
 

 

Pattern Recognition Letters 
journal  homepage:  www.elsevier .com  

  

One-Index Vector Quantization Based Adversarial Attack on Image Classification 

Haiju Fan a b, Xiaona Qin a b, Shuang Chen c, Hubert P. H. Shum c † and Ming Li a b 

a College of Computer and Information Engineering, Henan Normal University, Henan 453007, China 
b Key Laboratory of Artificial Intelligence and Personalized Learning in Education of Henan Province, Xinxiang 453007, China 
c Department of Computer Science, Durham University, Durham, UK † Corresponding Author 

 
† Corresponding Author. Email: 121064@htu.edu.cn (H. Fan), 2108283082@stu.htu.edu.cn (X. Qin), shuang.chen@durham.ac.uk (S. Chen) hubert.shum@durham.ac.uk 

(H. P. H. Shum) liming@htu.edu.cn (M. Li) 

1. Introduction 

Many images are transmitted over public channels in 

computer networks through techniques such as encryption, 

compression and watermarking [1]. However, these images are 

vulnerable to attack. An attacker may capture data and retransmit 

the tampered version in the common channel, resulting in great 

security risks. In recent years, deep learning has been prevalent 

with many fruitful results in image classification. While neural 

network classification models have surpassed humans in 

recognition speed [2], a leak has been found in numerous studies 

that these models are vulnerable to artificial attacks [11]. In 

particular, image adversarial attacks have shown to be highly 

effective in fooling these networks, i.e. misleading the 

classification with small perturbations to the input images, 

leading to network security risks [12].  

As a relatively emerging field, adversarial attacks have been 

extensively investigated with many attack methods derived, such 

as the Fast Gradient Sign Method (FGSM) [14], Universal 

Adversarial Perturbation (UAP) [25], Jacobian-based Saliency 

Map Attack (JSMA) [26]. In the above attack methods, the 

number of pixels modified is high. In the extreme case, the one-

pixel attack [21] was proposed, where only one pixel can be 

modified to achieve an adversarial attack without restricting the 

strength of modification. These methods are generally applied to 

the pixel domain, which is not a popular domain where images 

are stored and transmitted in the real world. 

In reality, most images are stored and transmitted in 

compressed form instead of uncompressed form. Therefore, 

methods attacking the compression domain have a much wider 

range of application scenarios. Most of the existing adversarial 

attack methods directly added perturbations to the redundant 

parts. For example, in the UAP method [23], the attacker 

captures an image transmitted within common channels and adds 

pixel-level perturbations to natural images to mislead the model 

output. However, compressed images only retain important 

information and remove redundant information, making it more 

difficult for attacks to be performed. In fact, it has been shown 

that JPEG compression effectively can be considered as a 

defence method against adversarial attacks by reducing 

adversarial noise [3]. This explains a lack of research in 

adversarial attacks focusing on the compressed domain. 

In this paper, we propose a one-index adversarial attack 

method for the vector quantization domain under the semi-black-

box setting. The one-index attack method modifies one VQ index 

element in the compressed data stream of the vector quantization 

domain to make the decoded image misclassified, which is 

comparable to one-pixel attacks in the pixel domain. Vector 

quantization [6] is a popular lossy compression technique, which 

has a high compression ratio that cannot be replaced by other 

technologies and has been widely used for many applications, 

such as JPEG compression [4] and Discrete Cosine Transform 

compression (DCT) [5]. Therefore, the application scenario of 

vector quantization domain-based attack methods is much 

broader. Finally, the semi-black-box attack setup is more in line 

with the actual attack scenarios, of which the attacker does not 

know the network model of structure or parameters [7,8], as 

opposed to the white box attack [9] where the attacker utilizes 

known information about the target model and can easily 

generate corresponding adversarial images [10]. This means that 

the available information is the VQ index and output probability 

label. The key idea of our method is to gradually decrease true 

category probability by modifying one VQ index using a 

differential evolution algorithm. In particular, we propose a 

codeword sorting algorithm that establishes correlations between 

neighboring indexes so that one-index perturbations can be 

optimized using differential evolutionary algorithms to improve 
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optimization efficiency in the solution space. 

The proposed one-index attack method is validated using three 

common network models (Resnet, NIN, VGG16) and image 

datasets (CIFAR-10, Fashion MNIST). We show that any input 

image from any source class can be perturbed to be misclassified 

with a 55.9% success rate and a 77.4% confidence on average, 

while only modifying a single VQ index. We also conduct 

ablation experiments for differential evolution and codeword 

sorting algorithms, showcasing an improved attack performance. 

2. Related works 

In recent years, the security of deep neural networks has been 

of great concern due to the weak interpretability of hidden layers. 

In computer vision, adversarial attack methods add small 

amounts of noise to natural images. The noise is imperceptible to 

human eyes and does not affect human recognition. However, it 

confuses the machine learning model to make a wrong decision 

[11]-13]. According to the methodological basis, adversarial 

attack methods can be divided based on gradient, optimization, 

boundary, attention, and salience map.  

Several works explored the gradient-based adversarial attack 

method. The Fast Gradient Sign Method (FGSM) considered 

reverse thinking based on the training network to attack a 

network model and mislead the model output [14]. It increased 

the loss function value in the gradient opposite direction and 

quickly generated adversarial images, although it had a low 

success rate. Iterative-FGSM (I-FGSM) imported step size for 

iteration on the FGSM method, improving the attack success rate 

but reducing the transferability [15]. To improve the attack rate, 

Projected Gradient Descent (PGD) was proposed as a multi-step 

iteration of FGSM [16]. Zeroed Order Optimization (ZOO) used 

Newton's method to iteratively obtain the best adversarial 

examples by estimating the values of the first-order gradient and 

the second-order gradient [17]. To reduce the time of gradient 

estimation, the Autoencoder-based Zeroth Order Optimization 

Method (AutoZOOM) [18] used an adaptive stochastic gradient 

estimation strategy and an autoencoder. Perturbation analysis of 

gradient-based adversarial attacks focused on designing novel 

methods for generating adversarial instances [19]. Jacobian-

based Saliency Map Attack (JSMA) had a high success rate [26]. 

It identified key pixel positions based on gradient impact on 

classification and added perturbations. However, the generated 

adversarial samples are not migratable. 

Optimization-based attacks optimized perturbations and found 

the adversarial perturbations to modify the number or strength as 

little as possible. The C&W method had superior attack 

performance and visual quality of adversarial images [20] but 

required a long time to search for the optimal parameters. The 

one-pixel attack method achieved image misclassification by 

modifying only one pixel [21]. 

Boundary-based adversarial attacks mainly investigated the 

decision classification boundaries of models. DeepFool found the 

minimum perturbation that changed the classification label of a 

sample by calculating the distance between the classification 

boundary and the sample [22]. However, it needed to modify 

more pixels. To improve the migration of perturbations, 

Universal Adversarial Perturbation (UAP) generated adversarial 

perturbations with strong generalization capability by calculating 

the shortest distance between the original sample and the model 

boundary [23]. However, the computation time for universal 

adversarial perturbation is long.  

Some existing works transferred the model's attention to 

facilitate attack. Gradient-weighted Class Activation Mapping 

(Grad-CAM) modified the heat map regions for classification, 

resulting in misclassification [24]. Attention-Attack made the 

feature maps of the L-layer of images and the L-layer of target 

categories as similar as possible to transfer the model's attention 

and mislead the model [25].  

The aforementioned attack methods are applied on the pixel 

domain and have a more limited application. Our proposed 

method is similar to one-pixel attacks [21] in the sense that the 

modification number is limited to one. While one-pixel attack is 

applied on the pixel domain, ours is on the vector quantization 

domain, which has a much broader application scenario. Also, 

the one-pixel attack method attacks the whole image pixels, 

while our method attacks the image compressed form. 

3. Methodology 

In this section, first, we propose the one-index attack 

algorithm, which modifies an index without restricting 

modification strength, to deceive the classification model. Then, 

to improve the attack success rate, we propose the differential 

evolutionary algorithm to optimize the one-index perturbation 

generation by generation and find the optimal perturbation that 

makes images misclassified. Finally, considering the 

evolutionary property of the differential evolutionary algorithm, 

when finding certain one-index perturbations with a successful 

attack, it tends to continue to search for a better perturbation in 

its vicinity, so we need to establish the correlation between the 

codeword index and vector. Thus, we propose the codeword 

sorting algorithm based on principal component analysis. 

The proposed one-index adversarial attack method is not 

related to the network model structure. It realizes attack by 

decreasing true category probability labels instead of needing to 

know information such as parameters, which is more in accord 

with realistic attack scenarios. Our method is for compressed 

domain images, where the redundant information is removed 

when the image is compressed. There is almost no redundant 

information in the compressed image. Therefore, it is more 

difficult to attack the compressed domain than the pixel domain. 

Since the image is transmitted in compressed form in cyberspace, 

the adversarial attack method based on the compressed domain 

has a broader application scenario. The target of the proposed 

attack method is the image-compressed data stream, which has 

practical significance. 

3.1. Attack Scenarios and Notations 

In this paper, we employ a semi-black-box setting [7] where 

the attacker has no access to the inner information of the model, 

such as the gradient and parameters, but only the probability 

label. This aligns well with real-world scenarios, in which an 

attacker may query the victim model but does not have the model 

implementation details. See Table 1 for important notations. 

3.2. One-Index Attack in the Vector Quantization Domain 

Our method attacks directly on the compressed data stream 

instead of attacking the decompressed image, which is in line 

with the actual attack situation and has wide application 

scenarios. The proposed one-index attack method based on the 

vector quantization domain makes the decoded image 

misclassified by modifying one VQ index. In  [21] attack 

method, it modifies multiple pixels and it is easy to find out that 

the image has been tampered with. Therefore, we limit the 

number of indexes to be modified. 

We propose a one-index adversarial attack method targeting 

the vector quantization domain. Our method modifies only one 

VQ index to attack, and the VQ index’s range is [1, L], where L 

is the codebook length. The one VQ index perturbation e(I) of 

the image I is defined as shown in Eq. (1), where x and y 

respectively represent the x and y coordinates of the VQ index; 

and r, g, b represent the attacked VQ index value at the 

corresponding position in the RGB layer: 

Table 1 Important notations and their descriptions. 
Notation Description 

e(I), F Perturbation, model 
x, y The location of perturbation 

r, g, b The value of perturbation 

iter Maximum number of iterations 



 
Fig. 1. The process of adversarial attack. 
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where [1, ]x s , [1, ]y t , , , [1, ]r g b L  and s, t represents the 

size of the VQ index matrix. 

The method’s objective is to minimize the true category 

probability, as shown in Eq. (2), where tF  is the true category 

probability obtained by the model F and ( )e I  represents the 

modification VQ index quantity: 

( )
( ) ( )min ( ) subjected to 1


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e

F e e
I

I I I                                     (2) 

The method modifies one VQ index to generate the 

adversarial images, which results in the model outputting an 

incorrect category, as shown in Fig. 1. The sender feeds images 

into the VQ encoder and obtains VQ indexes for transmission 

within the common channel. The attacker intercepts and tampers 

the compressed data stream – VQ indexes. The receiver gets the 

modified VQ index to reconstruct images from the decoder. The 

reconstructed image will make neural network models output a 

wrong category. The specific steps of one VQ index attack 

method are as follows:  

1. Determining the modification location according to the x, y 

of one index perturbation e(I). 

2. Replacing the VQ index value at the corresponding position 

with the r, g, b values of the perturbation e(I) and obtain the 

attacked VQ index matrix. 

3. Decoding the attacked VQ index to get the attacked image. If 

it can make the model output an incorrect category, the 

adversarial image is generated successfully. 

Algorithm 1 shows the one VQ index attack method, where 

tl  is the true category, fl  is the predicted category. We describe 

one VQ index attack problem as an optimization problem and 

optimize the one VQ index perturbation by differential evolution 

algorithm. The Differential Evolutionary (DE) [28] is a kind of 

intelligent optimization method that evolves populations by 

optimizing the fitness function value. Compared to the genetic 

algorithm [30], it maintains population diversity during the 

iterative process and jumps out of the local optimum easily. 

Thus, it can quickly find a global optimum in the solution space.  

Algorithm 1: The one VQ index attack process 

Input: VQ index  and one index perturbation  

Output: Attacked VQ index and adversarial image  

1.  
2. for k=1 to 3 do 
3.   for i=1 to s do 
4.     for j=1 to t do 
5.        
6.     end 
7.   end 
8. end 

9. , ( ), , 2v x y g = , ( ), ,3v x y b =  

10.  

11.  

12. if  

13.   Attack success 
14. else 
15.   Attack fails 
16. end 
 

3.3. Differential Evolutionary Perturbation Optimization 

In particular, we consider the true category probability as 

fitness value. The optimization objective is to minimize fitness 

value and the constraint number of modified indexes is one. We 

set both the population size and the population iteration times to 

50 after balancing the attack runtime and success rate. The 

specific steps of one VQ index perturbation optimization based 

on a differential evolutionary algorithm are as follows: 

1. Generating a fixed number of perturbations as the initial 

population randomly, with each perturbation defined in Eq. (1). 

2. Initializing the next generation population according to the 

mutation rules of the differential evolution algorithm as: 

( ), , , ,  = + −i k k k kM M M M                                                (3) 

where k is the current generation index; ,i kM denotes the ith 

perturbation of the contemporary population; , 1+i kM represents 

the ith perturbation of the next-generation population;  ， ，
  are random numbers, and   is the scale factor set to be 0.5. 

3. Comparing the fitness value of adversarial images 

corresponding to child perturbations and parent perturbations. 

Taking the true probability labels as a measure of merit, the 

perturbation with the smallest probability label is selected to 

survive, gradually optimizing the population. 

4. Repeating steps 2~3 to obtain the next generation population 

that is better than the current one. We repeat the algorithm to 

generate the next generation population, continue iterating until 

the maximum number of iteration times, and obtain the optimal 

population, resulting in the global optimal perturbation. 

The differential evolution process is shown in Algorithm 2, 

where ps refers to the population size; iter represents population 

iteration times. 

Algorithm 2: DE algorithm 

Input: The original image I 

Output: The optimal perturbation  
1. Initializing the population; 
2. for i=1 to ps do 
3.   for j=1 to 5 do 

4.      
5.   end 
6. end 
7. for z=1 to iter do 
8.   for i=1 to ps do 
9.     for j=1 to 5 do 
10.      Mutation; 
11.       

12.       

13.     end 
14.     Selection; 

15.     if  

16.        
17.     else 

18.        
19.     end 
20.  end 
21.end 

22.  
23.  

3.4. Codeword Sorting 

In the differential evolution algorithm, if a certain perturbation 

makes the image misclassify successfully, it will tend to find the 

nearby perturbation and see whether it is better than that 

perturbation [28]. Thus, we need to establish the correlation 

between the codeword index and the corresponding codeword 

vector. To sort codewords in the codebook, we need to perform 

data dimensionality reduction. Common data dimensionality 

reduction methods include Principal Component Analysis (PCA), 

Independent Component Analysis (ICA), LinearDiscriminant 

Analysis (LDA), t-Stochastic Neighborhood Embedding (t-SNE), 

etc. PCA is the more basic linear dimensionality reduction 

method, so we use the PCA algorithm for codeword sorting. 

Here, we aim to improve the correlation between adjacent 

codeword indexes to facilitate the effective convergence of the 

differential evolution algorithm. We first sort the codewords in 

the codebook by principal component analysis (PCA) before 

attacking [29]. Then, the column vectors corresponding to 

adjacent codeword indexes have a relatively strong correlation.  



 
Fig. 4. Adversarial images of successful attacks on three network models on two datasets. 

 
Fig. 2 The part of CB  and CB . 

 
Fig. 3. The comparison of the unsorted and sorted codebook.  

The specific steps of codeword sorting are as follows: 

Algorithm 3: Codeword sorting algorithm 
Input: The unsorted codebook CB 

Output: The sorted codebook  
1.   for i=1 to L do 

2.      for j=1 to  do 

3.          

4.      end 

5.       
6.   end 

7.    

8.    

9.   for i=1 to L do 

10.    
11. end 

1. Pre-processing the codebook for standardization. Computing 

the average value ai of each codeword iY in the codebook. Here, 

we get the matrix P after preprocessing the codebook, which is 

defined as  1 2, ,...,= LP p p p , where ip  is calculated as: 

= −i i iap Y                                                                                 (4) 

2. Computing the covariance matrix O of the matrix P 

according to Eqs. (5) and (6): 

( )
( )( ), ,1
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1

=
− −

=
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
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                                                  (6) 

3. Computing the eigenvalue 1 2 3, , ,..., Lλ λ λ λ and eigenvectors of 

the covariance matrix O. 

4. Sorting the column vectors in ascending order according to 

the first principal component to obtain the sorted codebook CB . 

As shown in Fig. 2, an unsorted codebook CB  displays 

disorder between codewords, while a sorted codebook CB  

shows a strong correlation between adjacent codewords. Taking 

the first codeword as an example, the comparison of Euclidean 

distance between the first codeword and other codewords in the 

unsorted codebook CB  and the sorted codebook CB  is shown 

in Fig. 3. The Euclidean distance between two codewords is 

calculated according to Eq. (7): As shown in Fig. 3, the 

Euclidean distances of codeword indexes and their corresponding 

column vectors in unsorted codebooks are not correlated and 

non-regular, while the Euclidean distance between codewords in 

sorted codebook becomes larger as the index difference 

increases. The codeword index and corresponding column vector 

have a strong correlation. The codeword sorting algorithm based 

on principal component analysis is shown in Algorithm 3. 
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 
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w h
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n

d y yY Y Y Y                                            (7)  

4. Experiments 

In this section, we first evaluate the attack performance of the 

proposed method. Second, we compare the random search 

method, the DE search method (unsorted codebook) with our  

method for ablation experiments. Third, we analyze the change in 

the fitness value. Fourth, we analyze the quantitative relationship 

between the original category and the attacked category of 

adversarial images. Lastly, we compare the proposed scheme 

with other attack schemes. 

4.1. Experiment Setup 

Datasets. We evaluate our attack method using two widely 

used dataset for data recognition, CIFAR-10 dataset and the 

Fashion MNIST dataset. CIFAR-10 consists of 50,000 training 

images and 10,000 test images and Fashion MNIST consists of 

60,000 training images and 10,000 test images with 10 categories. 

Classification model. We evaluate our approach on Resnet, 

NIN and VGG16. These three models are popular for image 

classification and have very different network structures, which 

can test the transfer ability of the proposed method. 

Evaluation metrics. The attack performance can be evaluated 

in the following main aspects: attack success rate and confidence. 

The success rate is defined as the percentage of adversarial 

images that were successfully attacked. Confidence is defined as 

the incorrect output category probability. The higher these 

metrics, the better the attack performance. 

4.2. Attack Performance 

To verify the effectiveness of the one-index adversarial attack 

method, we conduct experiments for the CIFAR-10 and Fashion 

MNIST datasets separately to further verify the feasibility of the 

method. Since the datasets have different categories, we need to 

train the classification models for this dataset separately. The 

accuracies of the three models for the CIFAR-10 and Fashion 

MNIST datasets are shown in Table 2. 

We take 500 vector quantization images to test the attack 

success rate on the three network models (Resnet, NIN, VGG16) 

for two datasets. Table 3 shows the success rate and confidence 

of the one-index adversarial attack method on the three networks. 

As shown in Table 3, our method works for three network 

models with a 55.9% success rate and a 77.4% confidence on 

average on two image datasets. Among the three network models, 

the attack method has high robustness to the NIN model and the 

success rate and confidence level are higher. The method can 

misclassify not only a particular model but also other models. 

Fig. 4 shows the adversarial images generated by the proposed 

adversarial attack method on three network classification models. 

As can be seen from Fig. 4, it is possible to modify one index to 

realize misclassification. It does not affect the classification 

results of human-discriminated images, while it causes the model 

to output incorrect categories with high confidence. Table 4 

shows the related information of adversarial images in Fig. 4. 

 



Table 2 The accuracy on three different models. 
Dataset Model Accuracy 

CIFAR-10 

Resnet 86.97% 

NIN 78.22% 

VGG16 79.75% 

Fashion MNIST 

Resnet 89.39% 

NIN 90.28% 

VGG16 91.28% 

Table 3 The attack performances on three models. 
Dataset Model Success rate Confidence 

CIFAR-10 

Resnet 44.8% 80.27% 

NIN 56.4% 79.42% 

VGG16 52.8% 74.64% 

Fashion MNIST 

Resnet 93.6% 92.4% 

NIN 23.0% 69.7% 

VGG16 64.8% 67.7% 

Table 4 The related information of adversarial images. 

Dataset Model ID 
Original 

Category 

Attacked 

Category 
Confidence 

CIFAR-

10 

Resnet a Dog Cat 87.73% 
Resnet b Boat Bird 94.23% 

Resnet c Cat Dog 87.79% 

NIN d Airplane Ship 95.76% 

NIN e Ship Truck 79.38% 

NIN f Cat Dog 99.31% 

VGG16 g Deer Bird 74.32% 
VGG16 h Dog Cat 84.76% 

VGG16 i Airplane Bird 99.70% 

Fashion 
MNIST 

Resnet j Sneaker Sandal 93.25% 

Resnet k T-shirt Shirt 93.69% 

Resnet l Bag Sandal 83.83% 

NIN m Trouser Dress 66.09% 
NIN n T-shirt Shirt 75.46% 

NIN o Ankle boot Sneaker 70.64% 

VGG16 p Coat Pullover 75.46% 

VGG16 q Coat Dress 95.21% 

VGG16 r Ankle boot Sandal 96.77% 

4.3. Codeword Sorting Effect on Population Evolution 

 

We compare the DE evolutionary process using a sorted 

codebook with an unsorted codebook. Firstly, we use the 

unsorted codebook generated by the LBG algorithm. Take an 

image as an example, the location and index distribution of 

perturbations in the initial, middle, and optimal populations are 

shown in Fig. 5(a) and Fig. 6(a). 

As shown in Fig. 5(a) and Fig. 6(a), we can see that the 

position can converge to near a certain position, but the VQ index 

value cannot converge to a certain index value, which is almost 

evenly distributed in the solution space. One index perturbation 

contains position (x, y) and index value (r, g, b). If the algorithm 

finds a good perturbation, it prefers to search for a better 

perturbation in the vicinity of that perturbation. Since codewords 

in the codebook generated by the LBG algorithm are 

uncorrelated with each other, it will affect the superiority-seeking 

efficiency of the differential evolution algorithm.  

Then, we test the same image to execute the differential 

evolution using the sorted codebook. The location distribution 

and index distribution using the sorted codebook in the initial, 

middle, and optimal populations are shown in Fig. 5(b) and Fig. 

6(b). We intuitively perceive that the population slowly 

converges to the nearby areas of the optimal perturbation and 

gradually approaches the optimal perturbation, which verifies the 

importance of the codeword sorting algorithm. Comparing Fig. 5 

and 6, the convergence rate is greater than that of the unsorted 

codebook. Therefore, the codeword sorting algorithm does 

improve the convergence speed of the population. 

4.4. Change in Fitness Values 

In this section, we take images from the CIFAR-10 dataset for 

example and test the variation of fitness values. In this paper, we 

describe one VQ index attack problem as the optimization 

problem, using the differential evolutionary algorithm to 

optimize one index perturbation, where the optimization 

objective is to minimize the probability label of the true category. 

We select randomly 20 correct category images on three network 

models (Resnet, NIN, VGG16) and carry out one-index attacks to 

test the change of fitness values with the number of population 

iterations. The fitness values on three models are shown in Fig. 7, 

where the fitness value is set to be the true category probability 

label for each image. 

As can be seen from Fig. 7 in the early population iteration, 

the convergence speed is fast and the probability of true category 

decreases remarkably; in the middle population iteration, the 

convergence speed is slow and the fitness values descend 

modestly; in the late population iteration, it gradually converges 

to a stable value. The probability of true category decreases as 

the number of population iterations increases and the population 

evolutionary process is as expected. Therefore, the proposed one 

VQ index attack method based on the differential evolutionary 

algorithm can effectively decrease the probability of true 

category and achieve image misclassification. 

4.5. Ablation Study 

We take the CIFAR-10 dataset for example to conduct the 

ablation study. We compare our method with the random search 

attack method and DE search attack method (unsorted codebook) 

to evaluate whether the DE algorithm and codeword sorting 

algorithm help to improve the attack success rate and confidence. 

Random search attack method: 

(a)  

(b)  
Fig. 5. Location distribution for (a) Unsorted & (b) sorted 

codebook. 

(a)    

(b)  
Fig. 6. Index distribution for (a) Unsorted & (b) sorted codebook. 

 
Fig. 7. The change of fitness value on three models. 

 



For each image, the random search method repeats n times, 

which modifies one random VQ index each time. The confidence 

of adversarial images is set to the lowest true category probability 

among n attacks. DE search attack method (unsorted codebook): 

Not using the codeword sorting algorithm, DE search modifies 

one VQ index according to the differential evolution algorithm.  

Here, we use the same number of evaluations (2500) for 

random and DE searches. From Method Ablation (Table 5 mid), 

our attack success rates on three models are higher than that of 

random search and DE search (unsorted codebook), showcasing 

that our method has the best attack performance. As shown in 

Average (bottom), even though random search is directionless, 

the attack method still has a 43.8% success rate on average. Thus, 

the vulnerable VQ indexes which can change the image label 

significantly are prevalent. Existing methods (top) achieve higher 

success rates. However, methods such as FGSM [14], One-pixel 

Attack [21], and Adversarial Steganography [27] are impractical 

in real-world applications due to their limited application 

scenarios. This will be clarified further in Section 4.7. 

Our method uses a differential evolution algorithm to evolve 

one-index perturbations generation by generation, which is 

optimized in the direction of minimizing the true category 

probability of adversarial images. Thus, our attack success rate is 

7.53% higher than random search on average. In the unsorted 

codebook, the adjacent codewords are not relevant, thus having a 

negative influence on the convergence rate. The DE search is 

6.6% lower than our method on average. In addition, the average 

confidence of our method is higher than both these two methods. 

4.6. Adversarial Image Category Analysis 

We analyze the category of successful attack images on the 

CIFAR-10 dataset. Fig. 8 shows the heat maps of a successful 

attack, where  ,i j  indicates the number of images of category i 

that have been attacked to category j. Vertical and horizontal 

indices denote the original and attacked categories respectively. 

As can be seen from Fig. 8, two similar categories in general 

outline shape are prone to be successfully attacked between them. 

For example, cats and dogs are easily attacked successfully by 

each other. The three deep neural networks include convolutional 

layers and pooling layers. Some parts of images in two categories 

can get similar data points through the convolution kernel, and 

there are similar features. The same features can be obtained 

through the feature dimension reduction of the pooling layer.  

Adding perturbations to such images will result in 

misclassifications. Cats are hardly attacked into cars as there are 

few similar overlapping features between the two categories. 

Therefore, the attack is more difficult. However, there are special 

boundary decision points. If the data point is modified, the image 

will be misclassified. The number of each category before and 

after the attack is shown in Fig. 9. Fig. 10 shows the difference 

for each category before and after the attack. 

As shown in Fig. 8, using one VQ index attack method on the 

Resnet model, the NIN model, and the VGG16 model, every 

category of images is attacked successfully. Deers and ships are 

vulnerable to the other categories and the other categories are 

vulnerable to automobiles and birds. Among the 10 categories of 

images in the CIFAR-10 test dataset, certain categories are more 

robust than others, neither easily attack others nor easily be 

attacked by others. For these robust categories, a larger number 

of perturbations are required to successfully attack these images. 

4.7. Attack Performance Comparison 

The comparison of various attack methods is presented in Table 

6, including the proposed attack method, FGSM method [14], 

one-pixel method [21], and adversarial steganography method 

[27]. Although [14] boasts the highest success rate and 

confidence among the other two methods, and it alters all image 

pixels. In contrast, [21] only changes one pixel value, but it still 

misleads the model output. Nevertheless, both methods add 

perturbations to image pixels in the spatial domain and are aimed 

at the image classification model. These methods have limited 

application scenarios since images are often transmitted in 

compressed form over network public channels. Compared to 

[14][21], which relies on the gradient, our method operates in a 

semi-black-box scenario, optimizing the perturbation based 

solely on output probabilities. Thus, our method is more versatile 

and applicable in scenarios where the gradient is inaccessible.  

Table 5 The attack performance (mid and bottom) against the 

impractical methods (top). Bold is the best, underline is the worst. 
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Method Model Success Rate Confidence 

FGSM [14] NIN 93.7% 93% 

FGSM [14] VGG16 90.9% 90% 

One-pixel Attack [21] NIN 72.9% 75% 

One-pixel Attack [21] VGG16 63.5% 65% 

Adversarial 

Steganography [27] 

SRNet (J-

UNIWARD) 
48.4% - 

Adversarial 
Steganography [27] 

SRNet 
(UERD) 

46.6% - 

M
et

h
o
d

s 
A

b
la

ti
o
n
 

Random Search Resnet 36.0% 81.19% 

DE Search  Resnet 35.4% 76.18% 

Proposed method Resnet 44.8% 80.27% 

Random Search NIN 48.0% 73.54% 

DE Search  NIN 50.4% 81.78% 

Proposed method NIN 56.4% 79.42% 

Random Search VGG16 47.4% 69.65% 

DE Search  VGG16 48.4% 76.16% 

Proposed method VGG16 52.8% 74.64% 

A
v

er
ag

e
 

Random Search - 43.8% 74.8% 

DE Search  - 44.7% 78.0% 

Proposed method - 51.3% 78.1% 

 
Fig. 8. Heat-maps for one-index attack on Resnet, NIN, and 

VGG16. The number 0 to 9 indicates the categories: airplane, 

car, bird, cat, deer, dog, frog, horse, ship, and truck. 

   
Fig. 9. Comparison of the number of original and attacked 

categories on the three networks. 

 
Fig. 10 The difference between the number of original and 

attacked categories on the three networks. 



Table 6 The comparison of the related attack methods. 

Attack Method 
Success 

Rate 

Confi-

dence 

Network 

Model 

Adversarial 

Target 

Attack 

Domain 

FGSM [14] 93.7% 93% NIN Classification Spatial 

FGSM [14] 90.9% 90% VGG16 Classification Spatial 

One-pixel Attack [21] 72.9% 75% NIN Classification Spatial 

One-pixel Attack [21] 63.5% 65% VGG16 Classification Spatial 

Adversarial 
Steganography [27] 

48.4% - 
SRNet (J-

UNIWARD) 
Steganalysis JPEG 

Adversarial 

Steganography [27] 
46.6% - 

SRNet 

(UERD) 
Steganalysis JPEG 

Proposed method 44.8% 80% Resnet Classification VQ 

Proposed method 56.4% 79% NIN Classification VQ 

Proposed method 52.8% 75% VGG16 Classification VQ 

In contrast, the adversarial steganography method [27] can be 

applied to the JPEG domain and targets the steganalysis model, 

which indicates that attacking images in the compressed domain 

is more difficult than in the spatial domain and the success rate is 

lower. The proposed attack method is applied in the vector 

quantization domain and specifically targets the image 

classification model. The original and adversarial images have a 

similar visual perception, striking a good balance between visual 

quality and attack success rate. Our method attacks the VQ index, 

offering insight into attacking other compression domain images. 

5. Conclusion and Discussions 

We present a novel one-index adversarial attack method 

grounded in vector quantization theory and differential evolution. 

The proposed theoretical framework offers an advancement in 

understanding adversarial attacks in the compressed domain. 

Our work has both practical and theoretical significance. 

Practically, we show the feasibility of adversarial attacks in real-

world scenarios where images are compressed. Theoretically, we 

provide a basis for further research into adversarial robustness in 

various domains, such as the VQ domain. 

However, there are certain limitations. In the proposed 

method, the variation of one-index perturbation is limited to 

codewords. In future work, we can extend the codebook length 

by adding irrelevant codewords to expand the range of solution 

space to improve attack performance. In addition, we can explore 

the application of the diffusion model framework [31] in VQ 

attacks to improve attack performance, which has shown 

promising results in attacks in the pixel domain.  
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