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Abstract
We give applications of equivariant Gromov–Hausdorff
convergence in various contexts. Namely, using equiv-
ariant Gromov–Hausdorff convergence, we prove a sta-
bility result in the setting of compact finite-dimensional
Alexandrov spaces. Moreover, we introduce the notion
of an almost commutative diagram and show that its use
simplifies both exposition and argument.

MSC 2020
53C23, 53C20, 51K10 (primary)

1 INTRODUCTION

In the early 1990s, Burago, Gromov and Perelman developed the theory of Alexandrov spaces
[2]. These spaces are metric space generalizations of complete Riemannian manifolds with a
lower sectional curvature bound. Typically, in dimensions greater than two, Alexandrov spaces
are not manifolds. In general, they are almost manifolds, in the sense that they contain an open
dense subset that is a manifold [1]. Therefore, one cannot automatically transfer the techniques of
smooth manifold theory to the theory of Alexandrov spaces. In 1991, Perelman established a sta-
bility theorem [24, 27], asserting that if a sequence of compact 𝑛-dimensional Alexandrov spaces
{𝑋𝑘}𝑘∈ℕ with a uniform lower curvature bound,Gromov–Hausdorff converges to another compact
Alexandrov space𝑋with no collapse, then𝑋𝑘 and𝑋 are homeomorphic for all sufficiently large 𝑘.
In the 1980s, Fukaya introduced a pointed equivariant version of Gromov–Hausdorff conver-

gence [5]. In 1994, Fukaya and Yamaguchi used the equivariant analogue of Gromov–Hausdorff
convergence to establish that the isometry group of anAlexandrov space is a Lie groupwith respect
to the compact-open topology [8]. The proof shows that the equivariant version of Gromov–
Hausdorff convergence is a powerful tool. In addition, the equivariant Gromov–Hausdorff
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topology has been applied to the framework of RCD∗(𝐾, 𝑁) spaces. In particular, Guijarro
and Santos-Rodriguez [16] and, independently, Sosa [28], proved using equivariant Gromov–
Hausdorff convergence that the isometry group of an RCD∗(𝐾, 𝑁) space is a Lie group. These
results for Alexandrov and RCD∗ spaces are the departure points for further developments in the
study of isometries of singular spaces, which has attracted some attention (see, for example, [4,
9–13, 18–20, 31]).
Our first main theorem is the following stability result with respect to the equivariant Gromov–

Hausdorff convergence, generalizing the work of Harvey [18, Theorem 3.6]. Fix a natural number
𝑛. Denote by (𝑛, 𝐾, 𝐷) to be the class of compact 𝑛-dimensional Alexandrov spaces with
curvature bounded below by 𝐾 and diameter bounded above by 𝐷.

Theorem A (Generalized equivariant stability). Let {𝑋𝑘}∞
𝑘=1

and 𝑋 be in (𝑛, 𝐾, 𝐷). Fix a nat-
ural number 𝑚. Assume that 𝐺𝑘 is an 𝑚-dimensional closed subgroup of Isom(𝑋𝑘). Assume
(𝑋𝑘, 𝐺𝑘) →𝑒𝐺𝐻 (𝑋, 𝐺) and that 𝐺 is an 𝑚-dimensional closed subgroup of Isom(𝑋). Then for all
large enough𝑘, there exists a Lie group isomorphism 𝜃𝑘 ∶ 𝐺𝑘 → 𝐺 andahomeomorphism 𝜉𝑘 ∶ 𝑋𝑘 →

𝑋 such that if g𝑘 ∈ 𝐺𝑘 then 𝜉𝑘◦g𝑘 = 𝜃𝑘(g𝑘)◦𝜉𝑘 .

Note that by definition of equivariant Gromov–Hausdorff convergence (2.6), the actions of 𝐺𝑘

and 𝐺 on 𝑋𝑘 and 𝑋, respectively, are effective. This property will be crucial in the proof (see
Remark 4.4). Further note that by [8], each 𝐺𝑘 and 𝐺 is a compact Lie group.
The preceding theorem generalizes Harvey’s stability theorem, allowing for different groups

acting on the Alexandrov spaces under consideration.
As a corollary to Theorem A, we obtain the following result. We denote by 𝐸𝐺 the universal

space. Recall that 𝐸𝐺 is the countably infinite join of 𝐺 and 𝐺 acts freely on 𝐸𝐺 [29].

Corollary B. Let {𝑋𝑘}∞
𝑘=1

and 𝑋 be in (𝑛, 𝐾, 𝐷). Fix a natural number 𝑚. Assume that 𝐺𝑘 is
an 𝑚-dimensional closed subgroup of Isom(𝑋𝑘). Assume (𝑋𝑘, 𝐺𝑘) →𝑒𝐺𝐻 (𝑋, 𝐺) and that 𝐺 is an
𝑚-dimensional closed subgroup of Isom(𝑋). Then for all sufficiently large 𝑘, the Borel construction
𝐸𝐺𝑘 ×𝐺𝑘

𝑋𝑘 is homeomorphic to the Borel construction 𝐸𝐺 ×𝐺 𝑋.

Our nextmain theorem is the following stability result concerning the continuity ofmaps under
equivariant Gromov–Hausdorff convergence.

Theorem C. Let {𝑋𝑘}𝑘∈ℕ be a sequence of compact metric spaces. For each 𝑘, let 𝐺𝑘 denote a closed
subgroup of the isometry group of 𝑋𝑘 . Assume that a triple (𝑓𝑘, 𝜃𝑘, 𝜓𝑘) witnesses the convergence
(𝑋𝑘, 𝐺𝑘) →𝑒𝐺𝐻 (𝑋, 𝐺), where𝑋 is a compactmetric space, and𝐺 is a closed subgroup of the isometry
group of𝑋. If𝐺 is a euclidean neighborhood retract (ENR), then themaps 𝜃𝑘 ∶ 𝐺𝑘 → 𝐺may be taken
to be continuous.

For a definition of a triple that witnesses the convergence, we refer the reader to Definition 2.6
(cf. [18, 19]). For the definition of an ENR, we refer the reader to [21].
Theorem C is a generalization of one of the technical results used to prove the equivariant

stability theorems in [18, 19]. The stability result in [19] is proved for pointed convergence, proper
spaces, and when all the groups 𝐺𝑘 and 𝐺 are Lie groups. In [18], the stability result is proved for
compact spaces and when 𝐺𝑘 = 𝐺 for all 𝑘 and 𝐺 is a compact Lie group. In both proofs, Harvey
used the center of mass construction by Grove–Petersen [15] to approximate discrete maps by
continuous maps. In Theorem C, we do not assume that the groups 𝐺𝑘 are Lie groups. Our proof
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STABILITY AND EQUIVARIANT GROMOV–HAUSDORFF CONVERGENCE 2587

is elementary and does not require Lie group theory nor the center of mass construction. Instead,
we only use the definition and properties of equivariant Gromov–Hausdorff convergence and the
definition of an ENR.
Our article is organized as follows. In Section 2, we define the notion of equivariant Gromov–

Hausdorff convergence and prove elementary properties. In Section 3, we prove Theorem C. In
Section 4, using some ideas from Section 3, we prove Theorem A and Corollary B.

2 EQUIVARIANT GROMOV–HAUSDORFF CONVERGENCE

In this section, we introduce the equivariant Gromov–Hausdorff distance as initially defined by
Fukaya [5, 7]. However, we assume our spaces are compact and as such, we do not require the use
of basepoints. We denote the isometry group of a metric space 𝑋 by Isom(𝑋). Once 𝑋 is compact,
the topology on the space of continuous functions on 𝑋 is metrizable, and we can take the metric
to be the uniform metric. Due to the technical nature of equivariant Gromov–Hausdorff approxi-
mations, and for the sake of easing exposition, we introduce the notion of an almost commutative
diagram.

Definition 2.1. Let (𝑋, 𝑑𝑋), (𝑌, 𝑑𝑌) be metric spaces and fix 𝜖 ⩾ 0. We say that the diagram

commutes up to 𝜖 (𝜖–commutes) if 𝑑𝑌(g𝑓(𝑥), ℎ𝑘(𝑥)) ⩽ 𝜖 for all 𝑥 ∈ 𝑋. In this case, we will usually
write g◦𝑓 = ℎ◦𝑘 up to 𝜖.

Remark 2.2. When 𝜖 = 0 in the diagram above, we recover the notion of a commutative diagram.
Hence, we may think of 𝜖-commutative diagrams as being almost commutative.

Definition 2.3. Let 𝑋 and 𝑌 be compact metric spaces and let 𝐺𝑋 and 𝐺𝑌 be closed subgroups
of Isom(𝑋) and Isom(𝑌), respectively. An equivariant Gromov–Hausdorff approximation of order
𝜖 > 0 between the pairs (𝑋, 𝐺𝑋) and (𝑌, 𝐺𝑌) is a triple of maps

(𝑓∶ 𝑋 → 𝑌, 𝜃∶ 𝐺𝑋 → 𝐺𝑌, 𝜓∶ 𝐺𝑌 → 𝐺𝑋)

subject to the following conditions:

(1) the map 𝑓 is a Gromov–Hausdorff approximation of order 𝜖 (that is, an 𝜖-isometry);
(2) if 𝛾 ∈ 𝐺𝑋 then 𝜃(𝛾)◦𝑓 = 𝑓◦𝛾 up to 𝜖; and
(3) if 𝜆 ∈ 𝐺𝑌 then 𝜆◦𝑓 = 𝑓◦𝜓(𝜆) up to 𝜖.

Often, when the spaces 𝑋, 𝑌 and the groups 𝐺𝑋 and 𝐺𝑌 are understood from context, we refer
to the triple (𝑓, 𝜃, 𝜓) as an equivariant Gromov–Hausdorff approximation.

Our definition of an equivariant Gromov–Hausdorff approximation is, to the best of our knowl-
edge, not found in the literature. It is, however, trivially equivalent to the standard one (see, for
example, [5]).

 14692120, 2024, 8, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.13073 by T

est, W
iley O

nline L
ibrary on [02/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2588 ALATTAR

Before continuing, we note a few things. First, we use the terms almost isometries, Gromov–
Hausdorff approximations, and approximations interchangeably. Similarly, we use the terms
equivariant Gromov–Hausdorff approximations and equivariant approximations interchangeably.
Further, an 𝜖-isometry, where 𝜖 > 0, is the same as an almost isometry of order 𝜖 > 0. Similar
conventions will be in place for the (almost) equivariant analogue.
Second, we note that the maps 𝜃 and 𝜓 in Definition 2.3 need not be group homomorphisms

and 𝑓 need not be continuous. Recall that an almost isometry of order 𝜖, between compact metric
spaces 𝑓∶ 𝑋 → 𝑌 admits an almost inverse 𝑓∶ 𝑌 → 𝑋 that is a 3𝜖-isometry [23]. In particular,
𝑓◦𝑓 = id up to 𝜖 and 𝑓◦𝑓 = id up to 𝜖. Thus, it is natural to wonder, given an 𝜖-equivariant
Gromov–Hausdorff approximation (𝑓, 𝜃, 𝜓) between (𝑋, 𝐺𝑋) and (𝑌, 𝐺𝑌), whether there exists an
equivariant Gromov–Hausdorff approximation (𝑓, �̃�, �̃�) between (𝑌, 𝐺𝑌) and (𝑋, 𝐺𝑋) that serves
as an almost inverse to (𝑓, 𝜃, 𝜓). The answer is in the affirmative, as we shall show. First, let
us sketch the proof in the non-equivariant setting. We will then state and prove the equivariant
version.

Lemma 2.4 [23]. Let 𝑓∶ 𝑋 → 𝑌 be an 𝜖-isometry between compact metric spaces. Then there exists
a 3𝜖-isometry 𝑓∶ 𝑌 → 𝑋 such that 𝑑𝑌(𝑓(𝑓(𝑦)), 𝑦) ⩽ 3𝜖 for all 𝑦 ∈ 𝑌 and 𝑑𝑋(𝑓(𝑓(𝑥)), 𝑥) ⩽ 3𝜖 for
all 𝑥 ∈ 𝑋.

Proof (Sketch). For each 𝑦 ∈ 𝑌, choose an 𝑥𝑦 ∈ 𝑋 such that 𝑑𝑌(𝑓(𝑥𝑦), 𝑦) ⩽ 𝜖. Then define
𝑓∶ 𝑌 → 𝑋 given by 𝑓(𝑦) = 𝑥𝑦 . □

Proposition 2.5. Let 𝑋 and 𝑌 be compact metric spaces. Let 𝐺𝑋 and 𝐺𝑌 be closed subgroups of
Isom(𝑋) and Isom(𝑌), respectively. Let (𝑓, 𝜃, 𝜓) be an 𝜖-equivariant Gromov–Hausdorff approx-
imation between (𝑋, 𝐺𝑋) and (𝑌, 𝐺𝑌). Then there exists a 4𝜖-equivariant Gromov–Hausdorff
approximation between (𝑌, 𝐺𝑌) and (𝑋, 𝐺𝑋).

Proof. As 𝑓 is an 𝜖-Gromov–Hausdorff approximation, for each 𝑦 ∈ 𝑌, we may find 𝑥𝑦 ∈ 𝑋 such
that𝑑𝑌(𝑓(𝑥𝑦), 𝑦) ⩽ 𝜖. Nowdefine𝑓∶ 𝑌 → 𝑋 by𝑓(𝑦) = 𝑥𝑦 . Lemma2.4 shows that𝑓 is an 3𝜖- isom-
etry (and thus a 4𝜖-isometry). Now we show that (𝑓, 𝜓, 𝜃) is a 4𝜖-equivariant Gromov–Hausdorff
approximation between (𝑌, 𝐺𝑌) and (𝑋, 𝐺𝑋).
Let 𝜆 ∈ 𝐺𝑌 . We will show that 𝜓(𝜆) ◦𝑓 = 𝑓 ◦ 𝜆 up to 4𝜖. Let 𝑦 ∈ 𝑌. Then, 𝑓(𝑦) = 𝑥𝑦 , where 𝑥𝑦

is chosen such that 𝑑𝑌(𝑓(𝑥𝑦), 𝑦) ⩽ 𝜖. Similarly, for 𝜆𝑦 ∈ 𝑌, 𝑓(𝜆𝑦) = 𝑥𝜆𝑦 , where 𝑥𝜆𝑦 is chosen so
that 𝑑𝑌(𝑓(𝑥𝜆𝑦), 𝜆𝑦) ⩽ 𝜖. Since 𝑓 is an 𝜖-isometry,

𝑑𝑋(𝜓(𝜆)(𝑥𝑦), 𝑥𝜆𝑦) ⩽ 𝑑𝑌(𝑓(𝜓(𝜆)(𝑥𝑦)), 𝑓(𝑥𝜆𝑦)) + 𝜖.

The triangle inequality yields

𝑑𝑌(𝑓(𝜓(𝜆(𝑥𝑦))), 𝑓(𝑥𝜆𝑦)) ⩽ 𝑑𝑌(𝑓(𝜓(𝜆)(𝑥𝑦)), 𝜆𝑓(𝑥𝑦)) + 𝑑𝑌(𝜆𝑓(𝑥𝑦), 𝑓(𝑥𝜆𝑦)).

Since 𝜆 ◦𝑓 = 𝑓 ◦𝜓(𝜆) up to 𝜖, one gets 𝑑𝑌(𝑓(𝜓(𝜆)(𝑥𝑦)), 𝜆𝑓(𝑥𝑦)) ⩽ 𝜖. Now clearly,

𝑑𝑌(𝜆𝑓(𝑥𝑦), 𝑓(𝑥𝜆𝑦)) ⩽ 𝑑𝑌(𝜆𝑓(𝑥𝑦), 𝜆𝑦) + 𝑑𝑌(𝜆𝑦, 𝑓(𝑥𝜆𝑦)) ⩽ 2𝜖.

Hence, 𝑑𝑋(𝜓(𝜆)(𝑥𝑦), 𝑥𝜆𝑦) ⩽ 4𝜖. Since

𝑑𝑋(𝜓(𝜆)(𝑥𝑦), 𝑥𝜆𝑦) = 𝑑𝑋(𝜓(𝜆)(𝑓(𝑦)), 𝑓(𝜆𝑦))
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STABILITY AND EQUIVARIANT GROMOV–HAUSDORFF CONVERGENCE 2589

and 𝑦 is arbitrary, we see that 𝜓(𝜆) ◦𝑓 = 𝑓 ◦ 𝜆 up to 4𝜖. A similar argument establishes that for
g ∈ 𝐺𝑋 , g ◦𝑓 = 𝑓 ◦ 𝜃(g) up to 4𝜖. □

Analogous to Gromov–Hausdorff convergence, one would like a method of convergence,
stronger than Gromov–Hausdorff convergence, that respects groups acting on the spaces. Thus,
one formulates the following definition (cf. [5, 17, 19]).

Definition 2.6. Let {𝑋𝑘}𝑘∈ℕ be a sequence of compact metric spaces and let 𝐺𝑘 be a closed
subgroup of Isom (𝑋𝑘). Let 𝑋 be a compact metric space and 𝐺 a closed subgroup of Isom(𝑋).
We say that (𝑋𝑘, 𝐺𝑘) equivariantly Gromov–Hausdorff converges to (𝑋, 𝐺), denoted (𝑋𝑘, 𝐺𝑘) →𝑒𝐺𝐻

(𝑋, 𝐺), if for every 𝜖 > 0, there exists some positive integer 𝑁 such that for all 𝑘 ⩾ 𝑁 we have an
𝜖-equivariant Gromov–Hausdorff approximation (𝑓𝑘, 𝜃𝑘, 𝜓𝑘) between (𝑋𝑘, 𝐺𝑘) and (𝑋, 𝐺).

We will refer to a triple (𝑓𝑘, 𝜃𝑘, 𝜓𝑘) of 𝜖𝑘-equivariant Gromov–Hausdorff approximations
appearing in the definition of equivariant Gromov–Hausdorff convergence (𝑋𝑘, 𝐺𝑘) →𝑒𝐺𝐻 (𝑋, 𝐺),
as a triple that witnesses the convergence (cf. [18, 19]).
The notion of convergence above yields a distance function 𝑑𝑒𝐺𝐻 on pairs of the form (𝑋, 𝐺),

where the first factor is a compact space and the second factor a closed subgroup of Isom(𝑋).
In this case, the distance between two such pairs (𝑋, 𝐺𝑋) and (𝑌, 𝐺𝑌) is defined to be the infi-
mum of all 𝜖 > 0 for which there exists an 𝜖-equivariant Gromov–Hausdorff approximation
from (𝑋, 𝐺𝑋) to (𝑌, 𝐺𝑌) and from (𝑌, 𝐺𝑌) to (𝑋, 𝐺𝑋) [5–7]. Proposition 2.5 implies the following
result.

Proposition 2.7. Let {𝑋𝑘}𝑘∈ℕ be a sequence of compact metrics spaces and 𝑋 is a compact met-
ric space. Assume for each integer 𝑘, 𝐺𝑘 denotes a closed subgroup of Isom(𝑋𝑘) and 𝐺 is a closed
subgroup of Isom(𝑋). Then the following assertions are equivalent:

(1) (𝑋𝑘, 𝐺𝑘) →𝑒𝐺𝐻 (𝑋, 𝐺); and
(2) lim𝑘→∞ 𝑑𝑒𝐺𝐻((𝑋𝑘, 𝐺𝑘), (𝑋, 𝐺)) = 0.

3 PROOF OF THEOREM C

In what follows, we denote by 𝑑𝐺𝑋
and 𝑑𝐺𝑌

the uniform metrics on 𝐺𝑋 and 𝐺𝑌 , respectively.

Proposition 3.1. Assume (𝑓, 𝜃, 𝜓) is an 𝜖-equivariant Gromov–Hausdorff approximation between
(𝑋, 𝐺𝑋) and (𝑌, 𝐺𝑌). Then, for any g𝑌 ∈ 𝐺𝑌 , there exists a g𝑋 ∈ 𝐺𝑋 such that 𝑑𝐺𝑌

(g𝑌, 𝜃(g𝑋)) ⩽ 4𝜖.

Proof. Let g ∈ 𝐺𝑌 and put g𝑋 = 𝜓(g). Fix 𝑦 ∈ 𝑌. Since 𝑓 is an 𝜖-isometry, there exists an 𝑥 ∈ 𝑋

such that 𝑑𝑋(𝑓(𝑥), 𝑦) ⩽ 𝜖. Hence, after applying the triangle inequality twice, one gets

𝑑𝑌(g𝑦, 𝜃(g𝑋)(𝑦)) ⩽ 2𝜖 + 𝑑𝑌(g𝑓(𝑥), 𝜃(g𝑋)(𝑓(𝑥))).

Thus, it suffices to prove that

𝑑𝑌(g𝑓(𝑥), 𝜃(g𝑋)(𝑓(𝑥))) ⩽ 2𝜖.
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2590 ALATTAR

To establish this inequality, first observe that

𝑑𝑌(g𝑓(𝑥), 𝜃(g𝑋)(𝑓(𝑥))) ⩽ 𝑑𝑌(g𝑓(𝑥), 𝑓(g𝑋𝑥)) + 𝑑𝑌(𝑓(g𝑋𝑥), 𝜃(g𝑋)(𝑓(𝑥))).

Recall that g𝑋 = 𝜓(g). Therefore, as 𝑓 ◦𝜓(g) = g ◦𝑓 up to 𝜖, one gets 𝑑𝑌(g𝑓(𝑥), 𝑓(g𝑋𝑥)) ⩽ 𝜖. As
𝑓 ◦ g𝑋 = 𝜃(g𝑋) ◦𝑓 up to 𝜖, one gets 𝑑𝑌(g𝑓(𝑥), 𝜃(g𝑋)(𝑓(𝑥))) ⩽ 2𝜖. □

Proposition 3.2. Assume (𝑓, 𝜃, 𝜓) is an 𝜖-equivariant Gromov–Hausdorff approximation between
(𝑋, 𝐺𝑋) and (𝑌, 𝐺𝑌). Then, for g𝑋, g ′

𝑋
∈ 𝐺𝑋 , 𝑑𝐺𝑌

(𝜃(g𝑋), 𝜃(g ′
𝑋
)) ⩽ 5𝜖 + 𝑑𝐺𝑋

(g𝑋, g ′
𝑋
).

Proof. Let 𝑦 ∈ 𝑌. Choose 𝑥 ∈ 𝑋 such that 𝑑𝑌(𝑓(𝑥), 𝑦) ⩽ 𝜖. Hence,

𝑑𝑌(𝜃(g𝑋)(𝑦), 𝜃(g ′
𝑋)(𝑦)) ⩽ 𝜖 + 𝑑𝑌(𝜃(g𝑋)(𝑓(𝑥)), 𝜃(g ′

𝑋)(𝑦)).

The triangle inequality along with the fact that 𝜃 takes isometries to isometries, implies that

𝑑𝑌(𝜃(g𝑋)(𝑓(𝑥)), 𝜃(g ′
𝑋)(𝑦)) ⩽ 𝜖 + 𝑑𝑌(𝜃(g𝑋)(𝑓(𝑥)), 𝜃(g ′

𝑋)(𝑓(𝑥))).

Combining the preceding inequalities, we see that

𝑑𝑌(𝜃(g𝑋)(𝑦), 𝜃(g ′
𝑋)(𝑦)) ⩽ 2𝜖 + 𝑑𝑌(𝜃(g𝑋)(𝑓(𝑥)), 𝜃(g ′

𝑋)(𝑓(𝑥))).

To prove the proposition, it suffices to prove that

𝑑𝑌(𝜃(g𝑋)(𝑓(𝑥)), 𝜃(g ′
𝑋)(𝑓(𝑥))) ⩽ 3𝜖 + 𝑑𝐺𝑋

(g𝑋, g ′
𝑋).

To prove the preceding inequality, observe first that one clearly has

𝑑𝑌(𝜃(g𝑋)(𝑓(𝑥)), 𝜃(g ′
𝑋)(𝑓(𝑥))) ⩽ 𝑑𝑌(𝜃(g𝑋)(𝑓(𝑥)), 𝑓(g𝑋𝑥)) + 𝑑𝑌(𝑓(g𝑋𝑥), 𝜃(g ′

𝑋)(𝑓(𝑥))).

As 𝜃(g𝑋) ◦𝑓 = 𝑓 ◦ g𝑋 up to 𝜖, one gets 𝑑𝑌(𝜃(g𝑋)(𝑓(𝑥)), 𝑓(g𝑋𝑥)) ⩽ 𝜖. Thus, it remains to show that
𝑑𝑌(𝑓(g𝑋𝑥), 𝜃(g ′

𝑋
)(𝑓(𝑥))) ⩽ 2𝜖 + 𝑑𝐺𝑋

(g𝑋, g ′
𝑋
). Indeed,

𝑑𝑌(𝑓(g𝑋𝑥), 𝜃(g ′
𝑋)(𝑓(𝑥))) ⩽ 𝑑𝑌(𝑓(g𝑋𝑥), 𝑓(g ′

𝑋𝑥)) + 𝑑𝑌(𝑓(g ′
𝑋𝑥), 𝜃(g ′

𝑋)(𝑓(𝑥))).

Since 𝑓 is an 𝜖-Gromov–Hausdorff approximation, 𝑑𝑌(𝑓(g𝑋𝑥), 𝑓(g ′
𝑋
𝑥)) ⩽ 𝜖 + 𝑑𝐺𝑋

(g𝑋, g ′
𝑋
). Since

𝑓◦g ′
𝑋

= 𝜃(g ′
𝑋
)◦𝑓 up to 𝜖, the desired inequality then follows. □

The proof of the next proposition is similar to the previous proposition, we therefore omit it.

Proposition 3.3. Let 𝑋 and 𝑌 be compact metric spaces. Assume (𝑓, 𝜃, 𝜓) is an 𝜖-
equivariant Gromov–Hausdorff approximation between (𝑋, 𝐺𝑋) and (𝑌, 𝐺𝑌). Then, for g𝑋, g ′

𝑋
∈

𝐺𝑋 , 𝑑𝐺𝑌
(𝜃(g𝑋), 𝜃(g ′

𝑋
)) ⩾ 𝑑𝐺𝑋

(g𝑋, g ′
𝑋
) − 5𝜖.

Now the following corollaries follow from the definition of a Gromov–Hausdorff approxima-
tion. Namely, what we have shown is that once we metrize the compact open topology on the
isometry groups by the uniform metrics, then the maps 𝜃𝑘, that are part of a triple (𝑓𝑘, 𝜃𝑘, 𝜓𝑘)
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STABILITY AND EQUIVARIANT GROMOV–HAUSDORFF CONVERGENCE 2591

that is an 𝜖𝑘-equivariant Gromov–Hausdorff approximation demonstrating the equivariant
convergence (𝑋𝑘, 𝐺𝑘) →𝑒𝐺𝐻 (𝑋, 𝐺), are in fact 5𝜖𝑘-Gromov–Hausdorff approximations.

Corollary 3.4. Let 𝑋𝑘 and 𝑋 be compact metric spaces and let 𝐺𝑘 and 𝐺 be closed subgroups
of Isom(𝑋𝑘) and Isom(𝑋), respectively. If (𝑓𝑘, 𝜃𝑘, 𝜓𝑘) is an 𝜖𝑘-equivariant Gromov–Hausdorff
approximation from (𝑋𝑘, 𝐺𝑘) to (𝑋, 𝐺) then, under the uniform metric, 𝜃𝑘 ∶ 𝐺𝑘 → 𝐺 is an
5𝜖𝑘-Gromov–Hausdorff approximation.

Corollary 3.5. Let {𝑋𝑘}𝑘∈ℕ be a sequence of compact metric spaces and let 𝐺𝑘 be a closed subgroup
of Isom(𝑋𝑘). Assume𝑋 is a compact metric space, with corresponding closed subgroup𝐺 of Isom(𝑋)

such that (𝑋𝑘, 𝐺𝑘) →𝑒𝐺𝐻 (𝑋, 𝐺). Then, 𝐺𝑘 →𝐺𝐻 𝐺 with respect to the uniform metrics.

Note that what we have proved so far is stronger than the preceding corollary. What we have
proved, in fact, is that themaps 𝜃𝑘 ∶ 𝐺𝑘 → 𝐺 that demonstrate the equivariant Gromov–Hausdorff
convergence are also Gromov–Hausdorff approximations with an error that tends to 0.

Remark 3.6. While preparing thismanuscript, there appeared preprints [3, 30] with results similar
to the preceding corollary. The proof in [3] uses ultralimits, is for pointed spaces, and the statement
of their proposition is for geodesic spaces. The proof in [30] is for pointed spaces and is technically
different from ours.

The fact that the maps 𝜃𝑘 ∶ 𝐺𝑘 → 𝐺 that appear in a triple (𝑓𝑘, 𝜃𝑘, 𝜓𝑘) that demonstrates the
equivariant convergence (𝑋𝑘, 𝐺𝑘) →𝑒𝐺𝐻 (𝑋, 𝐺) are, once we endow 𝐺𝑘 and 𝐺 with the uniform
metrics, 5𝜖𝑘-Gromov–Hausdorff approximations, yields the following result; which will be useful
in this section and the next.

Corollary 3.7. Fix 𝜖 > 0 and assume 𝑋 is a compact metric space and (𝑓, 𝜃, 𝜓) is an 𝜖-
equivariant Gromov–Hausdorff approximation from (𝑋, 𝐺) to (𝑋′, 𝐺′). Assume 𝜃′ ∶ 𝐺 → 𝐺′ is a
map that is 𝜖-close to 𝜃 (with respect to the uniform metrics). Then, (𝑓, 𝜃′, 𝜓) is a 2𝜖-equivariant
Gromov–Hausdorff approximation. Consequently, 𝜃′ is a 10𝜖-Gromov–Hausdorff approximation.

Proof. Let 𝑑𝑋 denote the metric on 𝑋 and let 𝑑𝑋′ denote the metric on 𝑋′. Let g ∈ 𝐺. It suffices to
verify the following inequality:

𝑑𝑋′(𝜃′(g)𝑓(𝑥), 𝑓(g𝑥)) ⩽ 2𝜖.

Indeed,

𝑑𝑋′(𝜃′(g)𝑓(𝑥), 𝑓(g𝑥)) ⩽ 𝑑𝑋′(𝜃′(g)𝑓(𝑥), 𝜃(g)𝑓(𝑥)) + 𝑑𝑋′(𝜃(g)𝑓(𝑥), 𝑓(g𝑥)).

Since 𝜃 is 𝜖-close to 𝜃′, 𝑑𝑋′(𝜃′(g)𝑓(𝑥), 𝜃(g)𝑓(𝑥)) ⩽ 𝜖. Since (𝑓, 𝜃, 𝜓) is an 𝜖-equivariant
Gromov–Hausdorff convergence, 𝑑𝑋′(𝜃(g)𝑓(𝑥), 𝑓(g𝑥)) ⩽ 𝜖. That 𝜃′ is a 10𝜖-Gromov–Hausdorff
approximation follows from the first three propositions in this section. □

Proof of TheoremC. First, note that any sequence of isometries on a compact metric space𝑋 must
be equicontinuous. Therefore, the Arzelà–Ascoli theorem tells us that such a sequence contains
a subsequence that converges uniformly to a continuous function on 𝑋. The limit must be an
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2592 ALATTAR

isometry with respect to the uniform distance. Whence, every closed subgroup 𝐺 of Isom (𝑋) is
compact. Now, let (𝑓𝑘, 𝜃𝑘, 𝜓𝑘) be an 𝜖𝑘-equivariant Gromov–Hausdorff approximation that wit-
nesses the convergence (𝑋𝑘, 𝐺𝑘) →𝑒𝐺𝐻 (𝑋, 𝐺). Then, aswehave shown inCorollary 3.4, 𝜃𝑘 ∶ 𝐺𝑘 →

𝐺 is a 5𝜖𝑘-Gromov–Hausdorff approximation with respect to the uniform metric. As 𝐺 is a com-
pact ENR, there exists a topological embedding 𝜙∶ 𝐺 → ℝ𝑞 for some 𝑞 < ∞, a compact set 𝐶

in ℝ𝑞, for which 𝜙(𝐺) is contained in the interior of 𝐶 and for which there exists a retraction
𝑟∶ 𝐶 → 𝜙(𝐺) (cf. [21, 22]). Nowwe proceed as in [22]. As each 𝐺𝑘 is compact, we may find a finite
5𝜖𝑘-net 𝑌𝑘 in 𝐺𝑘. For each natural number 𝑘, define 𝜎𝑘 to be a real-valued function, with domain
being [0, ∞) such that 𝜎𝑘 is positive on [0, 10𝜖𝑘) and is zero otherwise. Now define 𝜙𝑘 to be the
following continuous map. For g𝑘 ∈ 𝐺𝑘, set

𝜙𝑘(g𝑘) =

∑
ℎ𝑘∈𝑌𝑘

𝜎𝑘(|g𝑘, ℎ𝑘|)𝜙(𝜃𝑘(ℎ𝑘))
∑

ℎ𝑘∈𝑌𝑘
𝜎𝑘(|g𝑘, ℎ𝑘|)

,

where we have denoted the metric on 𝐺𝑘 by | , |. That is, |g𝑘, ℎ𝑘| denotes the uniform distance
between g𝑘 and ℎ𝑘 in𝐺𝑘. Note that for any g𝑘 ∈ 𝐺𝑘, there exists a ℎ𝑘 ∈ 𝑌𝑘 such that |g𝑘, ℎ𝑘| ⩽ 5𝜖𝑘.
Hence, 𝜎𝑘(|g𝑘, ℎ𝑘|) > 0. Therefore the denominator is positive. Since 𝜙(𝐺) lies in the interior of
the compact set 𝐶, for all sufficiently large 𝑘, the uniform distance between 𝜙−1◦𝑟◦𝜙𝑘 and 𝜃𝑘 goes
to 0 as 𝑘 → ∞. Now the result follows from Corollary 3.7. □

4 PROOF OF THEOREMA AND COROLLARY B

In this section, we will first prove a motivating stability result in the Riemannian manifold set-
ting. We assume all Riemannianmanifolds to be without boundary, of finite dimension, compact,
connected, and with a lower sectional curvature bound. We establish that under certain nice
conditions, equivariant Gromov–Hausdorff convergence implies stability in terms of equivariant
cohomology groups. In themanifold setting, we assume all groups act smoothly. Thus, properness
of the action immediately follows. We further note that the motivating result below is essentially
an easy consequence of standard facts. However, we include details for the convenience of the
reader. For a reference on equivariant cohomology, we refer the reader to the book by Tu [29].

Proposition 4.1 (Motivating). Let {𝑋𝑘}𝑘∈ℕ be a sequence of connected compact Riemannian mani-
folds without boundary, with a uniform lower sectional curvature bound, a uniform dimension and
uniform upper diameter bound. For each 𝑘, assume 𝐺𝑘 is an 𝑚-dimensional closed subgroup of
Isom(𝑋𝑘) acting freely on𝑋𝑘 . Suppose further that (𝑋𝑘, 𝐺𝑘) →𝑒𝐺𝐻 (𝑋, 𝐺), where𝑋 is a compact con-
nected Riemannianmanifold without boundary, having the same dimension as some (and hence all)
𝑋𝑘 . If 𝐺 is an m-dimensional closed subgroup of Isom(𝑋) acting freely on𝑋. Then for all sufficiently
large 𝑘,𝐻∗

𝐺𝑘
(𝑋𝑘) ≅ 𝐻∗

𝐺
(𝑋).

Note that 𝐻∗
𝐺
(𝑋) denotes the equivariant cohomology group of the 𝐺-space 𝑋.

Proof. The projectionmap𝜋∶ 𝑋 → 𝑋∕𝐺 is a principal𝐺-bundle. Put𝑋𝐺 = 𝐸𝐺 ×𝐺 𝑋. Since𝑋𝐺 →

𝑋∕𝐺 is a fiber bundle with fiber 𝐸𝐺, the long exact sequence for homotopy groups tells us that
𝑋𝐺 and 𝑋∕𝐺 are weakly homotopy equivalent. Similarly, (𝑋𝑘)𝐺𝑘

is weakly homotopy equivalent
to 𝑋𝑘∕𝐺𝑘. Now observe that dim(𝑋𝑘∕𝐺𝑘) = dim(𝑋∕𝐺) for all 𝑘. What is more, 𝑋𝑘∕𝐺𝑘 →𝐺𝐻 𝑋∕𝐺
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STABILITY AND EQUIVARIANT GROMOV–HAUSDORFF CONVERGENCE 2593

(with the orbit metric, see [1]). Therefore, 𝑋𝑘∕𝐺𝑘 and 𝑋∕𝐺 are weakly homotopy equivalent for
all large enough 𝑘. □

The preceding proposition agrees with our intuition. Namely, it is reasonable to expect that
once free actions are involved, arguments become much easier to construct. However, clearly
not all group actions act freely. Therefore it is desirable to strengthen the previous result. The
strengthening is Corollary B, which in turn is a consequence of Theorem A.

Remark 4.2. Before we begin with the proof of Theorem A, a few words are in order. Har-
vey proved in [19] that for pointed equivariant convergence, one can take the maps 𝐺𝑘 → 𝐺 in
the equivariant convergence to be Lie group homomorphisms. In fact, Harvey further showed
[19, Proposition 4.1], that once we restrict attention to pointed equivariant convergence, and 𝑛-
dimensional Alexandrov spaces, with curvature bounded below by 𝐾, the maps 𝐺𝑘 → 𝐺 in the
equivariant Gromov–Hausdorff convergence, provided 𝐺𝑘 and 𝐺 are compact, can be taken to
be injective Lie group homomorphisms. In particular, the proof depends on the convergence of
balls. Our strategy is to reduce the convergence to a convergence of balls while keeping the maps
𝐺𝑘 → 𝐺 that appear in a triple that demonstrates the equivariant convergence fixed. In particular,
we need to adjust the convergence and make it local.

We now prove Theorem A and Corollary B together.

Convention. In what follows, we denote by 𝜖𝑘 various positive values that tend to zero as 𝑘 → ∞.
In particular, any positive value proportional to 𝜖𝑘 is also denoted by 𝜖𝑘.

Proof of Theorem A and Corollary B. Let (𝑓𝑘, 𝜃𝑘, 𝜓𝑘) be an 𝜖𝑘-equivariant Gromov–Hausdorff
approximation that witnesses the equivariant Gromov–Hausdorff convergence (𝑋𝑘, 𝐺𝑘) →𝑒𝐺𝐻

(𝑋, 𝐺), where {𝑋𝑘}𝑘∈ℕ denotes a sequence of compact Alexandrov spaces with curvature uni-
formly bounded below, uniform upper diameter bound, 𝑋𝑘 and 𝑋 have the same dimension for
all 𝑘, and 𝐺𝑘 and 𝐺 are closed subgroups of Isom(𝑋𝑘) and Isom(𝑋), respectively, such that the
dimension of 𝐺𝑘 and 𝐺 is the same for all 𝑘.
Following Remark 4.2, we need to adjust the convergence and make it local. To that end,

fix an arbitrary 𝑥 ∈ 𝑋. For each integer 𝑘, choose 𝑥𝑘 ∈ 𝑋𝑘 such that 𝑑𝑋(𝑓𝑘(𝑥𝑘), 𝑥) ⩽ 𝜖𝑘. Define
𝑓𝑘 ∶ 𝑋𝑘 → 𝑋 by

𝑓𝑘(𝑥′) =

⎧
⎪⎨⎪⎩

𝑥, 𝑥′ = 𝑥𝑘.

𝑓𝑘(𝑥′), 𝑥′ ≠ 𝑥𝑘.

Then, it follows that 𝑓𝑘 is an 𝜖𝑘-isometry. Moreover, due to the upper bound on the diameters of
the terms of the sequence, we may choose 𝑘 large enough so that (𝑓𝑘, 𝜃𝑘, 𝜓𝑘) demonstrates the
equivariant convergence.
For all large enough 𝑘, the map 𝜃𝑘 may now be taken to be an injective Lie group homomor-

phism (see Remark 4.2). Thus 𝜃𝑘(𝐺𝑘
0
) ⊆ 𝐺0. Here, 𝐺𝑘

0
denotes the identity component of 𝐺𝑘 and

𝐺0 denotes the identity component of 𝐺. In fact, we have equality: Indeed, by the rank-nullity
theorem, themap 𝜃𝑘 is a submersion. Define for all such sufficiently large 𝑘, �̃�𝑘 ∶ 𝐺𝑘∕𝐺𝑘

0
→ 𝐺∕𝐺0
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2594 ALATTAR

by

�̃�𝑘(g𝑘𝐺𝑘
0 ) = 𝜃𝑘(g𝑘)𝐺0.

Since 𝜃𝑘 is an injective submersion, it follows that �̃�𝑘 is well defined and injective. Hence, the
number of components of 𝐺𝑘 is at most the number of components of 𝐺. Equip 𝐺𝑘 and 𝐺 with
the uniform metrics, which we denote by 𝑑𝐺𝑘

and 𝑑𝐺 , respectively. By Corollary 3.7, the map
𝜃𝑘 ∶ 𝐺𝑘 → 𝐺 is an 𝜖𝑘-isometry.
Wewill now show that for all large𝑘, the number of components between𝐺𝑘 and𝐺 is preserved.

Regard 𝐺𝑘 as a 𝐺𝑘
0
-space and 𝐺 as a 𝐺0-space. Thereby viewing the cosets as equivalence classes.

Define a metric 𝑑 on 𝐺∕𝐺0, by letting

𝑑([g], [g ′]) = inf
g∈[g],g′∈[g′]

𝑑𝐺(g , g ′).

In fact, compactness of 𝐺 ensures that the infimum is a minimum. It follows from [26], that 𝑑 is a
metric on 𝐺∕𝐺0. To avoid cumbersome notation, we have regarded the components of 𝐺𝑘 and 𝐺

as equivalence classes. Wewill show that for all large enough 𝑘, themap �̃�𝑘 ∶ 𝐺𝑘∕𝐺𝑘
0

→ (𝐺∕𝐺0, 𝑑)

is surjective. Let 𝜖 be theminimum of the distances between two different cosets in𝐺∕𝐺0. Since𝐺

is compact, 𝜖 > 0. Choose 𝑘 large enough so that 0 < 𝜖𝑘 < 𝜖. If g𝐺0 ∈ 𝐺∕𝐺0, then choose g𝑘 ∈ 𝐺𝑘

such that 𝑑𝐺(𝜃𝑘(g𝑘), g) ⩽ 𝜖𝑘. Then,

𝑑(�̃�𝑘(g𝑘𝐺𝑘
0 ), g𝐺0) ⩽ 𝜖𝑘.

Hence, �̃�𝑘(g𝑘𝐺𝑘
0
) = g𝐺0. Thus for all large 𝑘, the number of components of𝐺𝑘 and𝐺 is preserved.

Fix a large enough 𝑘 so that 𝐺𝑘 and 𝐺 have the same number of components. Then it follows that
we must have 𝜃𝑘(𝐺𝑘) = 𝐺. Thus, 𝜃𝑘 is an isomorphism of Lie groups for all large 𝑘 [25].
Now, define a 𝐺-action on each 𝑋𝑘 as follows. For g ∈ 𝐺, define for 𝑥𝑘 ∈ 𝑋𝑘, g ⋆ 𝑥𝑘 =

𝜃−1
𝑘

(g)(𝑥𝑘). Then, (𝑋𝑘, 𝐺) →𝑒𝐺𝐻 (𝑋, 𝐺) (we will generalize this argument below in 4.3). Conse-
quently for all large enough 𝑘, there exists an equivariant homeomorphism 𝜉𝑘 ∶ 𝑋𝑘 → 𝑋 [18,
Theorem 3.6]. Now for g𝑘 ∈ 𝐺𝑘, and 𝑥𝑘 ∈ 𝑋𝑘,

𝜉𝑘(g𝑘𝑥𝑘) = 𝜉𝑘(𝜃−1
𝑘

(𝜃𝑘(g𝑘))(𝑥𝑘)) = 𝜉𝑘(𝜃𝑘(g𝑘) ⋆ 𝑥𝑘) = 𝜃𝑘(g𝑘)𝜉𝑘(𝑥𝑘).

Let 𝜃∶ 𝐸𝐺𝑘 → 𝐸𝐺 denote the natural map induced by 𝜃𝑘. The desired homeomorphism is the
map Ψ∶ 𝐸𝐺𝑘 ×𝐺𝑘

𝑋𝑘 → 𝐸𝐺 ×𝐺 𝑋 that is defined by Ψ([𝑒, 𝑥𝑘]) = [𝜃(𝑒), 𝜉(𝑥𝑘)]. □

Remark 4.3. We can generalize the argument indicated above as follows: For a sufficiently large
𝑁, we may use the rank-nullity theorem to see that 𝜃𝑁 and 𝜃−1

𝑁+𝑖
𝜃𝑁+𝑖+1 for all 𝑖 ⩾ 0, defines an

inductive inverse limit �̃� = lim
←@@

�̃�𝑖 , where �̃�0 = 𝐺, �̃�𝑖 = 𝐺𝑁+𝑖−1 for 𝑖 ⩾ 1. Then from [14], �̃� is a
compact Lie group. For all 𝑘 ⩾ 𝑁, define a �̃� action on𝑋𝑘 and𝑋 by projecting in the obvious way.
Then, the distance between (𝑋𝑘, �̃�) and (𝑋, �̃�) goes to zero. Thus for sufficiently large 𝑘, (𝑋𝑘, �̃�)

and (𝑋, �̃�) are equivariantly homeomorphic. Hence, let Ψ∶ 𝑋𝑘 → 𝑋 be such a homeomorphism
(note,Ψ depends on 𝑘). For g𝑘 ∈ 𝐺𝑘 and 𝑥𝑘 ∈ 𝑋𝑘, it now follows thatΨ(g𝑘𝑥𝑘) = 𝜃𝑘(g𝑘)Ψ(𝑥𝑘). The
ideas of this argument are more general and the ideas apply to different contexts (for example, see
[7, proposition 3.6]).

 14692120, 2024, 8, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.13073 by T

est, W
iley O

nline L
ibrary on [02/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



STABILITY AND EQUIVARIANT GROMOV–HAUSDORFF CONVERGENCE 2595

Remark 4.4. Note that in the proof of Theorem A, it was crucial that the 𝐺𝑘 and 𝐺 are closed
subgroups of the respective isometry groups and thus, naturally define effective actions. We have
used this property in a number of places. First, and foremost, the results we used in [18, 19] are
for effective actions. Second, in order to show that the number of components of the groups 𝐺𝑘

and 𝐺 is eventually preserved we used the fact that the isometry groups can be metrized with
the uniform metric. Lastly, to invoke the result in [18], it was important to ensure that the ‘new’
𝐺-action on the𝑋𝑘 is effective. This follows from the fact that the actions of𝐺𝑘 and𝐺 are effective.

Once we assume positive curvature, the diameter restriction in the hypotheses of Theorem A
is no longer necessary. This is articulated more precisely by the following corollary.

Corollary 4.5. Let {𝑋𝑘}𝑘∈ℕ and𝑋 denote Alexandrov spaces with a positive uniform lower curvature
bound. Assume further that the dimension of each 𝑋𝑘 agrees with the dimension of 𝑋. If each 𝐺𝑘

is a m-dimensional closed subgroup of Isom(𝑋𝑘) and 𝐺 is an 𝑚-dimensional closed subgroup of
Isom(𝑋), if (𝑋𝑘, 𝐺𝑘) →𝑒𝐺𝐻 (𝑋, 𝐺) then for all sufficiently large 𝑘,𝐻∗

𝐺𝑘
(𝑋𝑘) ≅ 𝐻∗

𝐺
(𝑋).
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