
Chapter 1
Tools for Assessing Goodness-of-fit of GLMs: Case Studies in
Entomology

Darshana Jayakumari, John Hinde, Jochen Einbeck and Rafael A. Moral

Abstract In this chapter, we discuss the analysis of data that typically arise from entomological studies using gener-
alized linear models. We focus on techniques that can be used to assess model goodness-of-fit, which is an important
step in statistical modelling to ensure the reliability of the inferences made. Specifically, we demonstrate the utility of
half-normal plots with a simulated envelope as a complementary tool for assessing model assumptions. We illustrate
the concepts with two examples, one involving count responses and another involving continuous responses.

1.1 Introduction

Given a scientific hypothesis, an experiment or observational study can be carried out to collect data that may confirm
or provide evidence against the said hypothesis. Statistical models represent an attempt to explain patterns of variation
found in a response variable through the use of specific distributional assumptions and predictor variables. These
patterns change depending on the nature of the response. A useful model should be able to capture most of the relevant
variation in the data and distinguish between a true signal and noise, while at the same time maintaining parsimony.

Consider the following multiple linear regression model:

Y ∼ N(µµµ,Inσ
2), (1.1)

µµµ = Xβββ ,

where Y = (Y1, . . . ,Yn)
⊤ is the vector of responses of dimension n, µµµ is the vector of means, X is the n× p design

matrix, βββ is the vector of regression coefficients of dimension p, In is the n×n identity matrix and σ2 is the variance
parameter. This model makes three main assumptions: (i) the response variable is assumed to be normally distributed;
(ii) the means are allowed to differ across the Yis, according to the specified linear model, however their variances
are assumed to be the same (σ2 for all Yi); and (iii) the responses are assumed to be independent (which under the
assumption of a normal distribution is implied from the diagonal covariance matrix with Cov(Yi,Yj) = 0, for i ̸= j).

When fitting model (1.1) to real data, it is important to assess whether the aforementioned assumptions are met
before treating any inferential results as reliable. Assumption (i) can be checked in many different ways. We may assess
it through hypothesis testing using, for example, the Shapiro-Wilk test of normality based on a standardised version
of the model residuals [21]. We may also carry out graphical assessments, that include quantile-quantile plots, which
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will be discussed in detail in Section 1.5. Assumption (ii) can also be checked through formal hypothesis tests, such
as the Bartlett test for variance homogeneity [23], and graphically, by looking at a plot of residuals versus fitted values
(see Figure 1.3 for examples). Frequently, assumption (iii) will be deemed to be true or not based on the design of
the experiment or observational study, without resorting to formal hypothesis testing. Tests are available, but typically
they are onl;y carried out when analysing longitudinal or time-series data, which may be assumed to be correlated. For
these cases, calculating the empirical auto-correlation and partial auto-correlation functions is especially helpful.

Nevertheless, all assumptions discussed above can be summarised by a single distributional assumption, which is
denoted by (1.1). If the distributional assumption in (1.1) is true, then the observed data must be a plausible realisation
of the estimated model N(µ̂µµ,Inσ̂2). In other words, theoretically we should be able to generate the observed values
of the response variable we obtained in the experiment or observational study by simulating from our fitted model.
Goodness-of-fit assessment methods that rely on simulation (such as half-normal plots with a simulation envelope) are
based on this principle. They involve simulating multiple times from a fitted model and comparing the results obtained
with the observed response or a function of the response. This is especially useful in the context of more general
models (e.g. based on a wider family of probability distributions), for which assumptions (i) and (ii) do not hold (and
consequently carrying out tests for normality and homogeneity of variances would be pointless in this case). Note that
here we confine our attention to settings where the assumption (iii) of independent responses is plausible by virtue of
the form of data collection; more general data structures may require model extensions, such as the mixed modelling
framework for multiple components of variation.

In entomological studies, it is often the case that non-normal continuous data and discrete data (counts and propor-
tions) are collected. For these types of data, model (1.1) would not be suitable for analysis, and different distributional
assumptions would be required. For instance, to analyse count data, the Poisson model is one of many alternatives;
to analyse proportion data, the binomial model could be used; and gamma and inverse Gaussian models are able to
flexibly accommodate right-skewed data with positive support. These are all examples of generalized linear models,
for which many different extensions are also available.

There is a plethora of modelling options available for the analysis of entomological data. In many cases, more than
one distribution can suitably accommodate the variability in the data. In Section 1.2, we provide a general definition
and overview of generalized linear models. Later, in Sections 1.3, 1.4 and 1.5, we present an overview of goodness-of-
fit assessment tools and techniques. We conclude by illustrating their use with real datasets in Section 1.6. All analyses
and figures in this chapter are generated using R [19].

1.2 Generalized Linear Models

The modelling of non-normal data could involve, as alternatives, distributions belonging to the exponential family
(EF) of distributions. The EF includes discrete (e.g. Poisson, negative binomial, and binomial), as well as continuous
(e.g. gamma and inverse Gaussian) distributions, representing flexible alternatives to the normal distribution when
modelling discrete, or continuous and strictly positive, or skewed data in entomology.

The probability density function (pdf) of a random variable Y whose distribution belongs to the EF of distributions
can be written, in the canonical form, as

f (y;θ ,φ) = exp
{

yθ −b(θ)
φ

+ c(y,φ)
}
, (1.2)

where b(·) and c(·) are functions of the dispersion parameter φ , the canonical parameter θ and the data and dispersion,
respectively.

The generalized linear model (GLM) is an extension to the classical linear model where the response variable is
assumed to follow a distribution which belongs to the EF. By developing an inferential framework that encompassed
distributions belonging to the EF, [17] allowed for fitting GLMs using a unified estimation process.

The GLM consists of three components:

1. Random component: this is the assumed distribution for the response variable, which belongs to the EF. This
component is termed ‘random’ because it is a probability distribution that is used to model the variability in the
data.
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2. Systematic component: takes the form of a linear predictor, which consists of a linear combination of the predictor
variables and unknown parameters. It may be written as

ηηη = Xβββ ,

where Xn×p is the design matrix and βββ is a p×1 vector of regression coefficients.
3. Link function: this links the random component to the systematic component through a monotonic and differentiable

function g(·) . Typically we aim to link the parameter corresponding to the mean µµµ of the distribution to the
linear predictor through the transformation ηηη = g(µµµ). As link functions are invertible, we have that the mean µµµ =
g−1(ηηη) = g−1(Xβββ ) and so is determined by the linear predictor. The link function that transforms the mean µµµ to
the natural parameter θθθ is known as the canonical link. Note that using the canonical link corresponds to specifying
a linear predictor for the canonical parameter, which may, or may not, be desirable depending on the substantive
questions of interest. Table 1.1 presents six commonly used EF distributions with their canonical link functions, the
dispersion (or scale) parameter, and the form of the variance function (discussed in subsequent sections).

Distribution Representation g(µ) V (µ) φ

Normal (Gaussian) N(µ,σ2) µ 1 σ2

Gamma Gamma(µ,α) µ−1 µ2 α−1

Inverse Gaussian IG(µ,σ2) µ−2 µ3 σ2

Poisson Pois(µ) log(µ) µ 1

Negative binomial NB(µ,k) log
(

µ

µ+k

)
µ

(
µ

k +1
)

k−1

Binomial Binom(m,π) log
(

µ

m−µ

)
µ
m (m−µ) 1

Table 1.1 Representation, canonical link functions (g(µ)), variance functions (V (µ)), and dispersion parameter (φ ) for six commonly used
distributions within the generalized linear modelling framework. Here and throughout this chapter, log denotes the natural logarithm (i.e.
log base e).

The estimation of GLMs is typically done using the maximum likelihood (ML) method. For the normal model, ML
estimates are equivalent to the ones obtained via ordinary least squares (which aims to minimise the sum of squared
differences between observed and fitted values). Under the assumed distribution, the ML estimates are the ones that
maximise the likelihood function, that is the likelihood of the observed data being generated by that distribution. Let
f (yi;βββ ,φ) be the probability density or mass function distribution function for observation i, where βββ is the vector of
regression parameters to be estimated and φ is the dispersion parameter of the assumed distribution. The likelihood
function for a single observation is defined as L(βββ ,φ ;yi) = f (yi;βββ ,φ). Assuming observations are independent, the
overall likelihood for the full sample is given by the joint probability density or mass function

L(βββ ,φ ;y) =
n

∏
i=1

f (yi;βββ ,φ).

To avoid numerical problems when working with likelihood functions, it is commonplace to work with the log-
likelihood l(βββ ,φ ;y) = logL(βββ ,φ ;y) = ∑

n
i=1 log f (yi;βββ ,φ) instead. Since logarithms are monotonic functions, the

parameter values that maximise l(·) will also maximise L(·). Therefore, the ML estimates will be the parameter values
that maximise l(·), i.e.

θ̂θθMLE = argmax
θθθ

l(θθθ ;y),

where θθθ = (βββ⊤,φ)⊤.
The maximised log-likelihood value is used within different goodness-of-fit criteria, and in some cases it can itself

be used as a goodness-of-fit measure. When comparing model fits, a higher value of the log-likelihood would indicate
a better reproduction of the observed data. However, a saturated model, for instance, would reproduce every single
observation; while the log-likelihood would be larger than for a less complex model, saturated models overfit the data
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and are not flexible enough to generate predictions for other sets of predictor values. Therefore, selecting a model is a
task that involves balancing flexibility and explainability.

The residual deviance measure is defined as the difference between the log-likelihood of the saturated model and
log-likelihood of the fitted model (also called ‘current’ model), scaled by a factor of two, i.e., it conveys how far
the model is from fully reproducing the observed data. (Strictly speaking the deviance here is the scaled deviance
where the basic deviance is φ times this and for the EF gives a fitting criteria that does not involve φ and plays
the same role as the residual sum of squares for the normal model. More recent usages tend to blur this distinction
and, of course, for models where φ = 1 it is not an issue, but in other models the user needs to take care as to what
version if being reported.) In GLM theory, the deviance is an important measure, because by subtracting the residual
(scaled) deviances between two nested models, we obtain a statistic called ‘likelihood-ratio’ (since the difference
between (scaled) deviances is equivalent to a ratio between model likelihoods in the natural scale). It can be proven
that likelihood ratios, under the null hypothesis that the simplest model is most adequate to explain the data, for a
fixed or known value of the scale parameter φ , asymptotically follow a χ2 distribution with the number of degrees of
freedom equal to the difference between the number of estimated parameters between the models being compared.

Now we briefly present the most commonly used EF models when analysing entomological data, for which we
provide examples of their probability density or mass functions in Figure 1.2.

Fig. 1.1 Probability density/mass functions for six distributions belonging to the exponential family. The top row shows the density of the
continuous distributions for different sets of parameter values. The bottom row shows the probability mass function of discrete distributions.
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1.2.1 The Normal model

The normal distribution is the most commonly used distribution in statistics and is widely used to model real life
events[28]. It is a continuous and symmetric probability distribution, with a probability density function (pdf) given
by:

f (y) =
1√

2πσ
e−

(y−µ)2

2σ2 , −∞ < y < ∞.

It is also known as the ‘Gaussian’ distribution as it was introduced by Carl Friedrich Gauss in 1809. The distribution
has two parameters (µ , σ) and is denoted by N(µ,σ2) where µ ∈ (−∞,∞) is the mean and σ2 > 0 is the variance.
The density function of the normal distribution resembles a bell shape and is known as the ‘bell curve’ and is centred
around the mean µ . When µ = 0 and σ2 = 1 the distribution is known as the ‘standard normal’ distribution. It can
be shown that approximately 68.2% of the area under the curve is contained in the interval (µ ±σ); approximately
95.4% of the area under the curve is contained in the interval (µ ±2σ); while approximately 99.7% of the area under
the curve is contained in the interval (µ ± 3σ), see Figure 1.2.1. The effect of different means and variances can be
seen in Figure 1.2(a).

The Central Limit Theorem, a key theorem in statistics, states that for a sufficiently large sample of independent
and identically distributed variables, the sampling distribution of the mean is approximated by a normal distribution,
no matter the shape of the population distribution. This makes it possible for other distributions to be approximated
by a normal distribution, which makes it easier to solve complex problems by using the properties of the normal
distribution.

Referring to Equation 1.2 and rewriting the pdf of the normal distribution we obtain:

f (y) = exp

{
yµ − µ2

2
σ2 − 1

2

(
y2

σ2 + log(2πσ
2)

)}
, −∞ < y < ∞;

which gives the canonical parameter θ = µ , the dispersion parameter φ =σ2, b(θ)= θ 2/2, and c(y,φ)=− 1
2

(
y2

φ
+ log(2πφ)

)
.
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Fig. 1.2 The normal distribution pdf curve. We have that 68.2% of the area under the curve falls between µ ±σ , around 95.4% of the area
falls between µ ±2σ , and approximately 99.7% of the area under the curve falls between µ ±3σ .
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1.2.2 The Gamma model

The gamma distribution is generally seen in examples where the outcome is strictly positive and skewed. Real life
examples of the gamma distribution include the modelling of rain fall [4], faults in the equipment maintenance [25],
and insect populations [16]. It can be parameterised in different ways. It is common to use a shape parameter α > 0
and a scale parameter β > 0, such that if Y ∼ Gamma(α,β ) the pdf is given by

f (y;α,β ) =
yα−1e−βyβ α

Γ (α)
, y > 0, (1.3)

where Γ (·) is the gamma function, defined as

Γ (α) =
∫

∞

0
yα−1e−ydy.

The gamma distribution may also be considered a generalised form of other distributions. For instance, when α =
1, it is reduced to the exponential distribution with parameter β , i.e. a Gamma(1,β ) distribution is equivalent to
Exponential(β ). Moreover, a Gamma(ν/2,1/2) distribution is equivalent to a χ2

ν distribution.
For modelling purposes a more useful parameterisation is to use the mean µ . We have that the expected value and

variance are
E(Y ) =

α

β
, Var(Y) =

α

β 2 .

Therefore, we may reparameterise the pdf (1.3) using µ = α/β , to obtain the following exponential family pdf in
canonical form:

f (y) = exp
{(

−y
µ

− log(µ)
)

α +α logα +(α −1) logy− log(Γ (α))

}
, y > 0.

It is clear from above that the canonical parameter θ = −1/µ , and the dispersion parameter φ = 1/α . This gives
b(θ) = log(−1/θ), and

c(y,φ) =
1
φ

log
(

1
φ

)
+

(
1
φ
−1
)

logy+ log
(

Γ

(
1
φ

))
, y > 0.

See Figure 1.2(b) for different shapes of the gamma distribution.

1.2.3 The Inverse Gaussian model

The inverse Gaussian distribution is a continuous distribution similar to the gamma distribution, but with a sharper
peak and greater skewness [24]. It has a single mode and a long tail in the density function which helps modelling data
sets with extreme values. The name inverse Gaussian is related to the fact that its cumulant generating function is the
inverse of the Gaussian distribution’s. The pdf of an IG(µ,σ2) distribution is given by

f (y) =

√
1

2πσ2y3 e
− (y−µ)2

2µ2σ2y , y > 0,

where µ ∈ (−∞,∞) is the mean and φ = σ2 > 0 is the dispersion parameter. We have that E(Y ) = µ and Var(Y ) =
µ3σ2.

We may re-write the pdf of the inverse Gaussian distribution in the canonical exponential family form as

f (y) = exp
{(

− y
2µ2 +

1
µ

)
σ

2 − 1
2

(
log(2πσ

2y3)+
1

σ2y

)}
, y > 0,
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where we identify the canonical parameter θ =−1/2µ2, b(θ) =
√
−2θ , and

c(y,φ) =
−1
2

(
log2πy3

φ +
1

yφ

)
.

For different shapes of the inverse Gaussian distribution, see Figure 1.2(c).

1.2.4 The Poisson model

Unlike a Normal distribution which is a continuous distribution, the Poisson distribution is a discrete probability
distribution that is used to model data in the form of counts for a specified interval of time (or space). Examples of
data that can be modelled using a Poisson distribution include the number of eggs laid by insects over a specified
period of time, or the number of insects counted per m2.

If Y has a Poisson distribution, we may write Y ∼ P(µ), and write its probability mass function (pmf) is given by

f (y) =
e−µ µy

y!
, y ∈ {0,1,2, . . .}

where µ > 0 is the mean parameter. A property of the Poisson distribution is that the mean is equal to the variance,
i.e. E(Y ) = Var(Y ) = µ , known as the ‘equi-dispersion’ property. A consequence of this is that the Poisson model is
not able to appropriately model data for which the variance is greater than the mean (a phenomenon known as ‘over-
dispersion’ [14]). Real entomological data often exhibits over-dispersion, and therefore extensions of the Poisson
model would be more suitable for analysis, such as the quasi-Poisson, negative binomial and Poisson-normal models
[7].

Re-writing the pmf in the canonical exponential family form we obtain:

f (y) = exp(y log µ −µ − log(y!)), y ∈ {0,1,2, . . .}.

We can identify the canonical parameter θ = log µ , as well as the dispersion parameter φ = 1. Moreover, b(θ) = µ ,
and c(y,φ) =− log(y!). See Figure 1.2(d) for different shapes of the Poisson pmf.

1.2.5 The Negative Binomial model

The negative binomial distribution, also known as the ‘Pascal’ distribution, is the distribution of the number of failures
before the first k ∈ {1,2, . . .} successes in a sequence of independent Bernoulli trials1 with probability of success
0 ≤ π ≤ 1. This distribution can also be expressed as a sum of k independent geometric random variables, since the
geometric distribution describes the number of failures before the first success in a sequence of independent Bernoulli
trials. The pmf of the negative Binomial distribution is given by

f (y|µ,k) =
(

y+ k−1
y

)(
µ

µ + k

)n( k
µ + k

)k

, y ∈ {0,1,2, . . .}

where E(Y ) = µ and φ = k−1 is the dispersion parameter. In this parameterisation the negative binomial distribution
is in the EF and has a quadratic variance function, given by Var(Y ) = µ +µ2φ ; we will refer to this parameterisation
of the negative binomial distribution as negbin-quad.

The negative binomial distribution can also be viewed as arising from a two-stage model with a Poisson distribution
where the parameter is assumed to follow a gamma distribution, reflecting additional heterogeneity over the observed
counts. By considering different parameterisations of the gamma distribution we obtain different parametric forms of
the negative binomial. For fixed values of the mean µ they are the same distribution but when we consider allowing
the mean to vary (as in regression models) they exhibit different mean-variance behaviour. In particular, there is one

1 A Bernoulli trial is an experiment with only two possible outcomes: ‘success’ or ‘failure’.
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variant with a linear variance function Var(Y ) = µ +µψ , referred to here as negbin-lin; but note that in this form the
resulting negative binomial model is not in the EF.

Depending on the data, either parameterisation can be the best choice to accommodate the extra variability. Note
that these variance functions are inflated with respect to the Poisson distribution, and we have that Var(Y ) > E(Y ),
with a limiting case of equi-dispersion obtained when the additional parameter φ , or ψ , is 0 (note that these corre-
spond to a gammma distribution with zero variance, i.e. a degenerate constant distribution, hence the reduction to the
equi-dispersed Poisson distribution). Therefore, the negative binomial distribution can be considered a one-parameter
extension of the Poisson distribution for modelling overdispersed counts. See Figure 1.2(e) for examples of pmf shapes
for the negbin-quad distribution.

1.2.6 The Binomial model

The number of successes out of m ∈ {0,1,2, . . .} independent Bernoulli trials with same probability of success 0 ≤
π ≤ 1 follows binomial distribution, denoted as Binom(m,π). The values assumed by a binomial random variable are
discrete and bounded between 0 and m, i.e. they can be referred to as ‘discrete proportions’. In entomology, there
are many cases where this type of data arises, such as in experiments measuring the proportion of viable eggs, sex
ratios, or dose-response experiments where the focus is on mortality (or survival) of insects. The pmf of the binomial
distribution is given by

f (y) =
(

m
y

)
π

y(1−π)m−y, y ∈ {0,1, . . . ,m}.

We have that E(Y) = mπ and Var(Y) = mπ(1−π).
Re-writing the pmf of the binomial distribution in the canonical exponential family form we obtain

f (y) = exp
{

y log
(

π

1−π

)
+ log

(
m
y

)
−m log(1−π)

}
, y ∈ {0,1, . . . ,m}.

We can identify the canonical parameter θ = log
(

π

1−π

)
= logit(π) and the dispersion parameter φ = 1. We also have

b(θ) =−m log
(

1
1+eθ

)
, and c(y,φ) = log

(m
y

)
.

The binomial model is naturally under-dispersed, since Var(Y ) = mπ(1 − π) = E(Y )(1 − π) < E(Y ). In many
applications, we may find that this mean-variance relationship does not hold, and the variability in the data is greater
than accommodated by the standard binomial model. In such cases, extensions of the binomial model can be used,
such as the quasi-binomial, beta-binomial and logistic-normal models [9]. See Figure 1.2(f) for different shapes of the
binomial distribution pmf.

1.3 Residuals

Here we provide a brief introduction to different types of residuals used when assessing goodness-of-fit and performing
model selection.

Residuals can be considered as an information metric that gives an idea about how well the specified model fits the
data. They are based on the deviation between fitted/predicted values from observed values. Since they can be used to
detect outliers and abnormalities in the data, they are considered an integral part of exploratory analysis.

When working with the classical linear model (Eq. 1.1), different types of residuals can be used to verify the
assumptions of linearity, independence, homogeneity of variances and normality, through either visual displays or
formal hypothesis testing. In this model we have the fundamental decomposition of an observation yi into its fitted
value, ŷi, and the residual ri = yi − ŷi with

yi = ŷi +(yi − ŷi) = ŷi + ri
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and moreover the vectors ŷ and r are orthogonal. Hence, a very useful and basic form of diagnostic display is to plot
residuals (r) versus fitted values (ŷ). This plot can help to assess whether the assumptions of variance homogeneity
and linearity are met. An ideal plot would show the residuals distributed randomly around zero, with no trend (Fig-
ure 1.3(a)). When the variance is not constant, one would see changes in variability throughout the plot, such as the
example in Figures 1.3(b) and 1.3(d), where the variance changes proportionately with the fitted values. When the
linearity assumption is not met, the residuals versus fitted values plot will show a trend or curve, rather than points
distributed randomly around zero, such as the examples in Figures 1.3(c) and 1.3(d).

Fig. 1.3 Examples of patterns expected when looking at ‘residuals versus fitted values’ plots for four different scenarios. (a) Constant
variance and linearity assumptions are met; (b) variance is not constant, but linearity assumption is met; (c) plot shows a trend, therefore
linearity assumption is not met, however the variance seems to be constant; (d) neither the constant variance nor linearity assumptions are
met.

Naturally, when working with other generalized linear models that are not the normal model, we would not expect
the assumption of constant variance to hold, since some of the variance functions are proportional to the mean (Ta-
ble 1.1). However, the residuals and the fitted values still form the basic building blocks of quantities of interest and
useful displays. We now introduce the most commonly used residual types. Note that the type of residuals used for the
model selection process should depend on the models considered, and the nature of the response variable.
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1.3.1 Raw Residuals

The raw residuals (ri) are defined as the difference between the observed data and fitted/predicted values:

ri = yi − µ̂i ; i = 0,1,2, . . . ,n (1.4)

where yi is the observed value and µ̂i is the fitted value. Large |ri| shows a higher discrepancy between the observed data
and the predicted value, which may indicate that either observation yi is an outlier under the distributional assumption
or that the model does not have a good fit, if that is the case for many observations. Very small |ri| for many observations
could indicate overfitting. However, this will depend on the scale of the response variable. Moreover, in classical linear
regression the raw residuals should follow a normal distribution with zero mean and variance σ2 > 0. But in non-
normal scenarios the raw residuals behave differently, and may be asymmetric, and have non-constant variance. This
is why it is better and commonplace to use scaled versions of the residuals.

1.3.2 Pearson Residuals

The ‘Pearson residuals’ rP
i are defined as,

rP
i =

yi − µ̂i√
V (µ̂i)

, (1.5)

which are the raw residuals scaled by the estimated standard deviation. This formulation addresses the problem of non-
constant variance; therefore under well-fitted models rP

i should display a constant variance behaviour when plotted
against the fitted values.

The Pearson statistic X2 is calculated by summing the squared Pearson residuals, i.e. X2 = ∑
n
i=1(r

P
i )

2. It can be
shown that 1/phi times this statistic , asymptotically, follows a χ2 distribution with n− p degrees of freedom [15].
This statistic can be used to test the goodness-of-fit of a GLM when the dispersion parameter φ is known. This is
especially useful for the Poisson and binomial GLMs, for which φ = 1, fixed. Under a well-fitted Poisson or binomial
GLM, we would expect X2 to be similar to n− p. If X2 >> n− p this may be an indication that the variability in the
data is larger than expected by the model, and therefore extended models that accommodate extra-variability would be
more appropriate for analysis.

1.3.3 Deviance Residuals

The deviance residuals rD
i are associated with the concept of deviance D, which is a measure that considers the

departure of the fitted model from the saturated model. The saturated model has as many as parameters as observations,
and reproduces all observed values exactly, i.e. µ̂i = ŷi = yi. This model clearly overfits the data, however it is useful
to quantify how far the fitted (or current) model is from reproducing the data exactly. We may write

D = 2(l∗− l),

where l∗ and l are the maximised log-likelihoods of the saturated and current models, respectively. The deviance can
be represented as the sum of the deviance measures from each data point, such that D = ∑d2

i , where di is the ith

component of deviance. The deviance residual rD
i is then given by

rD
i = sign(yi − µ̂i)

√
di.

Under a well-fitting model, the distribution of the deviance residuals approximates a normal distribution, and they are
a common choice for likelihood-based methods [18].
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1.4 Influence measures

There are certain data points in a data set which upon deletion would bring a significant difference in the model
estimates. These data points can be identified by using suitable metrics known as influence measures. We now describe
a few types of influence measures that can be used in model diagnostics.

1.4.1 DFBETA

Outliers are the data points that are considered to have a larger impact on the model estimates compared to other
data points. In most of the cases outliers are considered as an outcome of instrumental errors or other types of error
incurred during the data collection process, and depending on the circumstances could be removed prior to analysis.
But in some instances outliers can be of high influence to the model estimates. DFBETA is a measure of influence that
can be used to find influential outliers in the dataset. It can be calculated for parameter j and observation i as:

DFBETAi j = β̂ j − β̂(i) j

where β̂ j is the j−th coefficient from the regression calculated using all of the data and β(i) j is the j−th coefficient
from the regression calculated without the i−th observation. The standardised version of is given by:

DFBETASi j =
β̂ j − β̂(i) j

SE(β̂ j)
(1.6)

As a rule of thumb, it is considered that a data point is influential when DFBETAS ≥ 2/
√

n.

1.4.2 DFFIT

DFFIT is an other useful measure to study the influence of a data point in a model which is very similar to DFBETA,
however it looks at the influence on the predicted response rather than the estimated regression coefficients. The
formula for DFFIT is given by:

DFFITi = ŷi − ŷ(i)i

where ŷi is the predicted value for point i and ŷ(i)i is the predicted value when the i−th observation is removed. The
standardised version of DFFIT is denoted as DFFITS and is given by:

DFFITSi =
ŷi − ŷ(i)i
s(i)

√
hii

where s(i) is the standard error for the fitted value ŷi estimated without including yi in the model, and hii is the i−th
element of the diagonal of the ‘hat matrix’ H. For the normal model it is calculated as

H = X(X⊤X)−1X⊤,

and is thus named since ŷ = Hy. In other generalized linear models, the hat matrix is of a more complicated form,
but has similar properties. The hii values are also known as leverage measures, which are another type of important
influence metric. Higher leverage values indicate a higher chance that a specific data point is influential.
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1.4.3 Cook’s distance

Cook’s distance DCook is generally used to find influential outliers in regression analysis and is given by:

DCook
i =

n

∑
i=1

(ŷi − ŷi(i))
2

ps2 ,

where

s2 =
n

∑
i=1

(yi − ŷi)
2

n− p

is the mean squared error of the regression model, with p the number of regression coefficients. A data point is
suspected to be influential when DCook > p/n.

1.5 Half-Normal Plots with a Simulated Envelope

A quantile-quantile plot, q-q plot, is a graphical method used to compare the distributions of two samples by plotting
the quantiles against each other. This is mainly employed in cases where we assume a distribution for a response
variable and would like to check if that is a reasonable assumption. The quantiles of the theoretical distribution are
plotted against the quantiles of the data and if the distributional assumption is reasonable, the points would fall on, or
close to, the identity line y = x (see Figure 1.5(a)).

A normal q-q plot compares the observed data against a normal distribution. Figure 1.5 shows two q-q plots: in
Figure 1.5(a) the theoretical model considered is the normal model and the data is also simulated from the normal
distribution. The observed behaviour is similar to a y = x plot which means the assumed model is reasonable. But from
Figure 1.5(b) we conclude the assumed distribution is not a good approximation for the data.

Half-normal plots can be considered as an extension to the q-q plot where the ordered absolute value of a model
diagnostic (e.g. residuals, leverage, Cook’s distance, etc.) is plotted against the expected order statistics of the half nor-
mal distribution; these are particularly useful in smaller samples where the full normal plot can be rather sparse and
natural sampling variation can be potentially misleading. It is a graphical method now primarily used to identify out-
liers and assess distributional assumptions. The half-normal plot was orginally introduced by Daniel [5] for the analysis
of factorial experiments, especially those involving un-replicated designs. The paper also introduces ‘guardrails’ for
giving better interpretation of the results. A major revision to this method was proposed by [29]. Since then, several
alternative methods were introduced to reduce subjectivity.

If Y follows a Normal distribution, then |Y | follows a half-normal distribution [29], with pdf given by:

f (x) =

√
2

πσ2 e
− y2

2σ2 , y ≥ 0

The expected ordered statistics of the half-normal distribution, hereby referred to as ‘half-normal scores’, are approx-
imated by:

Φ
−1

(
i+n− 1

8

2n+ 1
2

)
where i is the i−th order statistic, 1 ≤ i ≤ n, and Φ−1(·) is the inverse of the cumulative distribution function of the
normal distribution [6].

The application of half-normal plots as a model selection method is implemented with an added simulated envelope
as suggested by [2] to aid interpretability. To construct the plot, first, model diagnostics are calculated from the fitted
model, the absolute value is taken and they are then sorted from minimum to maximum. Second, 99, or more, simu-
lated realisations of the response variable are created from the fitted model, that is using the same model matrix and
distributional assumptions and parameter values as given by the fitted model. The next step is to fit the same model
to these simulated responses and re-calculate the same model diagnostics, take absolute values and sort them. The
final step is to form the envelope by computing the percentiles of interest for each order statistic from the set of (99)
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Fig. 1.4 Quantile-quantile plots showing (a) agreement between an assumed distribution and the sample distribution, and (b) disagreement
(i.e. the assumption is not a reasonable one).

simulated values together with the original real data one. Typically the chosen percentiles are 2.5% and 97.5%. For
this case, up to 5% of the points (order statistic values) may fall outside of the envelope to indicate a well-fitted model.
If much more than 5% of the points lie outside of the envelope, it means that the observed data is not a plausible
realisation of the fitted model.

We present two sample half-normal plots with a simulated envelope for model residuals in Figure 1.5. In Fig-
ure 1.5(a) all the residual points fall inside the simulated envelope, which means that the model fits the data well,
i.e. the data is a plausible realisation of the assumed probability distribution. In Figure 1.5(b), however, most residual
points falls outside the envelope, which means that the model is not a good fit for the data.

The half-normal plot with a simulated envelope is simple to interpret, however if the estimation procedure for a
model is time-consuming, it might be computationally expensive to produce.

1.6 Examples

1.6.1 Biological control of ticks

To study the efficacy of biologically controlling ticks using nematodes in grasslands, an experiment was set up in a
randomised complete block design with six blocks in a field of Megathyrsus maximus grass, in the state of Goiás, Brazil
[10]. The field was divided into six groups of two plots each, totalling twelve plots. Within each group (block), one
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Fig. 1.5 Half-normal plot with a simulated envelope for model residuals for (a) a case where the model fits the data well, and (b) a case
where with poor goodness-of-fit.

plot was treated with the entomopathogenic nematode Heterorhabditis bacteriophara by introducing infected Tenebrio
molitor larvae one week before the experiment commenced, while the other plot received no treatment (control). A
day before the experiment commenced, six females of the tick Rhipicephalus microplus were placed in each of the
twelve plots. The total number of ticks in each plot was observed after 1, 2, 3, and 4 weeks (Figure 1.6)

Fig. 1.6 Number of ticks of the species Rhipicephalus microplus recovered in each of twelve plots in a field of Megathyrsus maximus
grass. In six of these plots, the entomopathogenic nematode Rhipicephalus microplus was introduced a week prior to commencement of
the experiment.
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It seems that the control plots had larger numbers of ticks when compared to the nematode-treated plots, apart
from the first and second week in block 6, where over 1,000 ticks were recovered after one week of experiment.
This type of behaviour occurs in field experiments involving arthropods, where population sizes and reproduction
rates vary between plots. In this particular plot the ticks reproduced rapidly and their population exploded after one
week. However, there is an exponential decline after 1 week, which could reflect successful control of the tick via the
introduction of the entomopathogenic nematode.

Since the response variable consists of counts, the normal distribution is not suitable for analysis. The Poisson
model is a reasonable starting point, since it is suitable to analyse count data. We observe, however, that the variance
is much greater than the mean for all plots over time (Table 1.2). This indicates extra-variability, or over-dispersion,
and therefore extensions to the Poisson model could be more appropriate to analyse this dataset.

Treatment Week Mean Variance

Control

1 103.2 18831.77
2 35.3 2847.07
3 166.8 23544.17
4 61.2 2730.17

Nematode-treated

1 173.0 179159.20
2 36.0 7268.40
3 75.2 10187.37
4 3.5 73.50

Table 1.2 Mean and variance of the number of recovered Rhipicephalus microplus ticks in plots treated or not with the entomopathogenic
nematode Heterorhabditis bacteriophara, over four weeks of observation.

Firstly, we ignore the time dependence between observations made on the same plot at different occasions. We fit
the normal, Poisson and negative binomial models to the ticks data, using the same linear predictor, which included the
effects of block, treatment, week, and an interaction between treatment and week. The normal model assumes variance
homogeneity, and a quick glance at the residuals versus fitted values plot (Figure 1.7) reveals that this assumption is
not met. Moreover, since the lower bound of the response variable is zero, there is an obvious lower bound for the
residuals as well. The lack-of-fit of the normal model is confirmed by the half-normal plot with a simulated envelope
for the raw residuals (Figure 1.8(a)). The Poisson model fit is also not adequate according to the half-normal plot in
Figure 1.8(b), and this is due to the extra-variability in the data. The negative binomial model, however, seems to fit
the data well ((Figure 1.8(c)).

Fig. 1.7 Residuals versus fitted values for the normal model fitted to the ticks data.



16 Darshana Jayakumari, John Hinde, Jochen Einbeck and Rafael A. Moral

Fig. 1.8 Half-normal plots with a simulated envelope for the (a) normal model using raw residuals, (b) Poisson and (c) negative binomial
models using deviance residuals, fitted to the ticks data.

The importance in assessing goodness-of-fit before drawing inferential conclusions from a statistical model is
enhanced when we look at the results presented in Table 1.3. According to the normal model, there are no significant
effects of time (weeks) or treatment (the entomopathogenic nematode) on the number of ticks retrieved from the field,
and therefore would lead researchers to conclude that the nematode is inefficient in controlling the tick population size.
This lack of significance is due to the large variability in the data overall, which results in an overestimation of the
standard errors. The Poisson model, on the other hand, detects a significant interaction between time and treatment.
This is due to the assumption of equi-dispersion, which results in the underestimation of the overall variability of
the data. Finally, the negative binomial model, which suitably incorporates the over-dispersion in the data, yields
inferential results confirming that the nematode is indeed efficient in controlling the pest and shows the interaction to
be unnecessary, indeed there is no evidence of any time effect.

Model Source d.f. Test statistic p−value

Normal
Week 3, 35 1.29 0.29
Treatment 1, 35 0.16 0.69
Week × Treatment 3, 35 0.52 0.67

Poisson
Week 3 1444.10 < 0.01
Treatment 1 57.14 < 0.01
Week × Treatment 3 638.18 < 0.01

Negative binomial
Week 3 3.76 0.29
Treatment 1 4.72 0.03
Week × Treatment 3 4.98 0.17

Table 1.3 Test statistics and associated p−values for the effects in the linear predictor of the models fitted to the ticks data. F test statistics
are used for the normal model and likelihood-ratio χ2 statistics are used for the Poisson and negative binomial models.

1.6.2 Sustainable management of parasitic nematodes using bioagents – the ‘plant height’ data

The use of microbial agents as pesticides has been shown to be a more sustainable approach than chemical pesticides
on agricultural pests. [20] carried out an experiment where they assessed the effectiveness of using a filamentous
fungi of the order Hypocreales, namely two strains of Pochonia chlamydosporia and three strains of Purpureocillium
lilacinum as potential bioagents against plant parasitic nematodes. Seeds of the common bean cultivar “IAC Milênio”
were treated with suspensions prepared using each fungal strain, as well as a negative control that used only Arabic
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gum. The seeds were planted and ten potted plants were used for each treatment as observational units. After 45 days,
the height of the plants was measured in cm. This experiment was repeated three times, totalling 30 plants receiving
each treatment.

The box plots in Figure 1.6.2 show that the plant height is very homongeneous across treatments, especially for
experiments 1 and 2. However, for experiment 3 it appears that plants treated with P. lilacinum strain ESALQ2593
were slightly taller, suggesting a significant interaction between experiments and treatments.

Fig. 1.9 Box plots of the height for the ten plants within each experiment (each panel numbered 1, 2 and 3) according to each treatment,
which included a negative control, two strains of Pochonia chlamydosporia (PC - ESALQ5405 and PC - ESALQ5406), and three strains
of Purpureocillium lilacinum (PL - ESALQ1744, PL - ESALQ2482 and PL - ESALQ2593).

We fitted normal, gamma and inverse Gaussian models to the plant height data, all including the effects of exper-
iment, treatment, and the two-way interaction between experiment and treatment in the linear predictor. We used the
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canonical link functions, i.e. identity for the normal model, inverse for the gamma model, and g(µ) = 1/µ2 for the
inverse Gaussian model. From Table 1.4, we observe that while the gamma and inverse Gaussian models agree with
respect to the significance of the two-way interaction between experiment and treatment, the normal model yields a
p-value larger than 0.05 for this effect (although close to the 5% significance threshold). The half-normal plots with a
simulated envelope indicate, however, that the normal model is an inadequate representation of the data (Figure 1.6.2),
and therefore inferential results from this model should not be taken into account. On the other hand, the gamma and
inverse Gaussian models seem to fit the data well.

Model Source d.f. Test statistic p−value

Normal
Experiment 2, 162 42.82 < 0.01
Treatment 5, 162 1.13 0.35
Experiment × Treatment 10, 162 1.81 0.06

Gamma
Experiment 2, 162 45.41 < 0.01
Treatment 5, 162 1.16 0.33
Experiment × Treatment 10, 162 2.09 0.03

Inverse Gaussian
Experiment 2, 162 46.04 < 0.01
Treatment 5, 162 1.14 0.34
Experiment × Treatment 10, 162 2.25 0.02

Table 1.4 F test statistics and associated p−values for the effects in the linear predictor of the models fitted to the plant height data.

Fig. 1.10 Half-normal plots with a simulated envelope for the (a) normal, (b) gamma, and (c) inverse Gaussian models fitted to the plant
height data.

1.7 Discussion

In this chapter, we aimed to present the generalized linear modelling framework with a specific focus on the use
of diagnostic analyses to assess model goodness-of-fit, specifically through the use of the half-normal plot with a
simulated envelope. We demonstrated that the normal model is not the most suitable option for analysis of discrete
data, which is commonly found in entomological studies. In terms of software, although we used R throughout the
chapter, there are other implementations of the models and techniques presented here through SPSS, Python, SAS,
among others. The focus here has been on a single response variable; multivariate extensions to jointly model responses
of interest are more complicated, and subject of active research.
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