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Facial recognition is one of the most academically studied and industrially developed areas within computer vision where we readily
find associated applications deployed globally. This widespread adoption has uncovered significant performance variation across
subjects of different racial profiles leading to focused research attention on racial bias within face recognition spanning both current
causation and future potential solutions. In support, this study provides an extensive taxonomic review of research on racial bias
within face recognition exploring every aspect and stage of the face recognition processing pipeline. Firstly, we discuss the problem
definition of racial bias, starting with race definition, grouping strategies, and the societal implications of using race or race-related
groupings. Secondly, we divide the common face recognition processing pipeline into four stages: image acquisition, face localisation,
face representation, face verification and identification, and review the relevant corresponding literature associated with each stage.
The overall aim is to provide comprehensive coverage of the racial bias problem with respect to each and every stage of the face
recognition processing pipeline whilst also highlighting the potential pitfalls and limitations of contemporary mitigation strategies

that need to be considered within future research endeavours or commercial applications alike.
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1 INTRODUCTION

Over several decades, the objective of developing face recognition systems has gathered significant pace across research,
and industry alike [3, 35, 200]. Companies, nonprofits, and governments have deployed an increasing number of face
recognition systems to make autonomous decisions for millions of users [90] across various application areas, such
as within employment decisions, public security, criminal justice, law enforcement surveillance, airport passenger
screening, and credit reporting [4, 97]. However, such wide-scale adoption within real-world scenarios heightens public
concern about their potential for abuse and the adverse effect of face recognition may have on some individuals due to
the presence of bias [45, 180]. The most prevalent problem pertaining to such bias arises within the race and race-related
groupings and is referred to as racial bias within face recognition [53].

However, the presence of racial bias within face recognition is not a new thing and is not in itself limited to
technological means. Own-race bias has been previously established in psychology [116] by showing that humans
are less capable of recognising faces from other races than their own. The prolonged societal experience humans
generally have with their own-race, especially during their formative years with biological family members, results in
biased human perceptual expertise. More specifically, [67] showed how the use of face feature descriptors varies across
participants from different racial groupings. For example, it shows that darker skin tone participants use face outline,
eye size, eyebrows, chin and ears, while lighter skin tone participants use hair colour, texture, and eye colour. Overall, it

concludes that lighter skin tone participants use less varied descriptors than darker skin tone participants [67]. Similar
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to the own-race bias, the conversely named other-race effect is also studied by a series of studies in social psychology
[5, 157] to establish social implications of biased face processing and feature selection of humans in erroneous jury
decisions, eyewitness identification.

Accordingly, the first technological study [144] to explore the other-race effect within the context of face recognition
algorithms was developed by East Asian and Western-based research groups that inherently use datasets gathered
locally. The study demonstrates that algorithms trained on a locally gathered face datasets from the Western-based
group achieve superior performance on Caucasian faces when compared to performance on East Asian faces, and vice
versa. Further studies provide extensive evidence about the influence of demographics, including race, gender and age
on both commercial and non-commercial face recognition algorithm performance [86, 141]. Subsequently, the Gender
Shades study [13] drew significant attention to gender and skin tone bias within commercial algorithms for gender
classification by revealing a 34% performance discrepancy between darker skin tone female and lighter skin tone male
subjects. Consequently, growing research has emerged to understand and mitigate racial bias within face recognition
[96, 117, 216]. These efforts and associated evidence of bias have forced several commercial and academical research to
withdraw products, algorithms, or datasets due to the differing forms of disparities, distortions or biases [17, 118, 173].

However, face recognition remains a long-standing research topic and a common use case within computer vision
that comprises multiple stages of processing, a multitude of downstream tasks and large-scale face recognition datasets
in order to achieve high accuracy. With the availability of such large-scale data resources and the advent of Deep
Convolutional Neural Networks (DCNN), the accuracy of face recognition algorithms has now excelled the perceived
accuracy requirements for use by the general populous. However, every stage of face recognition, from initial face
image acquisition to final performance evaluation, requires attention and investigation to address racial bias, which may
otherwise result in disparate outcomes across a diverse user population. Unfortunately, despite the increasing attention
to racial bias within face recognition, we are yet to see truly collaborative or tractable solutions emerge from the global
research base that could readily address these issues in real-world system deployments [47, 175, 201, 218]. Moreover,
face data itself is a private biometric capable of identifying a given individual based on their appearance alone, giving
rise to obvious operational privacy and ethical concerns in relation to its processing [25]. Although previous surveys on
algorithmic bias and fairness in machine learning [34, 115, 140] and face recognition in computer vision and biometrics
[90, 200] exist, many aspects remain under-studied in relation to the specifics of racial bias within face recognition.

On the other hand, face recognition is a fast emerging field of research and applications alike that spans multiple more
traditional fields, including machine learning, biometrics, statistics, sociology, and psychology. Therefore, we commonly
find that aspects of the problem definition, in addition to the race conceptualisation and race-related performance
evaluation methodologies, need to be clarified and ideally standardised. Which stages, operations and decisions in
face recognition are prone to bias, and how incorrect solutions to addressing the bias issue can cause additional areas
of concern that need to be highlighted in order to maximise the effectiveness of future research in this area. In this
survey, we take face recognition as the central concept of our review and aim to provide coverage of all the aspects of
racial bias within each stage of the face recognition processing pipeline, with additional supporting material spanning
fundamental concepts from related fields.

The primary purpose of this study is to both summarise the current state of the art and to give a comprehensive
critical review of prior research on the topic of racial bias within face recognition. In addition, we aim to make the reader
pertinently aware as to the subtleties, and potential areas of ambiguity, with regard to how the racial bias problem
within face recognition itself is defined. Furthermore we aim to identify which parts of the problem have been studied

effectively to date and which directions remain open for future contributions to mitigate racial bias within the face
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Fig. 1. Taxonomy of sections in Racial Bias within Face Recognition Survey.

recognition domain. In particular, the survey aims to systematically review each of the stages that are commonplace
within contemporary face recognition processing pipelines from a perspective of the potential for racial bias impact:
image acquisition (for both dataset collation and deployment), face localisation, face representation, face verification
and identification (final decision-making) (see Figure 1, right).

On this basis, we present this survey based on our taxonomy of prior work in the field and its contribution to
the current state of the art (Figure 1). Subsequently, we formalise the problem definition with the corresponding
evaluation and fairness criteria (Section 2). Next, we discuss standard race and race-related grouping terminology under
three categories; race, skin tone and facial phenotypes (Section 3). This discussion provides an information spectrum
from grouping definitions to their adoption to the associated processing of racial groupings used in literature studies.
Consequently, we provide a general development schema for face recognition systems and summarise the prior work
in the field by aligning it to each development stage (Section 4). Within this section (Section 4), we firstly give an
outline description of the general face recognition processing pipeline using consistent notions and symbols. Secondly,
we cover image and dataset acquisition processes for face recognition showing the risks and investigations within
this stage. Thirdly, we extend our analysis to face localisation as it is a mandatory stage where the possible biased
localisation results propagate within the following face recognition stages. Penultimately, in the face representation
stage, we categorise the proposed racial bias mitigation approaches based on machine learning techniques. Finally, we
cover face identification and verification tasks and show the impact of the methodological decisions effects on racial
bias. Consequently, we summarise the main critical points of the work and highlight the essential steps that need to
be considered within any future research endeavours or commercial applications that aim to mitigate bias or develop
fairer face recognition systems (Section 5).

2 PRELIMINARIES

Statistical methods are essential for supervised learning problems, including face recognition, which concerns generating
a representative and distinctive feature embedding vector z for a subject y given an observed face image x. A mapping
function f* is a particular function among infinite function space Q (f* € Q) that provides optimal performance over
a given training dataset Dyygin. Preferring certain functions over others is denoted as inductive bias in the seminal
work by Mitchell [123] and remains a central concept in statistical learning theory. The expression inductive bias (also
known as learning bias) refers to the optimal selection process of f*. Due to its importance for generalisation on unseen
large-scale datasets, inductive bias is essential for any genre of machine learning approach. On the other hand, the
broader societal, historical meaning of the term bias instead refers to the unfair treatment of a subset of the populous
based on their origins, ethnicity or ideology. While inductive bias is necessary for model generalisation, societal bias
implies negative implications that should ideally be avoided [65]. In order to avoid the obvious potential for confusion,
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the prior work of [7] prefers to use fairness instead of bias when referring to aspects of demographic criteria in both
statistics and machine learning. Subsequently, research on algorithmic fairness and statistical bias has introduced
various formal definitions of fairness, and their relationships with each other [7, 36, 95]. Before we fully detail these
fairness criteria, we first provide a brief explanation of a generic face representation learning and evaluation pipeline to
facilitate the introduction of the required notation, which we will subsequently use for the remainder of this review.
A face recognition system comprises a training set Dyrqin and a test set Dtes; Where any of the datasets can be
defined as D = {X, Y} where X = {x1, x2, .., xN} is a set of face images and Y = {y1, y2, .., yn } is a set of subject identity
labels corresponding the face images where N is the total number of images. The total number of unique subject identity
labels is n and is smaller than N. In addition, in order to measure the fairness of a face recognition system, a set of
corresponding race or race-related grouping labels S is also specified, S = {s1, s2, .., SN }. Therefore any face dataset can
be formed as D = {X, Y, S} where X denotes the set of images, Y denotes the set of subject labels, and S denotes the set
of sensitive race or race-related labels. Furthermore, a mapping function f plays a significant role in face recognition
systems as it maps any given image x into the feature embedding vector z. f is selected from a function space Q via a
loss function £ which measures the performance of a given training set, D;4in, for any of the aforementioned face
recognition tasks. Typically, a softmax loss is adopted by state-of-the-art face recognition methods [28, 106, 197, 198]
in order to disentangle the feature representation of individual identities within contemporary training datasets. The
inductive representation learning is hence a minimisation of the loss function L, f4max, which can be formalised as

follows:

s . 1 e Yi
= argmln(-[:softmax(f))’ feQ where -Esoftmax = _N Zlog T WTz4b, 1

where z; is the feature representation of the image x; € R¥*?%3, 4 is the weight and o is the height of the x;, within
Dirain belonging to subject class y; and the number of samples is N labelled with n classes. W is the j th column of the
weights, b; is the j th column of the bias term, and d is the number of neurons in the last fully-connected layer which is
mostly 512. Weights and bias term dimensions are W; € RAX" and bj € R", respectively. Moreover, the selected f*
compresses the intra-class distance and expands the inter-class distance between feature embeddings belonging to the
same or different subject identity, respectively. Generally, f provides superior approximation over the statistically most
predominant population subset within training set, D¢rqin, such that Ly f4max is minimised.

Additionally, evaluation metrics can quantify how well the selected f* performs on Dyes;. The most common
evaluation metric in face recognition, accuracy, relates to the probability of correctly predicting the subject label of a

face image as P(yy = ). Accuracy can be defined as follows,
TP+TN
Accuracy = (2)
TP+TN+FP+FN

where true positive (TP) is the number of the f* correctly predicts the positive subject label and true negative (TN)

is the number of the f* correctly predicts the negative subject label. In contrast, false positive (FP) is the number
of the f* incorrectly predicts the positive subject label, and false negative (FN) is the number of the f* incorrectly
predicts the negative subject label. Accuracy measures the consistency between predictions and their ground truth
values. In a similar vein, the True Match Rate (TMR) estimates the number of correct positive predictions made from
all possible positive predictions. For instance, a binary face verification task aims to classify whether an image pair
(xa»xg) where xq,xg € Drest belongs to the same subject label or not. During testing, the selected f* predicts the
feature representation vectors zq, z5 for the corresponding images xq, x4, respectively. Given images are validated as
“match” if the similarity between two feature vectors (i.e. cosine similarity, cos(za., 2g) = #ﬁﬁﬁ” ) is greater than a
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given threshold parameter threshold, otherwise as “non-match”. TMR is the ratio of correctly verified match pairs (two
different images from the same subject) over the total number of match pairs. However, neither Accuracy nor TMR is
indicative of failure samples. To investigate such samples, the False Match Rate (FMR) measures how many incorrect
non-match or negative predictions f* are made via feature representation vectors. Furthermore, the False Non-Match
Rate (FNMR) refers to the probability of samples of the same subject identity is incorrectly matched. All terms, TMR,
TNMR, FMR, and FNMR, can be formalised as follows:

P FN 3)
TP +FN’ TP +FN’ FP+TN’ FP+TN
Another facial recognition metric, the ROC curve, plots TMR against FMR at different thresholds. Lowering the threshold

TMR = TNMR = FMR = FNMR =

verifies more items as matched, resulting in an increased FMR and TMR. Furthermore, the racial bias literature commonly
measures the variation in performance, indicated by accuracy or FMR, among racial groups to highlight disparities
within each group. However, calculating this deviation varies across studies, as different definitions of standard deviation
are used (i.e. sample, population). In this study, we utilise the sample standard deviation for further analysis.

To this extent, we briefly described the selection process of f using the loss function and evaluation metrics of face
recognition. Whilst, loss functions help to understand the behaviour of f on D;yq4in, evaluation metrics help to measure
how well the selected f* maps Dyes; into feature embedding representation space. Consequently, statistical fairness
criteria can be considered as a formal property of face recognition systems, including mapping function f*, training
Dyrain and test datasets D;egr. Accordingly, we give the four most commonly used fairness definitions from [95] that
are commonplace within racial bias for face recognition.

Definition 1: Fairness Through Unawareness requires that a machine learning algorithm have an independent
conditional probability P of the output given X from S (racial labels). Subsequently, unawareness criteria can be
formalised as P(Y|X) = P(Y|X, S). However, removing dependency is impossible for face recognition algorithms due to
the high mutual information between facial and racial features. Even though racial labels are not explicitly introduced
to the machine learning algorithm, they will implicitly be used in the face representation (algorithm training) via the
face images.

Definition 2: Individual Fairness refers to treating similar individuals coequally, meaning that an algorithm is fair if
it gives similar predictions to similar individuals. In order to estimate such criteria, two distance metrics are defined by
Dwork [36]. These are distance metrics that measure the degree of similarity between individual subjects and measure
the difference in the associated prediction outcome between those individual subjects. It can be formalised in face
recognition context as if image samples x4 and x are similar under a given distance metric d(xq, x5) depending on
Sa» g then predictions should be similar jo ~ 5 where {4 and §g are the predicted labels from corresponding images
Xa» X and sg, sp are the sensitive race labels respectively. However, [43] discusses how individual fairness is inadequate
for ensuring fairness on the grounds of four differing arguments, spanning the insufficiency of similar treatment,
systematic bias and arbiters, prior moral judgements, and incommensurability (see [43] for a more detailed discussion).
Definition 3: Group fairness (or Statistical parity / Demographic parity) enforces the predicted subject labels ¥ to
be independent of S which can be denoted P(Y|S =5) = P(Y|S = 5),s € {0,1,..r} where r is the number of different
sensitive race labels in the set. Racial bias literature within the face recognition mostly approaches the problem from a
supervised machine learning paradigm by considering it as an group fairness criteria (demographic parity) [36], which

can be satisfied if the race or race-related intersectional groups perform similarly to each other. Unfortunately, such
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criteria may not ensure fairness as it heavily relies on equalising the acceptance match percentages even though there
is little or no training data available for a given racial grouping category within D;,qin [59].
Definition 4: Equal Opportunity, (or Equalised Odds) is satisfied if an algorithm predictions ¥ is independent of S
conditioned on Y. If the criteria is defined for binary categories [59], it can be denoted P(Y=1S=0Y= y) = P(Y =
11S = 1,Y = y),y € {0, 1}. Subsequently, it is adopted by [206] to multiple class labels. More simply, the constraint
requires that any sensitive race label has equal true positive rates and false positive rates across the other sensitive
race labels. It also enforces that the accuracy is equally high in all sensitive labels, penalising algorithms that perform
well solely on the statistically most predominant such labels. Furthermore, [59] discusses how demographic parity is
crippled in the typical scenario in which the target variable Y is correlated with only S. On the other hand, equalised
odds aims to achieve accurate prediction while ensuring predictions are fair concerning a specified sensitive labels, S.
As aforementioned, the literature has mainly used statistical parity or group fairness criteria to minimise the variation
of accuracy or FMR across sensitive racial groupings labels on datasets. However, such an aim brings a high dependence
on sensitive attributes to be used in fairness criteria above, which may actually increase discrimination [95]. Moreover,
little attention has been given to how the sensitive attribute labels, S, are assigned, with regard to the potential for
bias in the assignment (i.e. labelling) process, and what that potentially means normative “unbiased” presumptions for
face recognition system design. In the next section, we address these questions by focusing on race and race-related

groupings and their conceptualisation.

3 TOWARDS RACIAL GROUP FAIRNESS

Most studies on racial bias within face recognition, with a few exceptions [181, 210], use the criteria of group fairness
(demographic parity) to evaluate and mitigate both data and algorithmic bias. However, group fairness criteria relies on
sensitive attribute labels such as race, ethnicity or skin tone and uses performance evaluation metrics such as accuracy or
false match rate. Subsequently, stratification of the complex and multi-faceted concept of race into abstract race-related
categories becomes necessary in order to address racial bias group fairness as the categories allow us to assess whether
the final performance of a given face recognition system is fair and satisfy (group fairness criteria). Accordingly, the face
recognition literature mainly utilises either race (e.g. African, Asian, etc.) or race-related grouping categories (e.g. skin
tones, facial phenotypes etc.). However, with regard to racial stratification, this construction of race or race-related
groupings also brings with its and additional set of challenges. For example, early attempts at the conceptualisation of
race itself inherited racial bias, as the way race is defined and understood is influenced by preexisting prejudices and
discriminatory beliefs [9, 224]. As a result, the way race is conceptualised may perpetuate and reinforce existing forms
of racial inequality [224]. Moreover, exposing or using such racial origin identifies the representation of a particular
group and may lead to potential racial profiling and associated inequality [128]. Additionally, race or skin tone grouping
strategies can limit the scope of any study as they fail to capture the whole aspect of the racial bias problem within
face recognition where it needs to consider both multi-racial or less stereotypical members of such groupings [13, 122].
Hanna [58] discussed treating race as an attribute rather than a structural, institutional, and relational phenomenon
and ignoring its multidimensional factors can result in missing important aspects of algorithmic fairness. Finally, many
researchers do not provide detailed background about their racial categorisation process [168], which makes such
race-related groupings even more insurmountable in effectively addressing racial bias. Published datasets and related
research work rarely contain details about how racial groups are determined or how racial bias evaluation metrics are
designed [168]. In addition to the aforementioned points, many studies [10, 154, 168] highlight the potential risks of

omitting the details of the racial categorisation strategy along with the appropriate context for use.
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In this section, we delve into the racial bias (group fairness criteria) within face recognition. We examine how race
and race-related grouping categories are constructed, the significance of accurately defining these categories and the
potential risks and consequences of using and evaluating them in face recognition systems. We classify groupings under
the three most predominantly used categories: race, skin tone, and facial phenotype. We discuss the grouping strategies
in each category together with their potential positive and negative impact and describe the details of subcategories
where they have been used. Furthermore, we cover the literature on annotation processes of grouping categories and

summarise recent literature along with face datasets by organising them under their grouping strategies in Table 1.

3.1 Race

Race, as a term for human categorisation based on varying factors, is a controversial concept related to sociology,
psychology, biology, ethnology, and cultural anthropology, whose definition varies across different fields and throughout
history. Within biology, for example, the race concept has been differentiated into three different kinds: genetic,
morphological and psychological, which are all widely disputed [151]. Race was first delineated by European naturalists
and anthropologists to establish population-based research on human diversity [133]. In the seminal early scientific work
of 1758, Systema Naturae [102], Carl Linnaeus categorises humans into four different groups: European white, Americanus
rubescens (American reddish), Asiaticus fuscus (Asian tawny), Africanus niger (African black) using a combination of
continental (geographic) and observational (skin tone) terminology. Subsequently, several attempts were made to
classify and group humankind in such a manner in order to use it in societal statistics [58, 224, 225]. Most of the work
was problematic (by the standards of today) or error-prone (even by the standards of the day) as it reflected the biased
ideologies of researchers, politicians and institutions of that time [224]. However, such definitions and classifications
were adopted by the national census infrastructure across many jurisdictions [58]. The work of Khalid Muhammad
[132] reveals how anecdotal, hereditarian and pseudo-biological race theories transformed into statistics and social
surveys. Furthermore, Zuberi [224] addresses the complicated history of racial stratification and its evident impact on
social and natural sciences. Consequently, he defines race as a biological notion of physical difference grounded in an
ideology [224].

Within face recognition, subject face images form the primary information source that encapsulates these race-related
biological and physical differences, which are then combined with additional information, including gender, age, pose,
facial expression and contextual aspects such as scene background, illumination, subject clothing and facial accessories
such as glasses, facial hair, jewellery and makeup. On this basis, it becomes possible to adopt any such ideology via the
use of racial groupings and classifications that are introduced to face recognition with the aim of quantifying racial bias.
However, despite this potential, an increasing number of face recognition studies instead adopt different variations of
racial categorisation [53, 160] without any reference to the underlying critical theory of such categorisation and how
they are defined [58, 224, 225]. More worryingly, racial annotation of face imagery has now become the initial step in
many proposed face recognition approaches aiming to address racial bias, but the crucial decision-making on how and
why a given racial categorisation is defined remains subjective, arbitrary and largely undocumented [120].

Previously, racial categories made an initial appearance within automated facial analysis via the task of race
classification. For example, [215] propose feature extraction-based techniques for race classification using the MORPH
[158], and FERET datasets [145] to predict Caucasian, South Asian, East Asian, and African racial classification. Later
studies [158] extend the MORPH dataset for face recognition and analysis tasks (identification, recognition, and
verification) by providing additional ground truth labels spanning age, gender, race, height, weight, and eye position.

Subsequently, DCNN-based methods were introduced for race classification [1, 8, 52]. The work of [52] proposes the
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Dataset Name Year Grouping Categories Images Source
Race
ColorFERET [145] 1993  White, Asian, Black, Others 14K Participants’ photographs
MORPH [158] 2006 Caucasian, Hispanic, Asian, or African American 55K Public Records
UTK Face [220] 2017  Asian, Black, Indian, White and 20K MORPH, CACD,
Others (Hispanic, Latino, Middle Eastern) online resources
B-C [113] 2018 North American, South America, Western Europe, 31K Public, law enforcement
South West Africa, East Europe, East Africa-Middle databases, social media
East, South East Asia, India, China, East Asia
RFW [201] 2019  African, Asian, Caucasian, Indian 45K MS-Celeb [57]
DemogPairs [72] 2019  Asian, Black, White 10.8K CWEF, VGGFacel-2 [15, 143, 213]
BUPT-Balanced [199] 2020  African, Asian, Caucasian, Indian 1.3M MS-Celeb [57]
VGGFace2 1200 [216] 2020  African, Asian, Caucasian, Indian M VGGFace2 [15]
FairFace [96] 2021 Black, East Asian, Indian, Latino, Middle Eastern, 108K Flickr, Twitter, newspapers,
Southeast Asian, and White online resources
CASIA-Face-Africa [131] 2021 Hause (Sudan, Chad, Binin, Ivory Coast), Non-Hause 38K Subjects from Nigeria
DiveFace [127] 2021 (Japan, China, Korea), (Europe, North America, and Latin 120K MegaFace [80]

America) (Sub-Saharan Africa, India, Bangladesh, Bhutan)
Skin Colour

IJB-B [205] 2017  1-6 skin tones (increasing in darkness) 1K 1M FreeBase Celebrity List
PPB [13] 2018  Light, Dark skin tones (Fitzpatrick I-IILIV-VI) 68K Gov. Official Profiles
Fair Face Challenge [175] 2020 Light, Dark skin tones (Fitzpatrick I-IIL,IV-VI) 152K Flickr, Twitter, newspapers,
online resources
Casual Conversations [61] 2021  Fitzpatrick Skin Tones 45K* Vendor data
Globalface-8 [202] 2021 ITA base 8 skin tones (Tone I-VIII) 2M 1M FreeBase Celebrity List
Balancedface-8 [202] 2021 ITA base 8 skin tones (Tone I- VIII) 1.3M 1M FreeBase Celebrity List
IDS-8 [202] 2021 ITA base 8 skin tones (Tone I-VIII) 10K 1M FreeBase Celebrity List
Facial Phenotypes
Diversity in Faces [119] 2019 ITA 6 skin tone, Craniofacial distance, area, 0.97M YFCC-100M
ratio, Facial region contrast
VGGFace2 [15] - [218] 2018  Fitzpatrick Skin Tones, Nose Shape, 3.3M Google Image Search
Eye Shape, Mouth Shape, Hair Type
RFW [201] -[218] 2019  Fitzpatrick Skin Tones, Nose Shape, 45K MS-Celeb [57]

Eye Shape, Mouth Shape, Hair Type

Table 1. Overview of most prominent face recognition datasets categorised by racial groupings, including dataset size and image
sources.

large-scale VGGFace2 Mivia Ethnicity Recognition (VMER) dataset, composed of more than 3 million face images
annotated with four ethnicity categories, namely African American, East Asian, Caucasian Latin and Asian Indian, and
provides comprehensive performance analysis for several contemporary deep network architectures, namely VGG-16,
VGG-Face, ResNet-50 and MobileNet v2. Although such race classification techniques are not necessarily used as a
proxy for facial image annotations with regard to the study of racial bias within face recognition, these public datasets
containing race labels and their associated racial groupings are widely adopted de facto by the face recognition research
community. As we illustrate in Table 1, the most commonplace face recognition datasets containing race labels [13, 201]
use three grouping strategies, namely race, skin tone and facial phenotypes. Similar to race classification, broader racial
groupings such as {African, Asian, Indian and Caucasian} or binary racial groupings such as {Black, White} are also
commonly followed by many datasets creators [13, 201].

Recently, the most commonly used face recognition evaluation dataset, a subset of MS-Celeb-1M [57] released as
the RFW dataset [201], was constructed to measure relative face verification performance across four different racial
groupings: {African, Asian, Indian, Caucasianj. FairFace [96] is another dataset, again drawn as a subset from the larger
YFCC-100M Flickr dataset [189], which supplements this earlier set of four labels with two additional racial groupings,
{Middle East, Latinoj to evaluate racial bias more broadly. In addition, UTKFace [220] is a large-scale face dataset with
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five different racial groupings, namely {Asian, Black, Indian, White and Others (like Hispanic, Latino, Middle Eastern)}, for
various tasks spanning face detection, age estimation, and age progression/regression. This variation in racial groupings
illustrated more extensively in Table 1, highlights the ambiguity and uncertainty behind the race concept upon which
the presence of bias is ultimately being evaluated. Consequently, this inconsistency of racial groupings, its historical
and geographic instability within the face recognition research literature and the commonplace adoption of ill-defined
race concepts that are littered with a problematic history with social statistical science make effective performance
evaluation and quantification very challenging within the racial bias problem space.

Similarly, Khan [81] identify four specific problems with the racial categories: (1) categories are not clearly defined
and are often loosely associated with geographic origin, (2) categories that are extremely broad, with continent-spanning
construction that results in individuals with vastly different physical appearance and ethnic backgrounds being grouped
incongruously into the same racial category, (3) categories narrow down the differences between ethnic groups with
distinct languages, cultures, separation in space and time, and phenotype into the same racial category. (4) assigning a
single racial category to a face example for performance evaluation of any form of automated analysis, including face
recognition, is not an ideal solution as it cannot capture a substantial proportion of the distribution of diversity and
variation within the human race.

In parallel with Khan, Raji [154] discusses three ethical tensions when auditing commercial facial processing systems,
where there exists a requirement to annotate face imagery with race or race-related categories. Privacy and Representation:
Collecting a diverse and representative dataset for facial recognition can bring privacy risks for individuals included
in the dataset. Furthermore, potential consent violations may arise during the data collection process, for example,
for the IBM Diversity in Faces dataset [119], which was sourced from images on the public image-sharing platform
Flickr that were uploaded under very permissive licensing terms (Creative Commons). However, it later emerged that
the individuals within the photos did not necessarily consent to be included within the face recognition dataset [178].
Intersectionality and Group-Based Fairness: Intersectionality is based on the idea that the experience of an individual
cannot be fully understood by looking at one aspect of their identity. However, when evaluating group fairness in facial
recognition systems, assigning individuals to a racial category and performing disaggregated analysis to account for
multiple categories is often necessary. This type of analysis can help to identify and address potential biases, but it may
not fully capture how varying components of a face recognition processing pipeline interact to recognise individual
features across individuals with multiple marginalised identities. Transparency and Overexposure: Although sharing
details of the dataset development process and publicly disclosing named audit targets can help to clarify the scope
of the audit and the context in which results should be interpreted. This can also result in targeted over-fitting (i.e.
“cheating”) in order to optimise system performance on the audit. Moreover, this can also lead to pressure to make the
audit more operationally relevant to real-world deployment. For example, some institutions have removed or restricted
access to their facial recognition benchmark assets following their inclusion in audits, which can compromise the
performance validation of future systems and make it more expensive and difficult for other researchers to evaluate
relative performance changes in the field [153].

Finally, although many more studies discuss the possible negative consequences of using racial categories in face
recognition datasets, Table 1 proves that such racial categories have become commonly used and increasingly contributed
within the literature. The lack of work on alternative race-related grouping strategies or fairness criteria that do not rely
on any racial category forces racial bias literature to address racial bias using such commonly defined racial categories.
Considering the problems that arise with racial categorisation, the current status of research that uses racial categories

(still) does not paint an optimistic picture of the global face recognition research community collaboratively tackling
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Fig. 2. Four different skin tone scales used for racial bias analysis within the context of face recognition.

racial bias. As information of racial or ethnic origin remains sensitive [66], from these observations across the face
recognition field, we agree with the findings of several major studies [10, 92, 111, 122, 128, 132, 154, 224] that already
highlight the adverse effects of the use of racial categories and their suggestion that researchers should either avoid
revealing such sensitive data or provide an appropriate context for use. Furthermore, transparent provision of the
ethical considerations together with any details of the racial annotation process in use and the intended possible use
cases, limitations, and risks of the designed solution, should be made by the originating team in all cases [47].

3.2 Skin Tone

Human skin tone ranges can vary from saturated black to off-white pale, representing one of the key race-characterising
traits. Variations in skin tone among humans have been traditionally used to classify people into race or race-colour
identities [60] as skin tone variation caused by genetic differences (also exposure to the sun). In terms of its biological
foundation, melanin is a group of natural pigments many organisms produce that is the fundamental driver for skin tone
variance. The outermost layer of skin, the epidermis, contains melanin pigments, including red/yellow phaeomelanin
and brown/black eumelanin [130]. Moreover, haemoglobin, beta carotene and bilirubin in the second layer of the
skin, the dermis, absorb light and contribute to the overall pale/yellow/orange tint of human skin. It is primarily the
quantity and type of melanin present in the skin that determines the skin tone. Genetic and hormonal factors control
the production process of melanin, while direct exposure to ultraviolet radiation (UVR) accelerates its production [42]
(hence the common phenomena of that a temporary darkening of skin tone is associated with exposure to sunlight -
hence the expression “sun tan” where specifically the use of the term tan is indicative of a darkening in colour).

Over the past centuries, methods for categorising skin tone have evolved from verbal race-related descriptions (that
would potentially be seen as derogatory today) with skin colour categories as “white”, “yellow”, “black”, “brown”, and
“red” [138], and colour-matching-based methods such as the Von Luschan scale [195]. The Von Luschan scale [195] uses
36 coloured glass tiles for skin colour comparison and was commonly used to racially categorise the population until the
mid-20th century. Later, the Fitzpatrick Scale, established in 1975, became the most commonly used skin tone scale in
dermatology and medicine. Accordingly, a plethora of work on racial bias within face recognition adopts the Fitzpatrick
scale to measure and mitigate racial bias. However, Fitzpatrick’s skin tone measurement was initially designed based
on a subjective self-reporting or dermatology expert assessment which are often inconsistent and unreliable [69].
Subsequently, reflectance spectrophotometry and colourimetry methods [109] have now become preferential in medical
skin tone assessment over earlier methods due to increased accuracy and consistency. Whilst colourimeters quantify
the appearance of a tone on the skin, a spectrophotometer measures the spectral characteristics of the skin colour.
Such devices convert light reflectance data from the skin into colourimetric values for estimating chromophores in
the skin [134]. Subsequently, Individual Typology Angle (ITA) [18] has been proposed to classify human skin colour
using spectrophotometric measurements. More recently, a new extended skin colour scale, the Monk Skin Tone (MST)
scale, was proposed with ten different tones to use in computer vision applications [125], whilst the global cosmetics
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industry has traditionally used a separate set of scales [14]. The contrasting examples of these various skin tone scales
are illustrated in Fig. 2 where we can see a sharp contrast between categorisation in binary, Fitzpatrick, ITA or MST
skin tone groupings. However, skin tone scale grouping strategies alone carry various concerns for the mitigation of
racial bias within face recognition. We discuss these concerns under three divisions as follows:
Erroneous Skin Tone Annotation: Firstly, most skin tone scales are designed to measure skin tone on physical human
subjects in a medical or dermatological context. By contrast, face recognition systems instead used such annotations for
digitally captured face images that form part of the training and test data sets (see Section 4.1). Moreover, such face
image samples are commonly yielded from public domain sources (i.e. internet search engine-based image retrieval -
“in-the-wild”), and as such, this uncontrolled imagery exhibits enormous variation in both environmental and subject
conditions at the point of image capture. Similarly, [88] summarises such varying conditions that affect skin-colour
detection in the visible spectrum as scene illumination, camera characteristics, demographic characteristics (race, age,
gender), and other factors (make-up, wearing glass, hairstyle, head pose). Such varying factors make effective skin
tone annotation challenging and result in erroneous skin tone assignment for given subjects/samples. Furthermore,
human annotators often bring subjectivity and inconsistency to the resulting annotation labels far more so than other
image labelling tasks (c.f object/scene categorisation), whereas skin tone annotation ideally needs to be objective,
consistent, and repeatable [120]. Specifically, [93] highlights the uncertainty within the human-based categorisation
of skin tones from digital image and proposes the use of automated skin tone assignment as a means of potentially
achieving speed, scalability and consistency. However, the consistent skin tone annotation of a given subject under the
aforementioned image variations remains a pertinent issue with such automated solutions - one that in itself presents a
circular occurrence of bias within facial processing.
Narrow Representation of Scales: Secondly, the most commonly used skin tone scales used for accessing aspects of racial
bias are either too narrow in terms of their discretisation of the skin tone spectrum (e.g. Binary Skins Groups, Fig. 2) to
facilitate capture of the foundational reasons for bias or alternatively offer the less representative capability for specific
groups (e.g. Fitzpatrick Skin Types vs Monk Skin Tone Scale, Fig. 2) [69].
Skin Tone as a Single Dimension of Race: Thirdly, race is a multi-faceted concept conflating other phenotypic facial
traits such as lips, eyes, hair and face shape. Solely aligning racial grouping with skin tone only transforms the racial
bias problem into a single-faceted problem. Moreover, there is no clear evidence that skin tone alone is the primary
driver for disparate false match rates within face recognition performance [92]. Accordingly, several studies suggest
considering other race-related facial attributes, including lips, eye, and face shape when measuring racial bias in this
context [135, 136] in order to enable improved interpretation and derivation of bias factors. Accordingly, a consensus
is beginning to emerge on skin tone assignment and the appropriate quantification of skin tone within digital facial
images as used in face recognition research. Various studies [13, 61, 175] measure the racial bias in face recognition
using either binary skin groupings, the Fitzpatrick Skin Types [41], or ITA [18] as depicted in Figure 2.
3.2.1 Binary Skin Tone Scale. The first research study that is based on the usage of binary skin/race groupings
appeared in sociological research on race and race relations [139]. Focusing on white-black race relations in the United
States brings expensive socio-economic data and analysis around such binary groupings [50]. Accordingly, the adaption
of binary skin/racial groupings into computer vision tasks such as skin tone estimation, race classification and racial
bias of face analysis systems started from this simple categorisation viewpoint. In order to model skin colour on imagery,
several studies [76] proposed quantitative colour-space divisors (i.e. a dark-light pixel colour threshold) and simply
grouped skin colours into binary categories. In the racial bias context, many studies adopt such a darker-lighter skin tone
grouping by either narrowing the Fitzpatrick scale or dividing subject skin tone variance into binary categories. One of
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the seminal works in the field, Gender Shades [13], uses darker-lighter skin tone categories on the Pilot Parliament
dataset to demonstrate the algorithmic performance disparities in both gender classification and face recognition tasks.
Another example is the Fair Face Challenge study [175], which suggested researchers used a requantised (narrower)
set of Fitzpatrick skin tone categories as per Gender Shades [13]. Despite binary skin tone categories are being the
most straightforward grouping strategy in terms of automatic image annotation, in practice, it often obscures the
complexity of race concept and results in the mis-quantification of the racial bias problem across solutions where the
ultimate aim is unbiased performance across any skin tone variant. This is attributable to imaging effects such as skin
reflectance, which was shown by Cook [21] to have a very significant net effect on the average biometric performance
when considered across three different skin reflectance groupings within face recognition. As such, the use of simple
binary groupings is known to result in erroneous or conflicting group interpretations, whilst broader groupings such as
Fitzpatrick Skin Types claim to be more robust against this issue [218].

3.2.2 Fitzpatrick Skin Tone Scale. The dermatologist Thomas B. Fitzpatrick developed his Fitzpatrick Skin Tone
Scale to assess the propensity of the skin to burn during photo-therapy (i.e. the treatment of skin conditions using
intense ultra-violet light sources). Initially, four different types ranging from Type I (always burns, does not tan) to
Type IV (rarely burns, tans with ease) were released by [40]. Later, he extended his scale to include a broader range
of skin types (Type V and VI) [41] in order to offer a more granular representation across darker skin tones. The
widespread adoption of this work within medical research studies [146, 179] subsequently influenced early computer
vision research studies considering skin tone. Within the racial bias literature, the Gender Shades study [13] was the
first to gather attention around the use of the Fitzpatrick Skin Tone Scale within an automated facial image analysis
context. Subsequent studies then released varying datasets, all using the Fitzpatrick scale on this basis [61, 175, 218].
Even recently, the extensive Casual Conversations Dataset [61] containing 45K videos makes use of Fitzpatrick skin
tone labels for its racial grouping strategy. However, other researchers have raised concerns about using the Fitzpatrick
scale on image-based visual tasks [69]. Primarily, the Fitzpatrick scale was not initially designed for image-based skin
tone estimation; hence, its evaluation methodology relies on physical skin measurement. As a result, its use can cause
inconsistent skin tone assignment when applied on images [93]. Consequently, [69] observes how challenging it is to
robustly assign darker skin tone labels within the Fitzpatrick scale when faced with a significant imaging variance
and suggests avoiding the use of such skin tone assignments ascertained from images captured under uncontrolled or
unknown conditions.

3.2.3 Individual Typology Angle (ITA). Another skin tone scale based on a spectrophotometric evaluation of skin
colour is introduced by Chardon in 1991 [18]. This method utilises the reflection of skin light via spectrophotometers
that measure LaB colour values of the skin (L: Lightness. a: Red/Green Value. b: Blue/Yellow Value) to represent the
intensity of pigments such as carotene, haemoglobins, phaeomelanin, and eumelanin. Accordingly, Chardon proposes
six physiologically skin categories: {very light, light, intermediate, tan, brown, and dark} estimated via equation of ITA
ITA = arctan(I%m) X %, ITA projects skin colour volume into LaB colour space, and is used to categorise skin angle
via the associated ITA classification thresholds (see Fig. 2) [93]. As the ITA solely relies on precise and objective skin
tone measurements, it is considered more accurate than traditional visual assessments. Furthermore, it provides a better
representation of both the diversity and contributory factors associated with skin tone [85, 207]. On the other hand, the
utilisation of ITA scores and categories varies in the literature; Wang [202] constructs three large-scale face recognition
datasets containing four or eight different skin tone groupings based on ITA scores and releases the corresponding
skin tone labels for each face image with the datasets. The Diversity in Faces dataset [119] also adapts ITA (using
six categories) as they find ITA both a more practical and straightforward method for measuring facial skin tone.
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However, akin to the earlier aforementioned issues with skin tone estimation from digital face images, inconsistent and

uncontrolled imaging conditions again impact accurate and reliable ITA assessment [93, 207].

3.24 Monk Skin Tone (MST) Scale. Most recently, the work of Ellis Monk [125] produced a new 10-shade skin tone
scale designed to facilitate the construction of more representative datasets for the development of on-line consumer
services. Although the associated study discusses the aforementioned limitations of prior work on skin tone groupings
such as the Fitzpatrick Skin Tone Scale [41], it does not provide any detail for the practical application of the new
10-shade scale or any additional guidance via the provision of an exemplar dataset [125].

Overall, this section provides an overview of skin tone characterisation approaches and their associated quantification
methodologies spanning both digital imagery and physical dermatological examination. Accordingly, we summarise
the most common skin tone scales and discuss the challenges of applying such estimation approaches to the skin
tone labelling task within face recognition datasets. Furthermore, we outline all of the face recognition datasets in the
research literature that use varying skin tone scales in Table 1. As skin tone-based groupings become widely used for
racial bias evaluation studies, many benchmark datasets are unfortunately annotated with varying skin tone scales and
with varying levels of labelling robustness. Although utilising skin tone scales as a labelling concept for face recognition
datasets avoids otherwise using sensitive or ill-defined racial categories, the subjectivity of human-based skin tone
annotation, the inconsistency of facial image capture conditions and most pertinently the fact that the skin tone is only
one dimension of race all make it an imperfect mechanism for the quantification of racial bias within face recognition.
As a result, we suggest developing a broader strategy based on the use of high-accuracy, consistent and reliable
facial phenotypes that can instead analyse the true relationship between facial features and racial bias. Consequently,
we believe such approaches enable investigation across every facial trait and hence bring greater granularity to the

quantification of racial bias within face recognition whilst avoiding the use of problematic racial categorisation.
3.3 Facial Phenotypes

Human phenotypic variation refers to variation over the set of morphological and observable characteristics of an
individual, which is the result of both genetic and environmental factors [55]. Such variation is most observable on
faces as the face is identified as a “biological billboard of our identity” [19]. Subsequently, many studies [142, 172] focus
on the impact of human phenotype characteristics (such as morphological attributes) on race. For example, the Shades
of Race study [39] investigates the marginal effects of phenotypic characteristics, including skin tone, lips, nose, hair
and body type on racial categorisation. Moreover, Zhuang [223] considers 21 craniofacial measurements such as face
width, length, nose dimensions and eye corner locations in order to show statistically significant differences in facial
measurements between four racial grouping, which are {Caucasian, Hispanic, African, other (mainly Asian)). Therefore,
a race-related facial phenotypes can be considered to be specific to such facial characteristic attributes, which can then
also be correlated to race (“Phennotopically similar individuals are expected to be genetically more similar as well.”, [68]).
On the other hand, facial phenotypes such as skin tone or hair colour do not identify racial categories within themselves,
but they can combine with other attributes to identify a broader racial grouping [114]. Furthermore, this correlation
between such facial phenotypes and racial categories may not be readily visible or clearly delineated, which is in fact
highly desirable when we aim to curb the continued use of problematic historical racial categorisation approaches and
the disclosure of sensitive racial categories[163] (see Sec. 3.1).

Moreover, Maddox [110] explains racial appearance bias as a negative disposition toward phenotypic variations in
facial appearance. He also discusses how race-conscious social policies may fail to address racial bias in the societal
treatment and socioeconomic outcomes of disadvantaged groups [111]. For example, many studies show that individuals
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with more stereotypical racial appearance suffer from poorer socioeconomic outcomes than those with less stereotypical
appearance for their race [75, 111, 176]. Additionally, the sole use of race or skin tone categories to quantify racial bias
is limiting as they do not account for multi-racial individuals or those who exhibit less stereotypical racial traits. Within
this context, an improved understanding of the role of phenotype variation may complement existing solutions that

attempt to address racial bias [110].

Facial Coding Description

Schema 1 [167] Craniofacial Distances
Schema 2 [38] Craniofacial Areas
Schema 3 [155] Craniofacial Ratios
Schema 4 [107] Facial Symmetry
Schema 5 [147] Facial Regions Contrast

[

(

[

Schema 6 [18] ITA-based Skin Tones Phenotype Attribute Categories

Schema 7 [162] Age Prediction Skin Tone [41] Typel/2/3/4/5/6

Schema 8 [162] Gender Prediction Eyelid Type [98] Monolid / Other

Schema 9 [101] Subjective Age & Gender Annotation Nose Shape [223] Wide / Narrow

Schema 10 [84] Pose and Resolution Lip Shape Full / Small

(a) Summary of facial coding scheme analysis for the DiF dataset Hair Type [26] Straight / Wavy / Curly / Bald

[119]. Hair Colour [169] Red / Blonde / Brown / Black / Grey

(b) Facial phenotype attributes and their categorisation by [218].

A set of race-related facial phenotype attributes such as skin tone, nose shape, and lip shape are of primary interest
for quantifying and addressing racial bias in face recognition. Furthermore, the recent work of [187] show that non-
explicit racial attributes (accessories, hairstyles or facial anomalies) conflated with explicit racial attributes (skin tone,
nose shape or eye shape) strongly affect recognition performance. This study discusses the need to investigate each
attribute in order to achieve robust, fair and explainable face recognition solutions [187]. Such requirements directly
contradict the use of more traditional racial groupings as they remain a high-level, yet impoverished representation to
facilitate elaborate performance interpretation [6]. Subsequently, a plethora of work highlighting the shortcomings
of race and skin tone-based categorisation (discussed in Sec. 3.1 and 3.2) push the current direction of research into
phenotype-based categories [218]. One of the example studies, Diversity in Faces [119], provides a new large-scale facial
data that implements annotations across ten facial coding schemes in order to provide human-interpretable quantitative
measures of intrinsic facial features. The study comprises an extensive set of facial annotations spanning intrinsic
facial features to include craniofacial distances, areas and ratios, symmetry and contrast, skin tone (ITA), age, gender,
subjective annotations, head pose and image resolution that are listed in Table 2a. However, despite its potential to date
this Diversity in Faces is not publicly available due to increased sensitivity around subject privacy and consent issues (as
discussed in Sec. 3.1).

In parallel, [218] proposes a phenotype-based evaluation strategy for racial bias within face recognition. The study
categorises representative racial characteristics on the face and explores the impact of each characteristic phenotype
attribute: skin tone, eyelid type, nose shape, lips shape, hair colour and hair type. They annotate these attributes for
two different publicly available face datasets: VGGFace2 (test set) [15], and RFW [201] (as presented in Table 2b). The
study chooses to use Fitzpatrick Skin Types [41] for skin tones as it provides sufficient granularity, {Type 1, Type 2, Type
3, Type 4, Type 5, Type 6}, rather than binary skin-tone groupings, {lighter skin-tone, darker skin-tone}. For eye shape,
[218] consider epicanthal folds and eyelid difference as a more distinctive attribute for racial bias [98]. The nose is

categorised into two, wide and narrow, by examining the nasal breadth [223]. Hair texture is down-sampled from the
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eight categories of [26] into three main hair texture types: straight, wavy, curly, in addition to bald. Additionally, [218]
retains hair colour, as it is related to skin tone [156], with hair colour categories: red, grey, black, blonde, brown (see
Table 2b).

Compared to the prevalence of race or skin tone categories, phenotype-based groupings have received less attention
across the racial bias literature to date, as they involve both skilled attribute labelling for dataset construction and a
significantly more complex evaluation strategy due to the significant number of phenotype categories, and phenotype
combinations present. To these ends, within a phenotype-based grouping strategy the concept of race is not represented
by the difference across a single facial phenotype but rather a combination of varying phenotypic differences that
differentiate a given subject’s facial characteristics from another. As such, subsequently investigating the impact of such
differences on face recognition performance becomes both more complex and time-consuming despite the improved
comprehensiveness and quantification options that such a phenotype-based approach offers to the evaluation. On
the other hand, it is essential to note when used, the correlation of phenotypical categories with more traditional (i.e.
historically problematic, see Sec. 3.1) racial categories should be avoided in order to prevent the naturalisation (or
popularisation) of such “headline style” summation of racial bias evaluation results.

In conclusion, this section presents an alternative methodology for addressing racial bias (group fairness) within face
recognition tasks. Whilst the face naturally conveys identity-related biometric information, it also inherently reflects a
significant genetic and geographic relationship with race but these secondary relationships with race are not the primary
concern for face recognition tasks. Instead, the group fairness objective within face recognition tasks is to ultimately
ensure that it equity of performance across all subjects, regardless of subject racial grouping or facial phenotype
characteristics. To these ends, it is necessary to avoid the inherited problem of racial and skin tone category usage
within face recognition datasets and processing pipelines (Sec 3.1 & Sec 3.2), and instead adopt a more general option
that facilitates quantifiable performance measurement without any explicit reference to such problematic concepts.
By contrast, the use of facial phenotypes offers a viable alternative that, whilst not fully independent of earlier racial
categorisation, offers significantly more granular insight within the quantification of racial bias spanning both skin
tone and numerous other facial characteristics.

Overall, within this section we explore the race, skin tone and facial phenotype grouping strategies with regard to the
group fairness criteria for racial bias within face recognition. We critically review current grouping strategies in face
recognition datasets spanning race, skin tone and facial phenotypes. Whilst race remains a controversial concept that
carries historical bias, ambiguity, ill-definition and disparity, a plethora of research identifies the possible risks and related
problems of racial subject categorisation as a primary means for bias quantification within face recognition systems
(Sec. 3.1). Alternatively, whilst skin colour has been utilised to both quantify and address racial bias, it remains only one
trait of what is a comprehensive and multi-faceted race concept (Sec. 3.2). A broader approach, using facial phenotype
as race-related facial attributes, provides a more objective and granular evaluation strategy for racial bias within face
recognition (Sec. 3.3). However, whilst the overall aim is to achieve more accurate and fairer face recognition system
performance across increasingly more diverse populations, we need to still ensure the race and related interpretations
are not reduced to only facial phenotypes by ignoring the broader context of cultural, historical and social factors [58].
Moreover, the assessment of any grouping strategy on facial imagery creates another area of concern attributable to
the often uncontrolled and inconsistent imaging conditions of facial capture that themselves lead to erroneous racial
grouping annotation. As we move forward, we must address such risks, together with broader ethical considerations,

within the wider development of face recognition processing pipelines.
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4 RACIAL BIAS WITHIN FACE RECOGNITION

Contemporary automated facial recognition encompasses a pipeline of multiple stage processing; image acquisition (for
both dataset collation and deployment), face localisation, face representation, face verification and identification (final
decision-making) 3, 90].

Image Acquisition covers image capture from a wide range of devices such as smartphone cameras, webcams,
high-end DSLR cameras and CCTV-style video surveillance cameras varying imaging conditions that span image
resolution and compression, facial occlusion, facial pose, illumination, subject use of make-up/glasses/jewellery and facial
expression. Furthermore it includes all stages of initial image pre-processing and formulation such as the demosaicing
conversion to per-pixel RGB colour (from the Bayer pattern of the camera CMOS/CCD device), automatic colour and
contrast correction (including processes such as automatic exposure control, white balance, automatic focus, brightness
correction), pixel quantisation to a given bit-depth (e.g. RGB 8-bit colour) and compression. For data set collation,
acquisition is complemented by a data curation such that differing imagery is sampled to select a subset of representative
images that are ideally diverse and challenging enough to capture the full range of faces and imaging conditions that a
face recognition system may encounter in real-world ( “in-the-wild”) deployment. These are then used to form the train
Dy¢rain and test D;es; datasets for system training and evaluation (as defined in Sec. 2).

Face Localisation consists of two sequential steps to process real-world, in-the-wild images that are captured under
uncontrolled conditions and may hence exhibit variation across one or more of the aforementioned imaging conditions
(typically: face off centre, rotated and of varying scale relative to the camera). The first step, face detection aims to
identify a set of facial landmark locations (e.g. eye, mouth and nose endpoints, face boundaries in width and height)
whilst the subsequent step of face alignment aims to correct for positional, rotational and scale variations to obtain a
canonical facial image representation. This facial alignment step facilitates the use of the spatial correlation of facial
features across both varying subjects and dataset image samples within the subsequent stage of face representation.
Face Representation involves optimisation the mapping function f* that projects a given face image sample into a
feature embedding space, where the feature embedding vectors are both representative and distinctive for each subject.
In order to select the optimal mapping function, f*, a training process is performed via a training dataset, Dsyqin, with
reference to the minimisation of a loss function £ that incites the use of a distinctive facial feature mapping (as defined
in Sec. 2). Consequently, f* provides mapping for both the curated training dataset, D¢4in, and unseen images in both
test dataset, Dyes, and any subsequent deployment.

Face Verification and Identification encompass the two most common decision-making (i.e. ‘end goal”) tasks in
face recognition. Face verification refers to a one-to-one matching operation to determine whether two facial images
belong to the same individual (known subject case), and identification refers to a one-to-many matching operation to
conversely identify a given individual against a set of reference images (unknown subject case). The optimal selection
of mapping function, f*, via the training process on training dataset, Dsqin, directly impacts the effectiveness of the
feature embedding vectors such that the presence of both improved representational distinctiveness between differing
subjects and also the robust representation of identical subjects under varying imaging conditions hence leads to
improved face verification and identification performance.

With reference to the formal face recognition problem space definitions of Sec. 2, this four stage conceptual face
recognition processing pipeline is illustrated in Figure 3 where we additionally highlight the potential sources of bias at
each stage. These will be further explored, with reference to related work in the literature on racial bias within face

recognition, in the remainder of this section.
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Fig. 3. Overview of the face recognition processing pipeline and bias attribution.

4.1 Image Acquisition

Image acquisition, spanning the imaging aspects of both initial dataset collation and final real-world deployment. We
subdivide this stage into three categories, including facial imaging, dataset curation, and dataset bias mitigation.

4.1.1 Facial Imaging. Biometric data refers to distinctive physical characteristics of the human face, fingerprints,
voice, iris, and body. Such biometrics have been used for identification systems (e.g. fingerprint matching) for several
decades [89]. Commensurately, facial imagery has become a key part of modern biometric tasks due to the proliferation
of imaging technologies, which significantly improve facial image quality, accessibility, and quantity. However, the
increased prevalence of facial imagery does not necessarily result in improved biometric outcomes across all populations.
In addition, collating facial images and annotating them with subject identity or racial category labels at scale have
ignited complex discussions around policy and legality due to economic, privacy and ethical implications [73].

We have previously explored the historical bias and potential risks associated with racial categorisation and the
annotation of facial images (Sec. 3). Building upon this, here we focus on the privacy risks and ethical concerns
surrounding using facial images as a form of biometric data. Paying attention to such ethical and political considerations
on the collation of biometric face imagery becomes particularly important when the presence of racial bias therein
directly or indirectly impacts societal fairness. Accordingly, [73] presents a socio-political analysis of face recognition and
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highlights the distinct challenges and concerns associated with its development and evaluation. The study categorises
such concerns into four sections: privacy, fairness, freedom and autonomy, and security. Even though the intention
of automatic face recognition is not problematic, in practice, it may enable morally unacceptable use cases of such
technology. Examining the issue of subject consent, both within dataset collation and in an eventual use-case, is
fundamental to that preserving privacy [73]. For example, government use of such technology for racial profiling and
racially-targeted restriction in some jurisdictions has been widely reported [51, 204] and investigated [24, 192]. In parallel
to [73], Prabhu [12] discusses the fundamentals of informed consent, privacy, or agency of the individual in large-scale
datasets and shows the fallacy of the commonplace Creative Commons licensing model [83] as a consent-included green
flag for large-scale dataset curation. They suggest the use of dataset audit cards as an approach to publishing the original
research goals, curation procedures, known shortcomings and caveats alongside dataset dissemination [12]. Overall, it
must be noted that any erosion of privacy, moral, ethical, or political values will most likely disproportionately impact
minority groups, such as those defined along racial lines.

From a technical standpoint, the ISO/IEC 19794-5 [44] standard and ICAO 9303 guidelines [126] propose both image-
based (i.e. illumination, occlusion) and subject-based (i.e. pose, expression, accessories) image quality requirements
to ensure facial image quality. Accordingly, facial images should be stored using lossy image compression standards
such as JPEG [196] or JPEG2000 [177]; and observable in terms of gender, eye colour, hair colour, expression, properties
(i.e. glasses), head pose (yaw, pitch, and roll), and facial landmark positions. However, commonplace “in-the-wild” face
datasets, that are readily used in face recognition system performance evaluation [15, 57], do not conform to such
requirements. Subsequently, Vangara [193] compares ICAO compliance between African and Caucasian groups in
MORPH dataset [158] and found that slightly more than 48% of the African-American images were rated as ICAO
compliant, while slightly more than 57% of Caucasian images were rated as ICAO compliant. The most prominent
factor contributing to the variation in image quality between the groups is the difference in brightness; the distribution
of which differs significantly between the African-American and Caucasian groups. The study argues that the lack of
illumination correction with regard to skin tone during image acquisition could be the attributable reason as to why
the African-American image group contains a larger number of poorly illuminated images. In parallel, [21] points out
the significant impact of skin reflectance across demographic subgroup performance with regard to face recognition
and mentions that improved imaging acquisition systems (superior camera specification, lower motion blur, higher
image contrast and stricter pose control) may significantly reduce or eliminate performance differences between such
subgroups.

Furthermore, prior literature shows that non-ideal imaging conditions, including image blur, noise, distortion,
occlusion and lossy compression, all have a considerable impact on the performance of face recognition [78, 112, 148, 217].
Recently, [112] examined distorted test imagery impact on gender and skin tone categories (light vs. dark skin tone)
using pre-trained DCNN-based face recognition models. As a result, the study [112] finds that the regions of interest
used in the models shift towards less distinctive regions in the presence of distortions, resulting in unequal performance
degradation among subgroups. Consequently, Yucer [217] finds that using lossy compressed facial test imagery decreases
performance more significantly on specific phenotypes, including dark skin tone, wide nose, curly hair, and monolid
eye when considered relative to a broader set of 21 phenotypic features. However, whilst the use of compressed imagery
during training does make the resulting models more resilient and limits the performance degradation encountered,
lower performance amongst these specific racially-aligned subgroups remains. Additionally, Yucer [217] find that

removing chroma subsampling, which is itself a key lossy component of contemporary image compression schemes
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FMR, improves face recognition performance for the specific phenotype categories which are otherwise more adversely
affected by the use of lossy compression.

Consequently, we refer to these performance disparity effects within face recognition caused by variable imaging
conditions as imaging bias as illustrated in Figure 3. The limited literature on imaging bias within face recognition to
date makes it harder to identify the presence of such bias and align it to common underlying factors and conditions. On
the other hand, state-of-the-art techniques for robust face recognition such as [87] may help to mitigate such imaging
bias effects, via the use of a rich set of input variations aligned to phenotypic characteristics, such as skin colour or

other common facial phenotype variations [161].

4.1.2 Dataset Curation. The following stage of image acquisition pertains to sampling the captured and processed
facial images in order to create representative datasets for face recognition evaluation. Nevertheless, such a sampling
process is often affected by sampling bias (also similar to selection, representation, or population bias) [20], which
significantly impacts racial bias in face recognition. Sampling bias, referring to non-random selection over a population
leading to a set of samples that do not fairly represent that population statistically, commonly occurs when facial
images are curated from public online image resources, where the available population image distribution may not be
representative of the actual societal population that the face recognition system will encounter in deployment. This is
attributable to the fact that technology access is not globally or socio-economically homogeneous resulting in a skewed
online image presence for a subset of the populous. Secondly, the most common approach for face recognition dataset
collation is via targeted per-subject search for named individuals (commonly celebrities from the FreeBase listing) using
public online image resources [57] (see Table 1, which then results in a dataset of millions of subjects who have/had
public attention.

Even more concerning is that the subsampling decision from the FreeBase celebrity list is most often based on
ranking all the subjects by their frequency of occurrence in the media, meaning that celebrities with greater global
media coverage are more likely to be included in the dataset. This results in a biased convergence to a specific celebrity
group, which is dominated by Western, European and American subjects. Moreover, this impact of sampling bias can
be subsequently amplified during the later stage of feature representation learning due to an increased imbalance of
phenotypic features which are themselves aligned to the dominant racial or demographic groupings present from the
original dataset curation [65]. For instance, a DCNN-based face recognition model utilising certain features, such as
hair colour, to identify face subjects results in a bias towards a particular hairstyle or hair colour, causing less accurate
performance on subjects with different hairstyles, hair colours, or accessories.

Consequently, contemporary face recognition datasets are largely curated to provide large-scale coverage of differing
face subjects images under a rich variation of “in the wild” imaging conditions, with little consideration of the racially
differentiating phenotypes of the underlying subject population. The two most widely used training datasets for face
recognition - MS-Celeb-1M [57] and VGGFace2 [15] - contain 10 million and 3.3 million face images respectively, and are
curated from the FreeBase celebrity list as shown in Table 1. Similarly, the most common benchmark test sets for face
recognition - LFW (Labeled Faces in the Wild) [70], CASIA-WebFace [213], and MegaFace [80] - are curated using online
news (Yahoo), FreeBase celebrity and public online photo sharing resources (Flickr), respectively. Despite efforts to
overcome sampling bias within face recognition datasets, such as the release of new datasets like the CASIA-Face-Africa
[131], a large-scale African face image database or the BUPT-Balanced dataset [199], a large-scale racially balanced
training set, the most prominent face recognition datasets used for face recognition evaluation still suffer from sampling
bias with regard racial phenotypical population coverage.
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4.1.3 Dataset Bias Mitigation. The prevailing assumption in machine learning is that the training set D4, and test
set Dyes; are identically and independently distributed. However, this assumption is not valid for face recognition, and
hence results in an out-of-distribution (OOD) problem. Accordingly, [190] relates the OOD problem to “dataset bias”.
Although face recognition datasets should be representative of the real-world population in order to enable real-world
face recognition model deployment, current state-of-the-art face recognition approaches remain closed-set methods,
reflecting the world in a significantly biased way [190]. Subsequently, [190] groups dataset bias into four different types
of bias:- 1) selection bias is similar to our aforementioned concept of sampling bias; 2) capture bias occurs when the
dataset imagery contains targets (faces) that have minimal spatial and illumination variation and can be related with
pose bias within face recognition context, as there is still poor pose variance (i.e. £30° horizontal, £15° vertical) within
facial datasets; 3) category or label bias poses the ill-definition or mislabelling of subject identities and racial categories;
4) negative set bias defines bias against target appearances that are not represented in the data set (i.e. “the rest of the
world” appearance) leading to recognition models that are overconfident and misrepresent performance by considering
only a skewed subset of possible real-world data samples (i.e. the test dataset, Dyesy).

In order to mitigate dataset bias, many studies [77, 165] propose novel sampling methods by either down-sampling
or upsampling (i.e. augmenting) the datasets in the early stage of the face recognition processing pipeline. With the
latest advancements in Generative Adversarial Networks (GAN) [79, 183, 208], high-quality face image generation
has become available as a potential tool to overcome the adverse effects of dataset distribution bias on subsequent
real-world generalisation performance. For example, [91] addresses dataset bias within face recognition via the use of
synthetic dataset augmentation. The study shows that deeper DCNN architectures generalise better to unseen facial
poses, then trained using synthetically augmented datasets, and hence the impact of dataset bias can be reduced by
75%. Another work [216] aims to automatically construct a synthesised dataset by transforming facial images across
varying racial domains while preserving identity-related features, such that racially dependent features subsequently
become irrelevant within the determination of subject identity. Similar to [216], [46] transforms the facial images of
one racial category to corresponding images of other racial categories in order to facilitate a more balanced racial
category distribution via data augmentation. Moreover, [129] proposes a new data augmentation strategy that imposes
the fairness constraint to improve the generalisability of fair classifiers. In particular, they highlight that fairness can be
achieved by augmenting interpolated samples between the racial groups during training. However, such generative
models themselves produce samples from the underlying training set distribution upon which they are trained, meaning
that they can also be impacted by dataset bias. Accordingly, [183] conduct an empirical study on the fairness of
state-of-the-art pre-trained face synthesis GAN models. They show that a strong correlation between the imbalance
in the original GAN training data and that of the resultant distribution of the GAN output images meaning that any
dataset bias present is only amplified in cases where GAN are used as a potential data augmentation strategy for face
recognition.

Overall, this section outlines various sources of bias that can affect the accuracy and fairness of face recognition
systems, such as imagery bias, sampling bias, pose (capture) bias, category and label bias, and negative set bias as illustrated

in Figure 3 against the corresponding stages of the face recognition pipeline.

4.2 Face Localisation

The face localisation stage of the face recognition pipeline consists of face detection and alignment, thereby enabling
the spatially correlated facial features for the subsequent stage of face representation. Prior work has primarily focused

on hand-crafted facial feature extraction and classification for face detection. In a notable milestone, Viola and Jones
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proposed a real-time cascade of simple Haar-like feature classifiers at locally learned image locations [194]. Recently,
face detection methods have shifted towards DCNN-based architectures and are categorised into five sub-genres by
[121]: Cascade-CNN-based, R-CNN and Faster-RCNN-based, Single Shot Detection, Feature Pyramid Network-based,
and other variants. Subsequently, the two most prominent face detectors, Cascade-CNN-based MTCNN [219] and
Feature Pyramid Network-based RetinaFace [27], and the face detection benchmark dataset, Wider Face [211], have
become widely adopted for face recognition.

The MTCNN face detector is based on a cascading multi-tasking structure [219] with three-stage lightweight DCNN
where the Proposal Network (P-Net) generates a set of face regions, or “proposals”, at different scales, the Refinement
Network (R-Net) subsequently refines such regions to better localise the faces and finally the Output Network (O-Net)
performs fine-grained face feature extraction and classification. Subsequently, [27] proposes another multi-level face
localisation approach, RetinaFace, encompassing a single-shot detection network, a multi-task branch network that
predicts both facial landmarks and attributes, and a bounding box regression network refines the position and size
of the detected faces from the facial landmarks and attributes. Both approaches achieve outstanding performance on
several benchmarks, including Wider Face [211], which comprises 32,203 images and 393,703 bounding boxes under
varying imaging conditions.

Despite the widespread usage of face detectors within the face recognition processing pipeline, only a few studies
have investigated racial bias within face detection. Menezes [117], analysis the performances of five state-of-the-art
face detectors; DSFD [100], Pyramid Box [184], LFD [64], RetinaFace [27], MTCNN [219] on demographic attributes
including age, skin tone, gender. The study randomly samples the Casual Conversation Video Dataset [61] and obtains
550.000 frames for training. The Casual Conversation Video Dataset adapts the Fitzpatrick scale and contains an
imbalanced skin tone category distribution with the percentages of Skin Type 1: 4.0%, Type 2: 28.3%, Type 3: 22.9%,
Type 4: 8.4%, Type 5: 15.8%, Type 6: 20.7%. Although Type 1 skin tone has the lowest representation in the training
data, LFD, DSFD, and it was found that empirically RetinaFace detectors are more likely to fail to detect faces with skin
type 4. Moreover, the study shows that the highest divergence of FNMR occurs within skin tone (being worse than age
and gender groupings) and highlights that three out of five detectors evaluated have a higher likelihood of incorrect
detection (FNMR) for darker skin tones (Type 5 and 6).

Another study [32] investigates the robustness of three commercial online face detection capable systems: Amazon
Rekognition, Microsoft Azure, and Google Cloud Platform and evaluates the impact of 15 types of natural noise
corruption on the face detection performance of different demographic groups. Similarly to the case of face recognition,
they conclude that corrupted data is more likely to cause face detection errors in specific demographic groups. For
example, those with darker skin types, older adults, and those with masculine presentation all had higher errors ranging
from 20-60%. Subsequently, they compare the performance and robustness of non-commercial approaches (TinaFace
[222], YOLO5Face [149], MogFace [108]) with commercial ones [33]. They show that commercial approaches are always
as biased or even more biased than non-commercial models, despite relatively larger development investment and
supposed dedication to industry-level fairness commitments. More recently, [124] proposes the Fair Face Localisation
with Attributes (F2LA) dataset with demographic annotations to detect disparate performance over such demographic
groups. The study finds that confounding factors, including facial orientation, illumination, and resolution, can cause
such disparate performance among demographic groups. Therefore it is important to analyse the performance of such
detection models holistically and not draw conclusions solely based on demographic annotations.

Despite ample evidence indicating the existence of racially disparate performance within face detection, there needs

to be further investigation targeting racial bias exploration within face detection. Furthermore, similarly to the image
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acquisition stage of face recognition (Section 4.1), the presence of imaging, sampling and dataset bias within these face
detection benchmark datasets again translates through the subsequent stages of face recognition resulting in skewed

overall face recognition pipeline performance.
4.3 Face Representation

Facial feature representation has been a prominent area of computer vision research for many decades and several
milestones have substantially improved the performance of face recognition today [200]. The first well-known method
for estimating the probability of distribution over high-dimensional vector space of face images, Eigenface, was
introduced in the early 1990s [191]. Following that, Gabor [104] and LBP [2] provide robust performance by using local
filtering to obtain invariant facial features. However, they could not create handcrafted features that were distinctive
and compact enough to fully scale to the diversity of large-scale benchmark datasets (and hence the global populous).
Although numerous learning-based local descriptors have been developed to tackle various aspects of face recognition
[16, 99], higher similarity for intra-class samples and diversity for inter-class samples within face datasets remain
challenging. Subsequently, the availability of large-scale dataset resources (2007+) and the proliferation of DCNN (2012+)
have now enabled contemporary face recognition architectures to achieve outstanding verification and identification
accuracy. Accordingly, this stage involves a mapping operation from face images to face representation vectors which

can be performed by a DCNN-based backbone architecture and a loss function, as discussed in Sec.2.

4.3.1 Backbone Architectures. DCNN are multi-layer processing blocks, including convolutional, pooling and fully
connected layers. As a central component of DCNN, the convolutional layers extract features from the output of the
previous layer, starting from the face image input. Each layer ¢ consists of K kernels with weights W = Wy, W, ..., Wi
and added bias filters B = by, ..., bx. Subsequently, each layer applies an element-wise nonlinear transform (i.e. o €
{RELU, tanh, Softmax, . ..} functions) to generate multiple feature map representations and passes the result to the

next layer x! = o(Wj - x*71

+ bi). Moreover, at the end of each layer, a pooling function down-samples the feature
maps by taking the maximum or average value of adjacent pixels (patch). Similarly, a fully connected layer applies a
linear transformation to the input vector through a weights matrix.

A majority of face recognition methods adopt state-of-the-art DCNN as their backbone architectures, such as the VGG-
Net [174], the ResNet [62], and the Inception-ResNet [170]. VGG-Net [174] uses a smaller fixed number of convolutional
filters compared to the AlexNet [94] to decrease the total number of trained parameters. On the other hand, ResNet
[62] uses skip connections between two consequent layers to avoid the vanishing gradient problem (unstable training
of deep networks due to ever decreasing gradients relative to the input). Furthermore, InceptionNet [170] consists of
multiple kernels in one layer to grasp salient features at different levels, including global and distributed features.
4.3.2 Baseline Loss Functions. Contemporary, face recognition literature primarily focuses on designing novel
DCNN loss functions [15, 28, 106, 198] to enhance the distinctiveness and separability of features. Mostly, such loss
functions [28, 106, 198] operate on the feature embedding vectors of the last fully connected layer of the selected backbone
DCNN architecture [62]. Previously, we discussed Softmax loss L, f4max (Eqn. 1) which is based on maximising the
posterior probability of the ground-truth subject class in order to separate features from different classes. However, a
high number of subject identities, n, within training sets increases the size of the linear transformation matrix in the
last layer W € Réxn leading to high complexity. Moreover, the learned feature embedding vectors of Softmax loss are
not distinctive enough to address the open-set face recognition problem [63]. To address these problems, CosFace [198]
enforces a larger cosine margin m between the features of different classes and suggests that both norm of the vectors

contribute to the posterior probability.
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where N is the number of training samples, x; is the ith feature vector corresponding to the ground-truth class of y;, the
W; is the weight matrix of the jth class, and 0; is the angle between W; and z;. Additionally, the bias term is removed
b =0, and the weights W and embeddings z are normalised using L normalisation.

An alternative loss function, ArcFace [28] differs from CosFace [198] based on its distinct margin m. ArcFace has a
more accurate geodesic distance because it has a constant linear, angular margin m penalty throughout the interval,
while CosFace has a nonlinear angular margin. Similarly, it normalises the weights and embeddings and fixes the bias
term to zero. The ArcFace loss function is formalised as follows:
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where all definitions are as per Eqn. 4. Overall the key Softmax, CosFace [198], and ArcFace [28] differences lie in their
use of deep face representation, weight vectors and their margin penalty in the last layer. Consequently, the accuracy of
the most popular LFW benchmark has increased from ~ 60% (Eigenfaces , [191] (1991)) to above ~ 99% (ArcFace [28]
(2019)) further encouraging the broader adaption of face recognition into real-world applications.

The central concept of statistical learning is based on the requirement to choose one generalisation over another in
order to be able to classify instances non-arbitrarily beyond those in the training set [123]. Moreover, [123] defines
unbiased generalisation as one which makes no prior assumptions about which classes of instances are most likely
to occur and bases all its decisions solely on data observation. However, any face recognition system already has
dataset bias, meaning that any type of generalisation or observation based on such datasets results in bias. On the other
hand, [65] identify two more different type of bias occurs in this face representation stage. The study, first, mentions
DCNN hyper-parameter bias due to the ubiquitous number of hyper-parameters which are spanning from the choices
of number of hidden nodes and layers to type of activation functions made by the user [11]. The strong influence of
such chosen parameters on DCNN and their performance makes hyper-parameter bias relevant to racial bias as such in
the case of hyper-parameter bias, certain models may perform better on datasets that are biased towards certain groups
leading to potentially perpetuating racial bias. Hyper-parameter bias can also be related with aggregation bias (causing
selected parameters forming the mapping function is not optimal for specific groups) defined by [182]. Another type
of bias, denoted as uncertainty bias, is based on the probability values that are often computed together with each
produced DCNN architecture. The probability represents uncertainty, and typically has to be above a set threshold
for face detection, verification or identification to be performed. For example, a DCNN-based face detection model
reports detection predictions via probability values indicating detection confidence. However, this manual selection
of the probability threshold can itself create a bias when the threshold is set too conservatively such that faces from
underrepresented groups are be more likely to not be detected due to higher uncertainty in the model. Up to this point,
we have described the general processes within the face representation stage of a face recognition architecture (Fig. 3)
and the various forms of bias that may exacerbate racial bias within them. Finally, we complete our discussion of facial
representation by exploring current racial bias mitigation strategies and categorise them into three sub-genres:- mutual
information mitigation (Sec. 4.3.3), loss function based mitigation (Sec. 4.3.4), and domain adaptation based mitigation

(Sec. 4.3.5).
4.3.3 Mutual Information Mitigation. The high mutual information between facial identity and underlying racial

features within face images generally transfer into the learned feature embedding of contemporary DCNN based
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Methods Backbone Dataset African Asian Caucasian Indian Avg STD
Imbalanced Training Sets
ArcFace [28] ResNet-34  MegaFace 85.13 86.27 94.78 90.48  89.17 4.39
IMAN-A [201] ResNet-34 MegaFace 91.42 91.15 94.78 94.15 92.88 1.86
ArcFace [28] ResNet-34 VGGFace2 87.30 85.47 93.50 87.55 88.46 3.49
ARL+C [150] ResNet-34 ~ VGGFace2 88.57 87.65 93.48 89.35 89.76  2.57
ArcFace [28] ResNet-50 BUPT-Global 96.28 96.03 98.22 96.77 96.83 0.98
MV-Softmax [203] ResNet-50 BUPT-Global 95.83 95.66 99.33 95.83 96.66 1.78
DebFace-ID [48] ResNet-50  BUPT-Global 93.67 94.33 95.95 9478  94.68 0.96
CurricularFace [71]  ResNet-50 BUPT-Global 94.93 95.18 97.75 96.07 95.98 1.28
RamFace [212] ResNet-50 BUPT-Global 96.73 96.17 98.28 96.77 96.99 0.90
ArcFace [28] ResNet-101  VGGFace2 89.45 87.61 94.71 91.21  90.75 3.02
VGGF2 Races [216] ResNet-101 VGGFace2 90.10 87.73 93.72 90.50 90.51 2.46
ArcFace [28] ResNet-101 BUPT-Global 96.77 96.52 98.55 97.48 9733 091
CurricularFace [71] ResNet-101 BUPT-Global 96.30 95.98 97.83 96.70  96.70  0.81
RamFace [212] ResNet-101 BUPT-Global 97.40 96.93 98.65 97.57 97.64 0.73
Balanced Training Sets
Softmax ResNet-34  BUPT-Balanced 91.42 91.23 94.18 92.82 9241 138
CosFace [198] ResNet-34  BUPT-Balanced 92.98 92.98 95.12 93.93 9375 1.02
ArcFace [28] ResNet-34  BUPT-Balanced 93.98 93.72 96.18 94.67 94.64 1.10
RL-RBN [199] ResNet-34 BUPT-Balanced 95.00 94.82 96.27 94.68 95.19 0.73
RamFace [212] ResNet-34  BUPT-Balanced  95.28 94.83 97.15 96.08  95.84 1.02
GAC-ArcFace [49] ResNet-34 ~ BUPT-Balanced 94.12 94.10 96.02 9422  94.62 094
Fairness FR [209] ResNet-34 ~ BUPT-Balanced 95.95 95.17 96.78 96.38  96.07 0.69
ArcFace [28] ResNet-50  BUPT-Balanced 96.00 95.45 97.57 96.42  96.36  0.90
CurricularFace [71] ResNet-50  BUPT-Balanced 94.90 94.23 96.38 95.50  95.25 0.91
RamFace [212] ResNet-50  BUPT-Balanced 96.25 95.50 97.40 96.58  96.43 0.79
GAC [49] ResNet-50  BUPT-Balanced  94.65 94.93 96.23 95.12  95.23  0.69
Sensitive Loss [171] ResNet-50  BUPT-Balanced 95.82 96.50 97.23 96.95  96.63 0.62
Fairness FR [209] ResNet-50  BUPT-Balanced 96.47 95.75 97.08 96.77  96.52 0.57

Table 3. Performance of state-of-the-art face verification methods on the RFW dataset [201], with comparison based on sample
standard deviation.

techniques and hence results in an unsatisfied fairness through unawareness criteria (i.e. the constraint of not retaining
information related to s when estimating y as the the formalised problem statement of Sec. 2). A myriad of studies
[22, 29, 48, 82, 127, 152, 159, 185] attempt to decrease this mutual information in order to debias the performance of
face recognition approaches. For example, [185] provides a general framework with a regularisation strategy such that
a model trained on a dataset that is known to be bias a priori can be trained in to avoid the selection of biased features
therein. The information bottleneck in the model distills the biased features (such as texture, background) and correctly
learns to focus on relevant features (such as shape, e.g. within biased MNIST [185]). Moreover, [22] proposes a Flexibly
Fair VAE (FFVAE) algorithm concerning demographic parity among multiple sensitive attributes. FFVAE learns the
encoder distribution from input and sensitive attributes and disentangles prior structure in latent space by enforcing
low mutual information. On the other hand, adversarial-debiasing approaches become applicable in disentangling
race-related information on faces within generative generator-discriminator models such as GAN [29, 48]. For example,
the Protected Attribute Suppression System (PASS) [29] discourages the generator from encoding information related
with sensitive attributes via discriminator. Furthermore, [82] uses a feature mapping network to unlearn biased sensitive
attributes in order to disentangle the mutual information between identity and sensitive characteristics. Similarly,
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[127] suppress the presence of sensitive information to enforce the learning of privacy-preserving embeddings (for any
sensitive feature we want to protect) and hence equality across such sensitive attributes in any subsequent decision-
making algorithms based on these embeddings. Their results show that it is possible to reduce the performance of
gender and ethnicity detection by 60-80% on a given facial image embedding, while face verification performance over
the same embedding is only impacted by 5% .

Other recent works on mitigating racial bias introduce a knowledge distillation module for face recognition [30, 74,
103]. Accordingly, [30] observes that the face recognition networks attend to different spatial regions in faces according
to the category of an attribute label (e.g. light skin vs. dark skin tone). Firstly, in order to eliminate differences in the
representations, they propose a teacher-student network that enforces to student network to generate teacher-like
representations. Whilst the teacher network is trained on light skin tone images, the student network is trained on dark
skin tone images. However, forcing student networks to attend only teacher networks spatial regions does not give fairer
results than attending both spatial regions. As a result, they achieve less biased results in face verification and perform
better than state-of-the-art adversarial debiasing approaches. Another study, [103] applies knowledge distillation from
teacher to student to avoid dataset bias which is identified as an imbalance distribution between either class labels or
between easy and hard dataset samples. The imbalance between samples decreases the uniformity of the data, which
subsequently makes the data distribution far from uniform. As image datasets are usually collected ad-hoc without any
inherent uniformity consideration, they propose two different sampling methods, extrinsic sampling (before training)
and intrinsic sampling (during training), to ensure the success of knowledge distillation. On the other hand, some
experiments empirically demonstrate that the use of race related facial feature increases overall face classification

performance and improves extracted feature discriminability [164].

4.3.4 Loss Function Based Mitigation. Another area of study [150, 202, 212] focuses on setting adaptive margins to
tackle racial bias. For previous face recognition baselines [28, 198], the margin between classes was set at a fixed value
to maximise accuracy. However, the training distributions of demographic groups and their feature embedding vectors
inherently differ from each other meaning that a global margin is essentially a best fit to the largest demographic group
in the training dataset. While such a constant global margin may result better performance across one demographic,
that same margin may conversely cause inferior performance for another.

Recently, [212] proposes Race Adaptive Margin (RAM) Loss using a new compact margin instead of using an ArcFace-
style fixed margin, m (Eqn. 5), approach. Consequently, they define intra-subject compactness yf ,  for each racial
group, {African, Asian, Indian, Caucasian}, in the RFW dataset in order to assign the margin to be an identity-related
parameter. As such, the final RAM Loss (denoted ramface loss, [212]) is;
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where By is the number of subject identities in the race group, My, is the number of the samples with subject class y;, Zr
is the race classification accuracy as the weight indicator in the adaptive margin loss, and f is the scaling parameter to
constrain the upper bound of m,.. As per ArcFace loss, Eqn. 5, z; is the feature representation of image x;. Consequently,
they benefit from racially-aware supervision to increase the distinctiveness of the learned feature representations and
simultaneously decrease the potential for racial bias within that same representation. RamFace Loss achieves both high

accuracy on face verification and appears to successfully mitigate racial bias (see Tab. 3).
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Another study, [150] proposes an Asymmetric Rejection Loss, which aims to reduce the racial bias within trained face
recognition models by taking advantage of unlabelled images of under-represented groups. The study utilise unlabelled
images collected from online sources where the number of subject identities present is always much greater than
the average images per subject. Subsequently, they consider each unlabelled image as a separate class and design an
asymmetric learning procedure for those labelled and unlabelled images. Their proposed Asymmetric Rejection Loss
(denoted arl) is defined as:

Zi,j cos(zi, Zj)2

Log=Lr+AuxLy+Acx Lc where Lc= N
t

,0 < cos(zi,zj) <t (7)

where ¢ is the upper bound of the penalty interval, and N; is the number of feature representation vectors pairs whose
cosine similarity lies within the interval (0, ¢). Ly and Ly are similar to ArcFace loss equation 5 operating on labelled
and unlabelled images respectively. Simultaneously, Ay and A¢ are two loss weights. Asymmetric Rejection Loss achieves
improved performance on under-represented demographic groups whilst performance on well-represented groups
remains unaffected when compared to other state-of-the-art approaches (Tab. 3).

4.3.5 Domain Adaptation Based Mitigation. Following from the discussion of Section 4.1 on the out-of-distribution
problem, domain adaptation techniques have recently been introduced as a method to address racial bias issues
[37, 56, 137, 201, 214]. These techniques use multiple labelled source domains with different distributions to improve
generalisation to new target datasets. One of the first examples of domain adaptation for racial bias, [201] prove the
domain gap between racial groupings and propose a deep information maximisation adaptation network (IMAN)
architecture to address this. Subsequently, [56] propose a novel face recognition methodology via the use of meta-
learning named Meta Face Recognition (MFR). The meta-optimisation objective of MFR first synthesises the source/target
domain. Subsequently, it forces the model to learn effective representations of both synthesised source and target
domains. In another example in face recognition, [37] introduces Cross-Domain Triplet (CDT) loss based on the triplet
loss [170] and uses similarity metrics from one domain to learn compact feature clusters of identities by incorporating
them into another domain. Relative performance for both CDT and MFR on the RFW dataset are shown in Table 3.
This section presents a brief overview of face representation learning, including the potential sources of biases and
mitigation studies within this stage of the face recognition processing pipeline (Fig. 3). In support of this review of prior
work on racial bias mitigation a summary table of related work is provided to compare overall relative performance on
the RFW dataset [199] (Table 3).

4.4 Face Verification and ldentification

The overarching concept of face recognition, whereby an identity confirmation decision is made for a given subject
based on facial images, can itself be subdivided into two discrete problems:- Face Verification (i.e. one-to-one facial

comparison, Sec. 4.4.1) and Face Identification (i.e. one-to-many facial comparison, Sec. 4.4.2).

4.4.1 Face Verification. Face Verification refers to one-to-one facial comparison to verify the identity of a subject
by comparing a hitherto unseen facial image against another a priori image of the same or different subject. This
is commonly used in access control systems for both physical locations (e.g. government sites, border control) and
digital assets (e.g. smart phones, digital banking applications) hence representing the most common occurrence of a
face recognition technology encountered by the general public in contemporary society. Typically, face verification
performance is measured in terms of accuracy (see Eqn. 2) and matching rates (see Eqn. 3) over pairs of identical/non-
identical subject images in order to evaluate the number of correct identities matches over all the set of all paired
images presented. In order to confirm a match, the feature embedding vector z;4rger from a presented unseen subject
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image instance X¢arger, and those of a subject image X,¢ ference held on record a priori, z,¢ ference> are compared using
a distance or similarity score across the learnt feature embedding space (e.g. cosine similarity). Subsequently, an apriori
threshold is used to make a decision on the similarity of ztarger  Zreference such that a verified identity can be
confirmed or not. Several studies demonstrate significant performance on face verification on public benchmark datasets
[70, 113] where the racial diversity within these datasets is often limited, biased and overlooked [221]. Accordingly, the
Labelled Faces in-the-wild Dataset (LFW) [70] contains 13233 images of 1680 subjects, and 6000 specific pairs of images
of subjects to measure 1:1 verification performance have become widely adopted. Subsequently, prior work [28, 198]

has reached over 99.5 % verification accuracy on LFW.
4.4.2 Face Identification. Face identification refers to a one-to-many facial comparison to identify an unknown

facial query image by matching it to against a set of known facial images. Prototypically, law enforcement agencies use
it to identify suspects in criminal investigations, track individuals in public spaces and search for missing persons. The
process involves comparing an obtained query face image x;4rger With a large database of reference images Xeproiment-
Unlike face verification, which is used to verify the identity of a known individual, face identification is used to identify
unknown individuals by matching their facial image to a reference image within the enrolment set for which the
identity is known a priori. Face identification tasks can be sub-categorised as either closed-set, when the target is
always in the enrolment set (Xtarget € Xenrolment) O open-set, when the target may or may not be in the enrolment
set (Xzarget € Xenrolment OF Xtarget & Xenrolment)- Whilst the closed-set face identification task is limited to identifying
only the subjects in its enrolment set, the more challenging task of open-set face identification is able to determine
unknown faces that are not in the enrolment set. In order to perform a closed-set face identification task, a multi-class
classifier is used to identify the target image x;4rger via the use of feature embedding vector z;grger OVer Zeproiment-
Furthermore, for an open-set face identification task an additional threshold becomes necessary in order to ascertain an
unknown target that is not present in the enrolment set. As for face identification, [80] provides two large-scale face
identification benchmark datasets under various imaging conditions.

Furthermore, [182] defines evaluation bias when the benchmark dataset used to post-training performance evaluation
is not accurately representative of the target population (in deployment). The most common face recognition benchmark
datasets [54, 70] illustrate examples of such evaluation bias, encouraging the development of models that only perform
well on the specific racial groupings as the per distribution of the dataset (see Sec. 4.1). Evaluation bias is also related to
the decisions made at this stage of the face recognition pipeline, including pairing selection, threshold optimisation,
distance and normalisation functions. For example, the selected threshold can vary across datasets, and final model
performance is often susceptible to the changes in these thresholds [105]. Studies have found that a single fixed threshold
often causes higher variance across demographic groups than an adaptive threshold per-group threshold [105]. Another
example, [23], investigates template-based face verification and identification and the effects of template size, negative
set construction and classifier fusion on performance. They find that performance is highly dependent on the number
of images available in a template. Subsequently, [92] compares the accuracy for African-Americans and Caucasians, in
a scenario in which a fixed decision threshold is used for all subjects only to find that African-Americans have a higher
FMR and Caucasians have a higher FNMR.

Accordingly, many studies provide verification protocols and a new set of pairings based on racial groupings to
address racial bias. For example, the following study [201] released the RFW dataset with a similar protocol to LFW
[70] with the same number (6000) of pairings for each of the four racial groups African, Asian, Caucasian, Indian with
separate thresholds. Another study [218] annotates RFW for face verification and VGGFace2 for face identification
with facial phenotype attributes to measure racial bias. Moreover, [31] proposes the Adversarial Gender De-biasing
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algorithm (AGENDA) to train a shallow network that removes the gender information of the embeddings extracted from
a pre-trained network. The authors of [29] extend this work with PASS to deal with any sensitive attribute and proposed
a novel discriminator training strategy. Subsequently, [188] (2020a) proposed the Fair Template Comparison (FTC)
method, which replaces the computation of the cosine similarity score by an additional shallow neural network trained
using cross-entropy loss, with a fairness penalisation and L2 penalty term to prevent over-fitting. While this method
reduces model bias, it results in an overall decrease in accuracy and requires training and tuning of the shallow neural
network. Another work, [160], proposes a group-specific threshold (GST) in which the sensitive attributes themselves
define its calibration sets. Another study, [186] proposes the Fair Score Normalisation (FSN) method, which is essentially
GST with unsupervised clusters. FSN normalises the scores by requiring the model FMRs across unsupervised clusters
to be the same predefined global FMR. Salvador, [166] proposes a Fairness Calibration (FairCal) method that applies
the K-means algorithm to the image feature representation vectors Z and makes partitions of the embedding space
into K clusters. For each set, it calculates separate calibration map scores to cluster-conditional probabilities of the
set. If the pair of images belong to the same subject cluster, the algorithm uses the score; if not, it uses the weighted
average of the calibrated scores in each cluster of corresponding image features. Consequently, they achieve better
overall accuracy, reducing the discrepancy in the FMRs while not requiring the use of the sensitive attribute.

Similar to face verification, open-set face identification requires a threshold to report a match or non-matched
decision over test target imagery. Accordingly, [92], highlight the importance of two types of errors in face identification
false-non-matched identification and false-matched identification together with their dependency on a threshold that
defines the minimum similarity required to report a match. Furthermore, [218] perform closed-set identification on
VGGFace?2 test set and show that performance difference between facial phenotypes is much smaller when compared to
the face verification results. However, the study is unable to have the same proportion for each attribute, and does not
measure open-set face identification. Consequently, there is a need for the design and application of open-set tests
for face identification using more diverse benchmark datasets and novel evaluation strategies to measure racial bias
robustly under varying conditions.

Designing an ideal evaluation strategy is yet another crucial step in the face recognition processing pipeline. This
step becomes particularly important in order to address racial bias within face recognition, as every decision made at
this stage can have a significant impact on the overall performance and performance across different groups. In each
decision, whether related to verification or identification tasks, there is a risk of misguiding the direction of research,
particularly with regards to the development of face representation models, which can result in increased racial bias.
Accordingly, we summarise the related literature addressing alternative evaluation methods within this stage and

illustrate the corresponding stage and source of bias in Fig 3.

5 CONCLUSIONS

We provide a comprehensive critical review of research on racial bias within face recognition. Firstly, we discuss the
racial bias problem definition formalising the notions of the face recognition evaluation process and elucidate the
prominent fairness criteria associated with face recognition. Subsequently, we highlight the racial grouping requirement
of current fairness criteria and discuss standard race and race-related grouping terminology under three categories;
race, skin tone and facial phenotypes and compare the most prominent grouping strategies across face recognition
datasets. The high reliance of prior work on racial categories brings additional challenges as the race concept is defined
and understood via the influence of pre-existing prejudices and discriminatory beliefs. Furthermore, skin tone remains

only one trait of a comprehensive and multi-faceted race concept. Although a broader facial phenotype approach
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provides a more objective and granular evaluation strategy, ensuring that racial interpretations are not reduced to only
facial phenotypes whilst also considering the broader context of historical and social factors, they remain important
and under-explored research topics within the broader goal of achieving more accurate and fairer face recognition
performance across increasingly more diverse populations.

Furthermore, we explore the contemporary automated facial recognition multiple-stage processing pipeline providing
references to related work in the literature. In each stage, we cover the outline with a related baseline, standard procedures,
a potential source of bias that can exacerbate racial bias and bias mitigation solutions. Firstly, the Image acquisition
stage consists of sources of bias (imagery bias, dataset bias) that can affect the accuracy and fairness of face recognition
systems. Such sources of bias within this initial stage will be transferred into the following stages and amplify racial
bias in the final performance. Secondly, we consider the face localisation stage in terms of racial bias, where there is
little attention indicating the existence of racially disparate performance, but further investigation is explicitly needed
targeting racial bias within face detection itself. Thirdly, we review the most fundamental works spanning the central
stage of the face recognition pipeline, face representation, under three sub-genres:- mutual information mitigation, loss
function-based mitigation, and domain adaptation-based mitigation, providing an extensive supporting performance
comparison across the RFW dataset. Finally, we investigate the final decision-making of the face recognition pipeline,
face verification and identification and reveal the impact of decision-making within this stage on overall and group-wise
face recognition performance.

Overall we observe that racial bias is present at each and every technical stage of the face recognition pipeline such
that the cumulative effect remains under-explored mainly in the literature. Furthermore, we observe continued bias
within the evaluation strategies employed to measure the presence of this bias themselves that directly contradict the

technological needs of a modern, diverse global society.
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