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Bound star clusters observed in a lensed 
galaxy 460 Myr after the Big Bang
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The Cosmic Gems arc is among the brightest and highly magnified galaxies observed 
at redshift z ≈ 10.2 (ref. 1). However, it is an intrinsically ultraviolet faint galaxy, in the 
range of those now thought to drive the reionization of the Universe2–4. Hitherto the 
smallest features resolved in a galaxy at a comparable redshift are between a few 
hundreds and a few tens of parsecs (pc)5,6. Here we report JWST observations of the 
Cosmic Gems. The light of the galaxy is resolved into five star clusters located in a 
region smaller than 70 pc. They exhibit minimal dust attenuation and low metallicity, 
ages younger than 50 Myr and intrinsic masses of about 106M⊙. Their lensing- 
corrected sizes are approximately 1 pc, resulting in stellar surface densities near 
105M⊙ pc−2, three orders of magnitude higher than typical young star clusters in the 
local Universe7. Despite the uncertainties inherent to the lensing model, they are 
consistent with being gravitationally bound stellar systems, that is, proto-globular 
clusters. We conclude that star cluster formation and feedback likely contributed to 
shaping the properties of galaxies during the epoch of reionization.

The Cosmic Gems arc (SPT0615-JD1) was initially discovered in Hubble 
Space Telescope (HST) images obtained by the Reionization Lensing 
Cluster Survey (RELICS) of the lensing galaxy cluster SPT-CL J0615–5746 
at z = 0.972 and reported as a redshift z = 10 candidate8.

A recent James Webb Space Telescope Near Infrared Camera ( JWST/
NIRCam) imaging campaign of this field has observed the Cosmic Gems 
arc with eight bands covering the 0.8–5.0 μm range (Methods). Spectral 
energy distribution (SED) fitting to the James Webb Space Telescope 
( JWST) photometry indicates that the Cosmic Gems galaxy has a fairly 
young stellar population with a mass-weighted age of less than 79 Myr 
and a lensing-corrected stellar mass in the range of 2.4–5.6 × 107M⊙, 
with low dust extinction (AV < 0.15 mag) and metallicity (<1% Z⊙) (ref. 1).

The far-ultraviolet (FUV)-to-optical rest frame of Cosmic Gems arc 
shows bright clumpy structures and extended faint emission over a 

5″-long arc (Fig. 1). The symmetry between the south–east (hereafter  
Img.1) and the north–west (Img.2) part of the arc uncovers two lensed 
mirror images of the galaxy, implying that the Cosmic Gems arc is 
observed at very high magnification on the lensing critical curve. Four 
independent magnification models have been created to account for 
the galaxy appearance. All the models successfully reproduce the 
z = 10.2 critical line crossing the Cosmic Gems arc (Methods).

Five star cluster candidates are uniquely identified in Img.1. In Img.2, 
three sources are distinguishable in the F150W filter (Fig. 1), along with 
a fourth fainter source (E.2). The appearance of Img.2 is probably per-
turbed by further lensing effects because of the northern galaxy at 
z ≈ 2.6 (visible in the top right corner) and possibly by an undetected 
small scale perturber closer to the arc1. Source D.2 is possibly blended 
with C.2 and is therefore identified for the remaining of the analysis  
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as C.2 + D.2. The source E.2 is only detected at a 2σ level and not included 
in this analysis (Methods). The observed projected distance between 
the A.1 and E.1 clusters in Img.1 is about 0.65″. Using forward modelling 
and Lenstool-A predictions presented in the Methods, we find that 
their physical distance is 42 pc−5

+29 . The star clusters are all located within 
this compact region (Fig. 1). The size of this region is similar to that 
reported for individual stellar clumps observed in the moderately 
lensed galaxies at redshift z ≈ 10 (refs. 2,5), suggesting that they likely 
harbour star clusters within them.

The intrinsic physical properties of these five star clusters are par-
ticularly meaningful for probing proto-globular cluster formation 
mechanisms as well as their potential evolution. As described in the 
Methods, we find that A.1 is only marginally resolved, with an observed 
effective half-light radius Reff,obs = 0.6 px, whereas C.1 and B.2 are con-
sistent with being unresolved. For the latter sources, we assumed an 
upper limit to their radii coincident with the half-width half maximum 
(HWHM) of the stellar PSF in the F150W (0.025″ = 1.25 px). To derive 
lensing-corrected Reff, we assumed the predicted Lenstool-A tangential 
magnifications at the location of the star clusters. The five star clusters 
have intrinsic Reff close to 1 pc (within uncertainties; Table 1). Using 
the other lensing models produces similar size ranges (0.3–0.9 pc for 
Lenstool-B and 0.3–1.2 pc for Glafic). Independent intrinsic sizes (Reff,FM 
in Table 1) have been derived by projecting the star cluster shapes from 
the source plane into the image plane. The latter method recovered 
intrinsic sizes in excellent agreement, within the uncertainties, with 
those measured in the image plane, strengthening the reliability of 
the derived values.

The star clusters have been fitted with BAGPIPES9 and PROSPEC-
TOR10. We tested different star formation history (SFH) assumptions 
that simulate a single burst (inherent to the small sizes of the stellar 
systems analysed), different high-mass limits of the initial mass func-
tion (IMF) and models with stellar binaries (Methods). Despite the 
assumptions, the resulting physical properties of the clusters (ages, 
masses, extinction and metallicities) are in reasonable agreement. In 
the analysis presented here, we use the physical values derived with an 
SFH based on a single exponential decline with τ = 1 Myr (referred to as 
BAGPIPES-exp, Extended Data Table 2).

The recovered ages of the star cluster candidates are between 9 Myr 
and 36 Myr. The age range suggests that star formation has been propa-
gating within this compact area of the galaxy for a few tens of Myr.  
The measured rest-frame UV slopes of the star clusters (β between 
−1.8 and −2.5, with Fλ ∝ λβ; Extended Data Table 1) are similar to those 
found for more evolved star clusters in the Sunburst arc at redshift 2.37 
(ref. 11). Although the Cosmic Gems clusters are not extremely young, 
they have likely delivered large amounts of energy and momentum to 
their host galaxy.

The lensing-corrected stellar masses range between 1.0 × 106M⊙ and 
2.6 × 106M⊙, for a total combined stellar mass of 8.3 × 106M⊙. The total 
mass of the clusters is close to 30% of the total stellar mass of the host. 
As the mass-weighted age of the galaxy and those of the star clusters 
are comparable, we can extrapolate the cluster formation efficiency 
(CFE)12 to be around 30%. A caution note is necessary because the mass 
estimates (both for the galaxy and star clusters) are subjected to mag-
nification values and SED fit uncertainties, making the quoted CFE 
uncertain. A more direct way to establish the CFE is to use the fraction 
of observed FUV light in star clusters with respect to the host. This 
quantity is not affected by the same degeneracy as the mass estimates 
and, thus, is a more reliable indicator of the CFE, under the assumption 
that the FUV light is produced by stellar populations formed during a 
similar timescale (as we find here). The analysed star clusters account 
for about 60% of the total F150W flux of the host extracted within an 
elliptical Kron aperture (0.51 ± 0.01 μJy, corresponding to an intrinsic 
FUV ABmag of −17.8 after lensing correction1), thus reinforcing the 
conclusion that star formation in star clusters is the main mode for 
the Cosmic Gems arc and high-redshift galaxies with similar physical 
properties. This observationally driven conclusion is supported by 
high-resolution numerical simulations13 and analytical models14 that 
find that compact star clusters with sizes of 0.5–2 pc are the domi-
nant star formation mode in the first low-metallicity dwarf galaxies.  
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Fig. 1 | The Cosmic Gems arc in a JWST colour composite. The filter 
combination shows the rest-frame UV, blue optical wavelengths (1,200–2,800 Å). 
The arc is extended over 5″. A foreground galaxy at redshift zphot = 2.6 is visible 
above and to the right. The field of view is rotated North up. Top right, a magnified 
inset of the centre of the arc in which the brightest star clusters are located, 
highlighted by the white square on the left image. Two mirror images are 
observed because of gravitational lensing. Lensing critical curves based on three 
models are shown bisecting the arc. Bottom left, each star cluster is labelled in a 
grey scale FUV rest-frame image of the galaxy. Bottom right, source plane 
reconstruction of the core of the galaxy in which the star clusters are located 
showing their relative sizes and positions. The physical distance between A and 
E and A and D is about 40 pc. Note that there is some uncertainty in the source 
positions parallel to the lensing caustic. Scale bar, 10 pc (bottom right).

Table 1 | Estimated physical properties of the Cosmic Gems 
arc star clusters

ID Reff,obs Reff Reff,FM M*,int Σ* log(Π)

(px) (pc) (pc) (106M⊙) (105M⊙ pc−2)

A.1 0.6 0.1
0.4

−
+

−
+1.1 0.2

0.7 1.1 ± 0.1
−
+2.45 1.56

5.20 1.92 1.44
1.60

−
+ 1.94 0.27

0.71
−
+

B.1
−
+1.1 0.5

0.1
−
+1.1 0.5

0.1 0.9 ± 0.1 2.65 1.26
1.09

−
+ 1.93 1.11

4.16
−
+

−
+2.11 0.50

0.83

C.1 <1.25 <1 0.9 ± 0.2 1.13 0.65
1.77

−
+ >1.3 >1.90

D.1 1.2 1.1
0.2

−
+ 0.6 0.6

0.1
−
+ 0.8 ± 0.2

−
+1.13 0.74

1.23 2.39 1.98
7.41

−
+

−
+2.17 1.03

0.85

E.1
−
+1.5 0.5

0.7
−
+0.4 0.1

0.2 0.7 ± 0.2 1.01 0.36
0.37

−
+ 6.92 4.22

4.90
−
+

−
+3.06 0.59

0.32

A.2
−
+1.0 0.3

0.4 1.7 0.4
0.8

−
+ 1.3 ± 0.1

−
+2.89 1.35

1.56
−
+0.88 0.46

0.98 1.94 0.41
0.52

−
+

B.2 <1.25 <1.4 1.0 ± 0.04 3.01 1.61
3.21

−
+ >5.10 >1.8

C.2 + D.2 2.7 2.6
16.1

−
+ 1.9 1.9

11.4
−
+ 0.9 ± 0.1 4.36 1.90

0.98
−
+ 1.05 0.89

7.89
−
+ 1.99 1.49

1.12
−
+

We report de-convolved observed half-light radii in pixels, Reff,obs, lensing-corrected Reff and 
median stellar masses M*,int using magnifications produced by the reference Lenstool-A 
model. M* are recovered from the BAGPIPES-exp reference fit. Errors are estimated from 
68% confidence level of the distributions. These quantities have been used to determine 
stellar surface density, Σ*, and dynamical age Π listed in the last columns. The evaluation of 
magnification uncertainties is discussed in the Methods.
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The compactness of the star clusters also seems to drive the leakage of 
hydrogen ionizing radiation from their natal molecular cloud15, mak-
ing the star clusters observed here potential contributors to cosmic 
reionization. Massive star clusters similar to those observed in the 
Cosmic Gems arc are predicted by the feedback-free starburst model 
in ref. 16 and could be at the root of the super-Eddington conditions 
necessary to launch strong outflows in short timescales17, both models 
aimed to explain the bright UV luminosity reported for z > 9 galaxies.

The resulting stellar surface densities of the Cosmic Gems are around 
105M⊙ pc−2 (Table 1). Consistent physical properties have been reported 
in star clusters detected in the Sunrise arc at z ≈ 6 (ref. 18) and the Sun-
burst arc at z = 2.37 (ref. 19) (Fig. 2). Using the derived ages, masses and 
intrinsic sizes, we also determine whether these stellar systems are 
gravitationally bound. According to the framework introduced in 
ref. 20, a star cluster is considered bound if its age is greater than the 

crossing time of the system (where t R GM= 10 /cross eff
3 ), or in other 

words, under the assumption of virial equilibrium, a cluster is gravita-
tionally bound if Π = Age/tcross > 1. The log(Π) values reported in Table 1 
are all significantly larger than unity, indicating that we are detecting 
gravitationally bound star clusters in an early galaxy, 460 Myr after the 
Big Bang. This conclusion is valid in spite of the uncertainties inherent 
to physical quantity estimates as well as lensing models.

The Cosmic Gems arc clusters (Fig. 2) have substantially higher 
stellar densities and smaller sizes than typical young star clusters 
observed in the local Universe7 as well as global clusters in the Milky 
Way21. The offset with respect to young star clusters in the local Uni-
verse is expected because the conditions under which star formation 
operates in reionization-era galaxies are more extreme (for example, 
galaxies are more compact, harbour harder ionizing radiation fields, 
and reach higher electron densities and temperatures6,22). The offset 
with respect to local global clusters could be explained in terms of 
dynamical evolution. Global clusters are hot stellar systems in which 

stars continuously exchange energy and momentum. Three different 
internal mechanisms contribute to their dynamical evolution over  
a Hubble time: (1) mass loss due to stellar evolution; (2) relaxation due 
to N-body interactions; and (3) formation and dynamics of stellar black 
holes (SBHs)23,24. Mass loss due to stellar evolution drives the adiabatic 
expansion of global clusters under the condition of virial equilibrium. 
A typical mass loss of 50% will expand the initial radius of the Cosmic 
Gems proto-globular clusters by a factor of 2, whereas the density will 
decrease correspondingly by a factor of 8 (ref. 23). Relaxation time 
scales (shortened by the presence of SBHs25) will also contribute to their 
expansion. Finally, external tidal fields will further affect the dynamical 
evolution of these bound stellar systems, which appear to be bona fide 
proto-globular clusters.

Very dense stellar clusters (Σ* ≈ 105M⊙ pc−2, which for Reff = 1 pc cor-
respond to ρh ≈ 105M⊙ pc−3), similar to those detected in the Cosmic 
Gems arc, are predicted to form in low metallicity and highly dense 
gas26, in which radiative pressure cannot counteract the collapse, result-
ing in extremely high star-formation efficiencies (about 80%; ref. 27). 
The high stellar densities found in these proto-globular clusters imply  
a notable increase in stellar black hole mergers in their interiors28,29 and 
therefore pave the way to intermediate-mass black hole seeds30. With 
stellar masses greater than 105M⊙, these star clusters naturally harbour 
Wolf–Rayet and very massive stars31, and because of their elevated 
stellar densities, satisfy the necessary condition to form supermas-
sive stars in runaway collisions within their cores32. These different 
classes of stars are among the potential polluters that could explain 
the observed nitrogen enrichment in the ionized gas of high-redshift 
galaxies33, possibly linked to the formation of the chemically enriched 
stellar populations ubiquitously found in Milky Way global clusters34.

Cosmological simulations that focus on Milky Way disk-like assembly 
find that most of its global cluster population form at redshift z < 7 
(refs. 35–37), suggesting that these star clusters forming at z ≈ 10 might 
build up the global cluster populations of more massive early-type 
galaxies in the local Universe. It is difficult to predict whether the 
proto-globular clusters of the Cosmic Gems arc will survive a Hubble 
time. Their chances would be highly enhanced if they were ejected into 
their host halo during dynamical interactions12.
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Methods

Size and flux measurements
The JWST/NIRCam38 observations of the SPT-CL J0615–5746 galaxy 
cluster were obtained in 2023 September (GO 4212: principal inves-
tigator Bradley) using four short-wavelength (SW) filters (F090W, 
F115W, F150W and F200W) and four long-wavelength (LW) filters 
(F277W, F356W, F410M and F444W) spanning 0.8–5.0 μm. Each filter 
had an exposure time of 2920.4 s. The data were reduced with the 
GRIZLI (v.1.9.5) reduction package39. They suffered from strong wisps40 
and required special background subtraction as described in ref. 1. The 
final data are in units of 10 nJy. The NIRCam SW images were drizzled 
to a pixel scale of 0.02″ per pixel and the LW images were drizzled to 
a pixel scale of 0.04″ per pixel. For further details on the observa-
tions and image reduction, please see ref. 1. We assume throughout 
the analysis a cosmology with H0 = 67.7 km s−1 Mpc−1 and Ωm = 0.31 
(ref. 41). Under these assumptions, 1 SW pixel (0.02″) corresponds to  
83.7 pc at z = 10.2.

We derived the star cluster radii and multiband photometry by apply-
ing the method published and tested in refs. 42–44. We simultaneously 
fitted for the shape of the light distribution, the flux and the local back-
ground (including the galaxy diffuse light) of each of the identified 
clusters in the reference filter, F150W, which offers the sharpest view 
of the clusters. Empirical PSFs in all filters used in this work were built 
by selecting stars in each band. We fitted the PSF out to 0.4″ with an 
analytical expression, which was then convolved with varying 
two-dimensional (2D) Gaussians to create a grid of models. Intrinsic 
sizes (de-convolved by PSF) have then been derived by fitting the 
observed light distribution of each cluster with this grid of 2D Gaussian 
models in the F150W. Owing to the large shear effects, compact sources 
might appear resolved in the shear direction (ystd) (ref. 45). We assumed 
that the measured major-axis ystd of the 2D Gaussian ellipse is the stand-
ard deviation of a 2D circular Gaussian that we translated into the 
observed PSF-deconvolved effective radius, R y= × 2 ln(2)eff,obs std . 
The derived Reff,obs are reported in Table 1. The de-lensed intrinsic effec-
tive half-light radii, Reff, have been determined by dividing Reff,obs by the 
tangential magnification μtan (Extended Data Table 3).

For each star cluster, the flux in the reference filter has been deter-
mined by integrating the fitted shape and subtracting the local back-
ground. We then measured the fluxes in the other bands by convolving 
the derived intrinsic shape in F150W with the empirical PSF of the 
respective bands. Fitting this model to the other bands, we let the cen-
tre, normalization and local background (including the galaxy diffuse 
light) as free parameters.

The intrinsic sizes and observed fluxes in the reference filter F150W 
were derived using a cutout box centred on the source with a size of 
11 × 11 px (about four times the FWHM) for A.1 and A.2. Larger box 
sizes did not produce noticeable differences in the output sizes and 
fluxes. Owing to their proximity, B.1, C.1, D.1 and E.1 have been fitted 
simultaneously within a box of 15 × 15 px. A larger box size produces 
consistent values within the uncertainties of measurements for B.1 and 
C.1, whereas E.1 gets increasingly elongated, affecting the fit of D.1. To 
avoid this degeneracy, we fix the box size to 15 × 15, which would cor-
respond to fix the source ellipticity of the faint E.1 to 2. Similarly, B.2, 
C.2 and D.2 were fitted simultaneously within a box of 11 × 11 (chang-
ing the box size does not produce noticeable effects on the recovered 
parameters). We did not detect two maxima at the location of C.2 and 
D.2, so we allowed the fit to optimize the centre of a second hidden 
source. We also repeated the fit of this region by assuming only one 
source. Both approaches produced similar residuals. The flux extracted 
by assuming only one source is comparable within uncertainties to the 
flux extracted by fitting for C.2 and D.2. Owing to the degeneration in 
identifying the position of D.2, we extracted the physical properties by 
fitting only one source that we refer to as C.2 + D.2. Owing to the faint-
ness of E.2 (2σ), our method did not produce meaningful constraints. 

We, therefore, excluded E.2 from our analysis. In the BAGPIPES-exp fit, 
we find that C.1 and D.1 have similar ages and a combined total mass 
of about 2 × 106M⊙. C.2 + D.2 has a slightly older age (but in agreement 
within 1σ) than C.1 and D.1. The total mass and size of C.2 + D.2 is a factor 
of two higher than their counterparts, corroborating the idea that the 
two star clusters are blended in Img.2.

The size uncertainties were derived by bootstrapping the fit of the 
source taking into account the RMS of the local background. The pho-
tometric errors include the latter uncertainties as well as the sum in 
quadrature of the local background variance estimated within the box 
in which the sources have been fitted. Aperture corrections have been 
extrapolated up to 0.4″ in all bands.

In Extended Data Fig. 1, we show the best model of the star clusters 
and the residual image in the reference filter and two more bands. The 
extraction of the sources does not produce significant artificial residu-
als above the RMS of the image.

Independent measurements of intrinsic Reff have been obtained fol-
lowing the forward modelling method in ref. 46. Briefly, this method 
creates a model of the galaxy in the source plane and then projects 
that model into the image plane. After convolving with the measured 
empirical PSF, the image plane model is compared with the observed 
data. The source plane model parameters are first optimized using  
a downhill simplex algorithm, then sampled using an MCMC with the 
Python package emcee47.

For SPT0615-JD1, the source plane model consisted of five Sersic 
profiles centred on the five identified clumps A.1–E.1 (Extended Data 
Fig. 2). No diffuse component of the arc has been included in this anal-
ysis because of the faintness of this component with respect to the 
clusters. Separately, we modelled clumps A.2–C.2 on the other side of 
the lensing critical curve. Uncertainties in the Lenstool-A lens model 
resulted in slight offsets between the source plane positions of clumps 
on the opposite sides of the critical curve, which prevents simultaneous 
fitting of the two images of the arc. We found similar results for clump 
sizes on both sides of the critical curve, with clump radii ranging from 
0.7 pc to 1.1 pc (Table 1).

SED fitting analysis
We performed SED fitting with BAGPIPES9 and tested the derived 
physical properties against different assumptions, as well as with a 
different software PROSPECTOR10. For all the runs, we fixed the red-
shift at z = 10.2, as measured by ref. 1. The standard stellar population 
templates were reprocessed with CLOUDY to generate nebular con-
tinuum and line information (see ref. 48 for comparisons of the two 
code implementations). In both codes, we assumed a Kroupa IMF, unless 
otherwise specified. We constrained SFHs to prescriptions that repro-
duce a short burst in all tests except the one in which τ is set free to  
vary. The short burst assumption is in agreement with the studies of 
stellar cluster and global cluster populations in the local Universe 
(refs. 12,34). The recovered median of the posterior distributions of 
age, mass, AV, metallicity and associated 68% uncertainties are reported 
in Extended Data Table 2. We let the ionization parameter, U, to change 
between −2 and −3.5. We assumed a Calzetti attenuation49 but tested 
also the SMC extinction. In the reference set, used to produce results 
reported in Fig. 2 and Table 1 and referred to as BAGPIPES-exp, we 
assumed an exponential decline with a very short τ = 1 Myr and Calzetti 
attenuation. Extended Data Fig. 3 shows the observed SEDs of the five 
star clusters identified in Img.1 (black dots with uncertainties). When 
available, we include the observed SED of the corresponding clusters 
in Img.2 (orange stars with associated errors). The latter have been nor-
malized by the median flux ratio in the six bands of the corresponding 
source in Img.1 to match the flux level while preserving the intrinsic SED 
shape. The best spectral and integrated photometry model obtained 
for the BAGPIPES-exp fit is included. The overall shapes of the observed 
SEDs of mirrored clusters in both images are similar within uncertain-
ties, confirming the symmetry.



Article
To check the consistency of the derived physical properties of the 

cluster, we made different assumptions. The outputs are summarized 
in Extended Data Table 2 in which we list the median and 68% values 
produced by the different fits. Changing the attenuation prescrip-
tion from Calzetti to SMC produces noticeably smaller Av, but all the 
recovered parameters are still within the 68% uncertainties associated 
with the recovered values. In BAGPIPES-burst, we assumed a single 
burst. We recovered slightly older ages and larger masses (but noticed 
uncertainties) that would prefer higher stellar surface densities and 
older dynamical ages, confirming that we were looking at dense and 
bound star clusters. In a third SED fitting set, BAGPIPES-BPASS, we 
used BPASS v.2.2.1 SED templates50 and the fiducial BPASS IMF with 
the maximum stellar mass of 300M⊙ and a high-mass slope similar to 
that in ref. 51. Also, this model reproduces values that are very close to 
the reference value, suggesting that the clusters are compatible with 
being slightly older and therefore less sensitive to the presence of very 
massive stars and binary systems in their light (and the limitation of 
fitting only six broad and medium bands covering FUV-blue optical). 
Letting τ = free (we report mass-weighted parameters in Extended Data 
Table 2) produces significantly older ages, but similar masses, thus not 
affecting the results presented in this study.

PROSPECTOR allows us to test single stellar population SFH. In this 
case, we find that the age of A.1 is slightly younger (but within uncertain-
ties) than those produced by the BAGPIPES, resulting in lower masses. 
This would result in slightly lower intrinsic mass M*,int = 0.39 × 106M⊙, 
log(Σ*) = 4.5M⊙ pc−2, and log(Π) = 1.2, but leaving unchanged any of the 
conclusions of this study.

Finally, given that some of the knots in the Cosmic Gems arc are 
unresolved (C.1 and B.2) or only marginally resolved (A.1) in our cur-
rent images, we have also explored scenarios in which these sources 
are individual, highly magnified stars. Using SED models for stars at 
high redshifts52 we find that, although the slopes of the SEDs of these 
sources would be broadly consistent with individual stars at effective 
temperatures greater than about 20,000 K, these scenarios would 
require magnifications well in excess of what our macrolens models 
predict at the positions of these sources. Even the most massive and 
luminous stars (initial mass 560–575M⊙) described by the stellar evo-
lutionary tracks of ref. 53 would require magnifications μ > 1,000 to 
explain the observed fluxes of C.1, B.2 or A.1.

Lens models and uncertainties on the derived star cluster 
physical properties
Four different lensing models have been created for the SPT-CL 
J0615−5746 cosmological field. The models are presented in detail in 
ref. 1. We include here below a short description.

Lenstool-A, here used as a reference model for the analysis presented 
in this Article, is based on the software LENSTOOL54, which uses a para-
metric approach and MCMC sampling of the parameter space to iden-
tify the best-fit model and uncertainties. In Lenstool-A, we model the 
cluster lens as a combination of three main halos and cluster member 
galaxies, all parameterized as pseudo-isothermal mass distributions. 
The model uses as constraints the positions of 43 multiple images of 14 
clumps, belonging to 9 unique source galaxies. The redshifts of three 
sources are used as constraints (the z = 10.2 arc, and sources at z = 1.358 
and z = 4.013; ref. 55), whereas the rest of the redshifts are treated as 
free parameters. Three clumps on each side of the main arc were used 
as constraints, A, B and C, assumed to be at z = 10.2. The model pre-
dicts a counterimage at (right ascension (R.A.), declination (Decl.)) =  
(93.9490607, −57.7701814). A possible candidate of this counterimage, 
observed near this location (about 1.8″), was not used as a constraint. 
The image plane RMS of the best-fit model is 0.36″. All the observed 
lensed features are well reproduced by this model.

The second model, here referred to as Lenstool-B, uses the same 
algorithm, but with noticeably different assumptions. This model uses 
43 multiple images from 11 unique sources. A secondary galaxy cluster 

scale halo is placed around the location of dusty galaxies nearly 50 arc-
secs north of the bright centre galaxy and allowed to move within a 20″ 
box around this position. As with the previous model, the z = 10.2 arc has 
a predicted counterimage near the possible candidate and is only about 
2″ away from the Lenstool-A model. The main differences between these 
models are the assumptions about the mass distribution of the lens 
and the addition of constraints. The image plane RMS of the best-fit 
model is 0.68″.

The third model used in this analysis has been created with Glafic.  
The Glafic56,57 mass model is constructed with three elliptical NFW58 
halos, external shear and cluster member galaxies modelled by 
pseudo-Jaffe profile. The model parameters are fitted to reproduce 
the position of 44 multiple images generated from 15 background 
sources. Spectroscopic redshifts are available for 7 of the 15 sources. 
We include positions of A.1/A.2 and B.1/B.2 in the Cosmic Gems arc as 
constraints, with small positional errors of 0.04″ to accurately predict 
the magnifications of each star cluster image. For the other multiple 
images, we adopt the positional error of 0.4″. Our best-fitting model 
reproduces all the multiple image positions with the RMS of image 
positions of 0.41″.

As a consistency check, we excluded the positional constraints from 
the Cosmic Gems arc to construct the mass model and confirmed that 
the critical curve of this mass model still passes through the arc. Our 
Glafic best-fitting mass model also predicts a counterimage of the 
Cosmic Gems arc at around (R.A., Dec.) = (93.9504865, −57.7696559). 
We find that there is a candidate counterimage at around 2″ from the 
predicted position, (R.A., Dec.) = (93.9500002, −57.7702197). Both the 
consistency check and the presence of the candidate counterimage 
confirm the validity of this mass model.

A fourth model has also been produced with WSLAP+59,60. The 
WSLAP+ lens models offer an alternative to parametric models and 
are free of assumptions made about the distribution of dark matter. 
When the z = 10.2 arc is not included as a constraint, the WSLAP+ model 
predicts the critical curve passing at about 1″ from the z = 10.2 arc. This 
solution predicts a mirrored image of the arc that is not observed, 
reinforcing the expectation that the Cosmic Gems is a double image 
with the critical curve passing through the middle. When the arc is 
included as a constraint, the predicted critical curve passes between 
C.1 and D.1, just 0.3″ from the alleged symmetry point in the arc and 
within the uncertainties typical of WSLAP+ models. Moreover, this 
model predicts the position of a third counterimage consistent with 
the previous models. This model is currently under development with 
the goal of explaining the perturbation seen in Img.2 and is therefore 
not included in this analysis.

The photometric redshift of the candidate counter image is 
z = 10.8phot −1.4

+0.6 (95% confidence)1, in agreement with the expectation.
The total and tangential magnifications at the position of the star 

clusters, μtot = μtang × μrad, are reported in Extended Data Table 3. For the 
two Lenstool-based models, we estimated uncertainties following the 
method presented in ref. 44 based on magnification maps produced 
from the Lenstool MCMC posterior distributions of the lens model. 
Uncertainties are omitted for the Glafic model.

In Extended Data Fig. 4, we show the impact that magnification pre-
dictions have in the recovered physical properties (intrinsic half-light 
radius and mass, black and blue solid lines) and derived quantities 
(dynamical age and stellar surface density in magenta and orange solid 
lines). We use logarithmic scales so that all quantities can be included. 
The coloured bands show the level of uncertainties recovered from the 
analysis. We also include the upper limits on the Reff (assuming that the 
source is unresolved and has a size smaller than the stellar PSF) and 
what type of lower limits it will translate for the physical quantities 
that depend on the size estimates as dashed lines (notice that these are 
the reference quantities for C.1 that is unresolved). The magnifications 
(total in the bottom image and tangential in the top image) are reported 
on the x-axis. As we move to lower magnifications, the derived masses 



and radii become larger, consequently predicting lower stellar surface 
densities and dynamical ages. However, even in the unlikely case that 
the magnifications are wrong by one order of magnitude, the stellar 
surface density will remain above 104M⊙ pc−2 and dynamical ages will 
still be significantly larger than 1 (log(Π) > 0), leaving the main conclu-
sion of this analysis unchanged: we are detecting bound proto-globular 
clusters within the first 500 Myr of our Universe.

Data availability
The data were acquired under JWST Program ID 4212, with principal 
investigator L.D.B. The datasets generated during and/or analysed 
during the current study may be obtained from the MAST archive at 
https://doi.org/10.17909/tcje-1780. All data generated or analysed 
during this study are included in this Article.

Code availability
This work made use of NUMPY61, SCIPY62, MATPLOTLIB63 and 
ASTROPY64. SED fit analyses are performed with publicly available 
software BAGPIPES9 and PROSPECTOR10.
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Extended Data Fig. 1 | Cluster light modelled in the image plane and 
residuals. Observed JWST images (left), best-fitted clump shape after 
removing the local diffuse light, (centre), and residual images (right) in the 
reference filter F150W (top), and two more bands, the F200W (middle) with 
similar resolution to the F150W, and the F444W (bottom), with the lowest 
spatial resolution. We show log-scale images matched in flux in each band.



Extended Data Fig. 2 | Cluster light modelled with forward modelling from 
the source plane. Observed JWST image of Img.1 is shown (far left) along with 
the best fit image plane from forward modelling (left centre) and weighted fit 

residuals (right). Weighted residuals are calculated as (data – model)/
(uncertainty).
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Extended Data Fig. 3 | Observed photometry and spectral energy distributions (SEDs) of each star cluster (presented in Methods). We include the observed 
SEDs of the mirrored image of clusters A, B, C (orange symbols) normalised by the median ratio of the 6 bands, preserving the SED shape.



Extended Data Fig. 4 | Measured and derived cluster physical properties as 
a function of their magnification. The most relevant quantities of each 
cluster in the arc (marked in the central top panel) are expressed as a function 
of the total magnification (μtotal and in case of the Reff as a function of μtan). The 
radii (Reff), dynamical ages (Π), stellar mass surface densities (Σmass) and the 
stellar masses (M⋆) suggest the clumps are bound star clusters even at modest 

magnification regimes (μtotal > 10). The transparent green region and the 
vertical lines show the expected magnification from the reference lens model. 
The dotted horizontal line indicates the region where log(Π) = 0. The shaded 
areas in the plot mark the uncertainties associated with the derived values. The 
dashed lines show the lower-limits in Σ* and Π, assuming half the stellar PSF 
FWHM as upper limit for the Reff of each star cluster.
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Extended Data Table 1 | Cluster observed properties

JWST photometry and uncertainties in ABmag and measured β slopes of the candidate star clusters.



Extended Data Table 2 | Compilations of different SED fit outputs described in Methods

The reported masses are not corrected for magnification. The output of the fit assuming τ = 1 Myr and Calzetti attenuation is referred to as BAGPIPES-exp and used to derive the physical values 
reported in Table 1. For the BAGPIPES fit with τ = free we report mass weighted quantities.



Article
Extended Data Table 3 | Magnifications and associated uncertainties for 3 different lens models

The model Lenstool-A is used as reference in the analysis.


	Bound star clusters observed in a lensed galaxy 460 Myr after the Big Bang
	Online content
	Fig. 1 The Cosmic Gems arc in a JWST colour composite.
	Fig. 2 Cluster stellar surface density versus half-light radius Reff.
	Extended Data Fig. 1 Cluster light modelled in the image plane and residuals.
	Extended Data Fig. 2 Cluster light modelled with forward modelling from the source plane.
	Extended Data Fig. 3 Observed photometry and spectral energy distributions (SEDs) of each star cluster (presented in Methods).
	Extended Data Fig. 4 Measured and derived cluster physical properties as a function of their magnification.
	Table 1 Estimated physical properties of the Cosmic Gems arc star clusters.
	Extended Data Table 1 Cluster observed properties.
	Extended Data Table 2 Compilations of different SED fit outputs described in Methods.
	Extended Data Table 3 Magnifications and associated uncertainties for 3 different lens models.




