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1 Introduction

Evaluating Feynman integrals is an essential and central ingredient of Quantum Field Theory
in a vast range of applications. Despite impressive progress over many years [1–3], it remains
notoriously difficult. While analytic approaches to Feynman integrals, wherever available,
provide highly valuable insights and eventually facilitate fast and flexible evaluation, numerical
approaches [4–18] remain important, in particular when the complexity increases, in terms of
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the loop order, the number of kinematic scales, or the relevant function space. For similar
reasons, also asymptotic expansions of Feynman integrals in ratios of external kinematic
parameters become increasingly important. Specifically, the Method of Regions (MoR) [19–
26] provides a general strategy to perform such expansions in dimensional regularisation,1

exploiting the fact that dimensional regularisation regularises both infrared and ultraviolet
divergences. This method has been used to study a variety of kinematic limits and it provides
insight on the infrared singularity structure of integrals and amplitudes. It also sets the
basis for formulating effective field theories which capture the relevant degrees of freedom
in certain limits, such as Heavy Quark Effective Theory (HQET) [28–32] or Soft-Collinear
Effective Theory (SCET) [33–38].

The tremendous challenge presented by Feynman integrals is largely due to their complex
analytic structure, dictated by their singularities (see e.g. [39–43]). Given any Feynman
integral, a necessary condition for the emergence of singularities — be it infrared divergences
which manifest themselves as poles in the dimensional regulator, or branch points at particular
configurations of the external kinematic parameters such as kinematic thresholds — is given
by the Landau equations [44–46]. In momentum representation, the Landau equations imply
that the integration contours of some loop momenta must be pinched by singularities of
the integrand. The solutions of the Landau equations then identify manifolds in the loop
momentum space where the Feynman integral possibly diverges, typically characterised by
momenta that are collinear, soft, etc. These manifolds, often referred to as pinch surfaces in
literature, have been studied extensively over the past decades [47–50], providing the basis
for establishing factorisation properties of scattering amplitudes and cross sections.

Landau singularities and the associated pinch surfaces also dictate the properties of
asymptotic expansions of Feynman integrals. Indeed, whenever the resulting function is
non-analytic in the limit of interest, one expects that a straightforward expansion (a Taylor
expansion of the integrand) about this limit should not commute with the integration over
the loop momenta. Instead, one must carefully consider how the integration variables behave
in the limit considered. In the MoR, one asserts that the integration domain can be divided
into several distinct regions, such that the Feynman integral can be expressed as a sum over
integrals expanded in these regions. In each such region, there is a distinct way in which
the loop momenta behave in the limit, which in turn dictates how the integrand should
be expanded (so that the expansion converges inside the region). Thus, each such region
is governed by the vicinity of a particular pinch surface associated with a solution of the
Landau equations [25], which determines the leading behaviour of the integrand. In practice,
once the expansion is performed in each region, one simply performs the loop momentum
integration over the entire domain [20, 22], with the expectation that the extension beyond
the domain of convergence would cancel amongst the various regions in the sum,2 owing to
the properties of dimensional regularisation. While no general proof of the MoR is available,
this strategy has been utilised extensively, and shown to work in every instance, provided
that certain issues are handled with sufficient care (e.g. that all integrals are regularised).

1Alternatives, which avoid dimensional regularisation, also exist, see e.g. [27].
2This remarkable property has been elucidated in some detail in ref. [22], specifying conditions under which

it is guaranteed to hold.
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A remaining challenge is the need to identify a complete set of regions in loop momentum
space at the outset, and so far there is no algorithmic method for doing so.

In addition to the momentum representation, Feynman integrals can also be expressed
in parameter space using e.g. Feynman or Lee-Pomeransky representation [51]. In these
representations, the singularity structure is encoded in the zeros of the second Symanzik
polynomial F . One advantage of these representations is that many (sometimes all) of the
singularities manifest themselves as endpoint divergences. These are fully characterised by
the scalings of the parameters as they approach the endpoint of the integration domain
(typically zero or infinity). The set of exponents defining this scaling for a particular Landau
singularity are referred to as weight vectors, or region vectors in the context of the MoR.
These vectors are entirely independent of the kinematic coefficients appearing in F , and it
is therefore possible to determine them geometrically [9, 15, 52–55]. To this end one first
maps each monomial of the Symanzik polynomials,3 corresponding to a Feynman graph
with N edges, to an N -dimensional vector whose entries are the powers of the parameters
in that monomial. Regarding each of these vectors as a point in an N -dimensional space,
one then constructs a Newton polytope by forming the convex hull of all these points. One
then finds that the normal vectors to the faces of the polytope are precisely the weight
vectors characterising the endpoint divergences of the integral. This geometric construction
has many applications. In particular, it facilitates the formulation of efficient algorithms
to determine Landau singularities [54–59], the study of the infrared singularity structure of
Feynman integrals in dimensional regularisation [53], the numerical computation Feynman
integrals using sector decomposition [4–13], or the closely related tropical Monte Carlo
integration [14, 15], and the asymptotic expansion of Feynman integrals by the MoR directly
in parameter space, as implemented in computer codes such as Asy2 [23] (as part of the
program FIESTA [4–8]), ASPIRE [60] and pySecDec [13, 61].

Our recent study [25] focused on the application of the geometric MoR to the on-shell
expansion of massless particle scattering in general kinematics. Here one begins with integrals
defined for off-shell external legs and expands them about the on-shell limit. It was shown there
that region vectors correspond to pinch surfaces defined by solutions of the Landau equations
in momentum space. In particular, this paper proposed that in the on-shell expansion, the
region vectors identified using the Newton polytope stand in one-to-one correspondence with
regions in momentum space, and that they involve just three types of modes: hard, collinear
and soft. On this basis, a purely graph-theoretical algorithm was formulated to determine all
these regions, which makes no reference to the parametric representation. A rigorous proof
for this proposition was later given in ref. [26], with extensions to other types of expansions
derived (see also ref. [62]). These provide promising avenues to a more complete theoretical
understanding of the underpinnings of the MoR and infrared divergences.

To summarise, a key advantage of formulating Feynman integrals in parameter space is
the fact many of the singularities appear as endpoint divergences. This stands in contrast
to momentum space, where (infrared) singularities in Minkowski space typically manifest

3Such a geometric construction can be based on the monomials of the product of the two Symanzik
polynomials, UF , which is natural when working with Feynman parameterisation, or the monomials of their
sum, U + F , which appears in the Lee-Pomeransky representation. See section 2 below for further details.
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themselves as pinches of the loop momenta. As a consequence, parametric representations
have a geometric interpretation and they lend themselves naturally to algorithmic methods,
providing highly-valued tools as well as a more general theoretical understanding of asymptotic
expansion of Feynman integrals and the related singularities.

The present work is motivated by the observation that some singularities do in fact appear
as pinches in parameter space. From the Landau equations, this occurs when both F and
∂F/∂αi vanish away from the integration boundary. While this situation has been considered
since the early days (see e.g. [39]), its consequences for evaluating Feynman integrals using
sector decomposition and for applying the MoR in parameter space have not yet received
much attention.4 As we will see, existing sector decomposition algorithms fail when a pinch
singularity is present. Similarly, algorithms based on identifying regions as facets of the
Newton polytope, fail to capture the complete set of regions when expanded about a limit in
which a pinch is present. The goal of this study is to overcome these challenges, so as to extend
the applicability of sector decomposition and MoR algorithms to these types of integrals.

In contrast to endpoint divergences, pinch singularities appear in the Feynman parameter-
isation within the interior of the domain of integration. Such solutions of the Landau equations
are sensitive to the signs of the monomials of the Symanzik F polynomial, and hence cannot be
identified from the Newton polytope alone. Specifically, they arise when terms of opposite sign
in F and in its derivatives cancel. The simplest example is the one-loop self-energy integral
in the threshold limit (see section 3.1). In this case, Fbub = (q2/4)(α1 − α2)2 + y(α1 + α2)2,
where α1,2 are the Feynman parameters associated with the two propagators and y → 0 at
threshold. Upon expanding the integral in powers of y one encounters a pinch singularity
at α1 = α2. To handle this, one can split the domain of integration at the singularity into
the two sectors, α1 > α2 and α2 > α1. One then employs a change of integration variables,
in particular in the sector α1 > α2 one replaces α1 by α̃1 = α1 − α2 > 0, after which
the threshold singularity manifests itself as an endpoint singularity at α̃1 → 0 in the new
variables (α̃1, α2). By summing both sectors one covers the entire integration domain of
the original integral, with each sector free of pinch singularities, rendering it amenable to
the standard geometric MoR algorithm. This example illustrates both the problem and the
solution devised by Asy2 [23] and ASPIRE [60]. These tools can resolve a pinch singularity
in cases where there is a linear shift of the parameters that turns the singularity into an
endpoint divergence. It turns out, however, that this is merely the simplest cancellation
structure occurring, while multi-loop integrals possess far more.

To see why the problem of pinches in parameter space might be a rather general
feature of Minkowski-space Feynman integrals, recall that according to the graph-theoretical
definition of the Symanzik F polynomial (see eq. (2.2) below) all Mandelstam invariants
corresponding to channels on which the graph has cuts, enter with the same sign. However, a
Feynman integral can only be defined after momentum conservation has been imposed, i.e. all
momentum-conservation relations between the Mandelstam invariants have been employed.
This inevitably implies that certain monomials proportional to a given Mandelstam invariant
will finally appear with opposite signs.

4Notable exceptions in the application of the MoR on integrals involving internal massive propagators near
threshold or in the forward limit [23, 60] will be discussed below (see section 3.1).
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G

p1 p3

p2 p4

Figure 1. General massless two-to-two scattering, 1 + 2 → 3 + 4. The Mandelstam invariants
s = (p1 + p2)2, t = (p1 − p3)2, u = (p1 − p4)2 admit s + t + u = 0.

It is easiest to demonstrate this for 2 → 2 massless scattering (see figure 1), on which we
focus in this paper. In this case, momentum conservation implies s + t + u = 0. For planar
graphs only two of the three invariants appear at the outset (before momentum conservation
is used) so for every such integral there is a choice of kinematic regime in which all terms in
F have the same sign — referred to here as the same-sign regime — and any other kinematic
region can be reached via analytic continuation. Thus, pinch singularities cannot occur in
planar graphs for 2 → 2 massless scattering. However, in the nonplanar case F is bound to
contain all three invariants, s, t, and u, so upon using momentum conservation to eliminate
say u, the terms in F proportional to s and to t would each contain monomials with opposite
signs. This exemplifies the situation where an integral does not have a same-sign regime,
and it opens up the possibility that a nontrivial cancellation in F would occur in general
kinematics, leading to a pinch and potentially, an infrared divergence of the integral to which
the Newton polytope is blind.

The requirements for a pinch which would prohibit the computation of the integral by
sector decomposition, are far more strict still: not only F but also its derivatives must vanish.
Furthermore, this should occur within the domain of integration. These requirements are not
easily satisfied, but we find that starting from three loops there are indeed massless 2 → 2
graphs that display such a pinch (even in general kinematics), and in such cases, application of
existing sector decomposition and MoR algorithms is doomed to fail. Although not analysed
in the context of these algorithms, we point out that graphs admitting pinches in parameter
space have been identified in the literature as interesting, and their asymptotic expansions
have been analysed by multiple authors [63–74], both in wide-angle and forward kinematics.

The simplest example of a massless 2 → 2 Feynman graph featuring a pinch in parameter
space is the 8-propagator graph G•• (see figure 2(a)), a topology sometimes referred to as
the crown. After eliminating u, the terms proportional to s in the Symanzik F polynomial
take the form (αaαb − αcαd)(αeαf − αgαh), and similarly for the terms proportional to t,
albeit with a different combination of Feynman parameters. In this case, all the ∂F/∂αi

(and thus F) vanish upon satisfying three independent nonlinear relations between the αi,
which are reached within the domain of integration. This is therefore a genuine singularity
of the integral, and it occurs for any values of s and t. Clearly, the singularity cannot be
mapped to an endpoint of the integration domain via a linear shift. However, through a
suitable rescaling of the parameters, we are able to linearise the polynomial near the singular
locus and subsequently split the integration domain into sectors, in order to finally map
the singularity onto the endpoint of the integration domain in each sector. In terms of
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p1 p3

p2 p4

(a) G••

p1 p3

p2 p4

(b) G•s

p1 p3

p2 p4

(c) G•t

p1 p3

p2 p4

(d) G•u

p1 p3

p2 p4

(e) Gss

p1 p3

p2 p4

(f) Gtt

p1 p3

p2 p4

(g) Guu

p1 p3

p2 p4

(h) Gst

p1 p3

p2 p4

(i) Gsu

p1 p3

p2 p4

(j) Gtu

Figure 2. All the massless four-point three-loop graphs with a possible pinch Landau singularity in
parameter space.
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the associated geometry, this operation amounts to dissecting the Newton polytope into 24
separate polytopes, each of which is amenable to applying the standard sector decomposition
algorithm. Ultimately, this allowed us to evaluate the integral numerically with high precision,
and check the result against the analytic computation [75, 76].

We proceed by using the same technique of dissecting the polytope to perform asymptotic
expansions of integrals in this class. To verify the results and gain another perspective, we
also perform asymptotic expansions in momentum space5 and compare them to analytic
results where available. We consider two cases: wide-angle scattering and the Regge limit. In
the context of wide-angle scattering we study the on-shell expansion. Specifically, we start
with a four-point integral with massless propagators and one off-shell external leg, with the
remaining three external legs strictly on shell, and then expand in the mass (virtuality) of
the off-shell leg. Since the expansion is performed about the on-shell limit, where a pinch is
present, the expansion is sensitive to the pinch surface. Indeed, we find that this singularity
generates a new region, which is not visible using the original Newton polytope. We refer to
this as a hidden region and we show that it appears as a facet only after dissecting the polytope
as explained above. This hidden region has a clear physical interpretation: it features two
distinct hard vertices, providing the simplest example6 of Landshoff scattering [70, 72, 77].
This stands in contrast to facet regions, which have just one hard subgraph in wide-angle
scattering [25, 26]. Turning to the Regge limit of 2 → 2 scattering, we similarly show that a
hidden region emerges upon dissecting the polytope. In this case the new region involves a
loop momentum in the Glauber mode. For the particular case of the 8-propagator graph G•• in
figure 2 in both the wide-angle on-shell expansion and the Regge-limit expansion, the hidden
regions alone govern the leading asymptotic behaviour: all other regions, which are visible as
facets of the original Newton polytope, are power suppressed compared to the hidden one!

This paper is organised as follows. In section 2 we set up our notation, briefly recalling
the Feynman and Lee-Pomeransky parametric representations of Feynman integrals, the
Landau equations and the geometric approach to sector decomposition and to the MoR. In
section 3 we have two main objectives. The first is to use the Landau equations in order
to set up an algorithmic search for graphs that are prone to having a pinch in parameter
space, which we apply to 2 → 2 massless scattering graphs up to four loops. In the rest
of the paper we analyse the three-loop examples we identified. The second objective is to
devise a method of applying sector decomposition to integrals with a pinch by dissecting the
polytope as outlined above. We end this section with a comparison between the numerical
computation and analytic results. Next, in section 4 we turn to study the MoR in the
aforementioned class of three-loop examples, focusing on the on-shell expansion for wide-angle
scattering. We perform a power counting analysis in both parameter space and momentum
space, demonstrating the presence of a hidden region. We also provide a numerical analysis of
the same graph near the on-shell limit. We demonstrate that this class of integrals provides a
departure from the graphical rules found in refs. [25], where only endpoint singularities were
considered, in that they involve more than one connected hard subgraph. In section 5 we

5To this end the work of Botts and Sterman [77] provides an excellent starting point.
6These contributions are known to be suppressed in gauge theory [77–79], but provide important examples

for our study of scalar integrals.
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perform a similar analysis in the Regge limit, starting with the strictly on-shell integrals. In
this case we are able to verify our conclusions regarding MoR expansion, by comparing it to
the expansion of the analytic result in powers of −t/s. Finally, in section 6 we summarise
our conclusion and provide an outlook.

2 Preliminaries

In this section, we review the concepts and definitions necessary for our subsequent discussions
of Landau singularities and the MoR. We begin in section 2.1 by introducing the Feynman
and the Lee-Pomeransky representations of Feynman integrals. In the context of the Feynman
representation, we recall in section 2.2 the Landau equations, which we later on use for
identifying Landau singularities. In section 2.3 we describe the geometric approach to
sector decomposition. Finally, using the Lee-Pomeransky representation, we briefly recall
in section 2.4 how Newton polytopes can be used to systematically identify regions suitable
for the asymptotic expansion of Feynman integrals.

2.1 Parametric representations

Throughout this paper, we will use G to denote a Feynman graph, I to denote a Feynman
integral, and N and L to denote the numbers of propagators and loops of G, respectively.
We start from the Feynman representation of I(G) ≡ I(s), which reads:

I(s) = Γ(ν − LD/2)∏
e∈G Γ(νe)

∫ ∞

0

(∏
e∈G

dαe
ανe

e

αe

)
δ

(∑
e∈G

αe − 1
)
[U(α)]ν−(L+1)D/2

[F(α; s)]ν−LD/2 , (2.1)

where D is the dimension of space-time, νe is the exponent of the denominator associated to
the propagator of edge e, and ν ≡

∑
e∈G νe. We have used α to denote the set of Feynman

parameters α1, . . . , αN , and s to denote the set of Mandelstam variables of I, which consist
of Lorentz invariants formed with the external momenta {pi} as well as internal squared
masses {m2

e}, if present.
The polynomials U(α) and F(α; s), which are called the first and second Symanzik

polynomials respectively, are given by:

U(α) =
∑
T 1

∏
e/∈T 1

αe, F(α; s) =
∑
T 2

(−sT 2)
∏

e/∈T 2

αe + U(α)
∑

e

m2
eαe − iε , (2.2)

where ε > 0 represents the Feynman prescription. The notations T 1 and T 2 denote a spanning
tree and a spanning 2-tree of the graph G, respectively. The symbol sT 2 is the square of the
total momentum flowing between the components of the spanning 2-tree T 2.

An alternative representation of Feynman integrals, which will be particularly useful for
applying the MoR in what follows, is the Lee-Pomeransky representation:

I(s) = Γ(D/2)
Γ ((L + 1)D/2−

∑
e∈G νe)

∏
e∈G Γ(νe)

·
∫ ∞

0

(∏
e∈G

dxe

xe

)
·
(∏

e∈G

xνe
e

)
·
(
P(x; s)

)−D/2
.

(2.3)
Similar to above, we have used x to denote the set of Lee-Pomeransky parameters x1, . . . , xN ,
with N the number of edges (enumerated by e) of the Feynman graph G; νe is the exponent
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of the denominator associated with the propagator e. The Lee-Pomeransky polynomial,
P(x; s), is equal to the sum over the Symanzik polynomials:

P(x; s) ≡ U(x) + F(x; s) . (2.4)

Note that the Feynman and Lee-Pomeransky parameters can be related via:

αe = xe

x1 + x2 + · · ·+ xN
. (2.5)

Using this relation the Lee-Pomeransky representation, eq. (2.3), can be translated back into
the Feynman parameterisation, eq. (2.1) as follows. One first inserts

1 =
∫ ∞

−∞
dXδ

(∑
e∈G

xe − X

)

into eq. (2.3), and then changes the variables xe = Xαe according to eq. (2.5). At this point
one uses the homogeneity properties of the Symanzik polynomials in eq. (2.2), to find that the
U polynomial scales as XL while the F polynomial scales as XL+1, which makes it possible
to integrate over X and obtain a ratio of gamma functions. The result is exactly eq. (2.1).

2.2 Landau equations in parameter space

In the Feynman representation, a singularity can occur when either U or F vanish. Such
singularities can occur at the endpoint of the domain of integration, αi → 0, forcing every
monomial to vanish independently. These are often referred to as endpoint singularities in
the literature. Additionally, since the sT 2 in F in eq. (2.2) may have different signs, F = 0
singularities may arise due to cancellations between different terms. Such singularities may
sometimes be avoided by analytic continuation, namely by deforming the integration contour of
the relevant αk-parameters into the complex plane by introducing a small imaginary part iεk:

αk → αk − iεk(α) . (2.6)

Under such a change of variables the F polynomial transforms as follows

F(α; s) → F(α; s)− i
∑

k

εk(α)∂F(α; s)
∂αk

+O(ε2) . (2.7)

Thus, provided that for some k (for which αk ̸= 0) one has ∂F(α;s)
∂αk

̸= 0, the contour-
deformed integral avoids the singularity. This provides a definition of the integral by analytic
continuation (note that according to the Feynman prescription in eq. (2.2), one should choose
εk(α) in eq. (2.6) to have the same sign as ∂F(α;s)

∂αk
in the neighbourhood where F vanishes).

However, if both F = 0 and ∂F/∂αk = 0 for all k for which αk ̸= 0, the contour becomes
pinched. In this case the singularity cannot be avoided, and would have an imprint on the
analytic structure of I(s). Singularities of this type are referred to as pinch singularities.

In conclusion, on a singular surface, therefore, each αk must either vanish or have its
contour pinched. The necessary condition for a singularity to occur are summarised by the
Landau equations, which can be expressed as [39, 44]

F = 0, αk
∂F
∂αk

= 0 for each k ∈ {1, . . . , N}. (2.8)
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We remark that due to the homogeneity of F we also have, by Euler’s theorem,

N∑
k=1

αk
∂F
∂αk

= (L + 1)F , (2.9)

where L is the number of loops in G. Thus, the condition F = 0 is automatically fulfilled
when αk∂F/∂αk = 0 for all k.

Recently, progress has been made in solving the Landau equations algorithmically [54,
55, 58, 59, 80, 81], which is a profoundly difficult problem in the general setting [56, 57].
Solutions can be characterised by manifolds of any dimension, residing in the large space of
kinematic invariants times the N -dimensional complex parameter space {αk}. Our interest
here instead is limited to singularities which may obstruct the computation of the integral
using sector decomposition or introduce regions in an asymptotic expansion by the MoR.
Specifically, these restrictions allow us to focus on solutions to eq. (2.8) that appear within
the integration domain, αk ⩾ 0.

2.3 Newton polytopes for sector decomposition

One of the central objects of study in this work is the Newton polytope associated to Feynman
integrals either in Feynman or Lee-Pomeransky representation. The Newton polytope can be
used to study the behaviour of integrands in the limit that sets of parameters become small or
large simultaneously. The behaviour of the integrand near the boundaries of parameter space
can give rise to ultraviolet or infrared singularities which appear as poles in the dimensional
regulator after integration. Aside from a potential overall ultraviolet divergence in the
Γ-function prefactors, the Newton polytope fully captures the singular structure of integrals
in the same-sign regime, where all terms in F have the same sign. Away from the same-sign
regime, or for integrals without a same-sign regime, additional singularities can be present,
for example at thresholds where intermediate particles go on shell. Here, we briefly recap
how Newton polytopes can be used to study and blow-up, or resolve, singularities at the
integration boundary using sector decomposition.7 Then, in section 3, we describe a situation
in which the Newton polytope alone is insufficient to resolve the singularities of certain
integrals that do not have a same-sign regime.

The Newton polytope corresponding to the integral I(s) in Feynman parameter space is
obtained as follows. Starting from the Feynman representation given in eq. (2.1) the Dirac δ-
distribution is first integrated out after using the Cheng-Wu theorem to replace it by δ(1−αN ).
Next, the product of the Symanzik polynomials, U and F , given in eq. (2.2), is constructed

U(α) · F(α; s) =
m∑

i=1
bi(s)αri,1

1 · · ·αri,N−1
N−1 ≡

m∑
i=1

bi(s)αri , (2.10)

where ri are (N − 1) dimensional exponent vectors. The Newton polytope, ∆(U · F), is then

7We refer the interested reader to refs. [3, 9, 82–85] for a more in-depth treatment.
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defined as the convex hull of the vertices given by ri,

∆(U · F) def= convHull(r1, . . . , rm) =
{

m∑
i=1

airi

∣∣∣ ai ⩾ 0 ∧
m∑

i=1
ai = 1

}
(2.11)

=
⋂

f∈F

{
ρ ∈ RN−1 | ρ · nf + af ⩾ 0

}
, af ∈ Z ∀ f. (2.12)

In the first line, the Newton polytope is described by the vertices, ri, while in the second
line, the polytope is instead defined by inward pointing vectors, nf , normal to the facets
of the polytope f ∈ F .

Next we describe how Newton polytope geometry is used to perform sector decomposition
of the integral. Let Sj denote the set of facets incident on the extremal vertex, rj ; they
define a local change of variables,

αi =
∏

f∈Sj

y
⟨nf ,ei⟩
f , (2.13)

where ei are standard basis vectors in RN−1. If more than N − 1 facets are incident on an
extremal vertex then a further subdivision, known as triangulation, is required. This means
that each extremal vertex leads to one or more (if triangulation is required) sectors.

After applying the change of variables for each sector, the integral can now be written
as the sum,

I(s) =
∑

σ

|σ|
∫ 1

0

∏
f∈σ

dyf

yf
y
⟨nf ,ν⟩−(tU+tF )af

f

 (
Ũσ(yf )

)tU
(
F̃σ(yf ; s)

)tF
. (2.14)

Here σ indexes the simplicial cones associated with the extremal vertices, |σ| is the Jacobian
determinant associated to the change of variables in each sector, ν is a vector of propagator
exponents built from νe, and tU = ν − (L + 1)D/2 with tF = −ν + LD/2. The polynomials
Ũσ and F̃σ can be obtained by substituting the change of variables of eq. (2.13) and factoring
out an overall monomial, giving

U(yf ) =

∏
f∈σ

y
−af

f

 Ũσ(yf ), F(yf ; s) =

∏
f∈σ

y
−af

f

 F̃σ(yf ; s) . (2.15)

The polynomials Ũσ and F̃σ are guaranteed to each contain a constant term. The singularities
appearing at the boundaries of integration now appear as an overall factor in eq. (2.14) and
the remaining polynomials, Ũσ and F̃σ, are guaranteed to be finite for any subset of yf → 0.

Recently, there has been a resurgence of interest in using geometric concepts to understand
the singularity structure of Feynman integrals, including both dimensionally regulated and
kinematic singularities. For example, a similar geometrical construction has been used to
obtain a general formula for predicting the leading singularities in the ϵ expansion of generic
Feynman integrals [53]. In refs. [54, 55], a geometrical construction was used to find solutions
of the Landau equations depending on the kinematic invariants. In another development,
concepts from tropical geometry, including generalised permutahedra, were used to devise a
procedure for efficiently integrating finite Feynman integrals [14, 15]. Also in the context
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of tropical geometry, very recent work has focused on studying subtraction formulae using
the facets of the Newton polytopes [86]. Symmetries of Feynman integrals have also been
investigated using the symmetries of Newton polytopes [87].

2.4 Newton polytopes for the MoR

In parameter space, the scaleful regions contributing to the MoR expansion can be found
algorithmically using Newton polytopes. The approach is believed to capture all relevant
regions, provided the terms of the F or, equivalently, P polynomials do not cancel each
other in the positive hyperoctant [1, 20, 23] leading to a pinch in the limit about which we
expand. Here we briefly review the Newton polytope approach to the MoR in our notation,
assuming such cancellations do not occur. Then, in the remainder of this paper, we examine
the situation where such cancellations do occur and are relevant for both the evaluation
and expansion of Feynman integrals.

The MoR begins by assuming that a subset of invariants t ⊂ s are small compared to the
rest, and that we are interested in the asymptotic expansion of eq. (2.3) around the kinematic
limit in which they vanish. To this end, it is convenient to introduce an |s|-dimensional
scaling vector w = (w1, w2, w3, . . . ), with wi = 1 if si ∈ t and wi = 0 otherwise, and introduce
a parameter λ ≪ 1 such that si ∼ λwiQ2, with Q2 some fixed nonzero scale. A specific class
of expansions we would be interested in, following [25], is the on-shell expansion in massless
scattering, where the set t consists exclusively of the virtualities p2

i of some external legs. A
more detailed definition is given in eq. (4.1) below. We will also discuss the Regge limit in
on-shell 2 → 2 massless scattering where the set t consists exclusively of the Mandelstam
invariant t, while s remains large.

The Newton polytope of interest for applying the MoR can be obtained using the
Lee-Pomeransky polynomial,8 defined in eq. (2.4), with the Mandelstam invariants rescaled
as s → λws,

P(x;λws) =
m∑

i=1
ci(s)x

ri,1
1 . . . x

ri,N

N λri,N+1 , (2.16)

where, for Feynman integrals, the powers ri,j ∈ {0, 1, 2}. For each i, we define the (N + 1)-
dimensional exponent vector ri ≡ (ri,1, . . . , ri,N ; ri,N+1) ≡ (r̂i; ri,N+1). The Newton polytope
∆(P) is then the convex hull of the exponent vectors,

∆(P) def= convHull(r1, . . . , rm) =
{

m∑
i

airi

∣∣∣ ai ⩾ 0 ∧
m∑
i

ai = 1
}

(2.17)

=
⋂

f∈F

{
ρ ∈ RN+1 | ρ · vf + af ⩾ 0

}
, af ∈ Z ∀ f, (2.18)

where vf are inward pointing vectors normal to the facets of the polytope f ∈ F . The Newton
polytope ∆(P) is an (N + 1)-dimensional polytope, the first N dimensions correspond to

8Alternatively, we can obtain the region vectors using the product U(α) · F(α; s) rather than the sum
appearing in P(x; s). As shown in ref. [24], the resulting region vectors are in one-to-one correspondence and
differ only by a constant shift, see also refs. [25, 61].
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the Lee-Pomeransky parameters x1, . . . , xN , which are integrated over, while the (N + 1)-th
dimension corresponds to the expansion parameter λ.

The lower facets of ∆(P) are defined to be those facets which have an inward pointing
normal vector vf with a positive (N + 1)-th component, vN+1 > 0. Let us call the set of
lower facets F+, with F+ ⊂ F . The lower facets capture the behaviour of P where λ → 0
and describe the regions relevant for the MoR. The integrand of each region can be obtained
by rescaling the integrand of eq. (2.3) as s → λws and x → λuRx, λ → λvR,N+1 , where
vR = (uR, vR,N+1) and R ∈ F+.

Given a scaling vector uR for some region R, the scaling rule of each Lee-Pomeransky
parameter xe ∈ x can be directly translated into the scaling of rule of the corresponding
edge momentum le as follows [25, 88]:

xe ∼ 1
l2e

∼ λuR,e . (2.19)

This relates regions in parameter space to regions in momentum space. Specifically, in the
on-shell expansion scaling vectors uR involve just three types of entries: uR,e ∈ {0,−1,−2},
which correspond respectively to the following three momentum modes: hard, collinear and
soft [25, 26]. Note that in momentum space the virtuality does not always uniquely fix the
scaling of individual components of the loop momentum (for example a jet loop momentum
can be collinear to different external vectors). In the on-shell expansion, upon imposing
momentum conservation this mapping is uniquely determined.

As described in ref. [25], the lower facets of the Newton polytope capture the solutions
of the Landau equations that are relevant for infrared regions, as well as the hard region.
However, the Newton polytope is completely insensitive to the coefficients ci(s) appearing
in eq. (2.16). If we allow the coefficients to differ in sign, the terms of P may cancel each
other, potentially leading to further pinch solutions of the Landau equations not captured
by the facet analysis presented above. These solutions can give rise to additional scaleful
regions that must be included in the MoR analysis. We refer to the regions overlooked by
the Newton polytope procedure as hidden regions.

3 Computing integrals with pinched contours in parametric
representation

As already mentioned, our prime motivation for this work stems from the MoR, and specifically
from the geometric approach to the MoR. In contrast to momentum space, the geometric
approach offers an algorithmic procedure of identifying regions as (lower) facets of the Newton
polytope defined by the Symanzik graph polynomials [21, 61]. In the Lee-Pomeransky
representation this polytope is defined as the convex hull of all monomials in P(x; s) of
eq. (2.4) in the space defined by the powers of the parameters xi. Importantly, the coefficients
of these monomials are not encoded in the polytope. For integrals defined in Euclidean
space, all monomials in P(x; s) have the same sign, and then the information contained
in the polytope is sufficient to identify all regions. In Minkowski space, the situation is
different in that the signs of distinct monomials appearing in the P polynomial may play an
important role in dictating the singularity structure of the integral: additional singularities
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may emerge due to particular cancellations between monomials of opposite sign. In certain
cases, these singularities may be essential for identifying MoR regions. Indeed, it is well
known that some regions, which are necessary for obtaining the correct asymptotic expansion
of certain Feynman integrals [23, 60], do not correspond to facets of the polytope associated
with P(x; s). In this work we refer to such regions as hidden regions.

A key step in developing the geometric approach to the MoR was taken in ref. [23],
which was the first to propose a method to systematically identify such hidden regions.
Ref. [23] presented a Mathematica code, asy2.m, which is designed to identify hidden regions
associated with a linear cancellation between monomials. In such cases it separates the
integration domain at the singularity locus, and maps each sector back onto the standard
integration domain by a suitable shift of the integration parameters. The newly defined
polynomial in each such sector, which is free of the aforementioned cancellation, gives rise
to a new Newton polytope whose facets correspond to regions. This technique has been
demonstrated [23, 24, 60] to identify all regions in certain classes of integrals. We proceed by
briefly recalling the method and then reviewing known examples where it applies.

3.1 Motivating examples

The method to resolve hidden regions, known as PreResolve in asy2, works by selecting
a variable appearing in a positive monomial, αi, and a variable appearing in a negative
monomial, αj , then making a linear change of variables,

αi → mii αi + mij αj , (3.1a)
αj → mji αi + mjj αj (3.1b)

with the parameters m chosen (if possible) to eliminate a negative monomial. The above
replacements are tried on all pairs of variables appearing in opposite sign monomials and
iterated provided the number of negative monomials is not increased by the substitution.
The resolution procedure is considered successful if, after a finite number of iterations, the
modified F polynomial has only positive monomials. A similar procedure was introduced in
the paper of Ananthanarayan et al. [60] which works by applying the above procedure to
the Gröbner basis of the F polynomial and its first order derivatives, rather than directly on
F itself. In the remainder of this section we will consider some examples where the above
procedures work and discuss the interpretation of the output. In sections 4 and 5, we will
discuss in detail situations in which the above procedures fail.

The first example for which PreResolve works is given by a one-loop massive bubble
close to threshold,

Ibub(q2, y) =
∫

dDk

iπD/2
1

(k2 − m2)
(
(k − q)2 − m2)

= Γ(ϵ)
∫

dα1dα2
δ(1− α1 − α2)(α1 + α2)−2+2ϵ(

Fbub(α1, α2; q2, y)
)ϵ (3.2)

with D = 4 − 2ϵ and

Fbub(α1, α2; q2, y) = (q2/4)(α1 − α2)2 + y(α1 + α2)2 and y = m2 − q2/4.
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In the threshold limit y → 0, the integrand develops a singularity due to the vanishing of the
term (q2/4)(α1 − α2)2 along the line α1 = α2. To understand the nature of this singularity
it is instructive to consider the Landau equations:

α1 = 0 or dFbub
dα1

= 0 = (q2/2)(α1 − α2) + 2y(α1 + α2) , (3.3)

α2 = 0 or dFbub
dα2

= 0 = (q2/2)(α2 − α1) + 2y(α1 + α2) . (3.4)

At y = 0 the equations
dFbub
dα1

= dFbub
dα2

= 0 (3.5)

are satisfied on the line α1 = α2, identifying this as a pinch singularity. The δ constraint
fixes its location at α1 = 1

2 = α2. Note that for nonzero y the only solution is α1 = 0 = α2
which is an endpoint singularity rather than a pinch, which is, however, not supported by
the δ-constraint, and is therefore discarded.

The pinch can also be described from the perspective of an expansion in y as follows.
When y approaches zero, the solution of the condition Fbub(α1, α2; q2, y) = 0 is:

α2 = 1− α1, α1 → 1
2 ±

i
√

y√
q2 . (3.6)

Thus, for nonzero y there are two complex roots in α1, at which Fbub vanishes. In the limit
y → 0 these roots merge at α1 = 1/2 = α2, pinching the contour on the real axis from above
and below. This is the very point where the derivative conditions eq. (3.5) are satisfied.

The program asy2 has a feature to resolve such singularities, and to find the underlying
regions within the MoR approach by sector decomposing over the two sectors:

(1) α1 < α2: (α1, α2) → (α1/2, α1/2 + α2)

(2) α1 > α2: (α1, α2) → (α1 + α2/2, α2/2)

In each of these sectors the boundaries are mapped back onto the Feynman simplex (1 =
α1 + α2) via the indicated mappings, and as a result the line singularity is mapped onto
the boundary. For example, in sector 1 the resulting integral is

I(1)
bub(q

2, y) = Γ(ϵ)
2

∫
dα1dα2

δ(1− α1 − α2)(α1 + α2)−2+2ϵ(
(q2/4)(α2)2 + y(α1 + α2)2

)ϵ , (3.7)

where no further singularities occur in the domain of integration. Thus, in the new formulation
all regions can be identified using the Newton polytope approach.

Another example of this kind, also discussed in ref. [23], is the following pentagon integral
for a forward scattering kinematic configuration

Ipenta(Q2, m2) =
∫

dDk

iπD/2
1

(k2 − m2)(k2 − 2p · k)(k2 + 2p · k)(k2 − 2q · k)(k2 + 2k · q)

= −Γ(3 + ϵ)
∫

dα1 . . . dα5 δ(1− α1 · · · − α5)

×
(
Upenta({α})

)1+2ϵ (
Fpenta({α};Q2, m2)

)−3−ϵ

(3.8)
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where

Upenta({α}) = α1 + α2 + α3 + α4 + α5 , (3.9a)
Fpenta({α};Q2, m2) = α1Upenta({α})m2 + (α2 − α3)(α4 − α5)Q2 . (3.9b)

The Landau conditions are

α1 = 0 or dFpenta
dα1

= 0 = (α1 + Upenta)m2 , (3.10a)

α2 = 0 or dFpenta
dα2

= 0 = (α1)m2 + (α4 − α5)Q2 , (3.10b)

α3 = 0 or dFpenta
dα3

= 0 = (α1)m2 − (α4 − α5)Q2 , (3.10c)

α4 = 0 or dFpenta
dα4

= 0 = (α1)m2 + (α2 − α3)Q2 , (3.10d)

α5 = 0 or dFpenta
dα5

= 0 = (α1)m2 − (α2 − α3)Q2 . (3.10e)

To satisfy eq. (3.10a) we must require α1 = 0 since there exists no solution to dFpenta
dα1

= 0.
Alternatively, we can consider the limit m2/Q2 → 0 in which dFpenta

dα1
= 0 is automatically

satisfied. In either of these cases eqs. (3.10b)–(3.10e) allow for a pinch singularity located at

α4 − α5 = 0 = α2 − α3 . (3.11)

Note that other singularities are also possible, e.g. α2 = 0 = α3 solves the Landau equations
for any value of α4 and α5, since the corresponding derivatives of Fpenta vanish. This
singularity should, however, be interpreted as an endpoint singularity in the sense that each
monomial vanishes independently and no cancellation takes place. Note also that if we had
only α2 = α3 then Fpenta would still vanish, but α4, α5 could be used to avoid the singularity
by deforming the contour into the complex plain. Thus, the only pinch singularity appears
subject to the two conditions, α2 = α3 and α4 = α5, assuming either α1 → 0 or m2 → 0.
Given that the singularity is linear in the difference of two parameters, a similar resolution
strategy as described above can map these singularities to the boundary, allowing the Newton
polytope approach to be used sector by sector to reveal the regions.

In the next sections we will see that more general situations of cancellation structures
may occur, involving higher degree polynomials, e.g. αiαj = αkαl for some i, j, k, l, similarly
leading to pinch singularities, which obstruct both the evaluation of the integral and its
expansion with available strategies.

3.2 Searching for pinch singularities in parameter space

Given a Feynman integral, the faces of the corresponding Newton polytope suffice to identify
all the Landau singularities as long as there exists an analytic continuation to a same-
sign regime where F is positive definite. When there is no same-sign regime, Landau
singularities may arise from the cancellation of F terms with opposite signs. To understand
such cancellation structures, let us define the polynomials F+ and F− at a given kinematic
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point as the positive and negative monomials of F , respectively, with F = F+ + F−. The
second Landau equation then becomes

αe
∂F+
∂αe

+ αe
∂F−
∂αe

= 0, for e ∈ {1, . . . , N}. (3.12)

Since αe are all non-negative, the sign of a given monomial in F is directly linked to that of
the Mandelstam invariant it contains. Importantly, before examining F using the Landau
equations, one must impose all constraints relating kinematic invariants based on momentum
conservation. In particular, the separation of the monomials in F into F+ and F− must be
done after all such relations are taken into account, so F is written in terms of a minimal set
of independent kinematic variables. Having done that, one may distinguish between two types
of cancellation scenarios which may arise. One scenario arises when terms with the same
invariant cancel between them, independently of the kinematics. The second scenario is when
the cancellation involves terms associated with more than one invariant, leading to a potential
Landau singularity at a particular kinematic configuration. In this paper, we focus exclusively
on the first type of cancellation, which occur for general kinematics (under certain restrictions,
e.g. on-shell conditions) potentially giving rise to infrared divergences. With this in mind, we
first treat the coefficient of each independent invariant sij ∈ s \ t as a separate F polynomial,
which we denote by F (sij) and search for cancellations among its terms, such that eq. (3.12)
admits a nontrivial solution. If such a solution exists for all independent invariants in F(α, s),
we investigate if a compatible solution exists. If it does, we have identified a pinch singularity.

Our objective is to identify a necessary condition for the existence of pinch singularities
in parameter space within the domain of integration. This situation is characterised by a
solution of the Landau equations (2.8) for positive αi, leading to the following cancellation
requirement: there exists at least one Feynman parameter αi ̸= 0 with ∂F

∂αi
containing non-

vanishing terms of both signs that cancel on the solution. This requirement is satisfied in
the motivating examples of eqs. (3.2) and (3.8) above.

This requirement allows for the possibility that a set of parameters {αj} strictly vanish.
The pinch then corresponds to a solution of the Landau equations which is also present
in a sub-topology of the Feynman graph under consideration. When some first derivatives
∂F
∂αj

are either positive definite or negative definite, the Landau equations imply that each
monomial in αj

∂F
∂αj

must strictly vanish. The cancellation requirement is then that after all
such parameters {αj} are set to zero, there is still some αi ̸= 0 such that ∂F

∂αi
, which vanishes

on the solution, receives contributions from both F+ and F−.
Note that this implies that the form of an F(α; s) polynomial that is prone to having

pinch singularities is rather constrained. For example, the following expressions

F(α; s) = (αa − αb)f(α; s), or F(α; s) = (αaαb − αcαd)f(α; s), (3.13)

with f(α; s) positive or negative definite, do not satisfy the cancellation requirement. To see
this, let us consider the first equation of (3.13) as an example. If the cancellation requirement
is to be fulfilled, there must exist some dependence on αe in f(α; s) with e ̸= a, b, such that
αe

∂F+
∂αe

= αaαe
∂f

∂αe
and αe

∂F−
∂αe

= −αbαe
∂f

∂αe
are non-vanishing and cancel on the solution.

Now we show that in fact these terms vanish independently. To this end, consider the Landau
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equations (2.8) with respect to αa and αb, which imply that each monomial in αa
∂F
∂αa

and
αb

∂F
∂αb

strictly vanishes on the solution. We note, however, that all the monomials of αe
∂F
∂αe

are included in F = αa
∂F
∂αa

+ αb
∂F
∂αb

, all of which must vanish on the solution. Hence there
is no way that the cancellation requirement could be satisfied. We conclude that having
F terms of distinct signs is not enough.

As pointed out in the past by several authors [64, 69–72], a typical expression of F(α; s)
for 2 → 2 scattering that features a pinch singularity includes terms proportional to

(αaαb − αcαd)(αeαf − αgαh). (3.14)

We now present an algorithm which searches for integrals potentially satisfying the cancellation
requirement above. We will see that diagrams with cancellation patterns such as (3.14) are
identified by the algorithm.

Algorithm to identify potential pinch singularities in F(sij).

Based on the cancellation requirement stated above, we now construct an algorithm which
identifies all the graphs that potentially contain a pinch in parameter space, under the
assumption that F = F (sij)({αk}), i.e. F is proportional to a single Mandelstam invariant sij ,
and hence a function of the Feynman parameters alone. We then follow three simple steps:

Step 1. Compute F+ and F−. If either of them vanishes, exit the algorithm outputting that
there are no pinch Landau singularities. Otherwise go to Step 2.

Step 2. Compute ∂F+/∂αi and ∂F−/∂αi for all the αi that F depends on. If none of these
derivatives vanish, exit the algorithm outputting that there are pinch singularities
(which may or may not be within the integration domain). Otherwise go to Step 3.

Step 3. Identify the i for which ∂F+/∂αi = 0 or ∂F−/∂αi = 0, replace F by F|αi=0, and return
to Step 1.

Application to massless on-shell 2 → 2 wide-angle scattering.

Here we focus on singularities in 2 → 2 massless wide-angle scattering. In order to apply the
above algorithm to this case we must consider the interplay of the three channels s, t and u

represented in the F polynomial, which satisfy the momentum conservation and on-shell
conditions, i.e. s + t + u = 0. Given that we have, for example, eliminated u = −s − t from
F , then the complete F polynomial takes the form:9

Fu(α; s, t) ≡ F (s)(α; s) + F (t)(α; t) . (3.15)

We now apply the above algorithm separately on F (s)(α; s) and on F (t)(α; t). If we cannot
exclude a pinch in either of the two, we go ahead and look for a solution of the combined
set of Landau equations:

∂F (s)(α; s)
∂αi

= 0,
∂F (t)(α; t)

∂αi
= 0, ∀i . (3.16)

If such a solution exists, we have a true candidate for a pinch singularity.
9Here and below we use the subscript u to indicate that we eliminated it from F , setting u = −s − t.
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A rather obvious potential caveat could be that while the polynomial Fu, obtained by
eliminating u in favour of −s− t seems to satisfy the conditions for a pinch, upon considering
the same graph using an alternative set of independent invariants, say by t = −s − u, the
resulting polynomial

Ft(α; s, u) ≡ F (s)(α; s) + F (u)(α;u) (3.17)

has no pinch solution. Such a scenario is indeed realised for planar graphs. Of course the
conclusion is that this graph has no pinch (in fact, in the case of planar graphs F has a same-
sign regime). Such false candidate graphs for a pinch can be easily eliminated upon running
the algorithm on all sets of independent invariants, i.e. on Ft(α; s, u), on Fu(α; s, t) and on
Fs(α; t, u). If a pinch singularity is excluded in any of them, then there is no such solution.

By running this algorithm through all massless 2 → 2 graphs with three- and four-point
vertices and up to four loops, we find that for both wide-angle scattering kinematics and
nearly-forward scattering kinematics, there are no one-loop or two-loop graphs exhibiting
pinch Landau singularities. At the three-loop order, there are 10 graphs, shown in figure 2,
which potentially contain pinch Landau singularities. We have used the symbols •, s, t, and u

to denote different internal scattering topologies in these graphs: • represents scattering
at a four-point vertex, while s, t, and u represent scattering in the s, t, and u channels,
respectively. In section 3.3 we show how knowledge of the pinch singularity facilitates the
numerical evaluation of the integral, by enabling us to identify a polytope dissection that
maps the singularity to the boundary of the domain of integration. In sections 4 and 5 we
discuss how the pinch singularity leads to new regions, referred to as hidden regions, that
were not visible as a facet of the Newton polytope of the integral in wide-angle scattering
and forward scattering kinematics, respectively.

At four-loop order, the algorithm identifies 1097 graphs potentially containing pinch
Landau singularities. A key observation is that 1081 of these graphs can be obtained by
adding one extra propagator to the graphs of figure 2. Indeed, we explicitly checked, using
Maple’s graph isomorphism command [89], whether for each of these 1097 graphs we could
identify a subgraph isomorphic to one of the graphs in figure 2, after deleting any one edge.
This check failed only for 16 graphs. Therefore, the three-loop graphs potentially containing
pinch Landau singularities appear as subgraphs of 1081 four-loop graphs. Three examples
from the set of 1081 four-loop integrals are shown in figure 3, they contain G••, G•s, and
Gss as subgraphs, respectively. Of the remaining 16 four-loop integrals, 4 integrals contain
a four-point vertex, have twelve propagators, and are related to each other by crossing;
an example is G′ shown in figure 4. The final 12 four-loop integrals each have thirteen
propagators and contain one of these 4 four-loop integrals as a subgraph.

Upon analysing the integral G′, shown in figure 4, we find that when considering the
coefficients of the Mandelstam invariants individually there is a pinch solution of the Landau
equations. This implies that a hidden region may exist in the Regge limit described in
section 5, where a single Mandelstam invariant becomes small relative to the others. However,
no simultaneous solution of the Landau equations is possible when two nonzero Mandelstam
invariants are present in the F polynomial. This implies that a pinch solution does not exist
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p1 p3

p2 p4

(a) G••

p1 p3

p2 p4

(b) G•s

p1 p3

p2 p4

(c) Gss

Figure 3. Example four-loop graphs with possible pinch Landau singularities in parameter space,
due to one appearing in a three-loop subgraph. They are labelled G••, G•s, and Gss, because they
contain G••, G•s, and Gss of figure 2 respectively as subgraphs.

p1 p3

p2

p4

Figure 4. A four-loop graph example G′ that was identified by the algorithm as possibly having
a pinch Landau singularity in parameter space, but which does not contain any of the three-loop
structures in figure 2 as a subgraph.

for this on-shell integral in general kinematics, and that no hidden region is present in the
on-shell expansion in wide-angle scattering, described in section 4.

3.3 Identifying the pinch and dissecting the polytope

Before further discussing the interpretation of the pinch Landau singularities identified above,
let us first consider how they impact the evaluation of integrals in parameter space. Outside
the same-sign regime (where all F terms have the same sign) Feynman integrals can develop
simple poles on the real axis of the parameters which must be avoided using a contour
compatible with the causal iε Feynman prescription. Specifically, the imaginary part of the
F polynomial must be negative in the vicinity of the pole. As described in section 2.2, such
an integration contour can be realised by giving a small imaginary part to the integration
variables. A commonly used prescription for the deformation is given by,

αk → α̃k(α) = αk − iτk(α), τk(α) = λkαk(1− αk)
∂F(α; s)

∂αk
. (3.18)

The factors αk(1− αk) in τk ensure that the contour deformation vanishes at the endpoints
of integration (αk = 0 and αk = 1). Upon inserting the new variables into F and expanding
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in a power series in τ we obtain,

F(α̃; s) = F(α)− i
∑

j

τj(α)∂F(α; s)
∂αj

+O(τ2)

= F(α)− i
∑

j

λjαj(1− αj)
(

∂F(α; s)
∂αj

)2

+O(τ2).
(3.19)

The reason for choosing the contour deformation of αk to be proportional to the derivative
of the F polynomial with respect to αk in eq. (3.18) now becomes clear: this prescription
ensures that the first correction term in the expansion of F(α̃; s) does not depend on the sign
of ∂F/∂αj . For sufficiently small λk ≥ 0, such that terms of order τ3 can be neglected, this
deformation therefore ensures that F(α̃; s) has a negative imaginary part, as required by the
Feynman prescription. This contour deformation prescription10 [90–97] is used in programs
which numerically evaluate Feynman integrals, including FIESTA [4–8], pySecDec [13] and
feyntrop [15]. Examining the deformation, one may expect that the prescription would fail if
there exists a point inside the integration domain for which F = 0 and αj(1−αj)∂F/∂αj = 0
for all j simultaneously, which is closely related to the Landau condition in eq. (2.8). The
conclusion is that contour deformation is likely to be ineffective if a pinch solution to the
Landau equations appears within the domain of integration.

Starting from three-loop order, for 2 → 2 massless scattering, examples do exist which
satisfy the criteria F = 0 and αj∂F/∂αj = 0 for all j, for which the above prescription
indeed fails. Note that this obstacle is a fundamental property of the integral and not an
artifact of our specific choice for the contour deformation prescription.

One example is the Feynman integral corresponding to the crown diagram G••, shown
in figure 2(a). We may express the integral as,

IG••(s) =
∫

dDk1
iπD/2

dDk2
iπD/2

dDk3
iπD/2

1
Dn0

0 . . . Dn7
7

,

= Γ(2 + 3ϵ)
∫

dα0 . . . dα7 δ(1− α0 · · · − α7)
(
U(α)

)4ϵ (
F(α; s)

)−2−3ϵ
. (3.20)

The inverse propagators are Dj = q2
j + iε (j = 0, . . . , 7), with qj the j-th element of the set{

k1, p1 − k1, k2, p2 − k2, k3, p3 − k3, k1 + k2 − k3, p4 − k1 − k2 + k3
}

. (3.21)

The Symanzik polynomials U and F read (under the parameterisation in figure 6(a)):

U(α) = (α0 + α1)(α2 + α3)(α4 + α5) + (α0 + α1)(α2 + α3)(α6 + α7)
+ (α0 + α1)(α4 + α5)(α6 + α7) + (α2 + α3)(α4 + α5)(α6 + α7),

F(α; s) = (−s12)(α1α4 − α0α5)(α3α6 − α2α7) + (−s13)(α1α2 − α0α3)(α5α6 − α4α7) ,

(3.22)

where s12 ≡ (p1 + p2)2, s13 ≡ (p1 − p3)2, and s14 ≡ (p1 − p4)2, and we have used the relation
s12 + s13 + s23 = 0 to eliminate s23, which leads to monomials of different sign multiplying

10Or an equivalent prescription for V(α; s) = F(α; s)/U(α).
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the remaining invariants s12 and s13. Note that, as a consequence of this, there is no analytic
continuation prescription of the form sij → sij ± iε which would reproduce the overall iε

in eq. (2.2) for all values of the Feynman parameters αi ⩾ 0.
Possible pinch singularities in F of eq. (3.22), could be associated to the vanishing of

subsets of the following polynomials:

v1 = α1α4 − α0α5 , v2 = α3α6 − α2α7 ,

v3 = α1α2 − α0α3 , v4 = α5α6 − α4α7 .
(3.23)

Computing the derivatives of the F(α; s) polynomial with respect to each Feynman parameter
we obtain,

∂F(α; s)
∂α0

= s12x5(α3α6 − α2x7) + s13α3(α5α6 − α4α7), (3.24a)

...

∂F(α; s)
∂α7

= s12α2(α1α4 − α0α5) + s13α4(α1α2 − α0α3). (3.24h)

We see that the Landau equations can be satisfied with all αi > 0 for generic s12, s13 if and
only if v1 = v2 = v3 = v4 = 0, corresponding to,

α2 = α0α3
α1

, α4 = α0α5
α1

, α6 = α0α7
α1

. (3.25)

This relations define the pinch surface. Note that the vanishing of any subset of three vi

in eq. (3.23) implies the vanishing of the fourth.
Attempting to evaluate IG•• by numerically integrating over the parameters and using

the contour deformation given in eq. (3.19) to avoid singularities within the integration
domain will fail. This is because all ∂F(α; s)/∂αi can vanish precisely on the hypersurface
F = 0, where deformation is needed. We conclude that there exists no contour deformation
that can render eq. (3.20) free of singularities in the domain of integration.

One way of avoiding this issue is to split, or dissect, the integral such that the Landau
singularity present inside the integration domain — on the pinch surface given by eq. (3.25)

— is mapped to a boundary in parameter space. In the new variables, the singularity will
then appear as an endpoint singularity rather than a pinch singularity. To obtain a suitable
decomposition of the integral, we can first try to apply the PreResolve procedure of asy2,
described in section 3.1. However, we observe that a linear change of variables (even if
iterated) will not result in a polynomial with monomials of opposite sign eliminated. The
singularities present go beyond the pairwise line singularities discussed in ref. [23] and are
therefore not currently treatable by asy2. Indeed, running asy2 on this example, it correctly
identifies that iterated linear changes of variables are insufficient to resolve the singularity
and reports that preresolution has failed.

Instead, we first find it useful to linearise the cancellation, i.e. we perform a blowup
that decreases the degree of the polynomial defining the variety of F . Under the following
change of variables,

α0 = y0 · α1, α2 = y2 · α3, α4 = y4 · α5, α6 = y6 · α7, (3.26)
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the Symanzik polynomials become,

U(α) = (y0 +1)(y2 +1)(y4 +1)α1α3α5 +(y0 +1)(y2 +1)(y6 +1)α1α3α7

+(y0 +1)(y4 +1)(y6 +1)α1α5α7 +(y2 +1)(y4 +1)(y6 +1)α3α5α7,
(3.27a)

F(x; s) = (−s12)(y4 − y0)(y6 − y2)α1α3α5α7 +(−s13)(y2 − y0)(y6 − y4)α1α3α5α7. (3.27b)

We see that the polynomials defining the zero of F occurring due to cancellation become
simpler, for example, up to overall factors (α1α4 − α0α5) → (y4 − y0). Next, we dissect the
integral by imposing a strict hierarchy between the even-numbered parameters. For example,
assuming y0 ⩾ y2 ⩾ y4 ⩾ y6 changes the boundaries of integration from [0,∞] in each variable
to new boundaries depending on the variables. We can then change variables according to,

y0 = z0 + z2 + z4 + z6, (3.28a)
y2 = z2 + z4 + z6, (3.28b)
y4 = z4 + z6, (3.28c)
y6 = z6, (3.28d)

so the boundaries of integration for the new variables are again then mapped to [0,∞].
Considering all possible hierarchies will split the integral into 4! = 24 new integrals, each
of which will have polynomials of definite sign multiplying the invariants s12 and s13. Note
also that the change of variables does not introduce any sign into the U polynomial. The
24 new integrals have the following F polynomials,

F1(α; s) = α1α3α5α7 [−s12(α0 + α2)(α2 + α4)− s13(α0α4)] , (3.29a)
F2(α; s) = α1α3α5α7 [−s12(α2)(α0 + α2 + α6) + s13(α0α6)] , (3.29b)
F3(α; s) = α1α3α5α7 [−s12(α0α2)− s13(α0 + α4)(α2 + α4)] , (3.29c)
F4(α; s) = α1α3α5α7 [s12(α0α6)− s13(α4)(α0 + α4 + α6)] , (3.29d)
F5(α; s) = α1α3α5α7 [s12(α6)(α0 + α2 + α6) + s13(α0 + α6)(α2 + α6)] , (3.29e)
F6(α; s) = α1α3α5α7 [s12(α0 + α6)(α4 + α6) + s13(α6)(α0 + α4 + α6)] , (3.29f)

with the remaining 18 integrals equal to the above 6 up to a relabelling of the Feynman param-
eters. Each of the new integrals is free of pinch singularities within the integration domain.

3.4 Numerically evaluating the dissected integral

Before dissection, the direct application of the sector decomposition algorithm, as described
in section 2.3, fails to resolve the singularity associated to the pinch singularity and yields
integrands unsuitable for numerical evaluation. Turning now to the dissected integrals, for
given values of s12 and s13 some of the integrals will have a same-sign regime and can
be evaluated without contour deformation. However, for any possible choice of values of
the Mandelstam invariants, not all integrals will be simultaneously in a same-sign regime.
Nevertheless, these integrals can now be evaluated with the contour deformation given in
eq. (3.19). Furthermore, it is also possible to find a prescription of the form sij → sij ± iε

for each integral which allows them to be analytically continued.
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Although the above procedure avoids the pinch singularity, the direct numerical evaluation
of this three-loop 4-point integral is still challenging. Each of the sectors has a 1/ϵ5 pole that
cancels in the sum of sectors. Choosing the phase-space point s12 = 1, s13 = −1/5 we obtain,

I1/Cϵ = ϵ−5 [0.5555553827] + ϵ−4 [−3.88429014 + 5.23598313 i] +O(ϵ−3), (3.30a)
I2/Cϵ = ϵ−5 [2.22223211] + ϵ−4 [−7.9292311 + 20.9438818 i] +O(ϵ−3), (3.30b)
I3/Cϵ = ϵ−5 [−2.777788883] + ϵ−4 [18.51968269 − 15.70804167 i] +O(ϵ−3), (3.30c)
I4/Cϵ = ϵ−5 [2.222221119] + ϵ−4 [−13.29400223] +O(ϵ−3), (3.30d)
I5/Cϵ = ϵ−5 [−2.777771346] + ϵ−4 [12.7434517 − 23.5618615 i] +O(ϵ−3), (3.30e)
I6/Cϵ = ϵ−5 [0.5555554619] + ϵ−4 [−4.070234761] +O(ϵ−3), (3.30f)

where Cϵ = Γ(2 + 3ϵ) is the integral prefactor given in eq. (3.20), and the bold digits are
used to report the error on two stated digits preceding them. The precision stated above is
obtained using contour deformation as implemented in pySecDec to evaluate the dissected
integrals. Alternatively, it is possible to dramatically improve the numerical precision using
the techniques described in ref. [98]. Summing over the sectors using the higher-precision
evaluation,11 the full numeric result is given by,

Inumeric
G•• = 4 (I1 + I2 + I3 + I4 + I5 + I6)

= ϵ−4 [8.340040392028 − 52.3598775598347I] +O(ϵ−3), (3.31)

this agrees, within the numerical integration error, with the analytic result obtained in
ref. [76], with x = −s13/s12,

Ianalytic
G••

(x) = −8
3

[
iπ

x(1− x) +
log x

1− x
+ log(1− x)

x

] 1
ϵ4 +O(ϵ−3)

= ϵ−4 [8.3400403922− 52.3598775598I] +O(ϵ−3). (3.32)

Dissecting the original Newton polytope of G••, as described in section 3.3, has mapped the
pinch singularity, which was originally within the domain of integration, to the boundary
of integration. With the singularity now at the boundary, we have established that it is
possible to resolve it using the method of sector decomposition, enabling the numerical
evaluation of G••. In the following sections, we will investigate how the presence of the
pinch singularity for the on-shell integral impacts the regions relevant for the MoR when
the integral is expanded about a limit where the pinch is present.

4 On-shell expansion for wide-angle scattering

In this section we study the implication of pinch Landau singularities in parameters space
from the perspective of the MoR, focusing on the on-shell expansion of wide-angle scattering,
the expansion discussed in refs. [25, 26]. Generally, one starts with a graph with massless

11Directly summing over the results in eq. (3.30) we would obtain the value Inumeric
G•• = ϵ−4[8.3415087 −

52.360110 i] + O(ϵ−3).
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H

S

J1

J2

JK

qK+1 qM

p1

p2

pK

Figure 5. The general configuration of facet regions in the on-shell expansion of wide-angle scattering,
where the graph G is the union of the hard subgraph H, the jet subgraphs J1, . . . , JK , and the soft
subgraph S. All the off-shell external momenta qK+1, . . . , qM attach to H, and each on-shell external
momentum pi attaches to a corresponding Ji. Note that for facet regions, each of the subgraphs
H, J1, . . . , JK must be connected, while each connected component of S must be connected to two or
more jets.

propagators contributing to an off-shell Green’s function with M external legs, out of which
K0 are strictly on-shell, while Kλ are expanded about the on-shell limit,

p2
i = 0 i = 1, . . . , K0

p2
i ∼ λQ2 i = K0 + 1, . . . , K,

q2
i ∼ Q2 i = K + 1, . . . , M

pi1 · pi2 ∼ Q2 ∀ i1 ̸= i2 ,

(4.1)

where the total number of massless jets, once the limit λ → 0 is taken, is given by K ≡ K0+Kλ.
Note that the wide-angle condition is incorporated in pi1 · pi2 ∼ Q2, implying that while
the jets pi are nearly lightlike, the angle between their three-momenta pi1 and pi2 is O(1)
for any i1 and i2.

Given any graph with the kinematics of (4.1), the complete list of facet regions can be
described by the hard-collinear-soft picture in figure 5, as proposed in ref. [25] and proved
in ref. [26]. According to this picture, any region in the on-shell expansion of wide-angle
scattering graphs consists of three types of modes:

hard: kµ
H ∼ Q(1, 1, 1);

collinear to pi: kµ
Ci

∼ Q(1, λ, λ1/2);
soft: kµ

S ∼ Q(λ, λ, λ).
(4.2)

In the scaling above, we have used the pi lightcone coordinate, for i = 1, . . . , K. Namely,
kµ = (k · βi, k · βi, k · βi⊥), where βµ

i is a null vector in the direction of pµ
i , defined as

βµ
i = 1√

2(1, pi/|pi|). For each βµ
i , we also define β

µ
i ≡ 1√

2(1,−pi/|pi|), so that βi · βi = 1.
The hard (H), the i-th jet (Ji), and the soft (S) subgraphs in figure 5 consist respectively
of propagators carrying momenta kµ

H , kµ
Ci

, and kµ
S , which scale according to (4.2). All
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the off-shell external momenta qi attach to H, and each on-shell external momentum pi

(i ∈ {1, . . . , K}) attaches to the corresponding Ji. Note that H, J1, . . . , JK are all connected,
while S can consist of multiple components, each of which is connected to two or more
jets.12 Let us emphasise that the connectedness of the hard subgraph H is a key property
of facet regions. As we will see below, this property no longer holds for the hidden regions,
i.e. regions that are associated with a pinch singularity in the limit λ → 0, which therefore
do not correspond to facets of the Newton polytope.

To study this expansion we focus in this section exclusively on the simplest case of
relevance, namely 2 → 2 massless scattering. In sections 4.1 to 4.3 we consider the general
on-shell expansion, where p2

i ∼ λQ2 for all i = 1 . . . 4, with pi1 · pi2 ∼ Q2. In sections 4.4
and 4.5, we further specialise to the case where only one leg starts off shell, p2

1 ∼ λQ2, with
the remaining three legs i = 2, 3, 4 are strictly on shell (p2

2 = p2
3 = p2

4 = 0) at the outset. In
either of these scenarios the limit about which we are expanding, where all external legs
are on shell, exposes the pinch singularity we studied in section 3.3. As we shall see, this is
sufficient to introduce a hidden region into these asymptotic expansions.

4.1 Facet regions and hidden regions in 2 → 2 scattering

As can be checked by the algorithm proposed in section 3.2, there are no pinch Landau
singularities in parameter space in on-shell 2 → 2 massless scattering for any one- or two-
loop graphs. Based on the conjectured correspondence between Landau singularities and
regions [25] we are therefore led to exclude the possibility of hidden regions in such graphs,
and trust the asymptotic expansion obtained based on facet regions alone.

The situation is rather different at three loops, where, based on the Landau equations we
concluded in the previous section that certain graphs (figure 2) may feature pinch singularities.
In section 3.3 we explicitly identified this pinch singularity in the simplest graph of this
type, the three-loop 8-propagator crown graph G••. Then, by dissecting the polytope at the
singularity we were able to evaluate the on-shell integral using sector decomposition.

Considering now the on-shell expansion of G•• where one or more of the external lines is
initially off shell, p2

i = O(λQ2), and expanding in powers of λ, we expect a hidden region
to emerge, which is induced by the aforementioned pinch singularity. Let us then consider
this putative hidden region in some detail.

By labelling the propagators of G•• as in figure 6(a), the corresponding Symanzik
polynomials are:

U(x) = (x0 + x1)(x2 + x3)(x4 + x5) + (x0 + x1)(x2 + x3)(x6 + x7)
+ (x0 + x1)(x4 + x5)(x6 + x7) + (x2 + x3)(x4 + x5)(x6 + x7),

(4.3a)

F(x; s) = (−p2
1){x0x1[(x2 + x3)(x4 + x5) + (x2 + x3)(x6 + x7) + (x4 + x5)(x6 + x7)]

+ (x1x2x4 + x0x3x5)(x6 + x7)}
+ (−p2

2){x2x3[(x0 + x1)(x4 + x5) + (x4 + x5)(x6 + x7) + (x0 + x1)(x6 + x7)]
+ (x1x4x7 + x0x5x6)(x2 + x3)}

12Further restrictions on the soft subgraph arise in cases where some external momenta are strictly on shell.
See ref. [26] for more detail.
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p1 p3

p2 p4

1

0 4

5

7

62

3

(a) A choice of labelling
the 8 propagators of the
graph G••.

p1 p3

p2 p4

H1

H2

k1

k2

k3

k4

(b) The Landshoff scatter-
ing with hard vertices H1
and H2.

Figure 6. The graph G•• with the propagators labelled e0, e1, . . . , e7, and its associated (Landshoff
scattering) loop-momentum configuration where the hard subgraph has two distinct components, H1
and H2. Note that the collinear line momenta attached to H1, which are labelled as k1, . . . , k4, depend
on each other via momentum conservation, because this graph has three loops in total.

+ (−p2
3){x4x5[(x0 + x1)(x2 + x3) + (x2 + x3)(x6 + x7) + (x0 + x1)(x6 + x7)]

+ (x0x3x6 + x1x2x7)(x4 + x5)}
+ (−p2

4){x6x7[(x0 + x1)(x4 + x5) + (x4 + x5)(x2 + x3) + (x0 + x1)(x2 + x3)]
+ (x2x4x7 + x3x5x6)(x0 + x1)}

+ (−s12)(x0x5 − x1x4)(x2x7 − x3x6) + (−s13)(x0x3 − x1x2)(x4x7 − x5x6),
(4.3b)

where we have used the relation between the Mandelstam variables to eliminate s14 from
F(x; s) in favour of −s12 − s13 +

∑4
i=1 p2

i . This readily introduces explicit minus signs into
the last line of eq. (4.3b), leading to potential cancellation as discussed in section 3.2. The
facet regions of G••, as one can check, are all compatible with the configuration of hard,
jet, and soft modes shown in figure 5. More information on these regions will be provided
in section 4.4 below (see table 1 there).

Our hypothesis is that in addition to the facet regions, G•• features a hidden region whose
properties we now explore. Based on our analysis in Feynman parameter space, the pinch
occurs at (3.25), within the domain of integration, rather than on its boundary. Specifically,
using the δ

(
1−

∑7
k=0 αk

)
constraint and the symmetry of the graph, it is easy to see that

the solution is at αk = 1
8 for all k. Converting this to Lee-Pomeransky parameters according

to (2.5) we can deduce that the only consistent scaling vectors are ones where all parameters
xk (for k = 0 to 7) scale in the same way. In momentum space this corresponds (via eq. (2.19))
to all propagators having the same virtuality scaling [25]. Given the nearly-lightlike external
kinematics, it is natural to expect that all propagators would be jet like, that is, every line
momentum is collinear to one external momentum, with virtuality O(λQ2), such that in
figure 6 propagators 0 and 1 are both collinear to p1, propagators 2 and 3 are collinear to
p2, 4 and 5 are collinear to p3, and 6 and 7 are collinear to p4. Given the collinear scaling
law of all propagators, along with the usual correspondence (2.19), we deduce that each
Lee-Pomeransky parameter xk must be O(λ−1), yielding the corresponding region vector:

vLandshoff = (−1,−1,−1,−1,−1,−1,−1,−1; 1) , (4.4)
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where we named the hidden region vector vLandshoff in order to capture its physical interpre-
tation as one corresponding to Landshoff scattering, where there are multiple — in this case
two — separate hard connected components H1 and H2, as shown in figure 6(b).

We stress that the momentum-space interpretation of the hidden region as corresponding
to a scattering process with two disjoint hard subgraphs clarifies why it cannot be associated
with a facet of the Newton polytope: all facet region in the on-shell expansion in wide-
angle scattering involve a single connected hard subgraph [25, 26], consistent with figure 5.
Further analysis of the momentum configuration in the Landshoff scattering region will
be presented in section 4.3.

Given the scaling rule (4.4) of the parameters, each individual term in the last line
of eq. (4.3b), namely

(−s12)(x0x5 − x1x4)(x2x7 − x3x6) + (−s13)(x0x3 − x1x2)(x4x7 − x5x6), (4.5)

is O(λ−4), while all the other terms in P (including all of the terms in U) are O(λ−3),
and hence can naïvely be discarded. Below we shall call the individual terms in eq. (4.5)
superleading terms. If we simply use them to substitute the Lee-Pomeransky polynomial
P(x; s), the integral would be scaleless. As a result, a naïve conclusion would be that the
vector vLandshoff does not correspond to any region. This conclusion is however false, as it
ignores the possibility of mutual cancellation between these terms, which would imply that
their individual O(λ−4) scaling does not represent the actual scaling of the combinations
in eq. (4.5). Indeed, if these terms conspire to cancel, i.e. they admit13

x0x5
x1x4

− 1 ∼ x2x7
x3x6

− 1 ∼ x0x3
x1x2

− 1 ∼ x4x7
x5x6

− 1 ∼ O
(√

λ
)

(4.6)

then the two combinations in eq. (4.5) behave as

(x0x5 − x1x4)(x2x7 − x3x6) ∼ (x0x3 − x1x2)(x4x7 − x5x6) ∼ λ−3, (4.7)

in which case the last line of eq. (4.3b) would be of the same order of magnitude as the
remaining terms in P . This would lead to a scaleful integral, and we hence discovered a hidden
region with the scaling vector of (4.4) in which all the terms in the P polynomial survive!

To verify this and exclude the existence of additional hidden regions, which might not
correspond to the scaling of eq. (4.4), in section 4.4 we will dissect the Newton polytope
according to section 3.3 and examine the lower facets of the new polytope in each sector.
Before doing so, in sections 4.2 and 4.3 we shall perform two independent power-counting
analyses in parameter space and in momentum space respectively, demonstrating that the
leading asymptotic behaviour of the graph G•• is exclusively from this hidden region, namely,

I(s, t, λp2
i ) ∼ λµ[G••,Landshoff], with µ[G••, Landshoff] = −1

2 − 3ϵ, (4.8)

and that this hidden region therefore dominates the asymptotic expansion of this integral.

13Note that the fourth condition follows from the first three.
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4.2 Power counting in parameter space

Let us first carry out the power counting analysis in Lee-Pomeransky representation. To
begin with, according to eq. (2.3), the integral takes the form:

IG••(s, t, λp2
i ) =

Γ(D/2)
Γ (2D − 8)

∫ ∞

0

7∏
e=0

dxe ·
(
P(x; s, t, λp2

i )
)−D/2

. (4.9)

where, in the Landshoff region, according to eqs. (4.5) and (4.7), the integrand scales as(
P(Landshoff)(x; s, t, λp2

i )
)D/2

∼ λ(−3)·(−D/2) = λ6−3ϵ. (4.10)

To obtain the contribution to the degree of divergence from the integration measure, we
shall change the variables {x0, x2, x4, x6} into {y0, y2, y4, y6} respectively, such that

x0 = y0 · x1, x2 = y2 · x3, x4 = y4 · x5, x6 = y6 · x7. (4.11)

It then follows that yi is O(1) for every i = 0, 2, 4, 6, and from eq. (4.7), they further satisfy

(y4 − y0)(y6 − y2)x1x3x5x7 ∼ λ−3, (4.12a)
(y2 − y0)(y6 − y4)x1x3x5x7 ∼ λ−3. (4.12b)

As x1x3x5x7 ∼ λ−4, it is clear that (y2 − y0)(y6 − y4) ∼ λ and (y4 − y0)(y6 − y2) ∼ λ.
Furthermore, it can be deduced that for any i, j ∈ {0, 2, 4, 6}, the dominant contribution
arises from yi − yj ∼ λ1/2. To see this, let us set

y2 − y0 ∼ λ1/2+a and y6 − y4 ∼ λ1/2−a

for some a ∈ R, consistently with eq. (4.12b). If a > 0, then λ1/2−a ≫ λ1/2+a, and either y4
or y6 can be varied freely in a range of O(λ1/2−a). So at a fixed y0, either of the following
two scenarios holds:

y4 − y0 ∼ λ1/2−a or

y6 − y2 = (y2 − y0)︸ ︷︷ ︸
O(λ1/2+a)

− (y6 − y0)︸ ︷︷ ︸
O(λ1/2−a)

∼ λ1/2−a .

However, in each of these cases one can use eq. (4.12a) to deduce the scaling of the remaining
differences, namely

if y4 − y0 ∼ λ1/2−a then y6 − y2 ∼ λ1/2+a

and then y6 − y0 = (y6 − y2) + (y2 − y0) ∼ λ1/2+a ,

if y6 − y2 ∼ λ1/2−a then y4 − y0 ∼ λ1/2+a .

In either case it follows that the integration measure for all the y variables can then be
rewritten as:

dy0dy2dy4dy6 = dy0 d(y2 − y0) d(y4 − y0) d(y6 − y0)

∼ λ1/2+a · λ1/2−a · λ1/2+a

= λ3/2+a for a > 0.
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Using the same reasoning, one obtains dy0dy2dy4dy6 ∼ λ3/2−a for a < 0. Therefore, the
measure dy0dy2dy4dy6 attains its maximum λ3/2 at a = 0, namely, yi−yj ∼ λ1/2 for any i, j ∈
{0, 2, 4, 6}. Therefore, the leading behaviour of the integral subject to the constraints (4.12a)
and (4.12b) is governed by a = 0. This implies that there is a hidden region with the scaling
vector (4.4) in the original variables, with a = 0, i.e. with all yi − yj ∼ λ1/2. Note, however,
that this analysis does not exclude the existence of other, power-suppressed, scaleful hidden
regions, which share the same scaling in the original variables, but with a ̸= 0. In fact, in
section 3.4 we shall explicitly encounter such regions. For the a = 0 case, which dominates
the asymptotic expansion, the whole integration measure is then:

7∏
i=0

dxi =

 ∏
i=1,3,5,7

xidxi

 · dy0dy2dy4dy6 ∼ λ−8 · λ3/2 = λ−13/2. (4.13)

The degree of divergence for this hidden region, according to eqs. (4.9), (4.10) and (4.13),
is then

µ[G••, Landshoff] = −13
2 + (−3) ·

(
−D

2

)
= −1

2 − 3ϵ , (4.14)

as anticipated in eq. (4.8) above.

4.3 Power counting in momentum space

To check the result in eq. (4.14) and gain further physical insight into its origin, we shall
analyse the asymptotic behaviour of this region directly in momentum space, following the
work of Botts and Sterman [77]. We consider the center-of-mass frame for the 1 + 2 → 3 + 4
process, with

p1 + p2 = p3 + p4 . (4.15)

We denote the scattering angle as θ, and define vµ
i to be the unit lightlike vector representing

the direction of the pµ
i jet. Namely,

p2
i = λQ2, pi · vi ∼ λQ, pi · vi ∼ Q, pi · vi⊥ ∼

√
λQ ; (4.16a)

v2
i = 0, v1 · v2 = v3 · v4 = 1, v1 · v3 = v2 · v4 = 1

2(1− cos θ) , (4.16b)

where for later convenience, for each i ∈ {1, . . . , 4}, we have introduced vµ
i as the unit lightlike

vector that is back-to-back with vµ
i . Furthermore, we define uµ

i to be the unit vector in
the scattering plane which is normal to both vµ

i and vµ
i , and nµ

i to be unit vectors in the
remaining D − 3 dimensional space normal to the scattering plane. It then follows that

vµ
1 = vµ

2 , vµ
2 = vµ

1 , vµ
3 = vµ

4 , vµ
4 = vµ

3 . (4.17a)
uµ

1 = uµ
2 , uµ

3 = uµ
4 , u2

i = n2
i = 1, (4.17b)

vi · ui = vi · ui = 0, vi · nj = vi · nj = ui · nj = 0. (4.17c)

Based on these notations, we define the three independent loop momenta k1, k2, and k3 to
be the line momenta between the external pi vertices for i = 1, 2, 3, respectively, and the
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four-point vertex H1 shown in figure 6(b). It is convenient to define in a similar way a fourth
loop momentum (for the line connecting p4 and H1), such that momentum conservation
at H1 implies

k1 + k2 = k3 + k4 , (4.18)

where eqs. (4.15) and (4.18) readily imply momentum conservation at the vertex H2. We
parameterise the loop momenta as follows:

kµ
i = Q

(
ξiv

µ
i + λκiv

µ
i +

√
λτiu

µ
i +

√
λνin

µ
i

)
, i = 1, 2, 3, 4. (4.19)

As kµ
i is collinear to pµ

i , we have the scaling parameter λ → 0 while ξi, κi, τi, νi ∼ 1. In
particular, the large component varies over the whole range 0 < ξi < 1.

The integral corresponding to figure 6 takes the form

IG••(s, t, λp2
i ) =

∫
dDk1
iπD/2

dDk2
iπD/2

dDk3
iπD/2

4∏
i=1

1
(k2

i + iε)((pi − ki)2 + iε)︸ ︷︷ ︸
∼λ−8

, (4.20)

where used the collinear scaling of the propagators in eq. (4.19) to determine the scaling
of integrand.

The integration measure over the three independent loop momenta can then be written
using the parameterisation of (4.19) as:∫

dDk1dDk2dDk3 = Q3D
∫ 3∏

i=1
dξidκidτidνi νD−4

i dΩ(D−3)
i , (4.21)

where we introduced polar coordinates for the D − 3 dimensional normal space parameterised
by the projections νi parallel to ni and the differential solid angle dΩ(D−3)

i . In (4.21) we have
not included the λ scaling. Doing so requires some care, as we now explain.

In traditional power counting for a given pinch surface, a key step is to identify the
normal coordinates and the internal coordinates [40, 48, 99]. The former are by definition the
ones that tend to zero with the scaling parameter λ. As can be seen in the parameterisation
of the jet loop momenta (4.19), among all components, the only internal coordinate is the
one proportional to vµ

i , i.e. the large momentum component governed by ξi; all the others
are suppressed in the limit λ → 0, and are therefore normal coordinates. However, in the
Landshoff scattering picture we study here, as soon as the jet-scaling condition is imposed,
momentum conservation (4.18) implies that ξ1, ξ2, and ξ3 cannot anymore all be regarded as
internal coordinates simultaneously, since their magnitudes are constrained. Indeed, inserting
the parameterisation (4.19) into (4.18), it is direct to check that ξi for i ̸= 1 can be expressed as

ξ2 = ξ1 −
1
2
√

λ cos2(θ)
(
tan

(
θ

2

)
∆τ − cot

(
θ

2

)
Στ

)
+ λ(κ2 − κ1), (4.22a)

ξ3 = ξ1 +
1
2
√

λ tan
(

θ

2

)
∆τ + λ(κ2 − κ4), (4.22b)

ξ4 = ξ1 −
1
2
√

λ cot
(

θ

2

)
Στ + λ(κ2 − κ3), (4.22c)
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where we defined

∆τ ≡ τ1 + τ2 − τ3 − τ4 , Στ = τ1 + τ2 + τ3 + τ4.

A first observation from eq. (4.22) is that all the ξi are equal up to O
(√

λ
)

terms. Note
that this statement is valid only for generic θ; for forward or backward scattering (θ → 0
or π), it is invalidated. We will revisit this aspect in section 5.1.1, while here we proceed
assuming that θ is indeed generic.

The relations (4.22) also allow us to perform the change of integration variables {ξ2, ξ3} →
{κ4, τ4}, with the Jacobian,

det
(

∂(ξ2, ξ3)
∂(κ4, τ4)

)
= λ3/2 cos(θ) cot(θ) . (4.23)

Once this is done the only internal coordinate is ξ1, while all the other integration variables are
normal coordinates. The scaling of the integration measure in eq. (4.21) can now be obtained:∫ 3∏

i=1
dξi dκidτidνi νD−4

i =
∫ 1

0
dξ1

(∫ 3∏
i=1

(λdκi)
(
λ

1
2 dτi

) (
λ

1
2−ϵdνi ν−2ϵ

i

))
︸ ︷︷ ︸

∼λ6−3ϵ

·
∫

dκ4dτ4 det
(

∂(ξ2, ξ3)
∂(κ4, τ4)

)
︸ ︷︷ ︸

∼λ3/2

. (4.24)

Eq. (4.24) fully captures the constraints due to momentum conservation, subject to the
assumption that ki are jet-like momenta admitting the scaling rule of eq. (4.19).

Therefore, the corresponding degree of divergence follows from eqs. (4.20) and (4.24):

µ[G••, Landshoff] = 6− 3ϵ + 3
2 − 8 = −1

2 − 3ϵ, (4.25)

which coincides with the result in parameter space, eq. (4.14). Note that this result regarding
the asymptotic behaviour of figure 6(a) is also consistent with the literature, e.g. [70, 77].

4.4 Obtaining the complete set of regions via polytope dissection

In sections 4.1–4.3, we argued and provided evidence, in both parameter space and momentum
space, that G•• contains a Landshoff region, which does not appear as a facet of the Newton
polytope, i.e. it is a hidden region. With the polytope dissection discussed in section 3.3
in hand, it is now possible to systematically identify that such a region does exist and to
check for other potentially hidden regions using the new polytopes.

Firstly, let us directly apply the MoR to G••. We consider the case with a single leg,
p1, slightly off-shell, p2

1 ∼ λQ2, and all other legs strictly on-shell p2
i = 0 for i = 2, 3, 4.

The MoR identifies the six regions shown in table 1. We observe that the Landshoff region,
having a uniform scaling vector (4.4), is not a facet of the original integrand and is therefore
absent.14 According to the table, the leading power behaviour of the facet regions of the
integral in the small λ limit is O(λ0).

14As explained in section 4.1, the Landshoff region cannot be characterised by a facet of the original polytope,
as it must admit the relations (4.6), in addition to the scaling of xi.
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vR (x0, x1, . . . , x7; λ) degree of divergence

(−2,−1,−2,−1,−2,−1,−2,−1; 1) −6ϵ

(−1,−2,−1,−2,−1,−2,−1,−2; 1) −6ϵ

(−1,−1,−1, 0,−1, 0,−1, 0; 1) 1− 3ϵ

(−1,−1, 0,−1, 0,−1, 0,−1; 1) 1− 3ϵ

(−1,−1, 0, 0, 0, 0, 0, 0; 1) −ϵ

(0, 0, 0, 0, 0, 0, 0, 0; 1) 0

Table 1. Regions obtained by directly applying the MoR to the on-shell expansion of graph G•• with
p2

1 ∼ λQ2 and p2
i = 0 (i = 2, 3, 4).

vR (y0, x1, y2, x3, y4, x5, y6, x7; λ) vR (x0, x1, . . . , x7; λ) degree of
divergence

(1/2,−1, 1/2,−1, 1/2,−1, 0,−1; 1) (−2,−2,−2,−2,−2,−2,−2,−2; 2) −1/2− 3ϵ

(0,−1, 1,−1, 1,−1, 0,−1; 1) (−1,−1,−1,−1,−1,−1,−1,−1; 1) −3ϵ

(1,−1, 1,−1, 0,−1, 0,−1; 1) (−1,−1,−1,−1,−1,−1,−1,−1; 1) −3ϵ

(−1,−1,−1,−1,−1,−1,−1,−1; 1) (−2,−1,−2,−1,−2,−1,−2,−1; 1) −6ϵ

(1,−2, 1,−2, 1,−2, 1,−2; 1) (−1,−2,−1,−2,−1,−2,−1,−2; 1) −6ϵ

(0,−1, 0, 0, 0, 0, 0, 0; 1) (−1,−1, 0, 0, 0, 0, 0, 0; 1) −ϵ

(0, 0, 0, 0, 0, 0, 0, 0; 1) (0, 0, 0, 0, 0, 0, 0, 0; 1) 0

Table 2. On-shell expansion of G••, with p2
1 ∼ λQ2 and p2

i = 0 (i = 2, 3, 4), first integral dissection I1.

Next, we will dissect the polytope using the procedure described in section 3.3 and
compare the regions we obtain from the new set of integrals. Examining eq. (4.3b), we note
that after applying the change of variables given in eq. (3.26) and dissecting the integral
according to eq. (3.28), we obtain a set of 24 new integrals, I1, . . . , I24, one for each of the
orderings of {y0, y2, y4, y6}. These integrals have F polynomials similar to eq. (3.29), but
with additional terms proportional to (−p2

1) multiplied by non-negative polynomials of the
parameters. Each of the new integrals has a same-sign regime for some choice of the value of p2

1,
s and t (although not the same choice for all integrals). We therefore expect that each integral
separately can be analytically continued from a same-sign regime to the region of interest, and
the application of the MoR should now truly identify all scaleful regions: there are no hidden
regions in the new integrals. In conclusion, we expect that all the regions of the original
integral, including hidden regions, would be obtained as facet regions of the new polytopes.

Applying the MoR to each of the 24 new integrals, we obtain 24 sets of regions. In
table 2 we display the regions for the first integral dissection, I1, in terms of both the new
parameters, y0, x1, y2, x3, y4, x5, y6, x7, in which it has been computed, and after translating
back to the original parameters, x0, . . . , x7. We find that the Landshoff region, which did not
appear as a facet of the Newton polytope of the original integrand, now appears as a facet of
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the dissected integrand polytopes, and is detected geometrically using the straightforward
application of the MoR algorithm as described in section 2.4.

We note in passing that there are some other interesting changes in the set of region
vectors upon replacing the original integral by the 24 new ones. In particular, the region
(−1,−1,−1, 0,−1, 0,−1, 0; 1) in the original polytope (see table 1), is absent in I1 but is
present in other integral dissections, e.g. I10. The region (−1,−1, 0,−1, 0,−1, 0,−1; 1) in
the original polytope, is entirely absent in the integral dissections. Its absence should not
be a problem for recovering the correct asymptotic expansion: importantly, non-analytic
behaviour of the form λ−3ϵ is of course still present.

The Landshoff region is present in all 24 integral dissections, I1, . . . , I24 and has a degree
of divergence of µ = −1/2 − 3ϵ, making it the leading region in the small λ limit for G••.
We observe that there is a many-to-one map when going from the new variables to the old
variables and, therefore, there can be several regions in the new variables that have the same
scaling in the old variables. Comparing to the analysis presented in section 4.2, we note
that indeed the first region vector reported in table 2 is the Landshoff region, compatible
with the one predicted in eq. (4.4) (the factor of 2 in their normalisation is immaterial), and
this region drives the behaviour of the integral at small λ. Examining the scaling of the
new parameters for this region vector, they are each precisely as predicted in section 4.2,
and the degree of divergence corresponds to the case a = 0 in the analysis presented there.
The second and third regions reported in the table also correspond to region vectors with
uniform scaling of the propagators in the original variables. We find that they correspond
to the case a = ±1

2 in section 4.2.
In summary, we have shown that the Landshoff region is the unique hidden region in the

on-shell expansion of G•• when a single leg is taken slightly off-shell. Repeating the above
analysis for the case where all legs are taken slightly off-shell, p2

i ∼ λQ2 for i = 1, . . . , 4, we
obtain a total of 73 facet regions by applying the MoR to the original integral, and as expected,
we observe that the Landshoff region is missed. After dissecting the polytope and obtaining
regions for each of the 24 new integrals, we find that only 71 regions are present. The
Landshoff region is present in each of the 24 new integral dissections. It is the leading-power
region in the small-λ limit and has a degree of divergence µ = −1/2− 3ϵ, as expected.

4.5 Numerical evidence and discussion

The power-counting technique, which we have applied to the Landshoff scattering region,
can also be implemented to other facet regions of G••. One can check that the degree of
divergence µ ⩾ 0 for these regions, which implies that the infrared singularities are at most
logarithmic. In other words, the Landshoff region encodes the entire power divergence of
G••. Therefore, we have a perfect example where the hidden region not only exists, but
also plays the most important role in this asymptotic expansion; without it even the leading
asymptotic behaviour would not be captured.

Below we show some numerical evidence for the statements above by considering the
kinematics that the external momenta p2, p3, and p4 are put exactly on shell, while p2

1 ̸= 0
(see figure 7). By running pySecDec, one can evaluate both the entire original integral I(G••),
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G

p1 p3

p2 p4

Figure 7. The generic picture for expanding one external momentum (p1) in the on-shell expansion,
all others (p2, p3, and p4) exactly on-shell.
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Figure 8. Numerical evaluation of the O(ϵ−3) contribution to I(G••) with one off-shell leg (leg 1),
plotted as a function of p2

1, which is gradually taken small, down to p2
1/s12 = 10−5. The value of the

integral I(G••) at O(ϵ−3) is shown on a linear vertical axis on the left panel and on a logarithmic
vertical axis on the right panel. The blue and red points correspond to the full integral, while the
black and yellow ones to the leading term in the asymptotic expansion of the integral according to the
MoR, i.e. the one scaling as λ−1/2.

and the leading term in the power expansion of the Landshoff scattering region, for a given p2
1.

By approaching the limit p2
1 → 0, their asymptotic behaviours can be compared.

We take G = G•• in figure 7, with results shown in figure 8. The integral I(G••), as a
function of p2

1, is depicted by the blue (real part) and red (imaginary part) curves, respectively.
In contrast, the contribution from the Landshoff scattering region is depicted by the black
(real part) and yellow (imaginary part) curves, respectively. The following observations are
straightforward from the plots. First, the contribution from the Landshoff scattering region
exhibits a power-like behaviour, which is a good approximation to the integral I(G••) at
small p2

1. Second, the imaginary part of the Landshoff scattering region is negligible compared
to the real part, which implies that the leading contribution to the asymptotic expansion
is purely real when normalised as in eq. (3.20). Third, the imaginary part of I(G••), as
well as the difference between the real parts of I(G••) and the Landshoff scattering region,
originate from the contributions of other regions, which are subleading in the asymptotic
expansion; they become important only as p2

1 increases.
Having understood I(G••) in momentum space as Landshoff scattering, namely collinear

split of each of the four jet momenta subject to momentum conservation at the two hard
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vertices, it is readily clear that the same (Landshoff) momentum configuration defines a
region in each of the remaining graphs. We describe these regions in figure 9 by colouring
the edges of the graphs, such that the four jets are coloured in green, lime, olive, and
teal respectively, while the hard subgraph is coloured in blue. It is evident that each of
these coloured graphs feature two disconnected hard subgraphs (clearly, upon contraction
of these hard subgraphs one recovers G••).

We now argue that each Landshoff scattering region in figure 9 is the unique hidden
region of the corresponding graph of figure 2. Thus, figure 9 exhausts in fact the entire set
of hidden regions for massless 2 → 2 scattering at the three-loop level. To see this, we first
observe that for any such region, the superleading terms, each of which is O(λ−4), are always
identical to those of G••, namely, eq. (4.5). It then allows us to employ the same change
of variables shown in eq. (3.26) and divide the integration range into the same sectors as
eq. (3.28). The new 24 integrals correspond to F polynomials that are identical to those in
eq. (3.29) up to O(λ−3) terms (and terms that are further suppressed) involving the Feynman
parameters of the propagators which do not feature in G••. While these additional terms in
F modify the integral, they do not affect the location of the pinch, and hence the dissection of
the polytope. Finally, it is straightforward to check that all the corresponding new integrals
are free from pinch singularities within the integration domain.

As a result of dissecting the polytope, it is a natural possibility that additional facet regions
can appear that correspond neither to a hidden region associated with cancellation between
monomials in F , nor to facets of the original polytope (that is, after mapping the vectors
obtained from facets of the new polytope back into the original parameters). For example,
the regions of G•s, in the original parameters, are listed in table 3, where we note that besides
the Landshoff scattering region vector (−1,−1,−1,−1,−1,−1,−1,−1, 0; 1), many additional
vectors also appear from the facets of the new polytopes (see appendix A.2). It can be verified
that these vectors are incompatible with a cancellation solution for general kinematics (i.e.
arbitrary values of s12 and s13): under any of these scaling vectors, the individual leading
monomials in the F polynomial are of the same order as the leading monomials in U , so any
putative cancellation solution among these leading terms can only hold for specific values
of Mandelstam variables. Such cancellation structures cannot contribute to hidden regions
of G•s and we regard them as spurious.

Based on the analysis above, we conjecture that in the context of the on-shell expansion
for 2 → 2 wide-angle scattering, a generic hidden region must be described by figure 10.
In this picture, there are multiple hard components, each of which is attached to the four
jets. Additionally, there can be a soft subgraph attached to the hard and jet subgraphs.
In conclusion, figures 5 and 10, which characterise the facet regions and hidden regions,
respectively, conjecturally constitute the entire list of regions in the on-shell expansion for
2 → 2 wide-angle scattering.

5 Regge-limit expansion for 2 → 2 scattering

In this section, we study the Regge-limit expansion for 2 → 2 scattering, as in eq. (4.15),
where every external momentum is strictly massless and on shell, with p3 (nearly) collinear
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(a) G••

p1 p3

p2 p4

(b) G•s

p1 p3

p2 p4

(c) G•t

p1 p3

p2 p4

(d) G•u

p1 p3

p2 p4

(e) Gss

p1 p3

p2 p4

(f) Gtt

p1 p3

p2 p4

(g) Guu

p1 p3

p2 p4

(h) Gst

p1 p3

p2 p4

(i) Gsu

p1 p3

p2 p4

(j) Gtu

Figure 9. The Landshoff scattering pictures corresponding to the graphs in figure 2.
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v(x0, . . . , x8;λ) region or not?

original
polytope

(−2,−1,−2,−1,−2,−1,−2,−1,−2; 1)

...
...

(0, 0, 0, 0, 0, 0, 0, 0, 0; 1)

dissected
polytopes

(−1,−1,−1,−1,−1,−1,−1,−1, 0; 1)

(−2,−1,−2,−1,−1,−1, 0, 0,−2; 1)

...
...

(0, 1, 0, 0,−1, 0,−1,−1,−1; 1)

Table 3. The vectors that are possibly relevant for the regions in the on-shell expansion of G•s.
Each vector is written in the format (x0, . . . , x8) and is expressed after mapping back to the original
variables. The first group of vectors correspond to the lower facets of the original polytope, all of
which are regions of G•s. In contrast, the second group of vectors are hidden inside the original
polytope, which arise only as lower facets of the dissected polytope. Among all these regions, the only
one corresponding to a hidden region (Landshoff scattering) is (−1,−1,−1,−1,−1,−1,−1,−1, 0; 1).
All the other vectors in the second group are considered spurious because they are inconsistent with
any cancellations for general kinematics.

p1 p3

p2 p4

J1 J3

J2 J4

H1

H2

S

Figure 10. The general configuration of hidden regions in the on-shell expansion of 2 → 2 wide-angle
scattering, as we propose at the end of section 4. The graph G is the union of the hard subgraph H,
the jet subgraphs J1, . . . , J4, and the soft subgraph S. In contrast to the facet regions in figure 5, the
hard subgraph has multiple connected components H1, H2, . . . , and all the four jets are attached to
each of these components.
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to p1 and p4 nearly collinear to p2, namely,

p2
i = 0 (i = 1, 2, 3, 4), −t

s
∼ −t

−u
∼ λ, (5.1)

where s ≡ s12 ≡ (p1 + p2)2 > 0, t ≡ s13 ≡ (p1 − p3)2 < 0, and u ≡ s14 ≡ (p1 − p4)2 < 0.
In contrast to the wide-angle scattering kinematics, eq. (4.1), the Regge-limit expansion
famously features Glauber modes that contribute to the region structure in certain graphs.

Glauber mode may appear in facet regions or in hidden regions. Our focus here is on
the latter. Based on the analysis in section 3.3, the first graphs potentially featuring hidden
regions in the Regge limit occur at three loops, and are shown in figure 2. Here we will
interpret these in both parameter and momentum space. Notably, we will show that all these
hidden regions feature a Glauber-mode loop momentum and can be related to the Landshoff
scattering regions in wide-angle scattering. We then derive the asymptotic behaviour of
these regions using power counting.

We point out that the asymptotic behaviour of Feynman integrals for scattering in
the Regge limit has been investigated by many authors over the years, with early work in
refs. [63–69, 71–74, 100–105]. Our results for the asymptotic behaviour is consistent with
their findings. A key difference is that our investigation utilises the geometric MoR and the
approach to hidden regions developed in the present paper, which also offers a transparent
connection to the on-shell expansion wide-angle scattering. In addition, the availability of
analytic computations of massless four-point three-loop integrals [75, 76] allows us to test
and verify the asymptotic expansion techniques for the first time.

5.1 Hidden regions in the Regge-limit expansion

As we have illustrated in section 3.2, up to the three-loop order, all the graphs prone to
having hidden regions in the Regge-limit expansion are shown in figure 2. Below we focus
particularly on two representative graphs: G•• (figure 2(a)) and Gtt (figure 2(f)).

5.1.1 Example 1: the crown graph G••

The Symanzik polynomials for figure 11(a), after replacing s23 by −s12 − s13, is

U(x) = (x0 + x1)(x2 + x3)(x4 + x5) + (x0 + x1)(x2 + x3)(x6 + x7)
+(x0 + x1)(x4 + x5)(x6 + x7) + (x2 + x3)(x4 + x5)(x6 + x7),

F(x; s) = (−s12)(x0x5 − x1x4)(x2x7 − x3x6) + (−s13)(x0x3 − x1x2)(x4x7 − x5x6).
(5.2)

The list of facet regions with their degrees of divergence is shown in table 5 in appendix A.1.
Note that in each of these regions, the loop momenta and propagator momenta are either
in the collinear-1 mode (collinear to p1 and p3), the collinear-2 mode (collinear to p2 and
p4), or the hard mode.

Let us then study the hidden regions, which must arise from cancellation among the
superleading terms. Inspired by the Landshoff scattering regions, which are hidden regions
for wide-angle scattering in the same G•• graph, we consider the case where all the Lee-
Pomeransky parameters xi are of O(λ−1), as in eq. (4.4). Since in the Regge limit (5.1) we
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1
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5
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62

3

(a) A choice of labelling
the 8 propagators of the
graph G••.

p1 p3

p2 p4

k1

k2

k3

k4

(b) The hidden region of
G•• with k1 − k3 in the
Glauber mode.

Figure 11. The three-loop nonplanar graph G•• and its hidden region. There are two jets in this
region, one attached by p1 and p3 while the other by p2 and p4. The momentum that is exchanged
between the jets, k1 − k3, is in the Glauber mode.

consider s = s12 as O(λ0), while t = s13 as O(λ1), the four monomials involving s12 in F in
eq. (5.2) are individually of O(λ−4), while those involving s13 there, as well as the terms in
U are of O(λ−3). A scaleful integral is then obtained subject to the following condition:

(x0x5 − x1x4)(x2x7 − x3x6) ∼ λ−3. (5.3)

With the constraint (5.3), all the terms in the Lee-Pomeransky polynomial P = U + F in
eq. (5.2) admit uniform λ−3 scaling behaviour. Note that in contrast to the Landshoff
scattering case, where two separate constraints (4.7) arise, the Regge-limit expansion involves
a single constraint, eq. (5.3).

In the corresponding configuration in momentum space, each line momentum is collinear
to the external momenta it is adjacent to, as shown in figure 11(b). We have a similar
yet distinct situation compared to the Landshoff scattering case, figure 6, where there are
four jets, each associated with a single external momentum pi. In the Regge limit there are
just two jets, one associated with the external momenta p1 and p3 and the other with p2
and p4. Inside each jet, all the propagators are (nearly) collinear. Below we shall show that
between these two jets, some exchanged loop momenta admit the Glauber mode scaling law
k ∼ Q(λ, λ, λ1/2). In figure 6 this is represented by the symbol which stands for a hard
vertex with a Glauber-mode momentum exchange in the t channel. An interesting feature of
this region is that while one loop momentum is a Glauber mode, all the propagator momenta
are of either the collinear-1 and the collinear-2 modes.

Let us now conduct a power-counting analysis of this region, first in parameter space
and then in momentum space. The parameter-space analysis follows closely section 4.2.
Upon dissecting the Newton polytope, one can show that the configuration described above
is a region, and furthermore, the unique hidden region of G•• in the Regge limit. Let us
now compute the degree of divergence of this hidden region. As the superleading terms,
eq. (5.3), are also superleading in the Landshoff scattering case, we can perform the same
change of variables as eq. (4.11), namely,

x0 = y0 · x1, x2 = y2 · x3, x4 = y4 · x5, x6 = y6 · x7. (5.4)
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We then obtain

(x1x4 − x0x5)(x3x6 − x2x7) = (y4 − y0)(y6 − y2)x1x3x5x7 ∼ λ−3. (5.5)

This further implies y4 − y0 ∼ λ1/2+a and y6 − y2 ∼ λ1/2−a for some a ∈
(
−1

2 , 1
2

)
. Inde-

pendently of a, the integration measure is:
7∏

i=0
dxi =

 ∏
i=1,3,5,7

xidxi

 · dy0dy2dy4dy6

=

 ∏
i=1,3,5,7

xidxi

 · dy0dy2d(y4 − y0)d(y6 − y2) ∼ λ−8 · λ1 = λ−7. (5.6)

Meanwhile, the scaling of the integrand follows eq. (4.10) identically, which is λ6−3ϵ. The
corresponding degree of divergence is then straightforward:

µ[G••, Glauber] = −7 + 6− 3ϵ = −1− 3ϵ. (5.7)

Let us now rederive this result in momentum space. Similarly to the case of the Landshoff
scattering, we parameterise the loop momenta using eq. (4.19), where λ is a small scaling
parameter defined such that the virtuality of each line momentum within a jet is O(λQ2).
Taking this over to the Regge limit, the expansion parameter must also be proportional
to the ratio of kinematic invariants

λ ∼ −t

s
= −(p1 − p3)2

(p1 + p2)2 ∼ p1 · p3
p1 · p2

∼ θ2

4 for θ → 0 (5.8)

where the relation with θ follows from eq. (4.16), expanded to leading order in θ. For
convenience, let us then set

tan
(

θ

2

)
=

√
λ , (5.9)

in eq. (4.22). We then have:

ξ2 = ξ1 −
1
2

(1− λ

1 + λ

)2
(λ∆τ − Στ) + λ(κ2 − κ1), (5.10a)

ξ3 = ξ1 +
1
2λ∆τ + λ(κ2 − κ4), (5.10b)

ξ4 = ξ1 −
1
2Στ + λ(κ2 − κ3). (5.10c)

From this one observes a key feature of the Regge limit kinematics, namely that ξ3 = ξ1+O(λ)
and ξ4 = ξ2 +O(λ). This is consistent with our qualitative picture of the region, namely that
the propagators collinear to the p1 (and p3) jet have the same large momentum component,
up to terms of O(λ), and similarly, those collinear to the p2 (and p4) jet share the same
large momentum component (again, up to terms of O(λ)). Since also v3 = v1 +O(λ) and
v3 = v1 + O(λ), upon using eq. (4.19), one obtains

kµ
4 − kµ

2 = kµ
1 − kµ

3

= Q
(
(ξ1 − ξ3)vµ

1 + λ(κ1 − κ3)vµ
1 +

√
λ(τ1 − τ3)uµ

1 +
√

λ(ν1nµ
1 − ν3nµ

3 )
)
+O(λ)

∼ Q
(
λ, λ,

√
λ
)

, (5.11)
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where the last line follows from eq. (5.10), namely the loop momentum kµ
1 − kµ

3 has both
lightcone components of order O(λ), while the transverse components remain larger, of order
O
(√

λ
)
. Hence this is a Glauber-mode momentum, as anticipated.

We note that none of the propagators in this graph carry a momentum with Glauber
scaling, and yet one of the loops is a Glauber mode. The complete picture is that in the
Regge-limit expansion two of the three independent loop momenta, say kµ

1 and kµ
2 are jet

modes, while the third, kµ
1 − kµ

3 , is a Glauber mode.
Let us then use the above conclusions to determine the asymptotic behaviour of the graph

associated with this region. Using the parameterisation of eq. (4.19) the integration measure
of the two jet (collinear) loop momenta and the Glauber loop momentum, respectively,
are given by:

for ki, i = 1, 2 (collinear) dξi dκidτidνi νD−4
i

= (dξi)(λdκi)
(
λ

1
2 dτi

) (
λ

1
2−ϵdνi ν−2ϵ

i

)
∼ λ2−ϵ,

for k1 − k3 (Glauber) d(ξ1 − ξ3) d(κ1 − κ3)d(τ1 − τ3)dν13 νD−4
13

= (λdξ13)(λdκ3)
(
λ

1
2 dτ3

) (
λ

1
2−ϵdν13 ν−2ϵ

13

)
∼ λ3−ϵ,

(5.12)

where ξ13 ≡ ξ1 − ξ3 and ν2
13 ≡ −(ν1n1 − ν3n3)2. Note that the sole difference between the

collinear and Glauber scaling of the measure is due to the absence of a large momentum
component in the Glauber case. Turning now to the integrand, since each propagator
contributes O(λ−1), the integrand scale as O(λ−8), exactly as in eq. (4.20). Therefore,
using (5.12) we obtain

µ[G••, Glauber] = 2 · (2− ϵ) + (3− ϵ)− 8 = −1− 3ϵ, (5.13)

which coincides with the result in parameter space, eq. (5.7).
Through the momentum space analysis we see that the Glauber region in the Regge limit

is indeed related to — and can be inferred from — the Landshoff scattering region in general
kinematics, by tuning the scattering angle θ. Using the parameterisation in eq. (4.19), we
have seen that the large components of the momenta ki, which are ξi = ki · vi for i = 1, 2, 3, 4,
are equal up to O

(√
λQ
)

terms for generic θ. Meanwhile, the difference between k1 and
k3, and hence between k2 and k4, are hard modes. In contrast, as θ → 0, ξ2 and ξ4 differ
from ξ1 and ξ3 by the same large (O(λ0)) momenta, while k1 − k3 (and hence k2 − k4)
admit Glauber scaling. In summary, in this graph the Landshoff and Glauber regions can
be regarded of the same origin.

5.1.2 Example 2: Mandelstam’s graph Gtt

With the same procedure, we shall now study the hidden regions of the graph Gtt. We refer
to this graph as Mandelstam’s graph, since it is the simplest of a class of graphs pointed
out by Mandelstam as ones whose Regge asymptotic is driven by Regge cuts [67]. Although
this is not the focus of our investigation, this context gives another impetus to consider
this particular example.
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Using the parameterisation in figure 13(a), Gtt has the following Symanzik polynomials:

U(x) = (x0 +x1)(x2 +x3)(x4 +x5)+ (x0 +x1)(x2 +x3)(x6 +x7)
+ (x0 +x1)(x4 +x5)(x6 +x7)+ (x2 +x3)(x4 +x5)(x6 +x7)
+ (x0 +x1 +x4 +x5)(x2 +x3 +x6 +x7)(x8 +x9),

F(x; s) = (−s12)(x0x5 −x1x4)(x2x7 −x3x6)+ (−s13)
[
(x0x3 −x1x2)(x4x7 −x5x6)

+ (x0 +x1 +x4 +x5)(x3x7x8 +x2x6x9)+ (x2 +x3 +x6 +x7)(x1x5x8 +x0x4x9)
]
.

(5.14)
Here we have replaced s23 by −s12 − s13. The list of facet regions with their degrees of
divergence, is given in table 11 of appendix A.4. From a detailed study of these region
vectors [106], one can observe the following two striking features. First, propagator momenta
in the Glauber mode is already present in the facet regions. Second, new on-shell modes
scaling as soft times collinear and as collinear squared show up. The complete set of modes
for this graph in the Regge limit is:

hard : kµ
H ∼ Q(1, 1, 1);

collinear-1 : kµ
C1

∼ Q(1, λ, λ1/2);
collinear-2 : kµ

C2
∼ Q(λ, 1, λ1/2);

Glauber : kµ
G ∼ Q

(
λ, λ,

√
λ
)
;

soft : kµ
S ∼ Q(λ, λ, λ);

collinear-1 · soft : kµ
C1S ∼ Q(λ, λ2, λ3/2);

collinear-2 · soft : kµ
C2S ∼ Q(λ2, λ, λ3/2);

(collinear-1)2 : kµ
C1C1

∼ Q(1, λ2, λ);
(collinear-2)2 : kµ

C2C2
∼ Q(λ2, 1, λ),

(5.15)

where the corresponding scaling uR,e of the Lee-Pomeransky parameter xe is readily given
by the inverse of the virtuality of the propagator according to the usual rule (2.19). As
an example, consider the second facet region vector in table 11 of appendix A.4, given by
(−2,−3,−1,−1,−2,−3,−1,−1,−1,−3; 1). The corresponding graph representing this region
vector is shown in figure 12, which indeed features four different modes of those listed in (5.15).
We point out that even more modes are relevant for the facet regions at higher loop orders.
We will present an analysis of the full set of modes and regions in detail in future work [106].
Our primary focus here is on the hidden region.

Motivated by the hidden region of G••, let us consider the case where all the xi are O(λ−1),

vGlauber = (−1,−1,−1,−1,−1,−1,−1,−1,−1,−1; 1) . (5.16)

We shall see that this is the only hidden region vector of Gtt in the Regge limit. We named it
vGlauber as it is the only region of this graph featuring two Glauber propagators.

We first observe that the terms proportional to s12 in the F polynomial, eq. (5.14),
are identical to those in G••, eq. (5.2). Hence, the region vector (5.16) would render the
individual monomials involving s12 superleading. As argued in the case of G••, to obtain a
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p1 p3

p2 p4

Figure 12. One of the facet regions of Gtt, which corresponds to the region vector (−2,−3,−1,

−1,−2,−3,−1,−1,−1,−3; 1). In addition to the collinear (to p2) mode, this region also features a
Glauber mode, a (collinear-1)·soft mode, and a (collinear-1)2 mode, as coloured in the figure.
The scaling law of all modes is given in eq. (5.15).

p1 p3

p2 p4

1

0 5
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98

(a) A choice of labelling
the 8 propagators of the
graph Gtt.

p1 p3

p2 p4

k1
k3

k4
k2

k1 − k3

(b) The hidden region of
Gtt with k1 − k3 in the
Glauber mode.

Figure 13. The three-loop nonplanar graph Gtt (Mandelstam’s graph) and its (unique) hidden region.
There are two jets in this region, one associated with the external momenta p1 and p3, while the other
with p2 and p4. In the hidden region, among the ten propagators, eight are part of the jets (four in
each) and the remaining two mediate in the t channel between the jets, carrying Glauber momenta.

scaleful integral for this region vector, the combination of terms proportional to s12 must
conspire to cancel at leading power in λ, i.e. it must admit the constraint in eq. (5.3). Then
all the U and F terms contribute at O(λ−3) to the Lee-Pomeransky polynomial.

Based on the knowledge of the hidden region of G••, it is also straightforward to deduce
that the momentum configuration of the hidden region of Gtt in the Regge limit is the one
shown in figure 13(b). Each of the two jets Ji (i = 1, 2) consists of four propagators which
are collinear to pi, respectively. The two remaining propagators, e8 and e9 in figure 13(a),
carry Glauber momenta, as shown in eq. (5.11). Using the usual correspondence (2.19), this
momentum-space picture is consistent with the region vector of eq. (5.16), as both collinear
and Glauber modes scale as λ−1.

Note that in figure 13(b), we have used the symbol ( ) to denote any jet-1 (jet-2)
vertex with a Glauber momentum exchange in the t channel. Similar to the hidden region
of G•• (see figure 11(b)), the two jets J1 and J2 share a loop through which they exchange
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Glauber momenta in the t channel. The key difference is that here we have two Glauber
propagators (e8 and e9), while no such propagator is present in the case of G•• in figure 11(b).

By dissecting the Newton polytope as in section 3.3, one can check that figure 13(b) is the
unique hidden region in Gtt.15 We now compute its degree of divergence. In Lee-Pomeransky
representation, we can apply the same change of variables in eq. (5.4). Then, similar to
eq. (5.6), the scaling of the integration measure is

9∏
i=0

dxi =

 ∏
i=1,3,5,7,8,9

xidxi

 · dy0dy2dy4dy6

=

 ∏
i=1,3,5,7,8,9

xidxi

 · dy0dy2d(y4 − y0)d(y6 − y2) ∼ λ−10 · λ1 = λ−9. (5.17)

Meanwhile, the scaling of the integrand follows eq. (4.10) identically, and is ∼ λ6−3ϵ. The
corresponding degree of divergence is then

µ[Gtt, Glauber] = −9 + 6− 3ϵ = −3− 3ϵ. (5.18)

In contrast to the case of G••, where the hidden region is the unique source of the leading
contribution, here the hidden region of Gtt is not anymore leading. Instead, as can be seen
from table 11, the leading regions are the four facet regions with collinear·soft modes (see
figure 12 as one example), with degree of divergence −4− 7ϵ, which is enhanced compared
to µ[Gtt, Glauber].

Let us rederive the result above in momentum space. As we have explained above and
displayed in figure 13(b), eight of the propagators are collinear (four to each of the two jets),
while the remaining two carry Glauber momentum. The integrand then behaves as

1
((k1 − k3)2 + iε)((k2 − k4)2 + iε)

4∏
i=1

1
(k2

i + iε)((pi − ki)2 + iε)
∼ λ−10. (5.19)

Turning now to the integration measure, the computation is exactly the same as in G••
in eq. (5.12), i.e. two collinear loops each counting as O(λ2−ϵ), and one Glauber loop
contributing O(λ3−ϵ). Therefore,

µ[Gtt, Glauber] = 2(2− ϵ) + (3− ϵ)− 10 = −3− 3ϵ, (5.20)

reproducing eq. (5.18).
In the next section, we will use analytic results for the integrals G•• and Gtt to identify the

leading contributions in the Regge limit. We will be able to explicitly verify the conclusions
we have reached above using the MoR regarding the leading and next-to-leading terms in the
power expansion of these integrals, be it due to facet regions or hidden ones.

15In more detail, the vector (−1,−1,−1,−1,−1,−1,−1,−1,−1,−1; 1) arises from the lower facets of the
new polytopes after dissection. Note that there are some additional new vectors from the lower facets (for
example, the vector (−2,−1,−2,−1,−2,−1,−2,−1,−2,−2; 1) from table 12), but they are incompatible with
a cancellation solution for arbitrary values of s12, as they render the individual leading monomials in F of the
same order as the leading monomials in U .
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5.2 Asymptotic expansion of analytically known three-loop integrals

The availability of analytic results for some16 of the integrals considered here provides us
with a great opportunity to verify the results we obtained by asymptotic expansions.

Master integrals for three-loop massless four-point topologies have been computed in
refs. [75, 76]. In general, they are defined by

J{ni} =
∫ 3∏

j=1

(
eγEϵ

iπD/2 dDkj

) 1
Dn1

1 . . . Dn15
15

, (5.21)

with the inverse massless propagators Dj(qj) = q2
j +iε with qj being the j-th element of the set{

k1, k2, k3, k1 − p1, k2 − p1, k3 − p1, k1 − p1 − p2, k3 − p1 − p2, k1 − k2, k2 − k3,

k1 − k2 − p3, k2 − k3 + p1 + p2 + p3, k2 + p3, k1 − k3, k2 − p1 − p2
}

.
(5.22)

In the notation of ref. [76], the graph G•• is

JG••(s12, s13; ϵ) = INT[“NPL2”, 8, 4009, 8, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0],

while the graph Gtt is

JGtt(s12, s13; ϵ) = INT[“NPL2”, 10, 8121, 10, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0].

Below we shall examine the analytic structure of the expansions of G•• and Gtt and compare
it with our MoR analysis. We shall work exclusively in the physical region s12 > 0 and
s13 < 0, which is compatible with the kinematic region defined in eq. (5.1) above, in which
the Regge-limit expansion is considered.

5.2.1 Expansion of JG••

We express JG••(s12, s13; ϵ) in terms of a dimensionless integral IG••(x) with x = −s13/s12,
namely,

JG••(s12, s13; ϵ) = s−2−3ϵ
12 IG••(x; ϵ) = s−2−3ϵ

12

∞∑
n=−4

I
(n)
G••

(x) ϵn, (5.23)

where I
(n)
G••

(x) are defined as the Laurent coefficients in the ϵ → 0 expansion of IG••(x; ϵ),
which starts at O(ϵ−4). Note that IG•• = e3γEϵIG•• , where IG•• was discussed in section 3.3.
The leading-order result reads

IG••(x; ϵ) = −8
3

[
iπ

x(1− x) +
log x

1− x
+ log(1− x)

x

] 1
ϵ4 + · · · , (5.24)

16Analytic results for four-point topologies at three loops are currently available for strictly on-shell
integrals [75, 76], planar integrals with one off-shell leg [107, 108], and for some nonplanar topologies with one
off-shell [109, 110]. Complete results for the nonplanar integrals with off-shell external legs, considered in the
previous section, are not yet available. In particular, the integrals Gtt and G•• belong to integral family 1(d)
of ref. [75], but with an off-shell leg; results for this topology are not provided in ref. [110]. The integral Gst

belongs to integral family 1(h) of ref. [75], but with an off-shell leg. The Gtt and Gst integrals are discussed in
detail in ref. [109], where they are called NPL2_8121 and NPL2_16297, respectively, the G•• is a subsector of
Gtt, it is shown in their figure 5. In contrast, the on-shell integrals we are concerned with in the Regge-limit
expansion are available, and will be used here.
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where we observe the symmetry x → 1 − x which is part of the permutation symmetry
of this integral.

Next, performing an expansion of the Laurent coefficients I
(n)
G••

(x) of the computed integral
for x → 0 we obtain, at each order n, an expansion in powers of x accompanied by polynomials
in logarithms Lx = log(x). For example, the leading order in ϵ in (5.24) expands into

I
(−4)
G••

(x) = −8iπ

3x
+ 8

3 − 8Lx

3 − 8iπ

3 +
(4
3 − 8Lx

3 − 8iπ

3

)
x +

(8
9 − 8Lx

3 − 8iπ

3

)
x2 + · · · ,

(5.25)

which, of course, in this case, only contains Lx to powers zero or one. Note that for any n,
I

(n)
G••

(x) starts with x−1 and we denote this the Leading Power (LP). Similarly, subleading
corrections in the power expansion, ∼ xk, would be denoted by Nk+1LP. In general, we have

IG••(x; ϵ) =
∞∑

n=−4
I

(n)
G••

(x) ϵn =
∞∑

n=−4

∞∑
k=−1

I
(n,k)
G••

(Lx)xk ϵn

= x−1LP {IG••} (Lx; ϵ) + x0NLP {IG••} (Lx; ϵ) + x1NNLP {IG••} (Lx; ϵ) + · · · ,

(5.26)

where the functions Nk+1LP {IG••} (Lx; ϵ) resum all powers of ϵ for fixed k.
The resummation of the ϵ expansion consists of a sum of distinct exponentials

exp {−pRϵLx} = x−pRϵ ,

where the exponents are linear in ϵ, and the coefficients pR, are non-negative17 integers
which characterise the different regions, each multiplied by a function (a Laurent expansion)
of ϵ. The special case pR = 0 is associated with the hard region, which is analytic, while
pR ̸= 0 corresponds to infrared regions, whose expansion involves logarithms of x. In some
cases (where dimensional regularisation cannot alone be used to compute individual regions)
explicit “bare logarithms” which cannot be resummed into said exponentials remain in the
function multiplying them. We shall see examples of this below. It should be stressed that a
unique resummation based solely on the ϵ expansion coefficients would in principle require
all-order information. However, in practice, given that the leading powers are only controlled
by a small number of regions, plausible resummed expressions can be obtained even with
a small number of expansion coefficients.

Returning to the above example, using the known Laurent coefficients in ϵ through O(ϵ0),
we find that the leading power (the coefficient of x−1) in eq. (5.26) can be resummed as follows:

LP {IG••} (Lx; ϵ) = iπe−3ϵLx

(
− 8

3ϵ4 + 16
ϵ3 + 2

(
π2 − 144

)
3ϵ2 − 4

(
−58ζ(3) + 3π2 − 432

)
3ϵ

+ 1
60
(
−27840ζ(3) + 71π4 + 1440π2 − 207360

)
+ · · ·

)
,

(5.27)
17Generally pR can be integers of either sign, but in the case of on-shell four-point scattering it is expected

that they are non-negative. See ref. [75].
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where the factor e−3ϵLx , which resums all logarithms, indicates that the origin of these terms
is in some infrared region. Note that the result is purely imaginary in physical kinematics
where x > 0. In turn, the NLP (the coefficient of x0) resums into

NLP {IG••} (Lx; ϵ) = − 16
9ϵ5 − 8(iπ − 2)

3ϵ4 + 8
(
−18 + 9iπ + 5π2)

9ϵ3

+ 2
(
232ζ(3) + 216− 108iπ − 60π2 + 21iπ3)

9ϵ2 +O(ϵ−1)

+ e−3ϵLx

[
Lx

(
8
3ϵ4 − 2π2

3ϵ2 − 232ζ(3)
3ϵ

+O(ϵ0)
)
+
(
16
9ϵ5 − 8

3ϵ4

−8
(
5π2 − 9iπ

)
9ϵ3 + 2

(
−340ζ(3)− 216iπ + 3π2)

9ϵ2 +O(ϵ−1)
)]

,

(5.28)

where again we used the ϵ expansion coefficient through finite terms. We note that the
O(ϵ−1) term in eq. (5.28) cannot be fixed based on the information available. The first
two lines in (5.28) represent the hard region where no exp {−pRϵLx} occurs (i.e. pR = 0),
while the third and fourth lines represent one (or more) infrared regions characterised by
e−3ϵLx , just as in (5.27) at leading power.

The key conclusion we draw from the analytic results in eqs. (5.26)–(5.28), is that the
asymptotic behaviour of G•• in the Regge limit is given by

IG••(x; ϵ) ∼ x−1−3ϵ for x → 0 , (5.29)

in agreement with the MoR predictions and power counting analysis, which we performed in
section 5.1 in both parameter space and momentum space, leading to eqs. (5.7) and (5.13),
respectively. Recall that tables 5 and 6 demonstrate that the hidden (Glauber) region alone
is responsible for this leading asymptotic behaviour of G•• in the Regge limit, while all facet
regions are subleading, and that the hidden region is exposed by dissecting the polytope as
proposed. The analytic result thus provides a final confirmation that the MoR has been
successfully used to determine the asymptotic behaviour of the integral.

5.2.2 Expansion of JGtt

We proceed to analyse the Regge limit of the analytic results [75, 76] for the second diagram,
Gtt, which we studied using the MoR in section 5.1.2 above. We express JGtt(s12, s13; ϵ) in
terms of a dimensionless integral IGtt(x) with x = −s13/s12:

JGtt(s12, s13; ϵ) = s−4−3ϵ
12 IGtt(x) = s−4−3ϵ

12

∞∑
n=−6

I
(n)
Gtt

(x) ϵn . (5.30)

The first couple of orders in the ϵ expansion read:

IGtt(x) =
−16ϵ−6

9(1− x)x2 − 2ϵ−5

(1− x)x2

(
iπ

3 + 1− x + 8x2

5x2 + 2 log(x)
3 − 5 log(1− x)

3

)
+ · · · .

(5.31)
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Resumming the ϵ expansion for the first three terms in the power expansion, using the
information available from the ϵ expansion through finite terms, we find:

IGtt(x; ϵ) =
∞∑

n=−6
I

(n)
Gtt

(x) ϵn =
∞∑

n=−4

∞∑
k=−4

I
(n,k)
Gtt

(Lx)xk ϵn

= x−4LP {IGtt} (Lx; ϵ) + x−3NLP {IGtt} (Lx; ϵ) + x−2NNLP {IGtt} (Lx; ϵ) + · · ·
(5.32)

where the leading power term contains a single scaling:

LP {IGtt} (Lx; ϵ) = e−7ϵLx

(
− 2

5ϵ5 + 6(1− 4iπ)
5ϵ4 + −108 + 432iπ + 779π2

30ϵ3

+ 116ζ(3) + 108− 432iπ − 779π2 + 812iπ3

10ϵ2 + · · ·
)

,

(5.33)

while at NLP we encounter three different scalings,

NLP {IGtt} (Lx; ϵ) = e−7ϵLx

(4
5
1
ϵ4 − 12(1− 4πi)

5ϵ3 + · · ·
)
+ e−4ϵLx

(4πi

ϵ3 + · · ·
)

+ e−3ϵLx

(
−20πi

ϵ4 + 8(−9iπ + 135π2 + 8iπ3)
9ϵ3 + · · ·

)
,

(5.34)

where the third, e−3ϵLx , does not appear as a facet of the original polytope, but does appear
after dissecting the polytope, and is consistent with the predicted behaviour of the hidden
(Glauber) region according to eqs. (5.18) and (5.20).

At NNLP the analytic result displays four different scalings,

NNLP {IGtt} (Lx; ϵ) = e−7ϵLx

(
− 2
45

1
ϵ6 + 1

ϵ5

(
−17
45 − 8iπ

15

)
+ · · ·

)
+ e−4ϵLx

(16
9

1
ϵ6 + 8 1

ϵ5 (11 + 15iπ) + · · ·
)

+ e−3ϵLx

(638
9

1
ϵ6 + 1

3
1
ϵ5 (903 + 1108iπ + 112Lx) + · · ·

)
+ e−2ϵLx

(
−372

5
1
ϵ6 + 2

5
1
ϵ5 (−784− 957iπ + 80Lx) + · · ·

)
,

(5.35)

where the explicit non-exponentiated Lx term in the series multiplying both e−3ϵLx and e−2ϵLx

terms is indicative of the necessity of analytic regulators in computing the contributions
of the relevant regions separately.

The main conclusion is that, once again, we find complete agreement with the MoR
predictions based on the power counting analysis and the dissection of the polytope reported
in section 5.1.2 and in tables 11 and 12.

We note that the hidden region in both G•• (the sole contribution to the leading power,
eq. (5.27)) and Gtt (the e−3ϵLx term at NLP in eq. (5.34)) involve at least one power of
iπ. This is consistent with the expectation: recall that loops producing a factor of iπ is
a hallmark of a Glauber mode.

– 49 –



J
H
E
P
0
8
(
2
0
2
4
)
1
2
7

5.3 Hidden regions in other three-loop graphs

Let us now consider the full set of three-loop graphs in figure 2, which have been identified
as potentially featuring a hidden region. It turns out that the analysis of such regions in
the Regge limit closely follows what we have done in section 5.1 with G•• and Gtt, and we
therefore briefly summarise the results.

We find that each of the graphs in figure 2 has a single hidden region. Recall that in the
wide-angle scattering context these hidden regions were all related to Landshoff scattering, as
described by figure 9. Similarly, in the Regge limit these hidden regions are all characterised
by single loop involving Glauber scaling, and they are shown in figure 14. As can be read from
the figure, each of these regions features a lower jet J1 (consisting of the incoming p1, the
outgoing p3 and a few collinear propagators) and an upper jet J2 (consisting of the incoming
p2, the outgoing p4 and a few propagators) and possibly a hard subgraph. A key feature is
that Glauber momentum is exchanged between J1 and J2 at the vertices and/or ( ).
For the graphs G•t, Gtt, Gst, and Gtu, there are also propagators carrying Glauber momenta.

To identify the hidden region(s) for each graph, we have dissected the original Newton
polytope, as described by section 3.3, and examined the lower facets of the new polytopes
in each sector. For example, in addition to the 10 facet region vectors of G•s (see ta-
ble 4), there is a unique new vector arising from the facets of the new polytopes, which
is (−1,−1,−1,−1,−1,−1,−1,−1, 0; 1). This is exactly the aforementioned hidden region,
which describes the Glauber exchange between J1 and J2. See more details in appendix A.3.

We emphasise that the Glauber mode does not feature only in hidden regions. As we have
discussed above, the vector (−2,−3,−1,−1,−2,−3,−1,−1,−1,−3; 1), which corresponds to
a facet region of Gtt in the Regge-limit expansion, has one line momentum in the Glauber mode
(see figure 12). The rather rich mode and region structure of the Regge limit at three loops
(see (5.15)) and beyond will be investigated in more detail in a forthcoming publication [106].

6 Conclusions and outlook

Recognising the value of parametric representations of Feynman integrals and their geometrical
interpretation in treating singularities as endpoint divergences, in this paper we focused on
the exceptions: singularities which manifest themselves as pinches in parameter space, and
obstruct the application of existing strategies based on the Newton polytope. Earlier work in
this direction [23, 60] in the context of the MoR focused on linear cancellation between pairs
of Mandelstam invariants, while our analysis identified more general cancellation patterns,
including higher-degree polynomials involving multiple Feynman parameters. While the
former, linear, cancellation occurs in special kinematic limits, such as the threshold expansion
and the forward limit, giving rise, respectively, to potential and Glauber modes — both
off-shell modes — we have shown that the latter also impact integrals in wide-angle scattering,
in which case no off-shell modes arise, namely all loop momenta and propagators are still
either hard, collinear or soft. The main distinctive feature of these so-called Landshoff
regions is the presence of multiple hard connected subgraphs, which cannot occur in regions
corresponding to facets of the Newton polytope in the on-shell expansion [25, 26]. In the
Regge limit, these new cancellation patterns give rise to Glauber modes.
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p1 p3

p2 p4

(a) G••

p1 p3

p2 p4

(b) G•s

p1 p3

p2 p4

(c) G•t

p1 p3

p2 p4

(d) G•u

p1 p3

p2 p4

(e) Gss

p1 p3

p2 p4

(f) Gtt

p1 p3

p2 p4

(g) Guu

p1 p3

p2 p4

(h) Gst

p1 p3

p2 p4

(i) Gsu

p1 p3

p2 p4

(j) Gtu

Figure 14. The hidden regions corresponding to the graphs in figure 2, each featuring the exchange
of a Glauber loop momentum between the upper and lower jets.
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v (x0, . . . , x8, λ) region or not?

original
polytope

(−2,−1,−2,−1,−2,−1,−2,−1,−2; 1)

(−2,−1,−2,−1,−1,−1,−1, 0,−2; 1)

(−2,−1,−2,−1,−1, 0,−1,−1,−2; 1)

(−1,−2,−1,−2,−1,−2,−1,−2, 0; 1)

(−1,−1,−1, 0,−2,−1,−2,−1,−2; 1)

(−1,−1,−1, 0,−1, 0,−1, 0,−1; 1)

(−1,−1,−1, 0, 0, 0, 0, 0,−1; 1)

(−1,−1, 0,−1, 0,−1, 0,−1, 0; 1)

(−1,−1, 0, 0, 0, 0, 0, 0, 0; 1)

(0, 0, 0, 0, 0, 0, 0, 0, 0; 1)
dissected
polytopes (−1,−1,−1,−1,−1,−1,−1,−1, 0; 1)

Table 4. The vectors that are possibly relevant for the regions in the Regge-limit expansion of
G•s. Each vector is written in the format (x0, . . . , x8). The first group consists of 10 vectors, each
corresponding to the lower facets of the original polytope. In contrast, the second group consists of
only one vector (−1,−1,−1,−1,−1,−1,−1,−1, 0; 1), which is exposed as a region via lower facets
of the dissected polytope. The associated hidden region features a Glauber exchange between the
upper and lower jets, as depicted in figure 14(b). The right column confirms that these vectors do
correspond to regions: in contrast to table 3 where spurious regions arise in the dissected polytope
(and subsequently discarded) no such vectors appear here.

The first problem we addressed in this paper is the identification of graphs in which a
pinch in parameter space can occur, which could hinder the Newton-polytope based numerical
evaluation or the determination of a complete set of regions in the MoR. Our key tool has
been the Landau equations, but since these are notoriously difficult to solve in general, we
merely aimed at identifying a necessary condition for such a solution to exist within the
domain of integration. The condition we identified is a requirement for cancellation to take
place between monomials of opposite signs in the F polynomial (see section 3.2). Based on
this, we set up an algorithm to distinguish between graphs in which the pattern of signs of
monomials associated with a given Mandelstam invariant in the F polynomial facilitates
a pinch solution, from graphs where such a solution is excluded at the outset. With this
we have been able to show that pinch singularities in massless 2 → 2 scattering appear first
at three loops, and are restricted at this order to a very special class of graphs collected in
figure 2. These graphs ultimately originate in a single topology, G••. Running the same
algorithm at four loops gives rise to a larger set of 1097 graphs. However, almost all of
them (1081 in total) contain the aforementioned three-loop topologies as subgraphs, while
the remaining ones (see figure 4 for example) do not actually admit pinches in wide-angle
scattering. Some still have such singularities in the Regge limit.

The second problem we addressed was the numerical computation of integrals which
feature a pinch in parameter space within the domain of integration. While straightforward
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application of existing sector decomposition tools to integrals such as those in figure 2 is
doomed to fail due to said pinch singularity, we devised a procedure by which they can be
evaluated. The key steps are first, identifying the singularity as one generated by cancellation
between monomials of opposite signs, then linearising the polynomial around the singularity,
and finally, separating the integration domain at the singularity, so as to map it to the
boundary of the integration domain. This amounts to dissecting the Newton polytope and
performing the integration in each sector independently, with the key advantage being that
the previous cancellation responsible for the singularity has been eliminated. In section 3.4
this technique was successfully applied to the G•• integral.

The third problem we addressed in this paper is the determination of a complete set
of regions needed for asymptotic expansions of integrals around a limit in which a pinch in
parameter space occurs. The key example has been the on-shell expansion of G••, starting
with a configuration in which (at least) one of the legs is off shell. We have shown that in
such an on-shell expansion, the presence of a pinch singularity at the limit, induces a hidden
region, namely a region which cannot be detected as a facet of the Newton polytope. We
have shown that the method above, based on dissecting the polytope and considering each
sector separately, exposes the hidden regions and allows us to obtain a reliable asymptotic
expansion. By performing a careful power counting analysis in both parameter space and
momentum space, we determined the asymptotic behaviour of the hidden region of G••. We
have found that this region uniquely governs the leading asymptotic behaviour of the integral,
and we provided robust numerical evidence (figure 8) that this region alone reproduces the
full integral near the on-shell limit.

We then analysed the remaining graphs in figure 2 in the context of the on-shell expansion
in wide-angle scattering. The geometric approach and the momentum space one nicely
complement each other, leading to a clear physical picture of Landshoff scattering in this
class of graphs. We demonstrated that each of these graphs features a single hidden region,
shown in figure 9, which is related to the hidden region of G•• by simply contracting the
additional hard propagators.

We further applied the newly developed set of tools to the Regge limit in 2 → 2 scattering.
In section 5.1 we analysed in detail the hidden region of two integrals in the Regge limit,
G•• and Gtt. We found that the asymptotic behaviour of G•• is dominated by the hidden
region, while all facet regions are suppressed by at least one power of x ≡ −t/s. In turn,
for Gtt the hidden region only contributes at next-to-leading power. As in the wide-angle
case, we derived the asymptotic behaviour of the hidden region in both parameter space and
momentum space. Our conclusions agree with the results of earlier work on the asymptotic
behaviour of high-energy processes; see [73, 74]. One of the important new insights we gained
in our analysis of the hidden region, was the relation between the Regge limit and wide-angle
scattering. In particular, also in the Regge limit each of the 10 three-loop graphs of figure 2
features a single hidden region. In the Regge limit case, the latter always involves a single
Glauber loop momentum and two jet loop momenta, as shown in figure 14. Finally, in
section 5.2 we gained further insight regarding the asymptotic behaviour of G•• and Gtt

and the contribution it receives from the hidden and the facet regions, using analytic results
for these integrals [75, 76], which have been obtained through O(ϵ0). By expanding these
results in powers of x, and fitting the log-power expansion to an ansatz which encodes the
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non-analytic behaviour associated with each infrared region, exp {−pRϵLx} = x−pRϵ, we
were able to resum the logarithms Lx = log(x) at each power, and confirm our conclusions
regarding the order at which each region enters the power expansion.

Let us now turn to a broader picture and provide some comments regarding the interpre-
tation of our results and some outlook. Our work provides an analysis of pinch singularities in
parameter space for massless 2 → 2 scattering processes, considering both wide-angle and the
Regge limit scenarios. We focused primarily on three-loop integrals, where such singularities
first occur. An intriguing question arises regarding the behaviour of these pinch singularities
in higher-loop integrals and ones with additional external momenta. One may speculate
whether for wide-angle scattering all pinch singularities conform to the Landshoff scattering
picture of figure 10. At three loops we saw explicitly that all graphs having such a pinch
singularity readily conform to this structure, having precisely two independent hard scattering
subgraphs (figure 9). Preliminary evidence that this picture extends beyond three loops comes
from those four-loop graphs prone to having a pinch in parameter space (see section 3.2):
each of these can be obtained by adding an extra loop to one of the three-loop graphs of
figure 2, which is consistent with the pinch singularity corresponding to a four-loop Landshoff
scattering picture. Further detailed analyses are required to validate this conjecture.

In the on-shell expansion in wide-angle scattering, only the three basic types of modes,
soft, collinear and hard have so far been observed. In the case of facet regions we formulated
in ref. [25] a simple diagrammatic algorithm to identify all regions. It would clearly be of great
interest to address the question whether the three basic modes are also sufficient to characterise
all hidden regions at higher loop orders and in graphs with more external legs. Ultimately,
we would like to extend said diagrammatic algorithm to describe hidden regions as well.

Our findings for the 2 → 2 Regge limit in this paper may provide insights into the
infrared structure in this limit. First, for the hidden regions identified in this work at three
loops, we observed an interesting relation, in both momentum space and parameter space,
between Landshoff scattering in the wide-angle case, and Glauber exchange in the Regge
limit. More generally, one may expect that hidden regions would be more common in the
Regge limit as compared to wide-angle scattering, as fewer Landau equations need to be
simultaneously satisfied. Some evidence for this was observed at four loops upon analysing
the graph G′ in figure 4.

Generally, the region structure in the Regge limit is rather complex. In particular, it
involves a much richer set of modes as compared to the on-shell expansion. This is so for
both the hidden region, which involves a Glauber mode, and for facet regions, which involve
both Glauber modes and additional new modes, as is evident from the Gtt example (see
eq. (5.15)). These findings may be of direct relevance to the formulation of effective field
theories such as Glauber SCET [38], and for the analysis of the high-energy limit of QCD
amplitudes. We recall that Mandelstam’s graph, Gtt, analysed here, is the simplest in a
family of diagrams that was shown (by Stanley Mandelstam) [67] to possess Regge cuts. More
complete understanding of the analytic structure of this class of integrals may shed light on
the Regge limit, a topic of recent renewed interest in perturbative QCD [111–117]. It would
also be of great interest to develop a purely graph-theoretical algorithm to identify regions
in the Regge limit, extending the wide-angle on-shell expansion algorithm of ref. [25]. The
challenge is of course to capture not only the facet regions but also the hidden ones.
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A Region vectors for some presented examples

In this appendix, we summarise the results obtained using the pySecDec Expansion by
Regions code, both using the original Newton polytope and the Newton polytopes obtained
by dissecting the original integral. We shall see that the hidden regions, which are absent in
the original polytope, are discovered by dissecting the polytope. When reporting the results
of the dissected polytope, we shall include, in two columns, both the result in terms of the
new variables, defined by eq. (3.26), in which the geometric expansion-by-region routine has
been operating, and the vectors obtained after scaling back to the original set of variables.

We provide examples of both the on-shell expansion in wide-angle scattering (for simplicity,
we used p2

1 ∼ λQ2 and p2
i = 0 (i = 2, 3, 4), where the total number of regions is small compared

to the case where all four external lines start off shell) and the Regge-limit expansion.
Tables 5, 7, 9, and 11 show the vectors from the original Newton polytope, which are in

the form of (x0, . . . , xN ;λ), with xe the Lee-Pomeransky parameter associated with edge e,
and the last entry λ representing the normalisation of the vector.

Tables 6, 8, 10, and 12 demonstrate how hidden region vectors can be obtained from the
new polytopes. In each table we show a particular dissection (one of 24 obtained via a shift
of the form of eq. (3.28)) and for each integral dissection, the region vector vR is written in
terms of the new parameters {ye} in the first column, and translated back to the original
parameters {xe} in the second column. The parameters are related via eq. (4.11).

A.1 Regge-limit expansion of G••

vR (x0, x1, . . . , x7; λ) degree of divergence

(−1,−1,−1, 0,−1,−1,−1, 0; 1) −3ϵ

(−1,−1, 0,−1,−1,−1, 0,−1; 1) −3ϵ

(−1, 0,−1,−1,−1, 0,−1,−1; 1) −3ϵ

(0,−1,−1,−1, 0,−1,−1,−1; 1) −3ϵ

(0, 0, 0, 0, 0, 0, 0, 0; 1) 0

Table 5. Regions obtained by directly applying the MoR to the Regge-limit expansion of graph G••.
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vR (y0, x1, y2, x3, y4, x5, y6, x7; λ) vR (x0, x1, . . . , x7; λ) degree of
divergence

(0,−1, 0,−1, 0,−1, 1,−1; 1) (−1,−1,−1,−1,−1,−1,−1,−1; 1) −1− 3ϵ

(1,−1, 0,−1, 0,−1, 0,−1; 1) (−1,−1,−1,−1,−1,−1,−1,−1; 1) −1− 3ϵ

(−1, 0, 0,−1,−1, 0, 0,−1; 1) (−1, 0,−1,−1,−1, 0,−1,−1; 1) −3ϵ

(0, 0, 0, 0, 0, 0, 0, 0; 1) (0, 0, 0, 0, 0, 0, 0, 0; 1) 0

Table 6. Regge-limit expansion of graph G••, fourth integral dissection I4. The region
(−1,−1,−1, 0,−1,−1,−1, 0; 1) in the original variables, is present in other integral dissections, e.g. I11.
The region (0,−1,−1,−1, 0,−1,−1,−1; 1) in the original polytope, is entirely absent after dissection.

A.2 On-shell expansion of G•s

vR (x0, x1, . . . , x8; λ) degree of divergence

(−2,−1,−2,−1,−2,−1,−2,−1,−2; 1) −2− 6ϵ

(−2,−1,−2,−1,−1,−1,−1, 0,−2, 1; 1) −1− 5ϵ

(−2,−1,−2,−1,−1, 0,−1,−1,−2; 1) −1− 5ϵ

(−1,−1,−1, 0,−2,−1,−2,−1,−2; 1) −1− 5ϵ

(−1,−2,−1,−2,−1,−2,−1,−2, 0; 1) −6ϵ

(−1,−1,−1, 0,−1, 0,−1, 0,−1; 1) −3ϵ

(−1,−1,−1, 0, 0, 0, 0, 0,−1; 1) −2ϵ

(−1,−1, 0, 0, 0, 0, 0, 0, 0; 1) −ϵ

(−1,−1, 0,−1, 0,−1, 0,−1, 0; 1) 1− 3ϵ

(0, 0, 0, 0, 0, 0, 0, 0; 1) 0

Table 7. Regions obtained by directly applying the MoR to the on-shell expansion of graph G•s with
p2

1 ∼ λQ2 and p2
i = 0 (i = 2, 3, 4).
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vR (y0, x1, y2, x3, y4, x5, y6, x7, x8; λ) vR (x0, x1, . . . , x8; λ) degree of
divergence

(−1,−1,−1,−1,−1,−1,−1,−1,−2; 1) (−2,−1,−2,−1,−2,−1,−2,−1,−2; 1) −2− 6ϵ

(1,−2; 1,−2; 1,−2; 0,−2; 0; 2) (−2,−2,−2,−2,−2,−2,−2,−2; 0; 2) −1− 6ϵ

(−1,−1,−1,−1,−1; 0; 0,−1,−2; 1) (−2,−1,−2,−1,−1; 0,−1,−1,−2; 1) −1− 5ϵ

(1,−2; 1,−2; 1,−2; 1,−2; 0; 1) (−1,−2,−1,−2,−1,−2,−1,−2; 0; 1) −6ϵ

(0,−1,−1; 0,−1; 0; 0,−1,−2; 1) (−1,−1,−1; 0,−1; 0,−1,−1,−2; 1) −4ϵ

(0,−1; 1,−1; 1,−1; 0,−1; 0; 1) (−1,−1,−1,−1,−1,−1,−1,−1; 0; 1) −3ϵ

(1,−1; 0,−1; 1,−1; 0,−1; 0; 1) (−1,−1,−1,−1,−1,−1,−1,−1; 0; 1) −3ϵ

(0,−1,−1; 0; 0; 0; 0; 0,−1; 1) (−1,−1,−1; 0; 0; 0; 0; 0,−1; 1) −2ϵ

(0,−1; 0; 0; 0; 0; 0; 0; 0; 1) (−1,−1; 0; 0; 0; 0; 0; 0; 0; 1) −ϵ

(0,−1,−1; 0,−1; 1; 0; 0,−1; 1) (−1,−1,−1; 0; 0; 1; 0; 0,−1; 1) 1− 2ϵ

(0, 0, 0, 0, 0, 0, 0, 0, 0, 1) (0, 0, 0, 0, 0, 0, 0, 0, 0, 1) 0

Table 8. On-shell expansion of G•s, with p2
1 ∼ λQ2 and p2

i = 0 (i = 2, 3, 4), first dissection I1. The
regions (−1,−1,−1, 0,−1, 0,−1, 0,−1; 1) and (−1,−1, 0,−1, 0,−1, 0,−1, 0; 1) in the original variables,
are absent after the dissection. The remaining regions appear in other dissected integrals.

A.3 Regge-limit expansion of G•s

vR (x0, x1, . . . , x8; λ) degree of divergence

(−1,−1,−1, 0,−1,−1,−1, 0,−1; 1) −1− 3ϵ

(−1, 0,−1,−1,−1, 0,−1,−1,−1; 1) −1− 3ϵ

(−1,−1, 0,−1,−1,−1, 0,−1, 0; 1) −3ϵ

(0,−1,−1,−1, 0,−1,−1,−1, 0; 1) −3ϵ

(0, 0, 0, 0, 0, 0, 0, 0; 1) 0

Table 9. Regions obtained by directly applying the MoR to the forward-scattering expansion of
graph G•s.

vR (y0, x1, y2, x3, y4, x5, y6, x7, x8; λ) vR (x0, x1, . . . , x8; λ) degree of
divergence

(−1, 0, 0,−1,−1, 0, 0,−1,−1; 1) (−1, 0,−1,−1,−1, 0,−1,−1,−1; 1) −1− 3ϵ

(0,−1, 1,−1, 0,−1, 0,−1, 0; 1) (−1,−1,−1,−1,−1,−1,−1,−1, 0; 1) −1− 3ϵ

(1,−1, 0,−1, 0,−1, 0,−1, 0; 1) (−1,−1,−1,−1,−1,−1,−1,−1, 0; 1) −1− 3ϵ

(0, 0, 0, 0, 0, 0, 0, 0, 0; 1) (0, 0, 0, 0, 0, 0, 0, 0, 0; 1) 0

Table 10. Regge-limit expansion of graph G•s, third integral dissection I3. The region
(−1,−1,−1, 0,−1,−1,−1, 0,−1; 1) in the original variables, is present in other dissections, e.g. I11.
The regions (−1,−1, 0,−1,−1,−1, 0,−1, 0; 1) and (0,−1,−1,−1, 0,−1,−1,−1, 0; 1) in the original
variables, are absent after dissecting the integral.
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A.4 Regge-limit expansion of Gtt

vR (x0, x1, . . . , x9; λ) degree of divergence

(−3,−2,−1,−1,−3,−2,−1,−1,−3,−1; 1) −4− 7ϵ

(−2,−3,−1,−1,−2,−3,−1,−1,−1,−3; 1) −4− 7ϵ

(−1,−1,−3,−2,−1,−1,−3,−2,−3,−1; 1) −4− 7ϵ

(−1,−1,−2,−3,−1,−1,−2,−3,−1,−3; 1) −4− 7ϵ

(−1,−1,−1,−1,−1,−1,−1,−1,−2,−1; 1) −3− 4ϵ

(−1,−1,−1,−1,−1,−1,−1,−1,−1,−2; 1) −3− 4ϵ

(−1,−1,−1, 0,−1,−1,−1, 0,−1,−1; 1) −2− 3ϵ

(−1,−1, 0,−1,−1,−1, 0,−1,−1,−1; 1) −2− 3ϵ

(−1, 0,−1,−1,−1, 0,−1,−1,−1,−1; 1) −2− 3ϵ

(0,−1,−1,−1, 0,−1,−1,−1,−1,−1; 1) −2− 3ϵ

(−1,−1, 0, 0,−1,−1, 0, 0,−1,−1; 1) −2− 2ϵ

(0, 0,−1,−1, 0, 0,−1,−1,−1,−1; 1) −2− 2ϵ

(0, 0, 0, 0, 0, 0, 0, 0; 1) 0

Table 11. The 13 Regions obtained by directly applying the MoR to the forward-scattering expansion
of graph Gtt.
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vR (y0, x1, y2, x3, y4, x5, y6, x7, x8, x9;λ) vR (x0, x1, . . . , x9;λ) µ

(0,−1, 0,−1, 0,−1, 0,−1,−2,−1; 1) (−1,−1,−1,−1,−1,−1,−1,−1,−2,−1; 1) −3− 4ϵ

(0,−1, 0,−1, 0,−1, 0,−1,−1,−2; 1) (−1,−1,−1,−1,−1,−1,−1,−1,−1,−2; 1) −3− 4ϵ(
1
2 ,−1, 1

2 ,−1, 0,−1, 1
2 ,−1,−1,−1; 1

)
(−2,−2,−2,−2,−2,−2,−2,−2,−2,−2; 2) −5

2 − 3ϵ(
−1
2 , −1

2 , −1
2 , −1

2 , −1
2 , −1

2 , −1
2 , −1

2 ,−1,−1; 1
)

(−2,−1,−2,−1,−2,−1,−2,−1,−2,−2; 2) −2− 3ϵ

(1,−1, 0,−1, 0,−1, 1,−1,−1,−1; 1) (−1,−1,−1,−1,−1,−1,−1,−1,−1,−1; 1) −2− 3ϵ

(1,−1, 1,−1, 0,−1, 0,−1,−1,−1; 1) (−1,−1,−1,−1,−1,−1,−1,−1,−1,−1; 1) −2− 3ϵ

(0,−1, 0, 0, 0,−1, 0, 0,−1,−1; 1) (−1,−1, 0, 0,−1,−1, 0, 0,−1,−1; 1) −2− 2ϵ

(0, 0, 0,−1, 0, 0, 0,−1,−1,−1; 1) (0, 0,−1,−1, 0, 0,−1,−1,−1,−1; 1) −2− 2ϵ

(−1, 0,−1, 0, 0,−1,−1, 0,−1,−1; 1) (−1, 0,−1, 0,−1,−1,−1, 0,−1,−1; 1) −1− 3ϵ

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 1) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 1) 0

Table 12. Regge-limit expansion of graph Gtt, 20-th dissection, I20, in the new variables, orig-
inal variables, and the degree of divergence of each region, µ. All the new region vectors are
characterised by non-analytic behaviour of the form x−3ϵ, consistently with the hidden (Glauber)
region. The regions (−1,−1,−1, 0,−1,−1,−1, 0,−1,−1; 1), (−1,−1, 0,−1,−1,−1, 0,−1,−1,−1; 1)
and (0,−1,−1,−1, 0,−1,−1,−1,−1,−1; 1), in the original variables, are absent after dissecting;
meanwhile all other regions obtained by directly applying the MoR to Gtt appear in at least one
other polytope dissection. Note that the vectors (−2,−1,−2,−1,−2,−1,−2,−1,−2,−2; 2) and
(−1, 0,−1, 0,−1,−1,−1, 0,−1,−1; 1) in the original variables are incompatible with cancellations for
arbitrary values of s12 and s13, thus are not region vectors.
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medium, provided the original author(s) and source are credited.
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