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Abstract
A solution for 3D Helmholtz acoustic problems is introduced based on an indirect boundary element method (indirect 
BEM) coupled with isogeometric analysis (IGA). The novelty of this work arises from using virtual surface sources placed 
directly on the scatterer boundaries, producing robust results. These virtual surface sources are discretized by the same Non-
Uniform Rational B-Splines (NURBS) approximating the scatterer CAD model. This allows modeling of general irregular 
geometries. The proposed solution has the same features of BEM approaches, which do not need any domain discretization 
or truncation boundaries at the far-field. It shows an additional merit by arranging the linear system of equations directly 
depending on a single coefficient matrix, consuming less computational time compared to other BEM methods. A Greville 
abscissae collocation scheme is proposed with offsets at C0-continuities. This collocation scheme allows for easy evaluation 
for both free-terms and normals at the collocation points. The performance of the proposed solution is discussed on 3D 
numerical exterior problems and compared against other BEM methods. Then, the practical interior muffler problem with 
internal extended thin tubes is studied and the obtained results are compared against other numerical methods in addition to 
the available experimental data, showing the capability of the proposed solution in handling thin-walled geometries.

Keywords  3D · Acoustics · Indirect BEM · Collocation · IGA

1  Introduction

Adequate modeling of 3D geometries is usually a cumber-
some process in computational mechanics while dealing 
with real and practical applications. One of the most recent 
solutions to this problem is isogeometric analysis (IGA) 
[1], where exact conic sections and complex geometries 
can be adopted. The strength of IGA arises from its abil-
ity of using high order approximations. The nature of IGA 
allows linking the computer-aided design (CAD) model of 
the geometry with the numerical model used for the analysis, 
in which both models are approximated using the same basis 
functions. In the previous decade, Non-Uniform Rational 
B-Splines, or briefly NURBS, are considered as the most 
common and used IGA basis functions. NURBS are able 

to reduce the pollution errors produced by other numerical 
methods. Finer meshes can be obtained by applying an easy 
knot insertion refinement to NURBS. A different refinement 
by degree elevation can be applied to NURBS increasing 
the spline order. In both refinement cases, IGA is able to 
reduce the computational cost by employing less degrees 
of freedom (DOFs) compared to other numerical methods, 
such as standard finite element method (FEM) [2]. IGA was 
utilized in several engineering applications, showing the 
foregoing features. Among these applications are: shells 
[3], wave propagation problems [4], biomedical engineer-
ing [5, 6], piezoelectric materials [7], etc. Moreover, IGA 
is coupled with boundary element method (BEM) yielding 
IGABEM with the same nature of BEM of parameterizing 
only the boundaries without any domain discretization [8]. 
This reduces the problem dimensionality by one. The per-
formance of IGABEM was checked in many applications, 
in which it was found out that, it surpasses standard BEM 
[9]. Various applications benefit from the characteristics of 
IGABEM, such as: elasto-static problems [10], acoustics 
[11], fluids [12], etc.
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This paper is devoted for the acoustic wave propagation 
problem based on the time harmonic equation of Helmholtz 
in the frequency domain. This can be applied to practical 
engineering fields or research aspects, such as: communica-
tion systems, ultrasonic devices, noise control, biomedical 
applications, seismology, damage control, etc. However, 
only simple cases can be treated by closed form solutions 
[13]. Therefore, the proper technique for real advanced cases 
is to approximate the solution by other numerical methods. 
The most suitable methods to approximate the wave propa-
gation problems are those that belong to the boundary-type 
approaches, such as: standard BEM [14], IGABEM [15], 
extended IGABEM [16], method of fundamental solutions 
(MFS) [17] and isogeometric indirect BEM [18]. These 
approaches are preferable since they do not need any domain 
discretization. Furthermore, they fulfill the Sommerfeld 
radiation condition [19] directly without any approxima-
tion to the truncation boundary at the far-field essential to 
capture the infinite domain of exterior acoustic problems. 
Nevertheless, domain-type approaches have also consider-
able contributions in the acoustic field, such as: FEM [20], 
Galerkin/least-squares FEM [21] and IGA [4].

BEM is introduced in different forms. The most famous 
forms are the direct formulations, such as: the conven-
tional BEM [22], extended BEM [16], dual BEM [23] 
and Burton-Miller method [24], where the main equation 
contains both physical variables creating two coefficient 
matrices. Another efficient solution is that one related to 
the family of indirect BEM approaches, where the collo-
cation is executed based on the available known physical 
variable (boundary condition) creating a single coefficient 
matrix used directly to initiate the linear system of equa-
tions. One of these methods is the method of fundamental 
solutions (MFS) [25–29], in which a linear combination 
of the effect of virtual discrete point sources is considered 
based on the governing fundamental solution with no inte-
gration efforts. The virtual sources are distributed outside 
the computational domain in order to cancel the free-terms 
and avoid the singularities corresponding to coinciding the 
collocation points with the virtual point sources. Never-
theless, MFS suffers from a non-uniqueness problem and 
needs intensive investigations in order to discover the best 
position and distribution of the point sources producing 
stable results [17, 30, 31]. Another research work utilized 
virtual continuous line sources placed as a circle outside 
the domain instead of the discrete point sources, but with 
no solution to the non-uniqueness problem [32]. Many 
research works tried to achieve the unique solution by 
placing the sources on the boundaries [33–38]. However, 
they could deal only with simple geometries where they 
could cancel the singularity. Another work could avoid 
the singularity problem by converting the point sources 
to area-distributed sources integrated analytically for 2D 

problems [39]. This can be extended for 3D problems by 
using volume-distributed sources. The most complete 
work that produces robust results for general 2D geom-
etries and avoids singularities is that one adopting virtual 
continuous line sources discretized by NURBS [18].

This manuscript aims to solve 3D Helmholtz time har-
monic problems using indirect boundary element method 
(indirect BEM) coupled with isogeometric analysis (IGA), 
forming isogeometric indirect BEM (IGAinBEM). IGAin-
BEM is based on placing virtual surface sources directly 
on scatterer boundaries with the same shape of the scat-
terer. These virtual sources are approximated using the same 
NURBS basis function used to parameterize the scatterer 
CAD model. The boundary value problem of the Helmholtz 
equation is approximated by employing a collocation scheme 
with offsets at C0-continuities. The performance of IGAin-
BEM is discussed using different exterior acoustic problems 
in addition to the practical muffler problem with extended 
internal thin tubes, in which the obtained results are com-
pared against other numerical methods.

A remark to be highlighted here is that, the proposed solu-
tion is an extension work to the 2D isogeometric solution 
in [18] based on the original indirect BEM in [14], which 
uses virtual sources governed by the fundamental solution. 
This method is entirely different from another method with 
a close name "Variational Indirect BEM" [40–44], which 
creates two opposite spaces and adds the two corresponding 
integral equations together in order to solve then the vari-
ational forms with a symmetric system of equations.

The manuscript is organized as follows: a brief descrip-
tion for the Helmholtz equation is presented in Sect. 2. Then, 
the solution of the Helmholtz equation using the indirect 
boundary element method is explained in Sect. 3. This solu-
tion is coupled with isogeometric analysis in Sect. 4. Sec-
tion 5 includes the numerical examples verifying the pro-
posed solution. Finally, the derived conclusions are written 
in Sect. 6.

2 � The boundary value problem of Helmholtz 
time harmonic equation

The wave propagation problem of Helmholtz is explained 
by Fig. 1, where an incident wave is scattered by a sound 
scatterer embedded in an isotropic homogeneous acoustic 
domain Ω . The boundary of the scatterer Γ is designated in 
most cases by three non-intersecting boundary conditions 
(BCs): Dirichlet Γp , Neumann Γv and Robin Γr boundary 
conditions, while Γ = Γp ∪ Γv ∪ Γr . The Helmholtz equa-
tion as a time harmonic equation is written in the form of 
a boundary value problem (BVP) that aims to find out the 
acoustic pressure u as follows [15]:
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where △ denotes to the Laplace operator. k refers to the 
wavenumber. k is written in a relation to the wavelength 
� as � = 2�∕k . i is the imaginary unit. f, g1 , g2 and g3 are 
prescribed functions, in which f is associated with the sound 
source term, while g1 , g2 and g3 correspond to the defined 
boundaries. n refers to the unit normal pointing outside the 
domain Ω.

Another condition is defined at infinity in the case of exte-
rior acoustic problems to capture the unbounded domains, 
which is the Sommerfeld radiation condition [19]. This con-
dition truncates all potential reflections related to spurious 
acoustic waves transferring from the far-field ( Γ∞ ). It is writ-
ten for 3D problems as follows:

where the distance r is taken from the origin.

3 � Indirect BEM solution depending 
on virtual surface sources

The basic idea of this solution is inspired from the method 
of fundamental solutions (MFS) described in [28]. In that 
method, virtual discrete point sources q are distributed out-
side the domain and the BVP is weakened by collocating on 
the scatterer boundary at points p using the available BCs: 

(1)

△ u + k2u = f in Ω

u = g1 on Γp

�u

�n
= g2 on Γv

�u

�n
− iku = g3 on Γr

(2)lim
r→∞

r
(
�u

�r
− iku

)
= 0

the acoustic pressure u or its normal derivative �u
�n

 written 
with the following linear combinations:

in which Ns denotes the number of the discrete point sources. 
Xs(q) refers to the unknown amplitude associated with each 
point source q . U∗(p, q) is the fundamental solution for the 
3D Helmholtz acoustic governing equation, taking into 
account the influence of the point sources q on the bound-
ary points p . Both the fundamental solution and its normal 
derivative at the point of interest p are formulated as follows:

in which r = |p − q| , and

where x = {x, y, z} refers to the point coordinates. Equation 
(3) can be applied also at any field point ( p).

In this solution, the virtual point sources q are positioned 
outside the acoustic domain to avoid all singularity problems 
associated with collocating on or near the point sources q . 
Nevertheless, another problem appears, which is the non-
uniqueness solution due to the positioning of the virtual point 
sources, and this requires extensive investigations to find out 
the optimal positions producing the correct results.

In order to overcome these problems, a solution was pro-
posed in [18] for 2D acoustic problems extending MFS by 
using virtual continuous line sources discretized by NURBS 
and positioned directly on the scatterer boundary. Placing the 
sources on the boundary could achieve the uniqueness solution 
and produce robust results, while using continuous sources 
discretized by NURBS could handle the singularity problems. 
The final form of the acoustic pressure u and its normal deriva-
tive �u

�n
 were written in [18] following the general case in [14] 

as follows:

where the discretized unknown amplitude Xs(q) (by total 
number N� of shape functions �l(q) and corresponding nodal 
unknowns xl ) is written as follows:

(3)

u(p) =

Ns∑

s=1

U∗(p, q)Xs(q)

�u

�n
(p) =

Ns∑

s=1

�U∗(p, q)

�n(p)
Xs(q)

(4)
U∗(p, q) =

eikr

4�r
�U∗(p, q)

�n(p)
= −

eikr

4�r2
(1 − ikr)

�r

�n(p)

(5)
�r

�n(p)
= −

x(q) − x(p)

r
n(p)

(6)
u(p) = ∫Γ

U
∗(p, q)X

s
(q)dΓ(q), p, q ∈ Γ

�u

�n
(p) = ∫Γ

�U∗(p, q)

�n(p)
X
s
(q)dΓ(q) + c(p)X

s
(p), p, q ∈ Γ

Scatterer

ΩΓ

n
uinc

Γ∞

Fig. 1   Helmholtz acoustic problem
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Some remarks are summarized for this solution as follows: 

1.	 This solution can be considered for 3D problems with 
the same expression of Eq. (6), where the boundary Γ is 
considered as the surface of the scatterer.

2.	 The normal direction is predicted only at the collocation 
point p.

3.	 Since the virtual surface sources are placed on the 
boundary Γ , the free term c(p) associated with the nor-
mal derivative �u

�n
 appears due to the Cauchy Principal 

Value when collocating on the boundary Γ as explained 
in [45]. In this work, c(p) equals 0.5 as a standard value 
according to [14, 45], since the collocation is performed 
on smooth surfaces as will be clarified in the next sec-
tion.

4.	 The collocation scheme in the next section could avoid 
the singularity of order O(1∕r) existing in the fundamen-
tal solution of Eq. (4) and turn it into weakly singular 
integrals, which can be treated by applying the integra-
tion in polar coordinates reducing the order of singular-
ity by one as described in [46], by a standard technique 
such as Telles transformation method [47] as suggested 
in [48] or by more Gauss quadrature points as proposed 
in [49]. The normal derivative of the fundamental solu-
tion has a singularity of order O(1∕r2) multiplied by �r

�n
 . 

This leads to a reduced singularity of order O(1∕r).
5.	 The Sommerfeld radiation condition mentioned in 

Eq. (2) is in content with the proposed solution without 
modeling any truncation boundaries at Γ∞ , similar to 
other boundary element methods.

4 � IGAinBEM mathematical expression

In following subsections, a brief description is presented 
for indirect BEM coupled with isogeometric analysis 
(IGA), forming isogeometric indirect BEM (IGAinBEM). 
The mathematical expression of Eq. (6) is considered here 
as well, while the unknown amplitude Xs is discretized by 
NURBS.

4.1 � NURBS

In BEM, 2D problems are modeled in a 1D parametric space 
� ∈ [0, 1] , where NURBS are defined using a knot vector: 
Ξ = {�1 = 0,… , �i,… , �n+p+1 = 1} with number of basis 
functions n, knot index i and polynomial degree p. The knot 
vector is arranged with a non-decreasing set of real numbers. 

(7)Xs(q) =

N�∑

l=1

�l(q)xl

The ith B-spline function of pth-degree Ni,p(�) assigned for 
the knot vector is written as a recursive formula as follows 
[1, 50]:

and for p ≥ 1

For 3D problems, the definitions explained above are extended 
to the 2D parametric space (�, �) ∈ [0, 1] × [0, 1] , introduc-
ing two knot vectors: Ξ = {�1 = 0,… , �i,… , �n+p+1 = 1} 
and Υ = {�1 = 0,… , �j,… , �m+q+1 = 1} . Thus, NURBS 
are defined by the tensor product of two B-spline functions 
Ni,p(�) and Nj,q(�) as the following:

in which wij refers to the weight coincided with the control 
point Pij . The NURBS surface is parameterized using the 
following form:

Similarly, the unknown amplitude Xs(�, �) is discretized 
using NURBS according to the following formula:

in which xij refers to the associated control variable.

4.2 � Collocation scheme with offset at C0

‑continuities

The collocation is performed in this work based on the Gre-
ville abscissae with offsets at C0-continuities following [49, 
51]. First, the following n × m total collocation points �̂a and 
�̂b are generated:

Hence, the number of collocation points equals the number 
of unknown control variables.

(8)Ni,0(𝜉) =

{
1, 𝜉i ≤ 𝜉 < 𝜉i+1
0, otherwise

(9)Ni,p(�) =
� − �i

�i+p − �i
Ni,p−1(�) +

�i+p+1 − �

�i+p+1 − �i+1
Ni+1,p−1(�)

(10)
Rij(�, �) =

Ni,p(�)Nj,q(�)wij

n∑

i=1

m∑

j=1

N
i,p
(�)N

j,q
(�)w

ij

(11)S(�, �) =

n∑

i=1

m∑

j=1

Rij(�, �)Pij

(12)Xs(�, �) =

n∑

i=1

m∑

j=1

Rij(�, �)xij

(13)

�̂a =
�a+1 + �a+2 +⋯ + �a+p

p
, a = 1, 2,… , n

�̂b =
�b+1 + �b+2 +⋯ + �b+q

q
, b = 1, 2,… ,m
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Then, collocation on sharp corners ( C0-continuities) is 
avoided by introducing discontinuous NURBS and corre-
sponding discontinuous amplitudes ( C−1-discontinuities). 
This is achieved by increasing the corresponding knot 
multiplicity in the knot vector. Consequently, the attached 
control points are repeated. Another step is associated with 
these procedures, which is increasing the number of col-
location points as well. Applying Eq. (13) on the updated 
knot vectors leads to repeated collocation points at C−1

-discontinuity. After that, the following equations are used 
to separate those points by introducing an offset �:

Moreover, Eq. (14) is used to shift both the first and last col-
location points in each knot vector.

An example in Fig. 2 is clarifying the proposed col-
location scheme. The example is written with the two 
knot  vectors :  Ξ = {0, 0, 0, 1∕3, 2∕3, 2∕3, 1, 1, 1} and 
Υ = {0, 0, 0, 1∕3, 2∕3, 2∕3, 1, 1, 1} in the original con-
tinuous form ( C0-continuity). Then, the two knot vec-
tors are modified to achieve the C−1-discontinuity as 
fo l l ows :  Ξ = {0, 0, 0, 1∕3, 2∕3, 2∕3, 2∕3, 1, 1, 1} a n d 
Υ = {0, 0, 0, 1∕3, 2∕3, 2∕3, 2∕3, 1, 1, 1} , in which NURBS 
are defined with polynomials degree 2.

The free-term c(p) in Eq. (6) is calculated in general 
depending on the geometry and corner angles, which is 
very complicated while collocating at sharp corners ( C0

-continuities). The strength of the proposed collocation 
scheme is to avoid any collocation point at corners by 
shifting these points with an offset � , so that the colloca-
tion is performed on smooth surfaces and thus c(p) equals 
only the standard value (0.5) without any calculations. It 

(14)
�𝜉a = �𝜉a + 𝛼(�𝜉a+1 − �𝜉a), and

�𝜉a = �𝜉a − 𝛼(�𝜉a − �𝜉a−1), 0 < 𝛼 < 1

provides also easy prediction for the normal direction at 
the collocation point p of the same equation.

Furthermore, the collocation scheme can overcome the 
singularity of order O(1∕r) existing in the fundamental solu-
tion of Eq. (4), since the collocation points are shifted away 
from �i and �i+1 . This converts these singular integrals into 
weakly singular integrals. A further discussion is illustrated 
in the numerical examples in Sect. 5.1 for the methods which 
can treat this weakly-singular integrals, such as: Telles trans-
formation method [47] and the integration in polar coordi-
nates [46].

The offset � is taken as 0.05 in all examples. This value 
is chosen not so small that would produce a near singularity 
while integrating over the neighbor elements, and not so 
large that would reduce the accuracy.

4.3 � IGAinBEM

NURBS surface S(�, �) and the unknown amplitude of 
Eq. (11) and Eq. (12), respectively, are re-written after being 
mapped from the global indices ij to a local index A for each 
element discretized by total number N = (p + 1) × (q + 1) of 
NURBS basis functions as follows:

in which PA and xA refer to the associated mapped control 
variables.

In the framework of isogeometric analysis, the virtual 
surface sources are placed-directly and identically—on 
the scatterer surface, where they are discretized into Ne 

(15)

S(�, �) =

N∑

A=1

RA(�, �)PA

Xs(�, �) =

N∑

A=1

RA(�, �)xA

Fig. 2   An example illustrating 
the collocation scheme with 
offsets. The original collocation 
points are in orange while the 
shifted collocation points are 
in green
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non-overlapping elements. Each element e is written in a 
knot span/interval [�e1 , �e1+1] × [�e2 , �e2+1] in the parametric 
space. The acoustic pressure u and its normal derivative �u

�n
 

are updated by substituting Eq. (15) into Eq. (6). Then, n × m 
total equations are evaluated using the available BCs on the 
collocation points (�c, �c) defined on the discretized elements 
as follows:

where |Je(�, �)| denotes the Jacobian used in integration pur-
poses to transform the physical space to a parametric space. 
The knot indices e1 and e2 correspond to the first and second 
knot vectors, respectively, for each element e.

The implementation of the proposed method is sim-
pler compared to other BEM methods. At each colloca-
tion point (�c, �c) , an equation is written based on the two 
equations in Eq. (16) and fulfilling the available BC at this 
point. In most cases, the known BC (the left hand side of 
Eq. (16)) is the acoustic pressure u, its normal derivative 
�u

�n
 or a mixed function. NURBS, Jacobians, normals and 

other kernels under the integration in Eq. (16) are calcu-
lated directly based on the source and collocation points, 
and the distance between these two points, while only the 
amplitudes xA are set as the unknowns. A total of n × m 
equations are written and then are arranged straightfor-
wardly to the following linear system of equations:

in which A refers to the coefficient matrix including the inte-
grations associated to the unknown amplitudes xA ordered in 
the vector x . The vector b includes the known BCs. IGAin-
BEM shows an advantage, as it constructs the linear system 
of equations directly using a single coefficient matrix, rather 
than using two matrices and then re-arranging them to the 
final form in Eq. (17) as implemented in conventional BEM. 
After evaluating the unknown amplitudes in the vector x , 
the acoustic pressure values at any point inside the acoustic 
domain can be computed easily using again Eq. (16).

In each numerical example in Sect. 5, the equation 
which constructs the system matrix is written based on 

(16)

u(p(�c, �c)) =

Ne∑

e=1

N∑

A=1

[
∫

�e1+1

�e1

∫
�e2+1

�e2

U∗(p(�c, �c), q(�, �))RA(�, �)|Je(�, �)|d�d�
]
xA

�u

�n
(p(�c, �c)) =

Ne∑

e=1

N∑

A=1

[
∫

�e1+1

�e1

∫
�e2+1

�e2

�U∗(p(�c, �c), q(�, �))

�n(p(�c, �c))
RA(�, �)|Je(�, �)|d�d�

]
xA

+ c(�c, �c)

N∑

A=1

RA(�c, �c)xA

(17)Ax = b

the corresponding available BC. Please refer to Eq. (20) 
and Eq. (28).

The integration in this work is performed according to 
the following steps: 

1.	 Each knot span/interval, extracted from the two knot 
vectors and written as: [�e1 , �e1+1] or [�e2 , �e2+1] , is 
divided to 4 sub-divisions. This yields 16 sub-divisions 
in each [�e1 , �e1+1] × [�e2 , �e2+1].

2.	 The integration is implemented on each sub-division 
employing 6 × 6 Gauss quadrature points.

5 � Numerical results

The following numerical examples discuss the performance 
of IGAinBEM in solving 3D acoustic problems. First, a con-
vergence analysis is implemented on the plane wave scat-
tering problem by a rigid sphere with a comparison against 
other boundary element methods: the conventional boundary 
integral equation (CBIE) and Burton-Miller method (BM) 
[49]. Then, the results of two irregular rigid shapes are 
examined. Finally, the muffler problem as a practical interior 
acoustic problem is checked and compared against different 
numerical methods in addition to experimental data.

5.1 � Convergence analysis on the plane wave 
scattering problem by a rigid sphere

The convergence analysis is conducted on a rigid sphere 
with a radius a = 1.0 m as an exterior plane wave scatter-
ing acoustic problem. The impedance medium is air with 
density � = 1.2 kg/m3 and sound speed c = 343 m/s. The 
sphere is subject to an incident wave governed by the fol-
lowing equation:

in which A denotes the wave amplitude, which is taken in 
this example as 1.0. |�| = 1 refers to propagation direction 
in a vector form. In this example, the direction is considered 
in the x-axis ( d = {1, 0, 0} ). The total acoustic pressure in 
an exact form is written according to the following equation 
[52]:

where r refers to the distance to the concerned point P from 
the origin. The angle � is defined between the axis drawn 
from the origin to the point P and the incident wave direction 

(18)uinc(p) = Aeik d⋅p

(19)

uex(r, �) = Aeik d⋅p −

∞∑

m=0

im(2m + 1)

j
�

m
(ka)

h
�

m
(ka)

hm(kr)Pm(cos�) , r ≥ a
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as illustrated in Fig. 3. hm and jm refer to the spherical Han-
kel and Bessel functions of the first kind, respectively. Pm 
denotes the Legendre polynomial. Functions and polynomi-
als are defined of order m, which is set in this example as 
10 to adequately perform the convergence analysis for the 
discussed frequencies. (�) is written for all derivatives with 
respect to their concerned arguments.

The numerical model of the sphere shown in 
Fig.  4 is approximated using NURBS polyno-
mial degree 2 for each knot direction for the two 
k n o t  v e c t o r s :  Ξ = {0, 0, 0, 0.5, 0.5, 1, 1, 1}  a n d 
Υ = {0, 0, 0, 0.25, 0.25, 0.5, 0.5, 0.75, 0.75, 1, 1, 1} . The cor-
responding control points are presented in Fig. 5.

IGAinBEM numerical solution in this example is exe-
cuted as follows: 

1.	 Since the sphere is rigid, the linear system of equation 
is constructed based on the normal derivative �u

�n
 at all 

collocation points �(��,��) on the sphere boundary/sur-
face as an available boundary condition according to the 
following equation: 

 in which the solution of this system matrix is to find out 
the unknowns xA as clarified in Sect. 4.3.

2.	 The total acoustic pressure at any point p is computed 
as the aggregate of the incident and scattered waves as 
follows: 

For the convergence analysis, two relative errors are 
evaluated:

(20)

�u

�n
(p(�c, �c)) =

Ne∑

e=1

N∑

A=1

[
∫

�e1+1

�e1

∫
�e2+1

�e2

�U∗(p(�c, �c), q(�, �))

�n(p(�c, �c))
RA(�, �)|Je(�, �)|d�d�

]
xA

+ c(�c, �c)

N∑

A=1

RA(�c, �c)xA = −ikd ⋅ n(p)A eikd⋅p

(21)

u(p) = Aeik d⋅p +

Ne∑

e=1

N∑

A=1

[
∫

�e1+1

�e1

∫
�e2+1

�e2

U∗(p, q(�, �))RA(�, �)|Je(�, �)|d�d�
]
xA

r

P

a

Rigid Sphere

θ

Plane Wave

Fig. 3   Plane wave scattering problem by a rigid sphere

Fig. 4   The rigid sphere

Fig. 5   NURBS model and control points grid for the rigid sphere
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1- On-Surface Relative L2 Error Norm (eL2)
The relative L2 error norm ( eL2 ) is verified on the sphere 

surface as follows:

where unum refers to the numerical solution of IGAinBEM 
obtained from Eq. (21) while uex is the exact solution in 
Eq. (19). Only six Gauss quadrature points are required for 
each knot span to perform the integration in Eq. (22). Note 
that, Telles transformation method [47] is proposed in this 
scheme to overcome the weakly singularities which appear 
when any integration point of Eq. (22) coincides with the 
integration points of Eq. (21).

2- Off-Surface Relative Error (eD)
Another relative error eD is checked on N = 200 discrete 

points inside the acoustic domain. The points are uniformly 
distributed on a circle with a radius of 1.50 m and centered 
at the sphere origin in the X–Y plane where Z = 0 . eD is 
written as follows:

It is worth mentioning that, the integration is performed 
smoothly in the Off-Surface scheme apart from the colloca-
tion points. Therefore, the obtained errors from this scheme 
is less than those obtained from the On-Surface scheme.

Another remark that needs to be highlighted in this exam-
ple is that, the proposed solution does not include hyper-
singular integrals. Thus, the implementation is simpler 
compared to other research works utilizing IGABEM, which 
carry out a special treatment on NURBS distorted triangle 
elements containing the sphere poles when the collocation is 
performed on the pole point [46, 53]. Other research works 
need to implement this treatment in order to overcome the 
the nearly singular integral through �-direction correspond-
ing to singularity subtraction technique (SST), which is not 
the case in the proposed solution.

The variation of the two proposed relative errors ( eL2 and 
eD ) computed by IGAinBEM is explained in Fig. 6 in terms 
of total DOFs. The plots are presented in a comparison with 
previously published results in [49] obtained by isogeo-
metric Burton-Miller method (IGABM) and isogeometric 
conventional boundary integral equation (IGACBIE). The 
studied frequencies are: 50, 100, 150, 200, 250 and 300 Hz 
corresponding to wavenumbers k = 0.92, 1.83, 2.75, 3.66, 
4.58 and 5.50, respectively. It can be seen that, Off-Surface 

(22)

eL2 ≡ ||uex − unum||
||uex||

=

√∫
Γ
(unum − uex)T (unum − uex)dΓ

∫
Γ
uexTuexdΓ

(23)

eD ≡ ��uex − unum��
��uex��

=

���������

N∑
i=1

(unum
i

− uex
i
)T (unum

i
− uex

i
)

N∑
i=1

uex
i

Tuex
i

errors are less than those related to On-Surface scheme for 
all methods. Moreover, IGAinBEM produces more accurate 
results for all frequencies in the case of Off-Surface scheme. 
Meanwhile, IGAinBEM shows also more accurate results 
in the case of On-Surface scheme, but only when the com-
parison is performed using moderate DOFs. Then, the more 
DOFs are used, the less accuracy is obtained (compared to 
other methods) in which the results take the shape of a pla-
teau curve due to the rapid increase of the weakly singularity 
corresponding to the collocation on the boundary.

The treatment of the weakly singular integrals is dis-
cussed in Fig. 7 for the frequency case shown in Fig. 6b, 
where the On-Surface errors ( eL2 ) obtained by IGAinBEM 
are computed while performing two alternatives: Telles 
transformation method [47] and the integration in polar 
coordinates which reduces the order of singularity by one 
[46]. The same number of Gauss points are used for both 
alternatives. It can be seen that, both alternatives produce 
close results where the problem of rapid increase of the 
weakly-singularity exists, with some preferences to Telles 
transformation. Thus, all other examples in this manuscript 
showing the On-Surface errors ( eL2 ) or any surface values 
are treated by Telles transformation.

All On-Surface results obtained by IGAinBEM are com-
piled in Fig. 8, while the Off-Surface results are compiled 
in Fig. 9, showing the effect of increasing the frequency on 
the gained accuracy.

Another comparison is demonstrated in Fig. 10 for both 
eL2 and eD in terms of total DOFs per wavelength in each 
coordinate direction related to each knot vector. This com-
parison includes the methods and frequencies discussed in 
the previous plots in Fig. 6. The same conclusion is noticed 
here as well, as IGAinBEM produces the least errors in 
the case of Off-Surface scheme and also in the case of On-
Surface scheme while using only moderate DOFs (5 DOFs/
wavelength).

Although IGAinBEM shows very good performance 
compared to other BEM methods, it could not overcome 
the fictitious eigenfrequency problem in exterior acoustic 
problem, showing the same behavior of IGACBIE. Only 
IGABM could handle this problem. This can be seen from 
the instabilities corresponding to the two frequencies 171.5 
and 343 Hz corresponding to wavenumbers k = � and 2� , 
respectively, which appear in Figs. 11 and 12, where both 
eL2 and eD are plotted against different frequencies using 16 
DOFs/wavelength for each direction.

The condition number of IGAinBEM system matrix is 
studied in Fig. 13 and compared against other BEM meth-
ods. IGA is performed for all methods using 10 DOFs/
wavelength for each direction. It can be seen that, IGACBIE 
shows the least condition number which is about 10, sim-
ilar to what was recorded in [54]. The condition number 
of IGAinBEM is in the range of 36–50 which is not much 
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higher than that of IGACBIE. IGABM has the biggest con-
dition number in this comparison. However, all condition 
numbers in this comparison are low and the system matrices 
are considered well conditioned which are solved efficiently 
without any special solvers. This is different from the cases 
discussed in [15, 55] related to extended IGABEM (XIBEM) 
for 2D problems, where the condition number reached 1016 
and the system matrix was solved by a more efficient solver 
such as the singular value decomposition (SVD). Similar to 
the comparison in Figs. 11 and 12, it can be seen here as well 
that, IGABM shows stable results while IGAinBEM and 
IGACBIE suffer from the fictitious eigenfrequency problem 
at frequencies 171.5 and 343 Hz corresponding to wavenum-
bers k=� and 2� , respectively.

Figures 14,15, 16, 17, 18, 19, 20, 21, 22, 23, 2425 dem-
onstrate the real and imaginary parts as well as the absolute 
errors w.r.t the exact solution for the acoustic pressure values 
obtained by IGAinBEM. These values are plotted on the 
sphere surface and inside the acoustic domain in the x–y 
plane where z = 0 . The studied frequencies are 50, 100, 150, 
200, 250 and 300 Hz, where the sphere is modeled with 128, 
200, 288, 392, 512 and 648 DOFs, respectively. It is shown 
that, IGAinBEM produces very low errors.

The CPU time is computed for the relative error eD 
obtained by IGAinBEM, IGABM and IGACBIE in Fig. 26 
versus the total DOFs. All numerical models are compiled 
using Intel Fortran Compiler (Beta) supporting Fortran 
95 and getting benefit from OpenMP 4.5 parallelization 

Fig. 6   Relative error in terms 
of total DOFs for different 
frequencies
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(a) Frequency = 50 Hz
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(b) Frequency = 100 Hz
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(c) Frequency = 150 Hz
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(d) Frequency = 200 Hz
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features. It can be noticed that, both IGAinBEM and 
IGACBIE require less CPU time than IGABM because of 
their less integration efforts. It is shown also that, IGAin-
BEM has an advantage over IGACBIE as it is slightly 

faster due to constructing the system matrix directly with 
only one coefficient matrix. Furthermore, it is clear from 
Fig. 26 that, in the three compared methods, the runtime 
scaling with the problem size NDOF follows the quadratic 
complexity nature of BEM of order O(N2

DOF
 ) due to their 

dense system matrices.
It is concluded that, IGAinBEM is a fast alternative with 

accurate results, but it needs some experience to avoid the 
frequencies causing the eigenfrequency problem.

5.2 � Plane wave scattering problems by rigid 
irregular shapes

In this section, two rigid irregular shapes produced by the opti-
mization analysis performed in Ref.[49] are tested to calculate 
the total acoustic pressure using IGAinBEM and the results are 
compared against those obtained from IGABM and IGACBIE, 
in order to show the ability of the proposed method to handle 
general 3D geometries.

5.2.1 � An optimized rigid sphere

The problem explained in Sect. 5.1 is discussed in this sec-
tion as well with the same incident wave direction, but for the 
optimized irregular sphere produced by ref.[49] and shown 
in Fig. 27. This shape is modeled using NURBS polynomial 
degree 2 and the corresponding control points illustrated in 
Fig. 28. The two knot vectors are written similar to the previ-
ous example. The total real and imaginary parts of the acoustic 
pressure values are computed on the surface of the irregular 
shape. The used frequency is 100 Hz (k = 1.83) . The surface 
values are presented in Fig. 29 for all comparative methods: 
IGAinBEM, IGABM and IGACBIE using total 288 DOFs. It 
can be seen that, all methods give similar results.

5.2.2 � An optimized rigid vase

The optimized rigid vase produced by Ref.  [49], see 
Fig. 30, is considered in this example following the fea-
tures and medium explained in Sect.  5.1, but with an 
incident wave in the y-axis ( d = {0, 1, 0} ). The irreg-
ular vase shape is modeled with NURBS polyno-
mial degree 2 and two knot vectors written as follows: 
Ξ = {0, 0, 0, 1∕12, 2∕12, 3∕12, 4∕12, 5∕12, 6∕12, 7∕12,
9∕12, 10∕12, 11∕12, 1, 1, 1}  a n d 
Υ = {0, 0, 0, 0.25, 0.25, 0.5, 0.5, 0.75, 0.75, 1, 1, 1} .  F i g -
ure 31 shows the NURBS model with its corresponding con-
trol points. Figure 32 displays the domain values in x–y plane 
where z = 6 m in terms of the total real and imaginary parts for 
all comparative methods using 1736 total DOFs. The studied 
frequency is 200 Hz (k = 3.66) . As shown, the three methods 
produce the same values.
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Fig. 7   On-Surface errors ( e
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 ) for the case in Fig. 6b while perform-

ing Telles transformation and polar integration
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5.3 � Muffler with extended inlet/outlet thin tubes

The muffler problem with extended inlet/outlet thin tubes 
is considered in this section as a practical acoustic prob-
lem. The problem is defined as shown in Fig. 33, where 
the sound waves go through the muffler inlet Γin into the 
acoustic domain surrounded by the muffler rigid body 
Γrigid . Then, these waves exit the acoustic domain through 
the muffler outlet Γout . The muffler is divided to a main 

chamber with a length L and diameter D, and two smaller 
internal extended tubes with lengths L1 & L2 and diameters 
D1 & D2 . The thickness t of these thin tubes is clarified 
separately in a small detail in Fig. 34. The muffler is an 
interior acoustic problem, where the unit normal vector n 
points outside the muffler domain.

The BVP in Eq. (1) is written for the muffler problem as 
follows [56]:

Fig. 10   Relative error in terms 
of DOFs per wavelength in each 
coordinate direction for differ-
ent frequencies
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The muffler efficiency is measured by computing the Trans-
mission Loss (TL), which is the ratio of the incident to the 
transmitted sound powers. Several methods were proposed in 
the literature to calculate TL, such as: the three-point method 

(24)△u + k2u = 0 in Ω

[57], the four-pole transfer matrix [56] or the improved four-
pole transfer matrix [58]. In this work, the improved four-
pole transfer matrix is chosen as a fast method that could 
obtain the physical variables entering and exiting the muf-
fler easily when it is coupled with BEM [49], following the 
linear acoustic four-pole network:

in which u refers to the acoustic sound pressure of Eq. (24). 
v denotes the normal particle velocity. u and v are indexed 
with in and out to get along with the inlet and outlet ( Γin and 
Γout ), respectively. A negative sign appears in Eq. (25) as it 
is added to vout to consider the opposite normal directions on 
the muffler inlet and outlet. The parameters A∗ , B∗ , C∗ and 
D∗ are computed using two BCs: 

1.	 vin =1 and vout=0, so that, A∗ = uin and C∗ = uout.
2.	 vin =0 and vout=-1, so that, B∗ = uin and D∗ = uout.

Consequently, the four-pole parameters are produced as 
follows:

yielding the TL in (dB):

where Sin∕Sout refers to the ratio of the inlet tube to the outlet 
tube areas. This term is neglected in this work since the two 
tubes are taken the same.

In this example, the linear system of equation consider-
ing the two explained BCs on the inlet and outlet tubes in 
addition to the rigid muffler body is constructed based on 
the normal derivative �u

�n
 at the collocation points �(��,��) . 

This can be written as a function of the normal particle 
velocity (v) as follows:

(25)
[
uin
uout

]
=

[
A∗ B∗

C∗ D∗

][
vin

−vout

]

(26)

A = A∗∕C∗

B = B∗ − A∗D∗∕C∗

C = 1∕C∗

D = −D∗∕C∗

(27)

TL = 20 log10

[
1

2
|A + B∕(�c) + C�c + D|

]
+ 10 log10 Sin∕Sout

(28)

�u

�n
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Ne∑
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N∑

A=1
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where � denotes the angular frequency and is computed as 
� = kc . The sound speed c is considered in this example as 
346.1 m/s in the medium of air of density � = 1.1839 kg/
m3 . v equals 0 on all rigid parts of the muffler. Equation 
(28) is solved twice fulfilling the two explained BCs while 

keeping the same coefficient matrix (the summation of the 
two terms in the left hand side of Eq. (28)). This gives the 
improved four-pole transfer matrix a preference in reduc-
ing the computational cost. The first stage of the problem is 
accomplished after obtaining two vectors of the unknowns 

Fig. 14   Surface values for frequency of 50 Hz

Fig. 15   Domain values in x–y plane where z = 0 for frequency of 50 Hz

Fig. 16   Surface values for frequency of 100 Hz
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xA corresponding to the two BCs. Then, the acoustic pressure 
values required for the four-pole parameters are evaluated 
at the points p on the muffler inlet and outlet according to:

(29)
u(p) =

Ne
∑

e=1

N
∑

A=1

[

∫

�e1+1

�e1

∫

�e2+1

�e2
U∗(p, q(�, �))RA(�, �)|Je(�, �)|d�d�

]

xA

Fig. 17   Domain values in x–y plane where z = 0 for frequency of 100 Hz

Fig. 18   Surface values for frequency of 150 Hz

Fig. 19   Domain values in x–y plane where z = 0 for frequency of 150 Hz
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The muffler in Fig.  35 is studied, where the length of 
the main chamber is L = 28.23 cm and its diameter 
is D = 15.32 cm. Inlet and outlet tubes are taken the 
same with diameter D1 = D2 = 4.86 cm, small thick-
ness t = 0.2 cm and outside length 8.0 cm, while the 
internal extended lengths are taken differently: L1 = 

13.1 cm and L2 = 6.1 cm. The muffler is modeled with 
NURBS polynomial degree 2 with two knot vectors: 
Ξ = {0, 0, 0, 1∕13, 1∕13, 2∕13, 2∕13, 3∕13, 3∕13, 4∕13,

4∕13, 5∕13, 5∕13, 6∕13, 6∕13, 7∕13, 7∕13, 8∕13, 8∕13, 9∕

13, 9∕13, 10∕13, 10∕13, 11∕13, 11∕13, 12∕13, 12∕13, 1, 1, 1} 

Fig. 20   Surface values for frequency of 200 Hz

Fig. 21   Domain values in x–y plane where z = 0 for frequency of 200 Hz

Fig. 22   Surface values for frequency of 250 Hz
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and Υ = {0, 0, 0, 0.25, 0.25, 0.5, 0.5, 0.75, 0.75, 1, 1, 1} . The 
NURBS model is presented in Fig. 36.

The TL is evaluated by IGAinBEM and plotted in 
Fig. 37 as a spectrum in terms of different frequencies and 

compared against the values obtained by the different fol-
lowing methods: 

1.	 IGABM with the improved four-pole transfer matrix 
[24].

Fig. 23   Domain values in x–y plane where z = 0 for frequency of 250 Hz

Fig. 24   Surface values for frequency of 300 Hz

Fig. 25   Domain values in x–y plane where z = 0 for frequency of 300 Hz
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2.	 Galerkin-FEM (GFEM) employing quadratic axi-
symmetric analysis with triangular elements and the 
improved four-pole transfer matrix [59].

3.	 IGA with 3D models utilizing NURBS polynomial 
degree 3 and a mathematical formulation for the TL 
[60].

4.	 Standard BEM with quadratic shape functions and the 
four-pole transfer matrix [61].

5.	 Experimental data [61].

It can be seen that, IGAinBEM is in excellent agreement 
with IGABM and IGA, while there are some differences in 
the resonance zone in the cases of higher frequencies with 

comparison to GFEM. The experimental data are in agree-
ment with the fore-mentioned methods as the noticed differ-
ences are related to the measurement errors. Standard BEM, 
which neglected the small thickness of the extended tubes, 
could not achieve the same accuracy for the cases of higher 
frequencies. This proves the capability of IGAinBEM and 
IGABM in treating such problems with small thicknesses 
due to the presence of the normal direction in the system 
matrix for collocation points at the opposite sides of any 
thin tube/wall, which is not the case in standard BEM. This 
appears also in fracture mechanics while handling crack sur-
faces with dual BEM [23].

6 � Conclusions

An indirect boundary element solution coupled with isoge-
ometric analysis—forming isogeometric indirect BEM 
(IGAinBEM)—is proposed in this paper to solve 3D Helm-
holtz acoustic problems. The solution extends the method of 
fundamental solutions (MFS)—that utilizes discrete point 
sources—and introduces instead virtual surface sources 
placed directly on the scatterer boundary taking identi-
cally the scatterer geometry. This produces robust results 
and avoids the non-uniqueness problems associated with 
MFS that employs extensive investigation to detect the best 
positions for the point sources outside the domain giving 
stable results. The virtual surface sources are approximated 
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Fig. 26   CPU time for the relative error e
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Fig. 27   The rigid irregular sphere produced by ref.[49]

Fig. 28   NURBS model and control points grid for the rigid irregular 
sphere
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Fig. 29   Surface values for the irregular sphere shape produced by Ref. [49] for a frequency of 100 Hz

Fig. 30   The rigid irregular vase produced by Ref. [49]

Fig. 31   NURBS model and control points grid for the rigid irregular 
vase
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with the same NURBS parameterizing the scatterer CAD 
model. IGAinBEM can handle general 3D geometries prop-
erly giving comparable results to other numerical methods. 
IGAinBEM requires less computational cost, since it con-
structs only one coefficient matrix arranged directly for the 
linear system of equations. This reduces the consumed time 
compared to other boundary element methods, such as the 
conventional BEM that constructs two coefficient matrices.

Similar to common boundary element methods, IGAin-
BEM does not need any domain discretization. Moreover, 
it can satisfy the Sommerfeld radiation condition directly 
with no far-field truncation boundaries. These two features 
support IGAinBEM over other domain-type methods such 
as finite element method.

The collocation scheme followed in this work is the 
famous Greville abscissae but with offsets at C0-continui-
ties. This scheme turns all singular integrals of order O(1∕r) 
into weakly singular integrals treated easily by more Gauss 
quadrature points, polar integration or Telles transformation 
method. It allows also the collocation points to be positioned 
in smooth surface. This leads to easy prediction of the nor-
mals at these collocation points without any complex cal-
culations. Furthermore, all free-terms could be considered 
directly as 0.5. Most boundary element methods coupled 
with isogeometric analysis perform special treatment when 
they deal with highly distorted elements, such as the NURBS 
triangle elements containing the sphere poles. Nevertheless, 

Fig. 32   Domain values in the x–y plane at z = 6 m for the irregular vase produced by Ref. [49] for a frequency of 200 Hz
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this is not the case in this work, as the proposed collocation 
scheme could avoid this problem.

3D general geometries are studied by IGAinBEM, 
where comparisons are conducted against other BEM 
methods showing comparable results. Another practical 
example concerning the muffler problem with extended 
internal thin tubes is discussed and the results are plotted 
against other numerical methods and the experimental data 
as well, where the validity of the proposed technique is 
presented to handle such thin-walled geometries. It can 
be concluded that, IGAinBEM is a fast and convenient 
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Fig. 33   The Muffler problem with extended inlet/outlet thin tubes

t

Fig. 34   Detail: internal tube thickness

Fig. 35   Outer and internal views for a muffler with extended inlet/
outlet thin tubes

Fig. 36   NURBS model and the corresponding control points grid for 
a muffler with extended inlet/outlet thin tubes
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Fig. 37   Comparison between TL values obtained by different meth-
ods for a muffler with extended inlet/outlet thin tubes
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alternative but with some concerns about the non-unique-
ness behavior at frequencies causing the eigenfrequency 
problem, which can be avoided by experience.
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