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Abstract

1. Worldwide seagrass habitats are under severe anthropogenic threat. In the

United Kingdom (UK), the health of habitats of the widely distributed Zostera

species is particularly threatened by eutrophication that can lead to detrimental

macroalgae overgrowth. To manage and conserve seagrass habitats, effective

monitoring tools are required.

2. We use an off-the-shelf consumer-grade multispectral (RGB, red edge, and near-

infrared) camera mounted on an unoccupied aerial vehicle (UAV) to map an

intertidal multispecies seagrass environment in Lindisfarne National Nature

Reserve, Northumberland, UK.

3. Field surveys were undertaken of three seagrass areas, including those dominated

by Zostera noltii, Zostera marina and macroalgae. Using the Maximum Likelihood

Classifier (MLC), results indicated an overall accuracy (OA) between 84% and 91%

across classified habitat maps. As expected, the red edge and near-infrared bands

offered an advantage beyond RGB imagery to discriminate between the

vegetation types for accurate habitat mapping.

4. Our research provides a foundation for accurately mapping a complex intertidal

seagrass environment through the utilisation of an off-the-shelf multispectral

UAV. The study may aid the implementation and development of effective

monitoring programmes for the management of Zostera spp. decline and

macroalgae proliferation to prevent seagrass degradation and conserve these

valuable yet fragile ecosystems.
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habitat classification, intertidal mapping, macroalgae, multispectral UAV, remote sensing,
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1 | INTRODUCTION

Seagrass ecosystems globally are facing ongoing decline due to

increasing anthropogenic and natural impacts, such as nutrient input,

coastal development, destructive fishing practices and climate change

(Dunic et al., 2021; Turschwell et al., 2021; Waycott et al., 2009). An

estimated 30% of seagrass habitats worldwide have vanished since

the late nineteenth century, and at least 22 seagrass species are in
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decline (United Nations Environment Programme, UNEP, 2020).

Recent studies have raised particular concern about declines in

the widely distributed seagrass species, Zostera spp., along

the United Kingdom's (UK) coastlines (Jones & Unsworth, 2016). For

example, Green et al. (2021) showed that at least 39% of the UK's

seagrass habitat area has been lost since the 1980s and that this loss

is accelerating. The loss of Zostera spp. habitats can have a significant

impact on feeding grounds for internationally protected migratory

birds (e.g., Light-Bellied Brent Geese) (Clausen et al., 2012;

Ganter, 2000), loss of essential fish habitat for many commercially

important fish species (Bertelli & Unsworth, 2014; Polte &

Asmus, 2006), and reduced carbon sequestration (Gao et al., 2022;

Röhr et al., 2018; Zou et al., 2021). Hence, Zostera spp. habitats

support a much broader conservation agenda, as critical ecosystem

functions and the services they provide are being lost (Hughes

et al., 2009; Orth et al., 2006).

A particular threat faced by UK seagrasses is poor water quality

leading to eutrophication (i.e., nutrient enrichment from land) (Jones

et al., 2018; Jones & Unsworth, 2016; Maier et al., 2009). In turn, this

can encourage the proliferation of macroalgae, which is detrimental to

Zostera spp. due to overshading, smothering and, ultimately, the

suppression of seagrass growth (Burkholder et al., 2007; Cardoso

et al., 2004; Hauxwell et al., 2001). To better understand ecosystem

processes and dynamics of Zostera spp. habitats, effective monitoring

programmes are needed (Jones & Unsworth, 2016; Strachan

et al., 2022), particularly those that accurately assess spatiotemporal

changes in the presence and distribution of Zostera spp. and

opportunistic macroalgae (Hobley et al., 2021). Such information is

critical to the detection of algal cover and overgrowth and essential

for the development of management strategies to safeguard, restore

and prevent seagrass habitat degradation (Unsworth et al., 2022,

2019; Ventura et al., 2022).

While conventional in situ field methods are well established,

these are often expensive, time-consuming and lack accurate

spatiotemporal information. Optical remote sensing methods, in

comparison, have been demonstrated to be useful for the mapping

and monitoring of seagrass habitats cost-effectively, assessing large

areas rapidly, and with high repeatability (Hossain et al., 2015; Veettil

et al., 2020). In recent years, unoccupied aerial vehicles (UAV) have

gained increased attention for application in seagrass habitat mapping

and monitoring (e.g., Price et al., 2022; Ventura et al., 2018; Yang

et al., 2020). Their utilisation has been successful in intertidal (Duffy

et al., 2018; Yang et al., 2023) and subtidal (Nahirnick, Hunter,

et al., 2019; Nahirnick, Reshitnyk, et al., 2019; Prystay et al., 2023)

seagrass environments, since they offer affordable ways of acquiring

very high resolution images and fill important gaps in remote sensing

capability in temporally dynamic and complex environments with a

potential to revolutionise the toolbox of coastal managers (Bremner

et al., 2023; Doukari & Topouzelis, 2022).

Specific benefits of UAVs in comparison to other optical remote

sensing technology (e.g., satellite imagery) for monitoring programmes

include (1) very high spatial resolution, which increases the ability to

capture detailed features in imagery permitting identification of

seagrass species and other benthic organisms (Duffy et al., 2018;

James et al., 2020); (2) control of temporal resolution as appropriate

weather conditions for image acquisitions can be chosen; (3) coverage

of areas inaccessible on the ground; (4) relatively small, portable and

user-friendly; and (5) customised and repeatable flight planning is

possible as flight paths can be saved making data acquisition

reproducible to enable repetitive inventories, relevant to monitoring

programmes (Nahirnick, Hunter, et al., 2019; Nahirnick, Reshitnyk,

et al., 2019). To effectively map and monitor seagrass environments

that contain multiple vegetation taxa with similar spectral properties

(i.e., Zostera spp. and green macroalgae), higher spectral resolution

sensors are required. Such sensors may enable discrimination and

permit accurate habitat mapping (Davies et al., 2023).

The vulnerability of different seagrass species to threats and their

response to environmental changes can be different, such as varying

tolerance thresholds to temperature fluctuations and nutrient levels,

impacting survival to varying degrees (Grech et al., 2012; Kaldy, 2014;

la Nafie et al., 2012; Massa et al., 2009). Additionally, seagrass species

may differ in their provision of ecosystem services and functioning

such as efficiency in carbon storage (Postlethwaite et al., 2018; Sousa

et al., 2019), their suitability as a habitat for many threatened seagrass

dependent species and commercially important fish species (Bertelli &

Unsworth, 2014; Hughes et al., 2009). Therefore, management may

need to vary by species. To meet species-specific management and

conservation goals, accurate identification of species and spatial

distributions are required to enable coastal managers to make informed

decisions when prioritising areas for protection (Wilson et al., 2005).

In temperate seagrass meadows, most studies to date have used

consumer-grade UAVs with either limited spectral resolutions, for

example, simple red-green-blue (RGB) or five-band multispectral

cameras (RGB, red edge, and near-infrared). These have successfully

mapped monospecific seagrass habitats, with a focus on the presence/

absence and/or density of seagrass cover (Chand & Bollard, 2021;

Duffy et al., 2018; Martin et al., 2020; Svane et al., 2022), but few have

disaggregated more complex vegetative habitats (Hobley et al., 2021;

Tahara et al., 2022). For instance, Tahara et al. (2022) utilised RGB UAV

imagery for mapping co-occurring seagrass and algal species in an

intertidal seagrass habitat in Japan, while some other studies have also

used multispectral UAV cameras to discriminate between vegetation

taxa (i.e., seagrass and macroalgae) in temperate intertidal areas. Román

et al. (2021) used a MicaSense RedEdge-MX dual 10-band

multispectral camera to map the only presence of Zostera noltii in the

intertidal area and the seagrass species Cymodocea nodosa and green

macroalgae in the subtidal area (submerged). In contrast, Hobley et al.

(2021) used a MicaSense RedEdge 3 multispectral camera and

successfully mapped and discriminated algal species in a multispecies

intertidal seagrass environment, but no discrimination was made

between seagrass species. In addition, available studies have used

computationally intensive analysis (e.g., deep learning; Hobley

et al., 2021) or required a high number of spectral bands (up to 10) to

achieve accurate map outputs (Román et al., 2021). This requires

cameras that need to be custom mounted on the UAV, increasing

operational costs. With improving UAV technology, affordable off-the-
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shelf consumer-grade UAVs that are equipped with multispectral

cameras have recently become available, which may simplify logistics

and analysis and support management actions. However, their

application and efficacy in mapping complex heterogeneous intertidal

seagrass environments still require testing, to develop a foundation and

guidelines for coastal managers and effective conservation of seagrass

habitats.

Here, we propose using an off-the-shelf consumer grade UAV

equipped with a multispectral camera (Phantom 4 RTK multispectral)

to create habitat maps of highly mixed and complex intertidal

multispecies seagrass environment exposed at low tide in North East,

UK. We used a pixel-based classification method to evaluate the

ability of a five-band (RGB, red edge, and near-infrared) multispectral

camera to discriminate between Zostera spp. (Zostera noltii and

Zostera marina, respectively) and opportunistic green macroalgae on

three transects with varying benthic community composition.

Classification was validated using detailed field survey data. The

accuracies of classifications that used multispectral and RGB-only

data were compared, with a view to assessing the operational need

for multispectral imagery for seagrass mapping. We discuss field

logistics and the operational potential of UAV utilisation for intertidal

seagrass habitat monitoring, with a view to moving such methods

towards operational use.

2 | METHODS AND MATERIALS

2.1 | Field site

The study was performed in the Causeway area within the Lindisfarne

National Nature Reserve (LNNR), Northumberland, UK (Figure 1). The

field site is an intertidal mudflat and sandflat, which is exposed during

low tide and consists of sparse to dense Zostera spp. habitats. Two

seagrass species, Z. noltii and Z. marina, were present in the field.

Z. noltii is the dominant species and can form large dense meadows

across the site. Other benthic substrates such as sand, lugworm casts

F IGURE 1 (a) Map of the UK showing the location of Lindisfarne National Nature Reserve (LNNR) (red square), (b) LNNR (red boundary
outline) indicating the field survey area (white square) and (c) the flight transects surveyed in this study. Transect A, Zostera noltii dominated;
Transect B, Zostera marina dominated; Transect C, Macroalgae dominated.
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and a mixed complex of opportunistic green macroalgae such as

Enteromorpha (Ulva intestinalis; macroalgae hereafter) were also

present.

2.2 | Equipment specifications

A DJI Phantom 4 Multispectral Real-Time Kinematic (RTK) UAV was

used to perform flight missions. The UAV has a camera attached that

consists of five in-built 1/1.2900 CMOS monochrome sensors with an

image size of 1,600 � 1,300 pixels (2.02 MP) including the following

bands: blue (B: 450 nm ± 16 nm), green (G: 560 nm ± 16 nm), red (R:

650 nm ± 16 nm), red edge (RE: 730 nm ± 16 nm) and near-infrared

(NIR: 840 nm ± 26 nm). The aircraft includes a spectral sunlight sensor

to detect solar irradiance, which allows reflectance calibration of

images. Flight planning was conducted using the DJI Ground Station

Pro app (v. 2.0.16) that enabled pre-preparation of flight settings. A

Labsphere SRT-99-100 Spectralon Diffuse Reflectance Target

calibration panel was used for radiometric calibration. The panel was

calibrated, and the data were provided by the Natural Environment

Research Council Field Spectroscopy Facility (NERC FSF). Prior to

flights, images of the reflectance panel were taken with the UAV

camera. These images were then used in the imagery pre-processing

stage.

2.3 | UAV and ground-truth survey

Flight missions were conducted around seagrass peak biomass on

24 August 2021, during exposed low tide, to minimise the effect of

surface water. Three 100 m � 20 m transects (2.000 m2) were

surveyed, with each survey taking approximately 19 min flight time.

Images were captured at 10 m altitude with a 5.4 mm/pixel spatial

resolution, using a 70% side and fore overlap at an equal distance

interval within the 2D mode. An off-nadir angle, with a gimbal pitch of

�80� was used. The geographic position of the camera was

established using the fitted RTK GNSS corrected against a DJI D-RTK

2 base station service. The location of each transect was selected

based on species coverage and composition to capture widespread

heterogeneous vegetated areas. Transects constituting the three

different dominant vegetation types were then surveyed: Z. noltii

dominated (55�4003900N 1�5102900W), Z. marina dominated

(55�4003400N 1�5101900W) and macroalgae dominated (55�4003700N

1�5102100W) (Transects A–C, respectively, as we refer to them

hereafter) (Figure 1).

To train and validate UAV images, photographs of 1m2 ground

quadrats were taken immediately on the ground after flight missions.

In total, 20 quadrat photographs were taken at predefined regular

intervals every 10 m across two rows within the flight transect,

resulting in a total number of 60 quadrats across all transects

(Figure 2a). A smartphone with the Google Earth Pro app was used to

allow the field team to navigate to the coordinates of predefined

quadrat sampling points. To enable geolocation of quadrats for the

purpose of georeferencing in the analysis stage, GPS positions of the

north and south corners of each quadrat were taken using a Trimble

Catalyst receiver with the Trimble Network RTK Precision service

(±0.2 cm accuracy) (Figure 2b).

2.4 | Image pre-processing

Agisoft Metashape (v. 1.7.3) was used to create orthomosaics using

TIFF files acquired by the UAV. Prior to processing, the quality of

images was checked. The image quality assessment is scaled between

F IGURE 2 (a) Flight transect showing the predefined regular points for photoquadrats (n = 20) across a flight transect. (b) Image showing the
quadrat and a Trimble receiver to record the northern corner of the quadrat sample. (c) Photographs of a Zostera noltii, Zostera marina and
Macroalgae dominated quadrats.
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0 and 1 (unitless), whereby the quality assessment value of

1 corresponds to the highest possible image quality. Images were

considered based on an image quality value of >0.5, to facilitate the

removal of blurred imagery (Agisoft, 2021; Over et al., 2021). To

calibrate reflectance, panel calibration data provided by NERC FSF were

resampled to the sensor spectral bands by assigning calibrated

reflectance to the five band wavelengths of UAV images using the

Calibrate Reflectance tool. Prior to conducting the reflectance

calibration, calibration images were masked so that only the reflectance

panel area was marked. Sun sensor data were also used within the

calibration to account for the Sun's position and irradiance and improve

the accuracy of the reflectance calibration process. Photo alignment

and sparse cloud generation were performed using the highest accuracy

setting, a key point limit of 40.000 and a zero-tie point limit.

Afterwards, low-quality tie points within the generated sparse cloud

point were selected and removed by filtering by reconstruction

uncertainty, projection uncertainty and projection error. Error was

reduced by iteratively selecting and deleting points and re-optimising

the camera after each removal. This procedure was performed manually

until the self-reported standard error of unit weight (SEUW) was close

to 1 (Over et al., 2021). Afterwards, a dense cloud was created, which

was followed by the generation of a digital elevation model (DEM). The

DEM was used to create an orthomosaic for each individual band. Pixel

reflectance values ranging from 0–1 were generated by dividing the

measured reflectance value of each band by normalisation factor, in this

case 32,768, the middle of the available range of 16-bit integers (e.g.,

B1/32768).

2.5 | Training data and image classification

Quadrat photographs were aligned with the orthomosaic, using

ArcGIS (v.10.6.1) to aid in the assignment of habitat classes.

Afterwards, based on visual assessment of photoquadrats, regions

of interest (ROIs/pixels) were created randomly within each quadrat

area, using ENVI (v.5.6.2). Where certain benthic classes were not

found sufficiently within the quadrat sampling areas, random

samples were created outside of the quadrat. Pixels were assigned

to the following benthic classes: Z. noltii, Z. marina, macroalgae, bare

ground, lugworm casts, decomposing vegetation, anoxic sediment,

F IGURE 3 Images of benthic substrates initially identified in quadrat photographs before aggregation of benthic classes in further analysis.
(a) Zostera noltii, (b) Zostera marina, (c) macroalgae, (d) bare ground, (e) lugworm casts, (f) shells, (g) anoxic sediment and (h) decomposing
vegetation. Arrows highlight examples of categories including dark material/shadow and sunglint/shells.
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shadow (i.e., from leaves or part of lugworm casts), sunglint and

shells (Figure 3). The primary interest of this study was in mapping

the vegetation species. Therefore, benthic substrates other than

vegetation (i.e., bare ground, lugworm casts, decomposing

vegetation, anoxic sediment, shadow, sunglint and shells) were

compiled into two classes with similar spectral reflectance. Anoxic

sediment, shadow and dark areas within the decomposing

vegetation substrate were compiled into the class, dark material/

shadow, respectively. Sunglint, shells and white areas within the

decomposing vegetation substrate were compiled into the class,

sunglint/shells, respectively (Figure 3e–h). This resulted in a total of

six benthic classes: Z. noltii, Z. marina, macroalgae, bare ground, dark

material/shadow and sunglint/shells. The data were then split into

two sets of 50% for each: 50% for training the classification

algorithm and the remaining 50% for validation of classified map

output.

The Jeffries-Matusita (J-M) distance measure, a widely used

measure for spectral discrimination of vegetation types (Schmidt &

Skidmore, 2003), was applied using ENVI (v.5.6.2) to assess the

statistical separation between created ground-truth classes

(Richards, 2013). The J-M index value ranges between 0 and 2,

whereby a 0 value indicates a complete overlap of spectral signatures

and a value of 2 a complete separation of spectral signatures between

two classes. To evaluate the strength of separation between classes,

the following values were used: poor (0.0 < x < 1.0), moderate

(1.0 < x < 1.9) and good separability (1.9 < x < 2.0).

The Maximum Likelihood Classifier (MLC), a supervised pixel-

based classification method that uses spectral information to assign

pixels to habitat classes, was employed in ENVI (v.5.6.2) for benthic

habitat classification. The classifier is based on the assumption that

each training class follows a normal distribution. It considers the

mean and covariance of the training class signature when assigning

F IGURE 4 Spectral signatures of generated
training data including all benthic classes across

the multispectral bands for (a) Transect A (Zostera
noltii dominated), (b) Transect B (Zostera marina
dominated) and (c) Transect C (Macroalgae
dominated). Boxplots show the median value
(horizontal line), the interquartile range
representing the dispersion of the data (size of the
box), the upper and lower quartiles and outliers.
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pixels to each class. The selection of this classifier was based on the

dataset meeting normality assumptions and its proven success and

reliability of application in seagrass habitats often outperforming

other classifiers (e.g., Román et al., 2021). MLC is also widely

available as a classifier in multiple commercial and open-source

geospatial and image processing software, increasing its availability

for operational applications. To evaluate the operational need for

accurate multi-species habitat mapping, a comparison of the accuracy

classification between an RGB and multispectral imagery was made.

Here, the MLCs were trained on three bands (RGB) and five bands

(RGB, red edge, and near-infrared) for each transect separately.

2.6 | Accuracy assessment

A confusion matrix was generated to assess the accuracy of the

classified habitat maps (Congalton & Green, 2008). The overall

accuracy (OA) gives information about the percentage of the total

number of pixels contained within the ground truth area that have

been correctly classified by the classification. User's accuracy (UA) and

producer's accuracy (PA) then permit the assessment of the accuracy

of each individual class. The confusion matrix outputs will be used to

identify the nature of misclassifications between habitat classes.

3 | RESULTS

3.1 | Training data separability

While the spectral separation between all recorded benthic substrates

was least within the blue band, benthic classes, including bare ground,

sunglint/shells and dark material/shadow, appeared to be separable

from vegetation across nearly all bands. However, the multispectral

sensor showed the least separability between Z. noltii, Z. marina and

macroalgae across the red-green-blue (RGB) bands and a distinct

separation between these vegetation types within the red edge (RE)

and near-infrared (NIR) bands (Figure 4). When considering all spectral

bands to investigate spectral separability of the training data of

benthic classes, Jeffries–Matusita's separability values indicated the

lowest pair separation between the two seagrass species, Z. noltii and

Z. marina, among all vegetation species, for all three transects

(Table 1). Respectively, Transects A and B showed lower separability

(J-M value: 0.9 and 1.0, respectively), compared to Transect C (J-M

value: 1.3). Where macroalgae was present in the image, that is,

Transects B and C, results indicated a moderate pair separation

between the two seagrass species and macroalgae (J-M value: ranging

between 1.4 and 1.7). All pairwise separation values between the

vegetation species and the other benthic categories indicated

moderate to good separability (Table 1).

3.2 | Maximum Likelihood classification and
accuracy assessment

Using the Maximum Likelihood Classifier (MLC), detailed benthic maps

were produced (Figure 5) with higher overall accuracy (OA) when

considering all five spectral bands (multispectral image) in comparison to

RGB only bands (Table 2). The lowest accuracy was found for the

Transect A classified map with an OA of 84% for the multispectral

image and 57% OA for the RGB image. Transects B and C maps

indicated very high OA for the multispectral image (91% and 89%,

respectively) and lower OA for the RGB image (63% and 72%,

TABLE 1 Results of Jeffries–Matusita index, indicating spectral pair separability based on five spectral bands of benthic classes for Transect A
(Zostera noltii dominated), Transect B (Zostera marina dominated) and Transect C (Macroalgae dominated). Where a class was not present in a
transect to conduct pair separability, these were marked with NA, not available.

Benthic pair classes Transect A Transect B Transect C

Z. noltii Z. marina 0.9 1 1.3

Z. noltii macroalgae NA 1.7 1.4

Z. marina macroalgae NA 1.6 1.7

Z. noltii dark material/shadow 1.4 1.7 1.7

macroalgae dark material/shadow NA 1.8 1.9

bare ground dark material/shadow 1.5 1.9 2

Z. marina dark material/shadow 1.6 1.9 1.7

bare ground sunglint/shells 1.8 2 2

Z. noltii bare ground 1.8 2 2

Z. marina bare ground 1.9 2 2

Z. marina sunglint/shells 1.9 2 2

sunglint/shells dark material/shadow 1.9 1.9 2

Z. noltii sunglint/shells 2 2 2

macroalgae bare ground NA 2 2

macroalgae sunglint/shells NA 2 2
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respectively) (Table 2). Considering the multispectral images only, class

level accuracy for each transect map indicated a general pattern of

lower PA and UA for all vegetation classes (Z. noltii, Z. marina and

Macroalgae, respectively) in comparison to non-vegetation classes (bare

ground, sunglint/shells and dark material/shadow, respectively).

Vegetation classes indicated PA and UA ranging between 73% and 99%,

and non-vegetation classes indicated PA and UA ranging between 79%

and 100% in all transect maps (Table 2), except for distinctly lower UA

values for the macroalgae class (UA 54%) in the Transect B map, which

may be due to small sample size because of its sparse representation in

the studied transect area, and PA for dark material/shadows (64%) in

the Transect A map, due to small validation sample size.

Similar to J-M results for training data, the post-classification

accuracy assessment results indicated notably higher misclassification

among vegetation classes in comparison to all other benthic classes,

across all classified transect maps. The largest misclassification among

habitat classes was found between Z. noltii and Z. marina. In

Transect A, 24.7% proportion of sampled pixels of Z. noltii was

incorrectly classified as Z. marina class, and 6.7% of the class Z. marina

was incorrectly classified as Z. noltii. Transect B indicated a lower

misclassification of sampled pixels of Z. noltii as Z. marina (13%

proportion of sampled pixels), and only 2% of Z. marina pixels were

incorrectly classified as Z. noltii class. Finally, Transect C indicated

14.8% of sampled pixels of Z. noltii as Z. marina, and similarly, 14.7%

F IGURE 5 (a) Raw multispectral UAV orthomosaic are displayed using the red, green and blue colour composite; (b) classified map using
Maximum Likelihood Classifier (MLC); and (c) a close-up example for each transect survey. Transect A, Zostera noltii dominated; Transect B,
Zostera marina dominated; Transect C, Macroalgae dominated.

8 of 14 ELMA ET AL.
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of Z. marina pixels were incorrectly classified as Z. noltii.

Misclassification between macroalgae and Zostera spp. was notably

lower in transects where macroalgae was present (Transects B and C,

respectively). In both transects, between 4% to 9% of macroalgae

pixels were incorrectly classified as Z. noltii or Z. marina, whereas up

to 10% of Z. noltii pixels and 2% Z. marina pixels were incorrectly

classified as macroalgae. Other notable misclassification was found

between Z. noltii and dark material/shadow with 28% of Z. noltii pixels

were incorrectly classed dark material/shadow within Transect A. All

other benthic class combinations across all transect maps showed low

misclassification cover ranging between 0% and 7.5%.

4 | DISCUSSION

4.1 | Habitat classification

This study aimed to evaluate a consumer-grade UAV multispectral

camera for mapping a multispecies intertidal temperate seagrass

environment. The objective was to discriminate between macroalgae

and different Zostera spp., to capture accurate species-specific

distribution patterns. This is essential for coastal managers to

effectively address mitigating strategies for the prevention of seagrass

species decline and the growth of detrimental macroalgae. Findings

show that despite the complex environment and similar spectral

properties of Zostera spp. and green macroalgae, the five-band

multispectral UAV camera and the MLC method can yield maps with

overall accuracies (OA) ranging between 84% and 91%. When

considering only the RGB bands, the OA was reduced by up to 28%

across all transects. Likewise, PA and UA associated with vegetation

classes declined substantially, highlighting the significant advantage

that the red edge and near-infrared bands can provide to the effective

mapping of an intertidal multispecies environment, increasing

accuracy discriminating particularly between Zostera spp. and

macroalgae. Although this provides the key to an operationally viable

method for monitoring multispecies intertidal seagrass habitats, it is

important to note that accuracies may decrease in subtidal areas or in

areas where standing water is present due to absorption of light in

the red edge and near-infrared wavelengths. However, the observed

high OA here also aligns with prior studies that used 5–10 band

multispectral UAVs to map intertidal seagrass-macroalgae

environments. For example, in less complex intertidal seagrass-

macroalgae environments, James et al. (2020) and Román et al. (2021)

demonstrated an OA of 98.6% and 90.3%, respectively, using the

MLC method. Hobley et al. (2021) used a more sophisticated analysis,

a deep learning method (Convolutional Neural Networks; FCNNs), in

a similarly complex intertidal seagrass-macroalgae environment in

LNNR and achieved an average accuracy of 88.4%, although without

discriminating separate seagrass species. However, in comparison to

the parametric method used in this study, recent studies have

TABLE 2 Post-classification analysis showing the accuracy assessment outputs of the Maximum Likelihood classification map for (a) the
multispectral image and (b) the RGB image. Transect A, Zostera noltii dominated; Transect B, Zostera marina dominated; Transect C, Macroalgae
dominated.

(a)
Transect A Transect B Transect C

Overall accuracy
(OA)

84% 91% 89%

Habitat classes

Producer's

accuracy (%)

User's accuracy

(%)

Producer's

accuracy (%)

User's accuracy

(%)

Producer's

accuracy (%)

User's accuracy

(%)

Zostera noltii 90 80 84 85 76 80

Zostera marina 73 84 82 87 80 73

macroalgae - - 87 54 99 91

bare ground 90 92 100 99 100 98

dark material/

shadow

64 79 92 99 90 96

sunglint/shells 95 84 99 97 100 93

(b)
Transect A Transect B Transect C

Overall accuracy

(OA)
57% 63% 72%

Habitat classes
Producer's
accuracy (%)

User's accuracy
(%)

Producer's
accuracy (%)

User's accuracy
(%)

Producer's
accuracy (%)

User's accuracy
(%)

Zostera noltii 61 68 56 61 40 56

Zostera marina 37 54 57 68 54 65

macroalgae - - 37 9 59 71

bare ground 86 55 77 72 93 70

dark material/

shadow

33 46 68 86 81 76

sunglint/shells 67 39 69 87 94 85
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demonstrated the efficacy of non-parametric classifiers, such as

random forest (RF) and support vector machine (SVM), achieving

notably higher accuracies (up to 98%) in similar seagrass

environments (Chand & Bollard, 2022; Price et al., 2022), and as these

approaches become more widely accessible in open source software,

they have potential to provide improved operational mapping.

The three vegetation types, Zostera spp. and macroalgae were

spectrally distinct across all investigated transects. This distinction

may be attributed to their differences in leaf pigmentation enabling

the discrimination between the different vegetation types (Davies

et al., 2023; Fyfe, 2003). While Z. noltii and Z. marina have similar leaf

pigmentation, opportunistic macroalgae (Ulva intestinalis), with its

brighter pigmentation in green colour, indicated greater separability in

comparison to that between Z. noltii and Z. marina. Notably, the peak

reflectance of all vegetation types and a maximum separation in the

spectral reflectance between Zostera spp. and macroalgae occurred in

the green, red edge and near-infrared wavelength bands. These

observations conform with generally observed spectral reflectance

patterns in healthy plants that are known to absorb radiation in the

blue and red wavelengths (around 450 and 670 nm, respectively) and

reflect radiation in the green (around 530 nm), red edge and near-

infrared wavelengths (around 730 and 840 nm, respectively) (Chand &

Bollard, 2021; Davies et al., 2023; Schmidt & Skidmore, 2003).

Although this study showed low spectral separability between Z. noltii

and Z. marina, and higher misclassification between these two species,

their separability could still be observed in the red edge and near-

infrared bands. These results also align with Fyfe (2003) who showed

that seagrass species could most easily be discriminated between 700

and 900 nm, and Davies et al. (2023), who demonstrated a steep

reflectance signature from �680 nm onwards for intertidal seagrass

and algae. However, results contradict another study conducted by

Román et al. (2021), who showed that the peak reflectance of Z. noltii,

in an intertidal coastal area in Cadiz, Spain, was highest between

500 and 700 nm and declined from 700 nm. This difference may

primarily stem from the absorption of near-infrared wavelengths by

water in subtidal areas (Román et al., 2021; Tait et al., 2019), whereas

for the intertidal environments in this study, the absence of a water

column results in peak spectral reflectance in the near-infrared

wavelengths. Other disparities between studies may be related to

differences in spectral responses of seagrass due to, for example, the

influence of epiphytes and epibionts (Fyfe, 2003; Hwang et al., 2019)

or sediment background (Bargain et al., 2012).

A further advantage in creating accurate habitat maps from UAVs

may be related to the ultra-high spatial resolution that the camera

offers. The high resolution minimises mixed pixels (i.e., the

representation of more than one class within a pixel). This may not

only have aided in discriminating between the vegetation types

(beyond the addition of red edge and near-infrared bands alone) but

also reduced classification errors between vegetation types and non-

vegetative classes. For example, when Z. noltii is found in sparse

density, their thin leaves lie on the bare ground and could easily be

misclassified with other benthic classes within the pixel when using a

lower spatial resolution imagery, but this issue is avoidable if a pixel

contains Z. noltii features entirely. Finally, high spatial resolution

imagery enables the identification of seagrass habitats to species

level, which is critical to coastal managers for the monitoring of

biodiversity and species distribution of seagrass.

4.2 | Limitations, challenges and recommendations

Although this study indicates high potential for using multispectral UAV

imagery for mapping a complex multispecies intertidal seagrass

environment, some limitations and challenges need to be considered

from the planning stage and prior to flight missions of data collection,

during field surveys and in the interpretation phases: (1) despite

successful creation of multispecies seagrass habitat maps, results

showed that some misclassification among vegetation is still likely and

may impact the accuracy of species distribution maps, especially

between the two Zostera spp. investigated in this study, and this may

be of relevance for management applications when focusing on

species-specific targeted protection or management; (2) the level of

‘wetness’ in the field site may vary according to tidal stage and weather

conditions (e.g., sunny and cloudy), which may influence spectral

signatures and make repeatability for comparisons challenging. To

maximise comparable results, ideally similar tidal stages and weather

conditions should be considered; (3) unfavourable environmental

conditions can pose numerous challenges during field surveys and

hamper logistics. In cases where the field site of interest cannot be

surveyed outside the mudflat areas, such as in this study, similar to

traditional field surveys, UAV surveys can remain challenging in terms

of accessing areas with soft sediments on foot, with potential hazards

of getting stuck in soft bottom areas; (4) protected site specific

restrictions, for example, prohibition of surveys during the period of

nesting and breeding birds, and foraging seasons, need to be considered

to minimise impact on protected features, to avoid the potential

collision of UAV with birds and disturbance to nesting birds; (5) given

the restricted and limited periods of time during low tide available to

conduct the surveys and that all the necessary conditions (e.g., wind

speed and weather) to fly a UAV must be met within a particular time

slot, a well-planned manageable operation is recommended for

maximum efficiency and safety; (6) it is important to consider that large-

scale mapping can be restricted due to short battery autonomy and

Visual Line Of Sight (VLOS) restrictions, on flight altitude and distance

(Nahirnick, Hunter, et al., 2019; Walker et al., 2023). In the UK, for

example, the current flight limit is typically restricted to 120 m altitude

and within VLOS, with further qualifications required when flying a

UAV beyond these limits. To overcome this challenge, it is

recommended to either have additional batteries on the field site or

increase battery capacity by increasing flight altitude at the cost of

lower spatial resolution; (7) other technological issues that may be

encountered in the field can be related to GNSS accuracy. For example,

GNSS signals can be blocked or weakened through cloud coverage and

result in inaccurate positioning of ground-truth surveys and thus may

impact the post-processing and map results and should be considered;

(8) with improving technology and more cost-effective imaging tools

developing, the methods and map accuracies in a spectrally complex

intertidal environment could be enhanced by utilising UAV-based

10 of 14 ELMA ET AL.
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hyperspectral sensors. For example, hyperspectral sensors mounted on

a UAV can capture data across a wide range of wavelengths, enabling

enhanced discrimination between spectrally similar vegetation classes

and thus giving potential accuracy improvements (Banerjee et al., 2020;

Rossiter et al., 2020). Incorporating additional data types, such as UAV

laser scanning data, providing vegetation structure and topographic

information, may also offer benefits for classification and for

interpretation and modelling of vegetation distribution, and this remains

little explored in this application area; (9) the utilisation of expensive

software, including ArcGIS and ENVI, may limit accessibility for coastal

managers due to budget constraints. To promote the reproducibility

and cost-effectiveness of the production of habitat maps, open-source

software such as QGIS and programming languages including R and

Python may offer more affordable alternatives (Rocchini et al., 2017).

4.3 | Benefits for management

A major drawback of UAV-based habitat mapping for

management and conservation applications lies in the relatively small

areas UAVs are able to map, particularly in comparison to satellites.

To derive maximum benefit from the utilisation of UAVs for effective

seagrass mapping and monitoring, combining UAV strengths with the

greater spatial coverage of satellite imagery may allow scalability in

analysis and enable seagrass conservation efforts to be more effective

across larger spatial scales and over time. For example, proposed

methodologies could support effective management by overcoming

expensive, time-consuming and exhaustive quadrat sampling in

challenging mudflat environments by using UAV-derived classified

transects as samples to assess the condition of seagrass habitats

(Figure 5). UAV-derived maps can also be utilised as ground-truth for

large-scale habitat mapping, using freely available satellite imagery to

create broad-scale habitat maps for presence/absence and density

maps (Carpenter et al., 2022; Lewis et al., 2023; Makri et al., 2018).

Moreover, multispectral UAV-derived habitat maps could be

developed as an integral part of multitemporal seagrass habitat

monitoring, allowing for greater reproducibility and repeatability of

habitat mapping (Prystay et al., 2023; Ventura et al., 2022). Finally,

UAV-derived habitat maps may provide a foundation to develop

effective communication tools used for decision and policy for

seagrass habitat protection.

5 | CONCLUSIONS

This study demonstrates the viability of using an off-the-shelf

multispectral UAV to accurately map a complex intertidal seagrass

environment. While a traditional RGB UAV has been widely employed

for seagrass habitat mapping, our findings show the advantages of a

multispectral UAV for enhanced accuracy in mapping fine-scale,

multispecies, seagrass-macroalgae habitats. The ultra-high image

resolution and additional red edge and near-infrared bands enabled

discrimination between vegetation classes at species level and,

ultimately, the creation of fine-scale habitat maps. Using a five-band

camera and a user-friendly classifier, similar accuracy results can be

achieved with a study that has, for example, applied more

computationally intensive methods (e.g., Hobley et al., 2021).

However, the additional number of spectral bands comes with some

trade-offs, including increased data complexity associated with data

processing, analysis, computational demands and required expertise in

handling multispectral datasets. Moreover, the challenging

environment of the mudflats requires careful fieldwork planning and

consideration of optimal flight missions to ensure consistent

environmental conditions during imagery acquisition for reliable and

comparable results for an effective monitoring programme. Despite

these challenges, we demonstrate the potential of a cost-effective

approach in creating accurate multispecies intertidal seagrass habitat

maps, which may be operationally more accessible to coastal

managers. The study may provide a foundation for further

investigation to aid coastal managers to develop effective monitoring

programmes by integrating multispectral UAV-derived habitat maps in

monitoring programmes. The methodology of this study can be

utilised to implement targeted management practices to identify areas

of concern and potential threats to effectively manage Zostera spp.

decline and detrimental macroalgae growth.
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