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A B S T R A C T 

Studying the rapid variability of many astronomical objects is key to understanding the underlying processes at play. Ho we ver, 
obtaining data well-suited to this task can be tricky, especially for simultaneous multiwavelength observations. Parameters 
often have to be fine-tuned while ‘on-site,’ or observations may only be found to not achieve their goals later. Here, we 
present CorrSim ; a program tailored to X-ray Binary analysis, and expandable to many kinds of multiwavelength coordinated 

observ ations. CorrSim takes po wer spectra, coherence, and lags, and returns a simulated multiwavelength observation. The goals 
of this are: (i) To simulate a potential observation; (ii) To investigate how different Fourier models affect a system’s variability, 
including data products like cross-correlation functions); and (iii) To simulate existing data and investigate its trustworthiness. 
We outline CorrSim ’s methodology, show how a variety of parameters (e.g. noise sources, observation length, telescope choice) 
can affect data, and present examples of the software in action. Through CorrSim , we also detail the effects of the length of 
the data train on Fourier and correlation function uncertainties. We also highlight previous CorrSim modelling, noting that the 
‘pre-cognition dip’ seen in X-ray binaries can be constructed by periodic processes, and discuss this result in the wider context. 

Key w ords: softw are – data methods – rapid timing astrophysics – black holes. 
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 I N T RO D U C T I O N  

hen observed at different wav elengths, man y astrophysical sources 
an show startlingly different signals. While these signals are often 
apid and comple x, the y are often all interrelated; they are the result
f some base process (or processes) that created them. By studying 
hese different signals, and unco v ering the relationships between 
hem, we can thus begin to decode what the underlying processes
re. 

This general description can be applied to many fields of astro-
hysics. Simultaneous (or at least quasi-simultaneous) observations 
n multiple telescopes have been key to the studies of supernovae 
Perley et al. 2019 ), cataclysmic variables (Wheatley, Mauche & 

attei 2003 ), millisecond pulsars (Draghis et al. 2019 ; Papitto et al.
019 ), fast radio bursts (Scholz et al. 2016 ), ultra-luminous X-ray
ources (Middleton et al. 2017 ), gamma ray bursts (Costa et al. 1997 ),
idal disruption e vents (v an Velzen et al. 2019 ), Blazars (Acciari et al.
011 ), active galactic nuclei (AGNs; McHardy et al. 2014 ), and even
ilonovae (Kasliwal et al. 2017 ). 
A valuable test case is one particular field: the study of rapid

ariability in X-ray Binaries. Not only are these complex systems, 
ith a compact object being surrounded by a swirling accretion disc 
eing fed from a companion star, but they are also very dense systems;
hey are only a few hundred thousand to a few million Schwarzchild
adii at the largest length scales. To put this in the terms of time,
he dynamical time-scale – the time-scale at which matter can flow 
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etween different parts of the system – is on the order of minutes for
ypical values (Frank, King & Raine 2002 ). Meanwhile, the systems
re only a few tens of lightseconds across, with length scales close
o the compact object of around, and below, one lightsecond. This
eans that two regions – emitting at drastically different wavelengths 
can affect one other on time-scales of minutes to milliseconds. 
Since these sources are so complex and compact, rapid (often 

ubsecond) multiwavelength observations are key to understanding 
ow their different regions interact, and what underlying structures 
re present. Decades of effort here have resulted in a growing
ollection of correlated observ ations, re v ealing comple x lags and
elations (for just a few examples, see Kanbach et al. 2001 ; Durant
t al. 2008 ; Gandhi et al. 2008 , 2010 , 2017 ; Veledina et al. 2015 ;
ahari et al. 2017 ; Paice et al. 2019 ; Vincentelli et al. 2021 ). 
Ho we ver, such studies have had several key problems to overcome.

or one, a simultaneous observation between two telescopes is 
ifficult to plan, and prone to many issues such as orbital visibility,
ay/night cycles, packed schedules, and the initial difficulty of 
btaining proposals on all required telescopes. And on the night of
n observation, issues may arise that were not accounted for; count
ates that are lower than expected, technical difficulties that may 
ead to increased read noise or less observation time, poor weather
onditions that could increase the scintillation in the atmosphere, or 
 change in the expected Fourier properties of the source, to name
ust a few. 

And, even if data are obtained at a high-enough quality, it is only
atural to ask: How representative are these data of the source as a
hole? A finite observation typically cannot capture the full model 
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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Figure 1. Examples of model input power spectra, made up of several 
Lorentzians. Top ro w: Fractional RMS po wer. Bottom ro w: Fractional RMS 
power multiplied by frequency. Each component Lorentzian is plotted, as 
well as the o v erall summation. Note the coherent and incoherent Lorentzians 
in Series B; some have the same shape but have different normalizations. 

Figure 2. Examples of model input power spectra, made up of a broken 
po werlaw. Top ro w: Fractional RMS po wer. Bottom ro w: Fractional RMS 
power multiplied by frequency. Note the coherent and incoherent Lorentzians 
in Series B, and how the coherent power law has a different shape and break 
frequency. 
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f a complex system; this is particularly true for X-ray Binaries,
here the behaviour of a source can vary suddenly and dramatically
 v er the course o v er sev eral weeks (see e.g. Veledina et al. 2017 ;
aice et al. 2021 ; Thomas et al. 2022 ), or even minutes (Gandhi et al.
016 , 2017 ). Middleton et al. ( 2017 ) co v ers man y of these problems
n greater detail, and notes many fields of study where solving them
ould lead to significant advances in our understanding (including a
ase study where simultaneous observations lead to a revolution in
he understanding of one source, V404 Cyg). 

To summarize, the main problems are thus; it is difficult to plan an
bservation that will deliver data of a high enough quality for us to
nvestigate our questions , and even if an observation is carried out,
t is not trivial to know if those data correspond well to a model of
he source . 

With these issues in mind, we have developed a program,
orrSim . Given both source and observational properties,
orrSim simulates an observation and return various data prod-
cts, such as light curves, cross-correlation functions (CCFs), and
ross-spectral analyses. This will allow for the testing not only of
bservational setups, but also various models and how they affect the
ata produced. 
In specific, the moti v ations of the program are: 

(i) To quantify the minimum data required to perform an analysis;
.e. the minimum length of an observation that would be required,
nd what magnitude of measurement errors would still produce a
eliable result. 

(ii) To find the conditions under which the shape and significance
f obtained CCFs can be trusted. 
(iii) To understand the effect of different kinds of measurement

rrors and incoherent broad-band noise on the data analysis. 
(iv) For smaller data sets and/or those with higher measurement

rrors, to ascertain which type of analysis would provide the most
eliable results. 

(v) To investigate the ambiguity of time lags in the analysis, and
n the case of periodic signals where the true time lag is greater than
ne time period away, how to spot this in real data. 

We will first detail the workings and assumptions of CorrSim
Section 2 ). We will then show the result of putting real, observed
ource properties into CorrSim , and quantify how factors such
s observation length, noise sources, and choice of telescope alter
he resultant data (Section 3 ). We will finally detail two examples
f using the program to (i) inform choices about a hypothetical
pcoming observation (Section 4 ) and (ii) test how modified Fourier
omponents affect the CCFs (Section 5 ). A glossary of used symbols
Section 6 ) and description of cross-correlation and Fourier analysis
Appendix A ) are also appended at the end of this paper. 

.1 On the use of CorrSim 

n Sections 3 –4 , X-ray binaries (XRBs) are used for the examples
f the program; this primary use of a single source is partly to make
omparison between different sections easier. However, CorrSim
ims to be usable to many other areas of astrophysics. 

In general, if an analysis consists of two simultaneous light curves
ith consistent Fourier components and time resolution, and the
aveband can be adequately described using a count rate, fractional
MS, and a power spectrum, then CorrSim should be useful in

imulating it – this might be the case for X-ray binaries, binary
ystems with orbital periods on the scale of hours, neutron stars,
ataclysmic variables, or even studying interband lags, to name a
ew; Figs 4 and 5 show the example of an observation featuring a
ASTAI 3, 453–471 (2024) 
ystem with a strong spin period that’s coherent between both bands,
s can be the case for some cataclysmic variables or neutron star
ystems. Also, we note how CorrSim can be used to tune parameters
on-site’, during an observation; when run on an average laptop, run-
imes can be a matter of seconds to minutes for observations with
 10 6 −7 data points, and thus such a use should be possible for all

ut the shortest observations. 
CorrSim is less useful in areas where the time resolution is

ot consistent, such as AGNs studies, or in any studies where the
ower spectra or phase/time lags change o v er time, as CorrSim
ssumes these to be unchanging o v er the course of the observation.
o we ver, in the case of the former, we note that removing sections of
orrSim ’s output light curves (or perhaps taking a random sample
f the points) and then analysing them with external codes or tools
s a way to extend CorrSim ’s functionality. In either case, the
upplementary Material features a run similar to the X-ray binary

art/rzae032_f1.eps
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Figure 3. Flowchart demonstrating the process that CorrSim uses to create 
its outputs. 

D
ow

nloaded from
 https://academ

ic.oup.com
/rasti/article/3/1/453/7729280 by guest on 30 August 2024
ase, but shifted into a domain more akin to AGNs, to demonstrate
he scales that CorrSim is useful o v er. 

We finally note that if one is using CorrSim to prepare for an
bservation, the program’s modelling can deviate from an eventual 
bservation if the source’s parameters depart from the initial inputs. 
his can particularly occur with transient sources, which are often 
ynamic and do not have well-defined nor static Fourier properties, 
hich are often serendipitously observed during an observation (see 

.g. Gandhi et al. 2016 ; Vincentelli et al. 2023 for only two examples).
he magnitude of this change cannot be easily stated; for this, we

hus advise running CorrSim with probable variations of the source 
arameters, and aim for a setup which minimizes signal-to-noise and 
ncertainties. 

 CorrSim 

e created the program CorrSim as part of this project. 1 The aim of
orrSim is to present a simulated result of an observation, and then

un analysis on that result and compare it to the inputted parameters.

.0.1 On the definition of coherence 

hroughout this paper, we use a definition of coherence to refer to the
hase coherence between two time series. This is slightly different 
o the meaning of ‘coherent’ in some areas of astronomy, such as
oherent pulsations in pulsars. See Appendix A2.2 for more details. 

.1 Inputs and outputs 

he inputs here are split into two. Source parameters are intrinsic
o the object, and essentially unchangeable for a given observation 
aside from, say, mean count rate, which is a function of the telescope
sed). Observation parameters are intrinsic to the observation itself, 
nd often within the control of an observer, e.g. time resolution or
ength of observation. 

(i) Source parameters : 

(a) Mean count rates ( Ā , B̄ ) – Units of counts per second. 
(b) Fractional RMS values ( F rms ,A , F rms ,B ) – units of per- 

cent. Defines the variability of the light curves. 
(c) Model power spectra ( p A, Model , p B, Model ). Two power 

spectral model types are defined in CorrSim : the summation 
of several Lorentzians (Fig. 1 ), and a broken power law (Fig. 2 ).
The shape of the power spectra itself only affects the light curve,
but the dependence of the coherence on time strongly affects 
the shape and strength of the correlation function. 

(d) Model coherence ( γModel ). This is defined in CorrSim 
by the relative coherence of different components in the power 
spectra. 

(e) Model phase/time lags ( δModel ), as a function of Fourier 
frequenc y. Sev eral different ways to define the lags have been
provided, relating to the dependence of phase or time with 
F ourier frequenc y in either log–log or semi-log space. 

(f) Red Noise – Applies ‘red’ noise, i.e. noise dependent 
upon frequency. Uses two subparameters: ‘Fractional RMS,’ 
which defines the amount of the noise; and ‘Slope,’ which 
defines its dependence on frequency. 

(g) Poisson Noise – Boolean. 
 https:// github.com/ JohnAPaice/ CorrSim 

t

(ii) Observation parameters : 

(a) Obser v ation length ( T ) – units of seconds. 
(b) T ime r esolution (d T ) – units of seconds. 
(c) Scintillation noise – Simulates noise from atmospheric 

scintillation; only necessary for simulating ground-based op- 
tical and infrared observ ations. Uses se veral sub-parameters: 
‘T elescope Diameter’ (m); ‘T elescope Altitude’ (m); ‘Expo- 
sure Time’ (s); ‘Target Altitude’ ( ◦); ‘Atmospheric Turbulence 
Height’ (m); and an empirical value (Osborn et al. 2015 ). 

(d) Readout noise – Units of counts per bin. Necessary for 
any telescope that uses a CCD with a non-negligible readout 
noise. 

The outputs are: 

(i) Simulated light curves for each band 
(ii) Correlation function analysis 
(iii) Fourier analysis (i.e. power spectra, coherence, and phase and 

ime lags as a function of Fourier frequency) 
RASTAI 3, 453–471 (2024) 
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Figure 4. The first half of a compilation plot provided by CorrSim . Top, Middle: 100 s, 10 s, and 2 s segments of the produced light curves (Band A, blue, 
top panels; band B, red, bottom panels). The dashed lines represent the ranges of the insets. Bottom: Model (left) and simulated (right) correlation functions 
(Band B versus band A, i.e. a peak at positive lags shows band B lagging band A), with the latter also showing the range o v er which it was averaged. The model 
correlation function was calculated from the input coherence, power spectra, and lags (see Fig. 5 , while the reproduced correlation function was produced from 

the light curves. 
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Some of these outputs have subparameters for controlling their
ehaviour, such as segment size and binning for both correlation
unction and Fourier analysis. 

.2 Methodology 

 flo wchart sho wing the methodology of CorrSim is shown in
ig. 3 . Below, we go into detail about each of these steps. 
Initially, CorrSim (optionally) adjusts the input observation

ength in order to maximize the speed of the calculations, which
o faster with smaller factors. This is done either by adjusting the
umber of bins to the closest ‘7-smooth’ number (a number with no
rime factor larger than 7; Berndt 1994 ). 
CorrSim then creates three power spectra from the details

rovided – one for band A ( p A ), and one for each of the coherent
ASTAI 3, 453–471 (2024) 
nd incoherent parts of Band B ( p B, coh and P B, inc respectively).
t then normalizes all three to match the fractional RMS values
iven. 
In the next few steps, CorrSim will create the two simulated light

urves from the power spectra ( S A and S B ), using methodology set
ut in Timmer & Koenig ( 1995 ). CorrSim first draws two random
umbers each for band A and the incoherent part of band B, with
 standard deviation equal to the respective power spectra. These
umbers become the real and imaginary parts of a complex series
 S A and S B, inc ). To make S B, coh , the band A complex series is copied
nd normalized to band B, and the phase lags are applied: 

 B, coh = C × S A × e −iδModel , Phase (1) 

here C = 

√ 

p B, coh /p A , i is the imaginary number, and δModel , Phase 

re the model phase lags ( not the time lags). The first bin of S A 

art/rzae032_f4.eps


CorrSim : an observation simulator 457 

Figure 5. The second half of a compilation plot provided by CorrSim – input Fourier properties (left) and results from Fourier analysis of the light curves 
(right). Since the outputs are calculated by splitting up the light curve and averaging over several segments, they only cover a smaller range; black dashed 
boxes on the left represent this range. First Row: Power Spectra of band A (blue, upper data) and B (red, lower data). Second Row: The coherence between the 
bands. Note how the presence of uncorrelated noise reduces the input coherence. Third Row: The phase lags. For the output, since phase lags outside of ±π

are meaningless, the plot wraps around at these ranges. Fourth Row: The time lags. Ne gativ e time lags are represented as a dashed line for the input, and open 
circles for the output. In CorrSim , a reference point can be given for calculating the time lags from the phase lags, i.e. stating at which frequency the phase 
lags can be trusted to be the true value, and not multiples of 2 π prior or hence. Bottom Information: Key input values. For the noise sources, the letters (A, B, 
AB, or n) represent which bands that noise is present in, if any. 

i  

n
i  

S  

l
v

u  

o  

a
s  

i

 

d
o  

o  

i  

o  

t
 

t
a  

F
E

D
ow

nloaded from
 https://academ

ic.oup.com
/rasti/article/3/1/453/7729280 by guest on 30 August 2024
s adjusted to be equal to the mean count rate multiplied by the
umber of bins, Ā N (and B̄ N for S B, coh , while the first bin of S B, inc 

s set to zero). S B, coh and S B, inc are then combined into S B, total . Both
 A and S B, total are inv erse F ourier transformed to turn them into

ight curves, and the fractional RMS is checked against the input 
alues. 

Finally, noise is (optionally) added: First, red noise is generated 
sing a similar method from Timmer & Koenig ( 1995 ), and added
n to S A and S B, total (in this case, the light curves are remade as
bo v e). Then, CorrSim adds Poisson noise, calculates and adds 
cintillation noise, and finally adds readout noise. The result of this
s the two final simulated light curves for band A and B. 
This is the crux of CorrSim ; these light curves simulate the
ata taken of an observed source, i.e. an imperfect representation 
f the true relationship between signals, and are analogous to a real
bserv ation gi ven the v arious source and observ ational parameters
nput. These light curves are not only plotted graphically, but also
utputted as comma-separated text files, in case users wish to use
hem with their own code. 

If desired, at this point, CorrSim essentially works in reverse; it
akes those light curves and runs both cross-correlation and Fourier 
nalysis on them, as one would for real, observed data. Much of the
ourier analysis uses functions from Stingray for the calculations. 
xamples of the plots created are seen in Section 2.4 . 
RASTAI 3, 453–471 (2024) 
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.2.1 Modelling the correlation function 

he correlation function (CF) is the inverse Fourier transform of
he coherence and lags, and thus a model of the function can
e reproduced purely from these properties. This is based on the
athematical definitions of coherence presented in Vaughan &
owak ( 1997 ), and is defined in Section A1 . In CorrSim , a model
f the correlation function is produced from the initial coherence and
ag inputs, and the methodology is described here. 

A Fourier transform creates a complex series, which can be wholly
escribed by its amplitude and its arguments. The amplitude of this
eries is defined as: 

 = γModel ∗
√ 

( p A )( F rms A ) ∗ ( p B )( F rms B ) , (2) 

here U is the amplitude, γModel is the model coherence, and p and
 rms are the power spectra and fractional RMS values (for each band
 and B). The arguments are then taken to be the phase lags. This

omplex series is then inverse Fourier transformed, and the real part
s taken. The result is normalized with a constant ( V ) thusly: 

 = 

1 

2 ∗ d T ∗ √ 

F rms A ∗ F rms B 
, (3) 

here d T is the time resolution of the data. After the normalization
s applied, the final product is the model correlation function. 

.2.2 Converting phase to time 

hase lags, when combined with the frequenc y the y are found at, can
e converted to time lags using equation ( A11 ). 
Ho we ver, there is a limitation to phase lags; CorrSim adopts the

onvention that phase lags are given between ±π . If the actual phase
ags are outside of this range, say between π and 2 π radians, then
orrSim will show that they are between −π and 0 radians due to

he cyclical nature of sine waves. This limitation passes on to time
ags; a ‘true’ time lag that is between + π and + 2 π radians in phase
ill be represented as a ne gativ e time lag. 
There is a solution – or, at least, a mitigation – to this. By using

he correlation function, we can see where sources of correlation
or anticorrelation) are occurring and find which frequency bins are
ost likely to be correct. Then, assuming that phase lags follow a

easonably continuous distribution, we shift them by ±2 π radians to
inimize discontinuities. 
This method is intrinsic to CorrSim . A ‘Reference Frequency’

arameter is set (default 1 Hz) which is assumed to be correct. Then,
orrSim looks at the next lowest frequency. That point is compared

o the mean of the pr evious thr ee points . If the difference is greater
han π , it and all points at lower frequencies than this one are shifted
y ±2 π to minimize the discontinuity. This is repeated for every
requency bin. The same procedure is then conducted, but instead
oing to higher frequencies. These corrected phase lags 2 are then
onverted to time lags using the above equation. 

This is a method that has its drawbacks – any processes constrained
o just a single frequency bin, such as quasi-periodic oscillations
QPOs), may be more than π away from phase lags in adjacent bins,
nd this will thus be misrepresented in the time lags. Close inspection
f the time lag plots, and comparison with the CF, may be required
o investigate this possibility. 
ASTAI 3, 453–471 (2024) 

 The corrected phase lags themselves are not plotted; the phase lags shown 
re the ones gained from the Fourier analysis, without any shifting. 

 

 

 

.3 Assumptions, models, and noise 

ev eral assumptions hav e been made in producing CorrSim – these
ave been for simplicity and ease of use, and none should strongly
ffect the primary results. They are detailed here. 

(i) Power spectra 
he broken power law, and its handling of coherence, is a simpli-
cation of the behaviour of a source. Lorentzians, while also being

imited in their own ways, offer much finer control. 
(ii) Phase and time lags 
orrSim approximates the phase and time lags using a series of
onstant, linear, power law, or polynomial distributions. This does
ot trivially handle the true lag behaviour – which may be better
epresented by other distributions – but the versatility of CorrSim
n being able to handle any number of segments mitigates this
implification. In calculating the time lags, CorrSim also assumes
hat phase lags are roughly continuous and do not deviate by more
han π radians between frequency bins. 

(iii) Simultaneous, continuous light cur v es 
orrSim creates light curves that are simultaneous, sampled at the
ame rate, and have no gaps, and assumes this is the case during its
nalysis. While this is not wholly realistic for most multiwavelength
bservations, it serves as a good approximation, and the simultaneous
ampling vastly speeds up the calculation of the correlation function.
f a user wishes to analyse a light curve that is affected by gaps,
hen they may take the light-curve data that CorrSim generates
nd create the gaps manually, and then use their own code to do the
nalysis. 

(iv) Noise 
orrSim currently allows for four sources of noise. The way this
oise is calculated is a simplification of processes within the source
nd the instrument. Their methods are detailed here. 

(a) Red noise . This is noise that is more significant at lower
frequencies, a result of random ‘Brownian’ motion, or ‘Random
Walk’-type signals in the source. Using methods set out in
Timmer & Koenig ( 1995 ), this noise is modelled by drawing two
random Gaussian numbers and then multiplying them by a value
proportional to the model power spectra for each frequency
bin. These two resultant numbers then become the real and
imaginary parts of the complex array which will later create the
light curve. 

(b) Poisson noise . This noise accounts for ‘shot noise’,
dictated by the count rate and the signal-to-noise ratio. This
is modelled by taking the light curve, and for each bin, drawing
a random number from a Poisson distribution ( λ = counts in
that bin). 

(c) Scintillation noise . This noise arises from scintillation
seen by ground-based telescopes, caused by variations in the
atmosphere. CorrSim uses a modified version of Young’s
approximation, presented in equation (7) of Osborn et al. ( 2015 ),
which is observation- and telescope-specific; the required
parameters include the telescope’s diameter and altitude, the
distance of the source from zenith, the height of atmospheric
turbulence, exposure time, and an empirical, telescope-specific
constant. The equation gives the variance of the scintillation
noise. Therefore, this noise is modelled by taking the light
curve, and for each bin, drawing a random number from a
Gaussian distribution, with the mean equal to the counts in
that bin, and the standard deviation equal to the square root of
Young’s approximation. 
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(d) Readout noise . This noise arises from the imperfect 
amplification of a signal in the CCD, where the true charge 
on a number of electrons is misread. This noise is modelled 
by drawing from a Gaussian distribution centred on zero, with 
the standard deviation equal to the readout noise in counts, for
each bin, and then adding that number on to the value of the
bin. Note, in practice, readout noise is given in electrons; here, 
counts are used for simplicity. 

.4 Outputs 

ig. 4 shows example produced light curves and both the input and
utput correlation functions. Fig. 5 shows examples of both inputs 
nd outputs of CorrSim , and some observation parameters. 

The Fourier properties of this example are loosely based on a 
ataclysmic variable with a coherent 300 s spin period (i.e. seen 
n both bands, with corresponding Lorentzian having 100 per cent 
oherence). Phase lags are arbitrary, and the source has been 
odelled assuming an observation with X-ray (band A) and optical 

band B) telescopes. 

 DISCUSSION  I :  C O M PA R I S O N  O F  

A R A M E T E R S  

hese simulations allow us to compare different aspects of observa- 
ions, and see their effects on the final products with respect to the
nitial models. In this section, we will detail ho w se veral dif ferent
arameters can affect the final products. There are many parameters 
hat can be varied with CorrSim , and not all can be shown here;

ore figures can be seen in the Supplementary Material, found 
nline. As an example, Figs 6 –8 demonstrate the effects of varying
he observation length, the count rate, and the target altitude. 

Each figure shows three different setups and details their effect on 
he simulated correlation function and Fourier outputs. The models 
re given by black lines, and the outputs by coloured lines. 

The first row is the CCF, a particular kind of correlation function
hat functions with equally spaced bins in a gapless light curve, 
ith the shaded region indicating the standard error; note that the 
odel CF does not take effects of noise into account, which reduces

oherence and thus the correlation coefficient; the model CF therefore 
ay not approximate a CF created from a theoretically infinite 

bservation, and would instead have a greater magnitude. 
The second row shows the power spectra. The black dashed 

ines are the model band A power spectra, with lighter coloured 
ncertainties representing their outputs, and the black dotted lines 
re the model band B power spectra with the darker coloured 
ncertainties representing their outputs. Like the CF, the model power 
pectra do not take the effects of noise into account. 

The third row shows the coherence. These models, like the CF and
ower spectra, do not take the effects of noise into account. 
The fourth row shows the phase lags. This is constrained between 
π , and additional models at normalizations of ±2 π are also shown; 

he ‘middle’ model, dominant at 1 Hz, is the ‘correct’ one. Model
hase lags are not affected by noise sources in a predictable way. 
The fifth row shows the time lags. Solid black lines show the
odel time lags, while dashed black lines show the inverse model 

ime lags, for representing ne gativ e lags. Similarly, the solid coloured
ircles show the outputs, and the open coloured circles show their 
nverse. Time lags are fixed at a defined reference frequency, and 
hen shifted depending on what causes the smallest discontinuities, 
s described in Section 2.2.2 . As they are calculated from the phase
ags, the model time lags are also not affected by noise sources in a
redictable way. 
Tables 1 –3 show the default inputs for these tests (i.e. the values

hat will be used unless specified otherwise); these approximate 
 reasonably bright source observed with a reasonably sensitive 
elescope. The Fourier properties used are based on data from the
-ray Binary MAXI J1820 + 070 during its 2018 April hard state

a mode during which higher energy X-ray emission dominates, 
nd the source shows significant optical and X-ray variability). The 
nput parameters, such as the F rms , power spectra, and phase lags,
re all approximations to those found in the analysis carried out by
aice et al. ( 2021 ), during epoch 4 (25 d after peak X-ray brightness,
7 d after the outburst was first detected). Meanwhile, the noise
arameters have been selected to correspond with an X-ray (band A)
nd optical (band B) observation (taken by the NICER instrument 
n the ISS and the HiPERCAM instrument at the Gran Telescopio
anarias, Roque de Los Muchachos, La Palma, respectively). 

.1 Error dependence 

or the following tests, all parameters were kept as those in Tables 1 –
 , unless otherwise stated. Note that these data are empirical, obtained
rom a single run of CorrSim each time, rather than model values. 

.1.1 Error in the correlation function 

nother way to illustrate ho w dif ferent parameters affect the obser-
ation is by looking at the standard error in the CCF. The assumption
ere is that if the error is lower, the simulated CCF will be closer to
he true model shape. 

We ran CorrSim again with eight different lengths of observation 
64, 128, 256, 512, 1024, 2048, 4096, and 8192 s). A CCF was
onstructed from 30 s segments, and standard error was calculated 
or each bin from those segments, as usual. For this demonstration,
he middle third of the CCF was selected (from -10 s to + 10 s lags),
nd then the mean and the standard deviation of the standard error
ere calculated. The results are plotted in Fig. 9 . 

.1.2 Percenta g e error in the Fourier components 

e can also look at the magnitude of the errors. For this, we assume
hat smaller errors mean that the observation is closer to the model,
hich we consider a reasonable assumption for illustrative purposes. 
y varying a parameter, we can thus see how much it affects the
ccuracy of the observation by quantifying the change in magnitude 
f the error (relative to the value of the bin). 
Similar to the previous section, we ran CorrSim again with eight

ifferent lengths of observation (64, 128, 256, 512, 1024, 2048, 4096,
nd 8192 s), while the Fourier segment length was set to 2 10 bins.
ourier plots were made for each run. Then, for each of the power
pectra, coherence, and time lags, the median absolute percentage 
rror was calculated o v er all bins. The results are plotted in Fig. 10 . 

.1.3 Detecting a subsecond lag 

e can also vary how correlated the light curves are, and find how that
ffects the resultant CCF. For this, we altered the band B Lorentzians:
ll coherence fractions were set to 0, and then the second Lorentzian
as set to a normalization of 10 and a midpoint of 1. Its coherence

raction was then varied, and the resultant CCF was plotted in each
nstance. 
RASTAI 3, 453–471 (2024) 
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Figure 6. Three different runs of CorrSim with different lengths of observations; 256 , 1024, and 4096 s (with a time resolution of 2 −5 (0.004) s, this is 
equi v alent to 2 13 , 2 15 , and 2 17 bins, respectively) with default noise added. Note the significant affect at lower frequencies. 

D
ow

nloaded from
 https://academ

ic.oup.com
/rasti/article/3/1/453/7729280 by guest on 30 August 2024
ASTAI 3, 453–471 (2024) 

art/rzae032_f6.eps


CorrSim : an observation simulator 461 

Figure 7. Three different runs of the CorrSim code with different count rates; 10, 100 , and 1000 cts s −1 for band A (and 50, 500, and 5000 cts s −1 for band 
B, respectively). Note how the lower count rates have significantly lower coherence and magnitudes of the CF. 
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Figure 8. Three runs of CorrSim with different target altitudes and its effect on scintillation noise; 10 ◦, 25 ◦, and 40 ◦. Band A used default noise, while only 
scintillation noise was applied to band B (to simulate a Space + Ground based observ ation). Note ho w scintillation noise strongly affects a target at 10 ◦, yet has 
minimal effect on a target at 40 ◦ (and thus higher altitudes). 
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Table 1. Default values for the comparison data. 

Group Parameter Default value Notes 

Observation Length of observation (s) 2048 –
Time resolution (s) 0.03125 = 2 −5 

Band A Mean count rate (cts s −1 ) 1000 –
Fractional RMS (per cent) 0.31 –

Red noise? (Y/N) Y See footnote 1 
Poisson noise? (Y/N) Y –
Readout noise? (Y/N) Y 4.5 counts 

Scintillation noise? (Y/N) N –
Band B Mean count rate (cts s −1 ) 5000 –

Fractional RMS (per cent) 0.11 –
Red noise? (Y/N) Y See footnote 1 

Poisson noise? (Y/N) Y –
Readout noise? (Y/N) Y 4.5 counts 

Scintillation noise? (Y/N) Y See footnote 2 
Fourier Power spectra model Lorenztians See Table 2 

Lag model Phase See Table 3 
Plotting CF Range (s) 30 –

CF Binning 0 –
F ourier se gment length (Bins) 2 12 –

Fourier rebinning factor 1.3 –
Reference frequency (Hz) 1 See footnote 3 

Notes . 1 For Band A and B, the fractional RMS of the red noise is 0.2 and 0.03, respectively, 
analogous to red noise from X-rays and optical. The slope of the red noise is -2 for both. 
2 Using reasonable values, analogous to the new technology telescope (NTT) at La Silla, Chile 
(Tarenghi & Wilson 1989 ): 
Telescope diameter = 3.58 m; Telescope altitude = 2400 m; Exposure time = Time resolution- 
1.5 ms (i.e. ‘Deadtime’ of 1.5 ms); Target altitude = 40 ◦; Turbulence height = 8000; Empirical 
coefficient C Y = 1.5. 
3 Frequency at which the phase lag is be assumed to be correct (i.e. not shifted by ±2 π ) 

Table 2. Lorentzian parameters. 

Band A Band B 

Norm Width Midpoint (Hz) Norm Width Midpoint (Hz) Coherence fraction 

45 0.5 0 75 0.1 0 1/200 
40 4 0 50 0.1 0.1 1/5 
25 0.15 0.1 45 2 0 1/150 
10 0.1 0.3 6 4 3 0 
3 3 3 3 10 8 0 
– – – 1 20 25 0 

Table 3. Phase lag parameters 1 . 

Distribution Freq. 1 2 Lag 1 3 Freq. 2 2 Lag 2 3 Freq. 3 2 Lag 3 3 

Constant (Phase) 0 .001 −4 π /3 0.02 – – –
Power 0 .02 −4 π /3 0.25 2 π /5 – –
Linear 0 .25 2 π /5 0.4 0 – –
Linear 0 .4 0 5 π – –
Polynomial 5 π 200 π 28 5 π /2 

Notes . 1 Outside of the specified frequencies, the lag is set to -4 π /3. 
2 Units of Hz. 
3 Units of Radians. 
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Fig. 11 shows a selection of the results. As expected, while the
ubsecond lag is clearly identifiable at a coherence fraction of 1, it is
lmost completely gone at a fraction of 0.001. Under these source and
bservational conditions, this graph can thus tell us that a coherence 
raction of 0.01 is the minimum to detect a subsecond lag, while
alues of at least 0.1 are much preferred. 
t  
 DI SCUSSI ON  I I :  EXAMPLE  USAG E  

e will now demonstrate how an astronomer may use CorrSim to
lan and maximize an observation. Let us say they want to observe a
ource similar to that given in Tables 1 and 2 , but with a lower count
ate (100 and 1000 counts s −1 in bands A and B, respectively), and
he y hav e 1024 s of observation time with a time resolution of 0.03 s
RASTAI 3, 453–471 (2024) 
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Figure 9. Empirical dependence of the standard error in the CCF – and its 
standard deviation – on observation length. 

Figure 10. Empirical dependence of the median absolute percentage error 
on observation length. 

Figure 11. Four CCFs created by varying the coherence fraction of a single 
Lorentzian at 1 Hz, with all other Lorentzians at 0 coherence. Note how 

the magnitude of the subsecond lag changes with each coherence fraction. 
Representative errors are plotted. 
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2 −5 ). The source has been known to show a broad precognition
ip and a subsecond lag, as well as a small feature in the phase lags
described in Table 4 ). It is the latter two in particular – the subsecond
ag and the feature in the phase lags – that the observer wants to study.

By running CorrSim with these parameters, our astronomer gets
hat is shown in Fig. 12 . Initially, they are not pleased with the results
the signal-to-noise ratio (S/N) is too low for their purposes, with the

eature in the phase lags indistinguishable from random variations,
nd the subsecond lag not as clear nor as smooth as hoped. Now they
ASTAI 3, 453–471 (2024) 
ave seen that their plan would not give them what they want, they
ake a decision to change the setup of the observation. 
What can our astronomer do? They have a selection of possibilities

n front of them, but ordinarily, it might mainly involve guesswork
and luck) to decide between them. From their options, they want to
nvestigate three possibilities: 

(i) 1: Double the obser v ation length. By increasing the length
f the observation, one would increase the S/N. The F ourier se gment
ize was also increased by a factor of 2, to preserve the number of
e gments av eraged o v er. 

(ii) 2: Decrease time resolution by a factor of four. Smaller
ime bins can cause problems like readout noise to become more
ignificant, or missing some photons due to deadtime. Increasing the
in size, and thus lowering the time resolution, would reduce such
ffects. The Fourier segment size was also reduced by a factor of 4,
o preserve the number of segments averaged over. 

(iii) 3: Using a better telescope. Fortunately, our intrepid as-
ronomer knows of another telescope they can use for band A. This
elescope has five times the sensitivity (i.e. the mean count rate in
and A would become 500) but they can only use it for half the time
i.e. observation length would be 512 s). The F ourier se gment size
as also reduced by a factor of 2, to preserve the number of segments

v eraged o v er. Is there a net benefit to using this telescope? 

By altering the parameters, our astronomer runs the program with
ll these alternative possibilities. Fig. 13 shows the results. 

The resulting simulations show that the longer observation gives
 decent approximation for the phase lags. Meanwhile, the lower
esolution observ ation gi ves the highest normalization in the CCF
nd the closest shape. Finally, the better telescope has a significantly
ower white noise floor (i.e. the noise does not dominate the power
pectra until higher frequencies than usual; note the difference in
ower spectra). 
These are all important in different ways. For the investigation

f the 0.1 s lag, one would need low uncertainties around the 0.1–
 Hz range, the longer observation offers lower uncertainties o v erall,
nd the more sensitive telescope has a lower white-noise floor at
igher frequencies. Meanwhile, the lower time resolution replicates
he frequency range of the unique feature in the phase lags, but does
ot probe far into the required frequencies. What CorrSim thus
rovides here is additional information with which one can make
bout their decision. 

This comparison shown is somewhat surface-level, and the results
hown in Fig. 13 are meant to be indicative of an observation
ather than a strong prediction. A more rigorous investigation into
redicting an observation would be more complex; for instance,
onsidering the possibility of a fainter source, or different fractional
MS, or a different slope in the power law – any of these could

ignificantly alter the outcome of an observation, and potentially be
 problem. In these cases, CorrSim ’s ability to run such simulations
n a matter of seconds to minutes is of value, both for ease of planning
nd for switching observation strategies during an observation. 

 DI SCUSSI ON  I I I :  M O D E L  TESTING  

o far, we have shown the effect of altering parameters – both
bservational and intrinsic – on resultant light curves and their
ourier products, and in particular, the strength of CorrSim in
imulating these effects. 

Another strength of CorrSim is recreating a previously – carried
ut observation, and then modifying various Fourier parameters to

art/rzae032_f9.eps
art/rzae032_f10.eps
art/rzae032_f11.eps
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Table 4. Example–phase lag parameters 1 . 

Distribution Freq. 1 2 Lag 1 3 Freq. 2 2 Lag 2 3 Freq 3 2 Lag 3 3 

Linear 0 .1 3 π /4 0.25 π /5 – –
Linear 0 .25 π /5 0.3 2 π /3 – –
Linear 0 .3 2 π /3 0.4 0 – –
Linear 0 .4 0 5 π – –
Polynomial 5 π 200 π 28 5 π /2 

Notes . 1 Outside of the specified frequencies, the lag is set to 3 π /4. 
2 Units of Hz. 
3 Units of radians. 

Figure 12. Fourier inputs and outputs for the example observation. Note the lack of clarity in the outputs, especially in the phase lags, compared to the inputs. 
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Figure 13. Three modified runs of Fig. 12 ; double the observation length, four times lower time resolution, and a five times more sensitive telescope with half 
the observing time. Each simulation has been split into eight segments and averaged. Note how each option has benefits and drawbacks. 
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Figure 14. Various simulations of MAXI J1820 + 070, as carried out in Paice et al. ( 2021 ). Each column shows two simulations of the i s band (optical) 
versus X-rays. Top: Input Fourier components. All y-axes are shared. Bottom: CCFs made by converting the Fourier components into light curves and then 
cross-correlating. CCFs were av eraged o v er multiple 10s segments. Note that the y-axes are not shared. Left: The red lines are a close representation of the data. 
The blue lines are a modification that remo v es the QPO and the ne gativ e lags from the i s band’s Fourier components between 0.02 and 2 Hz. Right: The green 
lines are a modification that just remo v es the QPO, and the gold lines are a modification that just remo v es the ne gativ e lags. Note how the behaviour in the CCF 
changes between -2 and + 3 s, showing the significance of each component o v er this range. 
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nvestigate how they affect other outputs, such as the light curves and
CFs. With this, one can test various different models of a source. 
This kind of analysis was carried out on MAXI J1820 + 070, which

an be seen in section 4.5 and appendix A2 of Paice et al. ( 2021 ).
he figures showing the simulations have been replicated in Fig. 14 .
his particular analysis was moti v ated by a wish to investigate a
e gativ e-lag correlation that had appeared in the CCF of one of the
pochs; this correlation was not present in any other epoch (most of
RASTAI 3, 453–471 (2024) 
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Table 5. List of symbols. 

A ( t) Signal A 

B( t) Signal B 

C( f ) Measured cross-spectrum 

c( τ ) Correlation coefficient 
D Normalization for L 

dT Time resolution 
F rms Fractional RMS 
f Frequency; dependent variable of C, L , y 
f 0 Midpoint for L 

f seg Number of frequencies per segment 
i Imaginary number 
L ( f ) Lorentzian 
m Number of segments 
N Number of bins 
n Noise (in power spectra) 
p Power spectra 
q Formula shorthand in error on γ 2 

I 

R rms 2 Fractional RMS normalization 
S Complex series 
s Signal (noiseless power spectra) 
T Observation length 
t Time; dependent variable of A , B, X 

U Amplitude (in power spectral calculations) 
V Normalization (in power spectral calculations) 
X( t) Inv erse F ourier transform of y( f ) 
y( f ) Fourier transform of X( t) 
� Full-width at half-maximum for L 

γ 2 
I ( f ) Intrinsic coherence 

γModel Model coherence 
	T samp Sampling interval 
δ Lags 
δτ Time lags 
δφ Phase lag 
τ Lag; dependent variable of c 
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hich had even had a negative-lag anticorrelation instead), and was
heorized to be connected to a QPO also present in the source. It was
oped that the Fourier components that were creating this feature
ould be identified. 

This analysis was carried out by first finding the Fourier properties
f a real observation of MAXI J1820 + 070, and then modelling them
n CorrSim . These properties were then altered to create four
ariations: the original, unedited model of the source; an edited
odel with the QPO remo v ed; an edited model with a stretch of

e gativ e lags remo v ed (but keeping the QPO); and an edited model
ith both the QPO and the ne gativ e lags remo v ed. 
By creating simulated CCFs from each of the models, it was

hus determined that the ne gativ e-lag correlated component was
aused by a mix of both the QPO and the ne gativ e lags working
onstructiv ely. Remo ving each independently created CCFs which
till show a ne gativ e-lag correlation, but at a lower significance.
emoving both completely removes the component, instead giving
 CCF profile with a slight anticorrelation at ne gativ e lags and an
xtended correlation at positive lags, similar to those seen earlier
n the source, or even in other sources such as Swift J1753.5-0127
Durant et al. 2008 ). 

From this, the importance of both of these features was concluded:
irst, that the QPO had a significant effect on the CCF, and such
eatures should be considered in future observations as a possible
bfuscating factor; secondly, that a relatively small extent of negative
ags can have a significant effect on the resultant CCF, even when
oherence is low across that extent. 
ASTAI 3, 453–471 (2024) 
This was an interesting result for X-ray binaries. Features at
e gativ e lags are seen in many X-ray binary systems, such as the ‘pre-
ognition dip,’ where optical emission can drop a few seconds prior
o an X-ray flare – as if the optical ‘knows’ about future X-ray activity.
uch features have been examples of much discussion in the past (see
.g. Kanbach et al. 2001 ). Here, it’s shown that such features can be
ue to a combination of other periodic features, echoing a result
lso found by Omama et al. ( 2021 ). Does this mean all ne gativ e-
ag features are the result of periodic processes? Almost certainly
ot; other theories, such as a two-component flow proposed in
eledina, Poutanen & Vurm ( 2013 ), have strong merit for particular

eatures. Ho we ver, this result highlights that the possibilities behind
 particular feature are broader than are sometimes considered. 

Studies like this can be valuable for future observations. They can
llow for testing of alternative Fourier inputs to see how variability
hanges – and thus which components are most important. They
an also allow for investigating which Fourier inputs and combina-
ions create similar CCFs, thereby testing alternative explanations
or already-known features. In either case, these studies have the
otential to give valuable insight into the inner processes of XRBs. 

 C O N C L U S I O N S  

irst and foremost, we have introduced CorrSim , a tool for simulat-
ng two correlated light curves based on a variety of parameters, both
ntrinsic to the source (e.g. mean count rate, power spectra, time lags),
nd the observation (e.g. observation length and telescope diameter).

Through this program, we have shown how a myriad of different
arameters can affect the results of an observation; both parameters
ntrinsic to the source, and those caused by observation methods. We
ave also shown how these effects are not al w ays clear; an increase in
eadout or scintillation noise, for example, can affect the variability
nd show up clearly in the power spectra. However, it does not
ypically lead one to imagine a reduction in the correlation function,
s we see in Fig. 8 and in the supplementary material. 

Some of these parameters can affect observations in significant,
ut sometimes unclear, ways; the effects of a small telescope or a
ow altitude target are known to be detrimental, but sometimes such
arameters cannot be helped and an astronomer may wonder about
he quality of the data they could obtain despite this. This program
resents a way to answer these questions. 
And these answers can have a very practical side; more than

ust adjusting expectations, one can adjust the parameters of the
bservation to make sure that any data gained will be of high-enough
uality to answer any questions being investigated. 
This is the first aim of the program: To provide astronomers with

oth qualitative and quantitative metrics with which they can assess
he quality of the resultant data, and then change the observational
etup to optimize them. In this way, the program can be a tool to
ctively increase the quality of future observations. 

We also demonstrated how this program can be used to simulate
ifferent properties of a source, showing a practical example that
as carried out in Paice et al. ( 2021 ). There, the phase lags were
anipulated to remo v e a range of ne gativ e lags, a QPO, and then

oth, in order to see the effect on the correlation function. From
hese simulations, it was concluded that the presence of a correlation
t ne gativ e optical lags is probably not an indication of an optical
rocess occurring before an X-ray process, but instead is more likely
 periodic X-ray process having an optical response at a lag greater
han π radians in phase. 

This demonstrates the second aim of this program: to allow
stronomers the ability to take models of already-obtained data and
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hange them in order to better understand their makeup, assess their 
alidity, and thus inform them of the components of the system. 

Through these abilities, CorrSim can be of significant assistance 
o astronomers across the timeline of an observation and, it is hoped,
ill help in increasing the frequency, usefulness, and quality of rapid 

orrelated observations in the future. 

.1 Glossary 

able 5 gives a list and definition of all the symbols used in this
aper. 
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PPENDI X  A :  M E T H O D S  

nalysis of the relationship between two signals can be split into
wo main themes; those that take place in the time domain (e.g.
ross-correlation analysis), and those that take place in the frequency 
omain (e.g. Fourier analysis). Each have their own benefits and 
rawbacks. 
Cross-correlation analysis gives a coefficient for how two signals 

re ‘correlated’ based on some lag (measured in time, or bins). Cross-
orrelation analysis can be useful even with relatively low numbers 
f bins (compared with Fourier analysis; Fig. 6 demonstrates how 

nput Correlation models can be reasonably reproduced at small 
bservation lengths, while Fourier models cannot). However, the 
esult of cross-correlation analysis does not trivially translate into 
uantitative constraints on source properties. For example, multiple 
nterfering processes may ‘average-out’ the resultant coefficient 
t certain lag ranges, and it can be difficult to separate source
eatures from noise, as well as estimate confidence intervals. Cross-
orrelation analysis also does not work well when the lags between
he two bands are caused by some, potentially variable, periodic 
rocess – the resultant values may not show this unique cause. 
Cross-frequency analysis, ho we ver, ideally solves these two is- 

ues; it allows one to determine the time lag as a function of
RASTAI 3, 453–471 (2024) 
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R

Figure A1. An example CF from cross-correlation analysis, based on data 
from the black hole X-ray binary MAXI J1820 + 070 (Paice et al. 2019 ). Note 
how an anticorrelation can be seen at a lag of + 2 s, while a correlation can 
be seen at + 5 s. 
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requency, and the errors on the coherence and the time lags are better
uantified (e.g. Vaughan & Nowak 1997 ). However, this analysis
ypically requires a greater number of bins in the light curves, and
 higher signal-to-noise ratio (S/N). Additionally, if the time-lag is
arger than the time period (i.e. the response in the second light curve
ccurs more than one oscillation away from the cause in the first
ight curve), the reported lag will be much shorter, and the true lag
bscured; in this case, it is not clear what the full implications are for
he measured value and its error. Investigating these questions and
etermining which analysis is most ideal is one of the moti v ations
ehind this work. 
Here we will detail the theoretical and mathematical underpinning

f both methods. 

1 Cr oss-corr elation analysis 

orrelation functions (CFs) find the relationships between two
ignals as a function of lag. They produce a ‘correlation coefficient’,
etween -1 and + 1, at each of a range of lag bins; -1 indicating pure
nticorrelation, and + 1 indicating pure correlation. For example, if
here is a sharp rise in Signal A, and then a similar sharp rise in
ignal B delayed by 10 s, then a CF of signal B versus Signal A will
ho w a positi ve correlation coef ficient at + 10 s. Inversely, if Signal
 shows a dip instead of a rise, then the correlation coefficient at
 10 s will be ne gativ e instead – an anticorrelation. An example CF,
ith its component signals, is seen in Fig. A1 . 
CorrSim uses the CCF. This particular CF is described in

enables & Ripley ( 2002 ), and is best suited to simultaneously
ampled light curves (which we will be using): 

( τ ) = 

1 

N 

min ( N −τ,N ) ∑ 

s= max (1 , −τ ) 

[ A ( t + τ ) − A ][ B( t) − B ] , (A1) 

here A ( t) and B( t) refer to the two signals dependent upon time
, 3 τ is the dependent variable (the ‘lag’ in units of bins) where
= 1 , ..., N , and N is the total number of bins in the signals. 
The CCF can be modelled mathematically from Fourier compo-

ents, and is done so by CorrSim . We describe this process in
ection 2.2.1 . 
ASTAI 3, 453–471 (2024) 

 Venables & Ripley ( 2002 ) use X i and X j for these, and define the coefficient 
s c ij ( t); These have been changed so that symbols are consistent across this 
aper. 

4

5

r
6

There is no straightforward method to e v aluate uncertainties or
rrors in CFs. CorrSim uses a method of splitting up the light curves
nto segments, creating a CF from each segment, and then finding the
tandard error between these individual CFs; this is the method also
sed by crosscorr in Xspec. Ho we ver, there are other methods
vailable, though not programmed into CorrSim ; Bootstrapping,
or instance, is a method of drawing a random selection of points
sometimes with replacement) and then calculating properties from
hat selection; here, that can take the form of finding the spread
f values from a bootstrapped selection of individual CFs. More
dvanced methods include error analysis carried out by the Javelin
ode (see Zu, Kochanek & Peterson 2011 ), or from Misra, Bora &
ewangan ( 2018 ) who calculate an analytical formulation for CF

rrors. 

2 Fourier analysis 

ourier analysis, also known as cross-spectral analysis, is founded
n the idea that any signal can be constructed by summing together
 series of sinusoids of varying phases and amplitudes. Taking two
imultaneous light curves, we can pair up those component sinusoids
hich are at the same frequency. One can then determine the

oherence and lags between two signals as a function of frequency,
ather than having a value at one time lag for all frequencies. 

These results can then be used to help disentangle the processes
etween bands which might be difficult to unco v er otherwise. F or
xample, in cross-correlation analysis, strongly correlated processes
ould hide weakly correlated ones; ho we ver, if the stronger processes
nly occur at lower frequencies and the weaker ones at higher
requencies, then Fourier analysis would separate them out. This is
specially useful for sources which have processes across the Fourier
pectrum–again, such as X-ray binaries (see Lewin & van der Klis
006 , Ch. 2). Additionally, the errors on the coherence and the time
ags are better quantified than cross-correlation analysis (Vaughan &
owak 1997 ). 
The Fourier transform that is used in our work is the fast Fourier

ransform from the SCIPY package. 4 There, the equation for a Fourier
ransformed series y dependent upon frequency f is: 

( f ) = 

N−1 ∑ 

t= 0 

e −2 πi 
f t 
N X( t) (A2) 

long with its inverse, 

( t) = 

1 

N 

N−1 ∑ 

f = 0 

e 2 πi 
f t 
N y( f ) , (A3) 

here X( t) is the series to be Fourier transformed, of length N , and i 
s the imaginary number. 5 For Fourier analysis, N should be a power
f two; this can be problematic when trying to analyse at the lowest
requencies (which may involve up to half of the data not being used),
ut for the higher frequencies, the light curves can be easily split into
maller segments and averaged. 

Much of this research has made use of the STINGRAY 

6 python
ackage (Huppenkothen et al. 2019 ), which is used in the calculation
f Fourier components from the simulated light curves. 
 https:// docs.scipy.org/doc/ 
 In the SciPy documentation, these are referred to as x( n ), N , and j 

espectively. 
 https:// github.com/StingraySoftware/ stingray 

art/rzae032_fa1.eps
https://docs.scipy.org/doc/
https://github.com/StingraySoftware/stingray
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2.1 Power spectra 

 po wer spectrum sho ws the amount of v ariability (‘po wer’) at each
requency, which is dependent upon the amplitude of the sin waves 
t that frequency. 

‘Power’ is an umbrella term, and there are several ways to 
ormalize it. In our work, the normalization that we have used is
he fractional RMS. This is defined by van der Klis ( 1997 ) (see also

iyamoto et al. 1991 ), and is given by the formula: 

 rms 2 = 

2 	T samp 

X̄ 

2 N 

, (A4) 

here 	T samp is the sampling interval of the data (i.e. the ‘exposure
ime’ of the telescope), X̄ is the mean rate of the series, and N is the
otal number of bins in the series. The units of this normalization are
rms/mean) 2 Hz −1 . This normalization is useful, particular for our 
esearch, since integrating the power spectrum yields the fractional 
ariance of the data (Vaughan et al. 2003 ). 

Power spectra can often by described by a series of Lorentzians, 
hich are distributions given by the form: 

 ( f ) = 

D 

π

1 
2 � 

( f − f 0 ) 2 + ( 1 2 �) 2 
, (A5) 

here D is the normalization (controls its magnitude), � is the full
idth at half maximum (controls its width), and f 0 is the midpoint

 f 0 = 0 indicates a zero-centred Lorentzian). For an example of a
ower spectrum being modelled by a series of Lorentzians, see Fig. 1 .

2.2 Coherence 

oherence is the magnitude of the complex-valued cross-spectrum; 
.e. how much the amplitudes of the sin waves relate to each other.
 higher coherence means the two signals are more correlated at 

hat frequency. This value is constrained between 0 (completely 
ncoherent) and 1 (completely coherent). 

The coherence is given by Vaughan & Nowak ( 1997 ), and
athematically can be given thusly. Assume a power spectra p = 

 s | 2 + | n | 2 , where | s | 2 is the power of the signal, and | n | 2 is the noise.
he coherence function is then: 

2 
I ( f ) = 

|〈 C( f ) 〉| 2 
〈| s A ( f ) | 2 〉〈| s B ( f ) | 2 〉 (A6) 

〈 C ( f ) 〉| 2 = |〈 s ∗A s B 〉 + 〈 s ∗A n B 〉 + 〈 n ∗A s B 〉 + 〈 n ∗A n B 〉| 2 , (A7) 

here the subscript I denotes intrinsic coherence between noiseless 
ignals, subscripts A and B refer to the two signals, an asterisk
enotes the complex conjugate of the power spectra, and f is
requency. 

2024 The Author(s). 
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For XRBs, the variability usually gives high powers with relatively 
igh coherence. Using the error formulation of Vaughan & Nowak 
 1997 ), the errors in this case can be computed like so: 

2 
I = 

|〈 C〉| 2 − q 2 

| s A | 2 | s B | 2 

×
⎛ 

⎝ 1 ± m 

−1 / 2 

[ 
2 q 4 m 

( |〈 C〉| 2 − q 2 ) 2 
+ 

| n A | 4 
| s A | 4 + 

| n B | 4 
| s B | 4 + 

mδγ 2 
I 

γ 4 
I 

] 1 / 2 ⎞ 

⎠ 

, (A8) 

here m is the number of segments averaged over, and 

 

2 = 

| s A | 2 | n B | 2 + | n A | 2 | s B | 2 + | n A | 2 | n B | 2 
m 

(A9) 

Vaughan & Nowak ( 1997 ) also give an equation for high powers
nd relati vely lo w coherence; ho we ver, this option is not included
n CorrSim both for simplicity’s sake and because this case does
ot typically arise in XRBs. This is also true for the case of low
owers, combined with the fact that no complete solution exists for
onfidence values under these conditions. 

2.3 Phase and time lags 

he phase lags are the phase angle of the complex-valued cross-
pectrum; i.e. the offset between the sin waves at each frequency, as
 function of their phase. In units of radians, they lie between −π

nd π , both of which relate to perfect antiphase, while a value of 0
elates to perfect phase. 

The errors on the phase lags are calculated from the coherence: 

φ = δφ ±
√ 

1 − γ 2 
I 

2 γ 2 
I f seg m 

, (A10) 

here γI is the coherence, f seg is the number of frequencies per
egment, and m is the number of segments averaged over (Bendat &
iersol 2000 ; Uttley & Casella 2014 ). 
Time lags are similar to phase lags, but are, unsurprisingly, a

unction of time. They are calculated thusly: 

τ = 

δφ

2 πf 
, (A11) 

here δφ is the phase lag, and f is the frequency of the bin. Errors on
he time lags are calculated similarly. Intrinsic drawbacks of phase 
ags, and possible solutions to such, are discussed in Section 2.2.2 . 
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