
existing self-supervised methods on KITTI [10] and Waymo [36] datasets, demonstrating its
effectiveness in advancing 3D object detection pre-training.

Our features are also highly effective for 3D semantic segmentation [22]. Future research
directions may include exploring more downstream tasks and applying the proposed features
to domain adaptation. These features enhance robustness to transformations, making them
well-suited for complex tasks such as domain adaptation. Additionally, their effectiveness in
3D semantic segmentation [22] suggests they could improve performance across a broader
range of downstream tasks.
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In this documentation, we supplement additional materials to support our findings, obser-
vations, and experimental results. Specifically, it is organized as follows:

• Sec. A supplements more details on the 3D object detection benchmarks we are using.
• Sec. B supplements more details on Transformation-Invariant Local Feature (TraIL).
• Sec. C acknowledges the public resources used during the course of this work.
• Sec. D attaches additional qualitative results, i.e., the 3D object detection visualizations.

A Details on 3D Object Detection Benchmark
The KITTI 3D object detection task (Sec. A.1) trains detectors to identify classes such as
Car, Pedestrian, and Cyclist, requiring both 2D and 3D bounding boxes along with
confidence scores. The KITTI dataset emphasizes accurate projections and filtering of objects
not visible in image planes. The Waymo Open Dataset (Sec. A.2) enhances autonomous
vehicle technologies with high-resolution images and detailed 3D data from multiple LiDARs,
capturing objects with unique tracking IDs and specific bounding box criteria. It also includes
“No Label Zones” to indicate areas without labels, focusing on detailed spatial awareness and
precision.

A.1 KITTI Dataset
The goal in the KITTI 3D object detection task is to train object detectors for the classes Car,
Pedestrian, and Cyclist. The object detectors must provide BOTH the 2D 0-based
bounding box in the image as well as the 3D bounding box (in the format specified above,
i.e., 3D dimensions and 3D locations) and the detection score/confidence. Note that the 2D
bounding box should correspond to the projection of the 3D bounding box - this is required
to filter objects larger than 25 pixel (height). We also note that not all objects in the point
clouds have been labeled. To avoid false positives, detections not visible on the image plane

© 2024. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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should be filtered (the evaluation does not take care of this). Similar to the 2D object detection
benchmark, we do not count Van as false positives for Car or Sitting Person as false
positive for Pedestrian. Evaluation criterion follows the 2D object detection benchmark
(using 3D bounding box overlap).

A.2 Waymo Open Dataset (WOD)

Figure A1: The sensor setup and configuration on Waymo’s autonomous vehicle. The posi-
tions of various laser sensors (REAR, TOP, SIDE_LEFT, SIDE_RIGHT, FRONT) and camera
coverage areas (FRONT_LEFT, FRONT, FRONT_RIGHT, SIDE_LEFT, SIDE_RIGHT) are
shown. The coordinate systems are shown with red arrows indicating the x-axis, green arrows
indicating the y-axis, and a blue circle indicating the z-axis, which is positive upwards.

Fig. A1 shows Waymo sensor setup and sensor configuration on Waymo’s autonomous
vehicle. Top LiDAR covers a vertical field of view (VFOV) from -17.6 to 2.4 degrees, and
its range is 75 meters and covers 360 degrees horizontally. Front, side left, side right, and
rear LiDARs covers a relatively smaller area than the top LiDAR. They all include a vertical
field of view (VFOV) from -90 to 30 degrees, and their range is 20 meters, which is smaller
than the top LiDAR. The following objects have 3D labels: vehicles, pedestrians,
cyclists, signs. 3D bounding box labels in LiDAR data. The LiDAR labels are 3D
7-DOF bounding boxes in the vehicle frame with globally unique tracking IDs. The bounding
boxes have zero pitch and zero roll. Heading is the angle (in radians, normalized to [−π,π])
needed to rotate the vehicle frame +X axis about the Z axis to align with the vehicle’s forward
axis. Each scene may include an area that is not labeled, which is called a “No Label Zone”
(NLZ). NLZs are represented as polygons in the global frame. These polygons are not
necessarily convex. In addition to these polygons, each LiDAR point is annotated with a
boolean to indicate whether it is in an NLZ or not.
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The dataset contains data from five LiDARs (TOP = 1; FRONT = 2; SIDE_LEFT = 3;
SIDE_RIGHT = 4; REAR = 5) - one mid-range LiDAR (top) and four short-range LiDARs
(front, side left, side right, and rear). The point cloud of each LiDAR is encoded as a range
image. Two range images are provided for each LiDAR, one for each of the two strongest
returns. It has 4 channels:

• Channel 0: range (see spherical coordinate system definition)
• Channel 1: LiDAR intensity channel
• Channel 2: LiDAR elongation
• Channel 3: is_in_nlz (1 = in, -1 = not in)

B Details of Transformation-Invariant Local Feature
(TraIL)

Given a fixed integer k > 0 denoting the number of nearest point neighbors, and a point cluster
P containing at least k points, the Transformation-Invariant Local Feature (TraIL) is a u× k
matrix preserving spatial distances among points in P.

The k-point TraIL matrix is formally defined as follows:

TraIL(P;k) = sort
([

sort
(

ρρρ j,1, . . . ,ρρρ j,k

)]u

j=1

)
, (B1)

where ρρρ j,i represents the distances from the j-th point in P to its k nearest neighbors. Each
row of the TraIL matrix corresponds to one point in P and contains the distances to its k
nearest neighbors. For convenience to facilitate comparison of various TraIL matrices, we
arrange TraIL lexicographically by sorting Eq. (B1), where sort(·) on the inner and outer
brackets sorts the elements ρρρ j,l within each row j, and the sorted rows based on their first
differing elements, both in ascending order.

The distance between points is defined as:

ρρρ j,l =
∥∥ppp j − ppp j,l

∥∥
2 , ∀l ∈ {1, . . . ,k}, j ∈ {1, . . . ,u}, (B2)

where ppp j and ppp j,l denote the 3D coordinates of the j-th point and its l-th nearest neighbor
within P, respectively. ∥·∥2 is the Euclidean norm to compute the spatial distance.

C Public Resources Used
We acknowledge the use of the following public resources, during the course of this work:

• nuScenes1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CC BY-NC-SA 4.0
• nuScenes-devkit2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• The KITTI Vision Benchmark Suite3 . . . . . . . . . . . . . . . . . . . . . . . . . .CC BY-NC-SA 4.0
• ProposalContrast4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• VoxSeT5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License

1https://www.nuscenes.org/nuscenes.
2https://github.com/nutonomy/nuscenes-devkit.
3https://www.cvlibs.net/datasets/kitti/.
4https://github.com/yinjunbo/ProposalContrast.
5https://github.com/skyhehe123/VoxSeT.
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• SpConv6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• Average-Minimum-Distance7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CC BY-NC-SA 4.0
• PyTorch-Lightning8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0

D More Qualitative Results
TraIL Visualization of 3D Object Detection: We present supporting qualitative results
on 3D Object Detection in Figs. D1 and D2. As shown in Figs. D1 and D2, our approach
achieves excellent performance in 3D object detection. Although some vehicles are occluded
in the RGB images, our method can still rely on the TraIL features from the point cloud to
address the issue of occlusion to some extent.

References

( NOT THE END; visualization images follow )

6https://github.com/traveller59/spconv.
7https://github.com/dwiddo/average-minimum-distance.
8https://github.com/Lightning-AI/lightning.
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Figure D1: Qualitative results of 3D object detection with our TraIL-Det on KITTI dataset.
The predicted 3D bounding box is labeled in the LiDAR point cloud, while its corresponding
2D bounding box is labeled in the RGB image. In the point cloud, white points represent
points within the camera field of view (FOV), and purple points indicate points outside the
camera FOV. Best viewed in color.
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Figure D2: Qualitative results of 3D object detection with our TraIL-Det on KITTI dataset.
The predicted 3D bounding box is labeled in the LiDAR point cloud, while its corresponding
2D bounding box is labeled in the RGB image. In the point cloud, white points represent
points within the camera field of view (FOV), and purple points indicate points outside the
camera FOV. Best viewed in color.


