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1 Introduction

In this paper we consider the scattering of massless open strings on AdS5 × S3 in a small
curvature expansion. In the simplest holographic setup one considers a small number of D7
branes as probes to AdS5 × S5.1 The world-volume of the D7-branes wraps around AdS5
and an equatorial S3 inside S5. The open strings whose scattering we consider are attached
to these D7 branes. In flat space and for four points the result is simply the Veneziano
amplitude. The world-sheet has the topology of a disk which can be mapped to the upper
half plane, with the open string vertex operators situated on the real line. Choosing the
locations at (0, x, 1,∞) one obtains the familiar expression∫ 1

0
dx ⟨Vo(0)Vo(x)Vo(1)Vo(∞)⟩ ∼

∫ 1

0
dx x−S−1(1− x)−T−1 . (1.1)

Curvature corrections are equivalent to the insertion of extra gravitons with soft momenta,
as one can see by considering a toy non-linear σ-model with AdS expanded around flat space
as target space [7, 8]. Mixed scattering of open and closed massless strings in flat space
was thoroughly considered in [9, 10]. For the insertion of an extra graviton2 at a location

1See [1–6] for further details on the setup.
2We discuss here the case of one extra graviton, for simplicity. In general the kth curvature correction

receives a contribution from k extra gravitons, as discussed in [8]. It was shown in [11–15] that the coefficients
in the α′-expansion of genus 0 closed string amplitudes are single-valued multiple zeta values. Adopting a
similar approach to the k soft gravitons appearing here leads to single-valued multiple polylogarithms, as in
the intermediate steps of [13, 14].
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z one obtains integrals of the form∫ 1

0
dx

∫
H+

d2z ⟨Vo(0)Vo(x)Vo(1)Vo(∞)Vc(z, z̄)⟩ (1.2)

∼
∫ 1

0
dx x−S−1(1− x)−T−1

∫
H+

d2z
|z|2α′p1q|1− z|2α′p3q(x − z)α′p2q(x − z̄)α′p2q(z − z̄)α′q2

∥

|z|2|1− z|2
,

where q is the momentum of the soft graviton, with q∥ its longitudinal component along
the brane. The integral over the location of the graviton vertex operator is an integral over
the upper half plane. As explained in [9, 10] however, the integration can be extended to
the full complex plane in the case of symmetric closed string states, such as the graviton.
Furthermore, in the context of this paper, the full momentum of the soft graviton lies on
the D7 brane, since we are computing AdS5 × S3 curvature corrections, so that q2

∥ = 0. In
conclusion, the insertion of an extra graviton leads to the extra insertion of J (x, x), the
function J (x, x̄) evaluated on the real line x = x̄, with

J (x, x̄) =
∫
C

d2z
|z|2a|1− z|2b|z − x|2c

|z|2|1− z|2
, (a, b, c) = α′(p1q, p3q, p2q) . (1.3)

This is the same type of insertions considered in [7], where it was argued that in the small q

expansion this produces single-valued multiple polylogarithms (SVMPLs). The computation
of [7] is reproduced and extended in the appendix.

The following picture then emerges. AdS curvature corrections to the Veneziano amplitude
lead to the extra insertion of single-valued multiple polylogarithms, evaluated on the real line
Lw(x)|x̄=x. This is a particular class of multiple polylogarithms (MPLs). To summarise, AdS
curvature corrections correspond to the insertion of extra (soft) gravitons, and the scattering
of gravitons is governed by single-valued insertions.3

This insight will be a powerful ingredient in the construction of the AdS Veneziano
amplitude, as recently initiated in [1] following up on similar work on the AdS Virasoro-
Shapiro amplitude [7, 8, 16, 17]. The AdS amplitude A(S, T ) is defined in terms of the
holographic correlator of four flavour currents in the dual N = 2 superconformal field theory
and satisfies a dispersion relation, expressing it in terms of OPE data of massive string
operators. In addition, it admits a representation as an open string world-sheet integral
in an expansion around flat space

A(S, T ) = 1
S + T

1∫
0

dx x−S−1(1− x)−T−1
∞∑

k=0

(
α′

R2

)k

G(k)(S, T, x) , (1.4)

where R is the AdS radius and the leading term is the flat space Veneziano amplitude

G(0)(S, T, x) = 1 . (1.5)
3Note that single-valuedness is only a property of the integrand. For the amplitude itself, single-valuedness

is lost because of the one-dimensional x integral. In particular, the low energy expansion coefficients of the
amplitude contain non-single-valued multiple zeta values (MZVs). This is the usual notion of the absence of
single-valuedness in the Veneziano amplitude, already apparent in flat space.
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The first curvature correction G(1)(S, T, x) was fully determined in [1] by using an ansatz
for this function in terms of multi-valued MPLs, however such an ansatz did not lead to a
unique solution for the next correction G(2)(S, T, x). The first correction, obtained without
assuming single-valuedness, can actually be expressed in terms of SVMPLs on the real line4

G(1)(S, T, x) = S2 + T 2

4
(
L+

000(x)− L+
001(x)

)
− (S + T )2

4
(
L+

010(x)− 4ζ(3)
)

(1.6)

− 3S2 + 8ST + 3T 2

4(S + T ) L+
00(x) +

5S2 + 12ST + 5T 2

4(S + T ) L+
01(x) +

3
4L

+
0 (x) +

3
S + T

+ S − T

4

(
(S + T )

(
L−

000(x)− L−
001(x)− L−

010(x)
)
− 3L−

00(x)−
5L−

0 (x)
S + T

)
,

where x̄ = x and

L±
w(x) ≡ Lw(x)± Lw(1− x) . (1.7)

This provides further evidence for the claim that the insertions are single-valued. As it
turns out, the assumption of single-valuedness is enough to fully fix the second curvature
correction G(2)(S, T, x).

The remainder of the paper is organised as follows. In section 2 we review the holographic
correlator and the dispersion relation. Section 3 discusses the space of SVMPLs on the real line
and the solution for G(2)(S, T, x). In section 4 we perform consistency checks by considering
the high energy limit, the low energy expansion and the OPE data of the exchanged massive
string operators. We find that the high energy limit is consistent with exponentiation, as
predicted in [18] in the context of closed strings. In the low energy expansion we fully fix
the unprotected D6F 4 term in the holographic correlator. The OPE data can be compared
to a classical open string solution in AdS and we find agreement. We conclude in section 5.
Finally, the small q expansion of (1.3) is done in appendix A.

2 Setup

2.1 Correlator

The holographic dual of the string theory under consideration is a 4d N = 2 superconformal
field theory with R-symmetry group SU(2)R × U(1)r and flavour symmetry SU(2)L × GF ,
where GF can be SO(8), U(4) or SO(4)× SO(4).5 We consider the correlator of four moment
map operators OI

α(x), which is the superconformal primary of the flavour supermultiplet, a
Lorentz scalar with dimension ∆ = 2 in the singlet of SU(2)L, the adjoint of SU(2)R (with
index α) and also in the adjoint of GF (with index I). In particular we work with the
reduced Mellin amplitude M I1I2I3I4(s, t) for this correlator.6 We only consider the leading
contribution of order 1/N in the large N expansion,7 which corresponds to open string
scattering where the world-sheet has the topology of a disc with four insertions at the

4We thank Pietro Ferrero for pointing this out to us.
5These cases were discussed in [3].
6See [1] for the relation to the correlator.
7We will drop the overall factor 1/N from formulas.
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boundary. The colour structures for this configuration are single traces of the generators
T I of GF and the amplitude takes the form [5, 6]

M I1I2I3I4(s, t) = Tr
(
T I1T I2T I3T I4

)
M(s, t) + Tr

(
T I1T I4T I2T I3

)
M(t, u)

+ Tr
(
T I1T I3T I4T I2

)
M(u, s) ,

(2.1)

where M(s, t) is called the colour-ordered Mellin amplitude and can have only poles in
the s- and t-channels, the only ones consistent with the colour ordering (1234). Crossing
symmetry implies that

M(s, t) = M(t, s) . (2.2)

Apart from the Mellin amplitude we will also study its Borel transform

A(S, T ) ≡ λ

8

∫ κ+i∞

κ−i∞

dα

2πi
eαα−4M

(√
λT

2α
,

√
λU

2α

)
, (2.3)

where the t’Hooft coupling λ is related to the AdS radius R and the Regge slope α′ via
the AdS/CFT dictionary

√
λ = R2

α′ + O

( 1
N

)
. (2.4)

We call A(S, T ) the AdS amplitude. When considering its large λ expansion

A(S, T ) =
∞∑

k=0

1
λ

k
2

A(k)(S, T ) , (2.5)

the leading term is the flat space Veneziano amplitude

A(0)(S, T ) = = −Γ(−S)Γ(−T )
Γ(1− S − T ) . (2.6)

Because of this, (2.3) is also known as the flat space limit [19, 20].

2.2 Dispersion relation

As shown in [1], the Mellin amplitude obeys a dispersion relation

M(s, t) =
∑

τ,ℓ,m

C2
τ,ℓQ

τ+2,d=4
ℓ,m (t − 2)

s − τ − 2m + 2 , (2.7)

where Qτ+2,d=4
ℓ,m (t− 2) is a Mack polynomial, defined as in [1], and the sum runs over massive

string operators in the s-channel, whose dimensions are determined at large λ by the mass
levels α′m2 = δ = 1, 2, . . . of the flat space string spectrum

∆ = mR
(
1 + O

(
λ− 1

2
))

=
√

δλ
1
4 + O

(
λ− 1

4
)

. (2.8)
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We will expand the OPE data in large λ as

τ(δ, ℓ) =
√

δλ
1
4 + τ1(δ, ℓ) + τ2(δ, ℓ)λ− 1

4 + . . . ,

C2
τ,ℓ =

2−2τ(δ,ℓ)−2ℓ−9π3τ(δ, ℓ)4

(ℓ + 1) sin
(

π
2 τ(δ, ℓ)

)2 f(δ, ℓ) ,

f(δ, ℓ) = f0(δ, ℓ) + f1(δ, ℓ)λ− 1
4 + f2(δ, ℓ)λ− 1

2 + . . . ,

(2.9)

where the flat space spectrum implies

f(δ, ℓ) = 0 , δ − ℓ even . (2.10)

By performing a large λ expansion, the sum over m in (2.7) as well as the Borel transform (2.5)
(see [17, 21]), we can obtain the following version of the dispersion relation for the AdS
amplitude close to a pole S ∼ δ

A(k)(S, T ) =
3k+1∑
i=1

R
(k)
i (T, δ)
(S − δ)i

+ O((S − δ)0) . (2.11)

The numerators can be explicitly computed and depend linearly on the OPE data: R
(0)
i (T, δ)

depends on the leading OPE coefficients ⟨f0⟩δ,ℓ and R
(1)
i (T, δ) depends on ⟨f2⟩δ,ℓ and ⟨f0τ2⟩δ,ℓ.

This data has been computed in [1] from A(0)(S, T ) and A(1)(S, T ). In the present paper we
compute A(2)(S, T ) and therefore ⟨f4⟩δ,ℓ, ⟨f0τ4 + f2τ2⟩δ,ℓ and ⟨f0τ2

2 ⟩δ,ℓ. The angle brackets
indicate a sum over all operators that are degenerate in the flat space limit.

Corrections to the OPE data at odd powers of λ1/4 are fixed by similar relations to (2.11)
where the left hand side vanishes, because A(S, T ) can be expanded in integer powers of
α′/R2. This leads to

τ1(δ, ℓ) = −ℓ , ⟨f1⟩δ,ℓ = ⟨f0⟩δ,ℓ
4ℓ − 1

2√
δ

, (2.12)

and at order 1/λ3/4 to

τ3(δ, ℓ) = 0 , ⟨f1τ2⟩δ,ℓ = ⟨f0τ2⟩δ,ℓ
4ℓ − 1

2√
δ

,

⟨f3⟩δ,ℓ =
4(8ℓ − 1)

(
δ⟨f2⟩δ,ℓ −

√
δ⟨f0τ2⟩δ,ℓ

)
−
(
160ℓ3 − 60ℓ2 + 16ℓ + 3

)
⟨f0⟩δ,ℓ

8δ3/2 .

(2.13)

3 World-sheet correlator

Our strategy to fix a given curvature correction A(k)(S, T ) is to make the assumption that
it has a representation as the world-sheet integral

A(k)(S, T ) = 1
S + T

1∫
0

dx x−S−1(1− x)−T−1G(k)(S, T, x) . (3.1)

We then make an ansatz for G(k)(S, T, x) and demand consistency with (2.11) to fix the
coefficient of the ansatz.

– 5 –
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3.1 Basis of SVMPLs on the real line

In order to write a maximally restrictive ansatz for G(k)(S, T, x) we have to find a basis
of SVMPLs8 restricted to the real line x = x̄. In [1] G(1)(S, T, x) was computed without
assuming single-valuedness by simply using an ansatz in terms of MPLs Lw(x) of weight
L, where w is a word of length L with letters 0 or 1. This basis has 2L elements. We can
see that SVMPLs restricted to the real line form a smaller space of functions by noting
that the condition x = x̄ is a special case of symmetrizing with respect to z ↔ z̄. The
symmetrized SVMPLs satisfy

Lw(z) + Lw(z̄) = Lw̃(z) + Lw̃(z̄) , (3.2)

where w̃ is the reverse word. This reduces the number of basis elements of weight L to
2L−1 + 2⌊

L−1
2 ⌋. It is also necessary to include in the ansatz products of SVMPLs and the

single-valued multiple zeta values (SVMZVs, see [27])

ζ(3) , ζ(5) , ζ(3)2 , . . . (3.3)

Including such products, there are ∑
L≥0

L=W,W−3,W−5,W−6,...

2L−1 + 2⌊
L−1

2 ⌋ , (3.4)

basis elements of weight W that are symmetric under z ↔ z̄. Next we restrict to the real
line, which leads to further relations between the basis elements, starting at weight 4. We
find the relations

L0011(x) =
1
2L0110(x) +

1
2L1001(x) + ζ(3)L1(x) ,

L01010(x) = 6L00011(x) + 2L00101(x)− 2L00110(x)− 2L01001(x)− 3L10001(x) ,

L10101(x) = 6L00111(x) + 2L01011(x)− 2L01101(x)−3L01110(x)−2L10011(x)− 6ζ(3)L01(x) ,

L001100(x) = L100001(x)− 2L000011(x) + 2L000110(x)
+ 2ζ(3)L001(x)− 2ζ(3)L010(x) + 2ζ(5)L1(x) ,

L110011(x) = L011110(x)− 2L001111(x) + 2L100111(x)
− 2ζ(3)L011(x) + 2ζ(3)L101(x) + 9ζ(5)L1(x) ,

L010010(x) = 8L000011(x) + 3L000101(x)− 2L000110(x)− L001010(x)− 3L010001(x) (3.5)
− 4L100001(x)− 8ζ(5)L1(x) ,

L101101(x) = 8L001111(x) + 3L010111(x)− 3L011101(x)− 4L011110(x)− 2L100111(x)
− L101011(x)− 4ζ(3)L011(x)− 2ζ(3)L101(x)− 6ζ(5)L1(x) ,

L010101(x) = 9L000111(x) + 2L001011(x)− 2L001101(x)− 3L001110(x)− 2L010011(x)
− 3L100011(x)− 3ζ(3)L010(x) + 3ζ(3)L101(x) + 12ζ(5)L1(x) ,

L011001(x) = L001011(x) + L001101(x) + L010011(x)− L010110(x)− L100101(x)
+ 3ζ(3)L010(x)− 2ζ(3)L011(x)− 3ζ(3)L101(x)− 11ζ(5)L1(x) , for x = x̄ .

8See [7, 22, 23] for details on SVMPLs. We found the programs [24–26] useful for practical applications.
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weight 0 1 2 3 4 5 6
multi-valued 1 2 5 11 23 48 98
single-valued 1 2 3 7 11 22 39

Table 1. Number of independent MPLs (× MZVs) and SVMPLs (× SVMZVs) on the real line.

We show the number of remaining independent basis elements in table 1 and compare it
to the number of independent basis elements when using a more general multi-valued basis
of MPLs and MZVs. The multi-valued ansatz is enough to fully fix G(1)(S, T, x), as done
in [1], but not for G(2)(S, T, x).

In order to implement crossing symmetry we choose a basis that is explicitly (anti-)
symmetric under x ↔ 1 − x, writing

L±
w(x) = Lw(x)± Lw(1− x) . (3.6)

To relate this to the previous discussion it is useful to know that

Lw(1− z) = Lŵ(z) + SVMZVs times lower weight SVMPLs , (3.7)

where ŵ is the word where each letter is flipped (0 ↔ 1). For example

L011(1− z) = L100(z) + 2ζ(3) . (3.8)

Our choice of basis for SVMPLs on the real line up to weight 6 is the following

T +
0 (x) = (1) , T +

1 (x) =
(
L+

0 (x)
)

, T−
1 (x) =

(
L−

0 (x)
)

,

T +
2 (x) =

(
L+

00(x),L
+
01(x)

)
, T−

2 (x) =
(
L−

00(x)
)

,

T +
3 (x) =

(
L+

000(x),L
+
001(x),L

+
010(x), ζ(3)

)
,

T−
3 (x) =

(
L−

000(x),L
−
001(x),L

−
010(x)

)
,

T +
4 (x) =

(
L+

0000(x),L
+
0001(x),L

+
0010(x),L

+
0101(x),L

+
0110(x), ζ(3)L+

0 (x)
)

,

T−
4 (x) =

(
L−

0000(x),L
−
0001(x),L

−
0010(x),L

−
0110(x), ζ(3)L−

0 (x)
)

,

T +
5 (x) =

(
L+

00000(x),L
+
00001(x),L

+
00010(x),L

+
00011(x),L

+
00100(x),L

+
00101(x),

L+
00110(x),L

+
01001(x),L

+
01110(x), ζ(3)L+

00(x), ζ(3)L+
01(x), ζ(5)

)
, (3.9)

T−
5 (x) =

(
L−

00000(x),L
−
00001(x),L

−
00010(x),L

−
00011(x),L

−
00100(x),L

−
00101(x),

L−
00110(x),L

−
01001(x),L

−
01110(x), ζ(3)L−

00(x)
)

,

T +
6 (x) =

(
L+

000000(x),L
+
000001(x),L

+
000010(x),L

+
000011(x),L

+
000100(x),L

+
000101(x),L

+
000110(x),

L+
000111(x),L

+
001001(x),L

+
001010(x),L

+
001011(x),L

+
001101(x),L

+
001110(x),L

+
010001(x),

L+
010110(x),L

+
011110(x), ζ(3)L+

000(x), ζ(3)L+
001(x), ζ(3)L+

010(x), ζ(5)L+
0 (x), ζ(3)2) ,

T−
6 (x) =

(
L−

000000(x),L
−
000001(x),L

−
000010(x),L

−
000011(x),L

−
000100(x),L

−
000101(x),L

−
000110(x),

L−
001001(x),L

−
001010(x),L

−
001101(x),L

−
001110(x),L

−
010001(x),L

−
010110(x),L

−
011110(x),

ζ(3)L−
000(x), ζ(3)L−

001(x), ζ(3)L−
010(x), ζ(5)L−

0 (x)
)

.
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3.2 Ansatz

We make the following ansatz for the kth curvature correction to the world-sheet correlator

G(k)(S, T, x) = 1
(S + T )k

3k∑
n=0

∑
j,±

P
(k)±
n,j (S, T )T±

n,j(x) , (3.10)

where P
(k)±
n,j (S, T ) are symmetric / antisymmetric homogeneous polynomials of degree n

with rational coefficients. The sum runs over the independent SVMPLs on the real line (3.9)
up to weight 3k.

We would like to compare the ansatz to (2.11). To this end one first Taylor expands the
integrand of (3.1) around x = 0 and then integrates before finally expanding around S = δ,
for different values of δ. The matching implies that the OPE data appearing in (2.11) can
only depend on MZVs that explicitly appear in the world-sheet integrand, i.e. SVMZVs. For
k = 1 we saw already in [1] that the OPE data has the form

√
δ⟨f0τ2⟩δ,ℓ = r1

δ,ℓ ,

⟨f2⟩δ,ℓ = r2
δ,ℓ + r3

δ,ℓζ(3) ,
(3.11)

where ri
δ,ℓ are rational numbers. For k = 2 we make the ansatz

⟨f0τ2
2 ⟩δ,ℓ = r4

δ,ℓ ,
√

δ⟨f0τ4 + f2τ2⟩δ,ℓ = r5
δ,ℓ + r6

δ,ℓζ(3) , (3.12)
⟨f4⟩δ,ℓ = r7

δ,ℓ + r8
δ,ℓζ(3) + r9

δ,ℓζ(5) + r10
δ,ℓζ(3)2 .

In general we expect ⟨f2kτ j2
2 τ j4

4 τ j6
6 . . .⟩δ,ℓ to have terms of maximal weight 3(k+ j4 +2j6 + . . .).

3.3 Solution

The ansatz for k = 2 has 254 rational coefficients, of which all but one are fixed by matching the
ansatz with the dispersion relation. The polynomials appearing in the solution are given by9

P
(2)+
0 (S, T ) =

(19
2

)
, P

(2)+
1 (S, T ) = (S + T )

(19
8

)
, P

(2)−
1 (S, T ) = (T − S)

(117
8

)
,

P
(2)+
2 (S, T ) = (S + T )2

(67
8 ,−29

4

)
+ ST

(
− 109

4 ,
109
4

)
, P

(2)−
2 (S, T ) = (T 2 − S2)

(61
8

)
,

P
(2)+
3 (S, T ) = (S + T )3

(
− 21

4 ,
3
2 ,

1
4 ,

7
2

)
+ ST (S + T )

(
− 97

4 ,
71
4 ,

13
2 , 0

)
,

P
(2)−
3 (S, T ) = (S − T )(S + T )2

(
− 21

4 ,
7
4 ,

1
2

)
+ (S − T )ST

(21
4 ,−21

2 ,−21
4

)
,

P
(2)+
4 (S, T ) = (S + T )4

(23
2 ,−95

8 ,−12,
55
8 ,

25
2 , 2

)
+ ST (S + T )2

(
− 65

4 ,
39
8 ,

3
8 ,

27
8 ,

61
8 ,−7

4

)
+ S2T 2

(3
2 ,−3,−3,

3
2 , 3, 0

)
,

9We also include the final expression for G(2)(S, T, x) in a Mathematica file in the Supplementary material.
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P
(2)−
4 (S, T ) = (S −T )(S +T )3

(23
2 ,−95

8 ,−12,−5
8 , 2
)
+ST (S2− T 2)

(27
4 ,−63

8 ,−45
8 ,−9

8 ,
9
4

)
,

P
(2)+
5 (S, T ) = (S + T )5

(
− 27

4 ,
15
2 ,

75
8 ,−39

2 ,
39
8 ,−77

8 ,
1
2 ,

11
8 ,

27
4 ,−7

4 ,−43
4 ,−165

2

)
+ ST (S + T )3

(
19,−75

4 ,−81
4 ,

61
4 ,−41

4 ,
41
4 ,−3

4 ,
17
4 ,

5
4 , 5,

9
2 , 9

)
(3.13)

+ S2T 2(S + T )
(5
2 ,−7

2 ,−11
4 ,

11
4 ,−5

4 ,
3
2 ,−1

4 ,
3
4 ,

1
4 ,

1
2 , 0,−3

)
,

P
(2)−
5 (S, T ) = (S − T )(S + T )4

(
− 27

4 ,
15
2 ,

75
8 ,−39

2 ,
39
8 ,−77

8 ,
1
2 ,

11
8 ,−27

4 ,−7
4

)
+ (S − T )ST (S + T )2

(11
2 ,−15

4 ,−3
2 ,−35

4 ,−1
2 ,−4,−3

4 ,
1
2 ,−11

4 ,
3
2

)
,

P
(2)+
6 (S, T ) = (S + T )6

(5
4 ,−5

4 ,−7
4 ,

11
4 ,−2,

15
8 , 1, 0,

5
8 ,

1
2 , 0, 0, 0,−3

4 , 0,−1,
1
4 ,

7
4 ,−1

4 , 0,
9
2

)
− ST (S + T )4

×
(
5,−5,−6, 10,−13

2 ,
25
4 , 2,−27

4 ,
5
2 ,

5
4 ,−11

4 ,
1
4 ,

15
4 ,−3

2 ,
1
2 ,−3, 1, 2, 2, 0, 8

)
+ S2T 2(S + T )2

×
(5
2 ,−5

2 ,−3
2 ,−1

2 ,−1,−3
4 ,−3

2 ,
19
4 ,−1

4 ,−1
2 , 2,

1
4 ,−7

4 ,
1
2 ,−1

4 ,
1
2 ,

1
2 , 1,−1

2 , 0, 2
)

,

P
(2)−
6 (S, T ) = (S − T )(S + T )5

(5
4 ,−5

4 ,−7
4 ,

11
4 ,−2,

15
8 , 1,

5
8 ,

1
2 , 0, 0,−3

4 , 0, 1,
1
4 ,

7
4 ,−1

4 , 0
)

+ (S − T )ST (S + T )3

×
(
− 5

2 ,
5
2 ,

5
2 ,−9

2 ,
5
2 ,−5

2 , 0,−5
4 ,−1

4 ,−1
4 ,−3

4 , 0,−1
2 ,−1,−1

2 ,−3
2 ,

1
2 , 0

)
,

where we fixed the final coefficient to the correct value for the SO(8) theory, as will be
described in section 4.2 below. Keeping this coefficient, let us call it c(2), unfixed corresponds
to adding the following to G(2)(S, T, x)

c(2)
[6S2 + 7ST + 6T 2

16 L+
0101(x)−

S2 + 4ST + T 2

16 L+
0010(x)−

5S2 + 3ST + 5T 2

16 L+
0110(x)

+ S2 − 4ST + T 2

8(S + T )
(
L+

010(x)− L+
001(x)

)
+ 5S2 − 2ST + 5T 2

16(S + T )2

(
L+

01(x)− L+
00(x)

)
+
(17
16
(
S2 + T 2

)
ζ(3) + 1

4(S + T )

)
L+

0 (x)− 2(S + T )ζ(3) + 1
(S + T )2

+ (S − T )
( 1
16(S + T )

(
L−

0110(x)− L−
0010(x)

)
− 3

8L
−
001(x) +

1
8L

−
010(x)−

5L−
00(x)

16(S + T )

+
(17
16(S + T )ζ(3) + 1

2(S + T )2

)
L−

0 (x)
)]

. (3.14)

In the theories with GF = U(4) or SO(4)× SO(4) the world-sheet integrand might differ by
this term. This question could potentially be resolved by doing the localisation computations
for these theories.
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4 Checks

In obtaining our solution we made several assumptions, so it is important to perform
consistency checks. In this section we show that the high energy limit of A(2)(S, T ) is
consistent with exponentiation as expected from a classical scattering computation [18], the
low energy expansion is free of poles at S, T = 0 and the OPE data matches the results for
the energy of classical solutions for massive string operators. We also fully fix the D6F 4

correction to the Mellin amplitude and provide a wealth of OPE data that can be compared
to future computations with other methods.

4.1 High energy limit

In the high-energy limit of large S, T, R with S/T and S/R fixed10 we expect the amplitude
A(S, T ) to be determined by a classical computation, as shown for the closed string amplitude
on AdS5 × S5 in [18]. We expect the form

AHE(S, T ) ≡ lim
S,T,R→∞

S/T,S/R fixed

A(S, T ) ∼ e−Eopen(S,T ) , (4.1)

and the exponent is determined by the saddle point at x = S
S+T of the integral (3.1) for k = 0, 1

Eopen(S, T ) = E(0)(S, T ) + 1
R2E

(1)(S, T ) + O

( 1
S

)
,

E(0)(S, T ) = S log
(

S

S + T

)
+ T log

(
T

S + T

)
,

E(1)(S, T ) = − G(1)
(

S, T,
S

S + T

)
+ O(S) (4.2)

= S2

2

(
L001

(
S

S + T

)
− L000

(
S

S + T

)
− 2ζ(3)

)
+ S(S + T )

2 L010

(
S

S + T

)
+ T 2

2

(
L110

(
S

S + T

)
− L111

(
S

S + T

))
+ T (S + T )

2 L101

(
S

S + T

)
.

Crucially, the exponent depends only on the first curvature correction (see [18]). This means
that the high energy limit of all further curvature corrections is determined by (4.1). In
particular

AHE(S, T ) ∼ e−E(0)(S,T )
(
1− 1

R2E
(1)(S, T ) + 1

2R4

(
E(1)(S, T )

)2
+ . . .

)
, (4.3)

which implies

G(2)
(

S, T,
S

S + T

)
= 1

2
(
E(1)(S, T )

)2
+ O(S3) , (4.4)

which we confirm to be true for our solution. In particular, the high-energy limit does not
depend on the unfixed coefficient c(2), as (3.14) is O(S2).

Furthermore, combining (4.4) with the relation between the high energy exponents for
open and closed strings [1]

Eopen(S, T ) = 1
2Eclosed(4S, 4T ) , (4.5)

implies an identity between the high energy limits of A(2)(S, T ) for open and closed strings.
10We set α′ = 1 in this section.
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4.2 Low energy expansion

Let us now discuss the low energy expansion of A(S, T ), i.e. the Taylor expansion around
S = T = 0. We define the Wilson coefficients α

(k)
a,b by

A(k)(S, T ) = −δk,0
ST

+
∞∑

a,b=0
σ̂a

1 σ̂b
2α

(k)
a,b , σ̂1 = −U , σ̂2 = −ST . (4.6)

To compute this expansion from the world-sheet integral (3.1), we first express the integrand
in terms of usual MPLs and consider integrals of the form

Iw(S, T ) =
1∫

0

dx x−S−1(1− x)−T−1Lw(x) . (4.7)

The expansion of these integrals was done in [1], with the result

Iw(S, T ) = poles +
∞∑

p,q=0
(−S)p(−T )q

∑
W∈0p

�1q
�w

(L0W (1)− L1W (1)) , (4.8)

where � is the shuffle product. Expanding the result (3.13) including the unfixed term (3.14)
gives

A(2)(S, T ) =
(
48− 3c(2)

2

)
ζ(2)2 +

(
1851
4 − 69c(2)

8

)
ζ(5)σ̂1 + . . . (4.9)

For the GF = SO(8) theory the leading coefficient in this expansion was computed using
supersymmetric localisation in [1, 6] to be

α
(2)
0,0 = 48ζ(2)2 , (4.10)

so indeed we have to set c(2) = 0 for this theory, which we will do for most of the remainder
of the paper. The low energy expansion for A(2)(S, T ) is then

A(2)(S, T ) = 48ζ(2)2 + σ̂1
1851
4 ζ(5) + σ̂2

1

(53128
105 ζ(2)3 − 125ζ(3)2

)
+ σ̂2

(88288
105 ζ(2)3 + 250ζ(3)2

)
+ σ̂3

1

(2016
5 ζ(3)ζ(2)2 + 174081

32 ζ(7)
)

+ σ̂1σ̂2

(12036
5 ζ(3)ζ(2)2 + 16503

4 ζ(5)ζ(2) + 174081
32 ζ(7)

)
(4.11)

+ σ̂4
1

(12016819
5250 ζ(2)4 + 1384ζ(3)2ζ(2)− 5447

4 ζ(3)ζ(5) + 33
20ζ(5, 3)

)
+ σ̂2

1σ̂2

(4057994
525 ζ(2)4 + 2768ζ(3)2ζ(2) + 32657

4 ζ(3)ζ(5)− 57
4 ζ(5, 3)

)
+ σ̂2

2

(10723856
2625 ζ(2)4 + 1384ζ(3)2ζ(2) + 5447

2 ζ(3)ζ(5)− 33
10ζ(5, 3)

)
+ . . . .

This new result allows us to completely fix the Mellin amplitude up to order λ−5/2, which
corresponds to the D6F 4 term in the low energy effective action. The low energy expansion
of the Mellin amplitude is related to (4.6) by (2.3)

M(s, t) = − 2
s t

+
∞∑

k,a,b=0

Γ(4 + a + 2b)23+a+2b

λ1+ a
2 +b+ k

2
σa

1σb
2α

(k)
a,b , (4.12)
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with
σ1 = −u , σ2 = −st . (4.13)

The first few terms of the Mellin amplitude read [1, 6]

M(s, t) =− 2
s t

+ 48ζ(2)
λ

+ 384ζ(3)σ1

λ
3
2

+ 384ζ(2)2 (4σ2
1 + 7σ2 − 3σ1 + 6

)
λ2 (4.14)

+ 1
λ

5
2

(
960

(
α

(0)
3,0σ3

1 + α
(0)
1,1σ1σ2

)
+ 80

(
α

(1)
2,0σ2

1 + α
(1)
0,1σ2

)
+ 8α

(2)
1,0σ1 + α

(3)
0,0

)
+ O

(
λ−3

)
.

We can extract most of the coefficients at O(λ−5/2) from the known A(k=0,1,2)(S, T )

α
(0)
3,0 = ζ(5) , α

(0)
1,1 = ζ(5) + ζ(2)ζ(3) ,

α
(1)
2,0 = 19

2 ζ(5)− 20ζ(2)ζ(3) , α
(1)
0,1 = −19ζ(5)− 20ζ(2)ζ(3) ,

α
(2)
1,0 = 1851

4 ζ(5) .

(4.15)

The final coefficient can then be fixed using the localisation constraint of [6] (see also
appendix C of [1])

α
(3)
0,0 = 64α

(1)
2,0 + 32α

(1)
0,1 = −1920ζ(2)ζ(3) . (4.16)

4.3 OPE data

Let us now extract the OPE data from our solution. From A(2)(S, T ) we obtain for the
first Regge trajectory11

(f0τ2
2 )δ,δ−1 = r0(δ)δ

(3δ

4 + 1
2δ

− 3
4

)2
,

(f0τ4 + f2τ2)δ,δ−1 = r0(δ)
√

δ

(
− 7δ3

16 + 191δ2

32 + 79
16δ2 − 1217δ

48 − 1853
96δ

+ 249
8

)

+ δ2ζ(3)(f0τ2)δ,δ−1 −
7δ

3
2

2 ζ(3)(f0)δ,δ−1 , (4.17)

(f4)δ,δ−1 = r0(δ)
(49δ4

288 − 253δ3

80 + 5563δ2

288 + 1611
128δ2 − 8909δ

96 − 6889
60δ

+ 54823
288

−
(7δ4

12 − 27δ3

4 + 104δ2

3 − 45δ

8

)
ζ(3)

)
+
(

δ4

2 ζ(3)2 − 3δ3

2 ζ(5)
)
(f0)δ,δ−1

where

rn(δ) =
41−δδδ−2n−1(δ − 2n)2

Γ(δ − n + 1) . (4.18)

11Here we set c(2) = 0. We include the dependence on c(2) and analogous formulas for further Regge
trajectories in a Mathematica file in the Supplementary material.
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For the second Regge trajectory we find

⟨f0τ2
2 ⟩δ,δ−3 = r1(δ)

(
3δ5

16 + δ4

6 − 479δ3

432 + 2119δ2

216 − 341δ

36 + 2
3

)
,

⟨f0τ4 + f2τ2⟩δ,δ−3 = r1(δ)
√

δ

(
−7δ5

48 + 679δ4

864 − 2293δ3

216 − 226δ2

9 + 8761δ

96 + 725
12δ

− 7031
72

)

+ δ2ζ(3)⟨f0τ2⟩δ,δ−3 −
7δ

3
2

2 ζ(3)⟨f0⟩δ,δ−3 ,

⟨f4⟩δ,δ−3 = r1(δ)
(49δ6

864 − 913δ5

3240 + 25927δ4

4320 + 116401δ3

2592 + 182401δ2

2592 + 75427δ

2160

+ 317771
192δ

− 2843297
1920 −

(
7δ6

36 − 79δ5

108 + 929δ4

54 + 847δ3

24 − 877δ2

12

)
ζ(3)

)

+
(

δ4

2 ζ(3)2 − 3δ3

2 ζ(5)
)
⟨f0⟩δ,δ−3 . (4.19)

Note that the angle brackets indicate a sum over operators with the same (δ, ℓ). The operators
on the first Regge trajectory are non-degenerate so that we can combine the data with the
one at lower orders [1] and solve for the dimensions ∆(δ, ℓ) ≡ τ(δ, ℓ) + ℓ

∆(δ, δ − 1) =
√

δλ
1
4

[
1 + 1√

λ

(3δ

4 + 1
2δ

− 3
4

)
(4.20)

+ 1
λ

(
−21δ2

32 − 1
8δ2 − (3 + 14ζ(3))δ

4 + 3
8δ

+ 41
32 +

((19 + 34ζ(3))δ
16 − 11

16

)
c(2)
)

+ O

( 1
λ

3
2

)]

This can be compared to the classical glued folded open string solution in AdS as discussed
in [1], which has the energy

E =
√

δλ
1
4

[
1+ 1√

λ

(3δ

4 + 1
2δ

− 1
2 + a(1)

)
+1

λ

(
−21δ2

32 − 1
8δ2 +b

(1)
0 δ+ b

(1)
1
δ

+b(2)
)
+. . .

]
. (4.21)

While the coefficients a(1), b
(1)
0 , b

(1)
1 and b(2) are determined by the 1-loop and 2-loop fluc-

tuations around the classical solution, and are currently unavailable from this perspective,
we find an exact match for all the classical terms.

5 Conclusions

In this paper we argued that the world-sheet integrand of the AdS Veneziano amplitude
in a small curvature expansion should be expressible in terms of single-valued multiple
polylogarithms evaluated on the real axis, because curvature corrections correspond to soft
gravitons, which are governed by single-valued insertions.

Combining this with a CFT dispersion relation we fixed the second curvature correction
up to one rational coefficient c(2). For the theory with flavour group GF = SO(8) this
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coefficient can be fixed using the localisation constraint computed in [6]. For the other
possibilities GF = U(4) or SO(4)× SO(4) the localisation constraint has not been computed
yet, so c(2) is not fixed. Another way to fix it would be to compute quantum corrections to
the energy of the glued folded open string solution in AdS and compare it to our result for
the conformal dimensions of massive string operators (4.20). At the classical level, the two
quantities already agree. A further consistency check is exponentiation in the high energy
limit. Our result also fully fixes the unprotected D6F 4 term in the low energy effective action.

We commented in [1] that we did not find an obvious KLT [28]/double-copy [29, 30] type
relation between the AdS Veneziano and AdS Virasoro-Shapiro amplitudes. The results of
the present paper lead to a new way of thinking about this. The scattering of open strings
in a curved background should be thought of as the scattering of open strings with extra
gravitons. If there are to be any double-copy relations, it seems that only the open strings,
but not the soft gravitons from curvature corrections, should be doubled. The scattering
of these extra gravitons is already governed by single-valuedness, restricted to the real line
in the context of open string scattering.

Finally, we came across single-valued multiple polylogarithms evaluated on the real line.
These also appear in different physical applications, for instance in the context of Wilson
line defect CFTs, see [31], but to our knowledge these functions have not been studied
systematically. It would be interesting to study this from a mathematical perspective.

Acknowledgments

We thank Erik Panzer for useful discussions. The work of LFA is supported by the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 787185). LFA is also supported in part by the STFC grant
ST/T000864/1. TH is supported by the STFC grant ST/X000591/1.

A Computation of J (x, x̄)

We would like to compute

J (x, x̄) =
∫
C

d2z
|z|2a|1− z|2b|z − x|2c

|z|2|1− z|2
, (A.1)

in a small a, b, c expansion, and show that the resulting functions are single-valued functions
of x. Following [32] we write this in a factorised form12

J (x, x̄) = − 1
π
(κ1J1(x)J1(x̄) + κ2J2(x)J2(x̄)) , (A.2)

with κ1 = sin(πa) csc(π(b + c)) sin(π(a + b + c)), κ2 = sin(πb) sin(πc) csc(π(b + c)) and

J1(x) =
∫ 0

−∞
(−z)a−1(1− z)b−1(x − z)cdz ,

J2(x) =
∫ 1

x
(z)a−1(1− z)b−1(z − x)cdz .

(A.3)

12This integral was first computed in [33].
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These integrals can be evaluated in terms of linear combinations of the following two hy-
pergeometric functions

h1(x) = 2F1(a, 1− b; a + c + 1;x) , h2(x) = 2F1(−a − b − c + 1,−c;−a − c + 1;x) , (A.4)

which leads to the following expression for J (x, x̄)

J (x, x̄) = κ̂1|x|2a+2ch1(x)h1(x̄) + κ̂2h2(x)h2(x̄) , (A.5)

with

κ̂1 = −πΓ(−a − c)2 csc(π(b + c))(csc(πa) sin(π(a + b + c)) + sin(πb) csc(πc))
Γ(1− a)2Γ(−c)2 ,

κ̂2 = −πΓ(a + c)2 csc(π(b + c))(sin(πa) csc(π(a + b + c)) + csc(πb) sin(πc))
Γ(1− b)2Γ(a + b + c)2 .

(A.6)

We now note the following. First, κ̂1, κ̂2 admit an expansion around small (a, b, c) with
coefficients proportional to SVMZVs. Schematically

κ̂1, κ̂2 ∼ 1
ϵ
+ ζ(3)ϵ2 + ζ(5)ϵ4 + ζ(3)2ϵ5 + · · · , (A.7)

with (a, b, c) ∼ ϵ. Second, h1(x), h2(x) are both of the form

h(x) = 2F1(1 + ϵ1, ϵ2; 1 + ϵ3;x) . (A.8)

These hypergeometric functions admit an expansion around small ϵi of the form

h(x) = 1 + ϵh(1)(x) + ϵ2h(2)(x) + · · · , (A.9)

where h(k)(x) is a linear combination of multiple polylogarithms Lw(x) of weight k, labelled
by words in the alphabet {0, 1}, analytic (and also vanishing) at x = 0, so that their last
letter is always 1. The functions h(k)(x) can be recursively computed as follows. First we
write h(k)(x) as a linear combination of MPLs of weight k. Then we plug this expansion
into the second order differential equation which h(x) satisfies

(1− x)xh′′(x) + (1 + ϵ3 − z(2 + ϵ1 + ϵ2))h′(x)− (1 + ϵ1)ϵ2h(x) = 0 , (A.10)

and use the basic property of multiple polylogarithms

d

dx
L0w(x) =

1
x

Lw(x) ,
d

dx
L1w(x) =

1
x − 1Lw(x) , (A.11)

to replace derivatives by action on the letters. This allows to determine

h(x) = 1− ϵ2L1(x) + (ϵ2(ϵ1 + ϵ2 − ϵ3)L11(x)− ϵ2(ϵ1 − ϵ3)L01(x)) + · · · . (A.12)

From the equation it turns out h(k+1)(x) can be determined in terms of h(k)(x), for k = 1, 2, · · ·
by the following operation

h(k+1)(x) = ((−ϵ3σ00 + (ϵ3 − ϵ2)σ10)∇0 + ((ϵ1 − ϵ3)σ01 + (ϵ3 − ϵ1 − ϵ2)σ11)∇1)h(k)(x) ,

(A.13)
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where the operators ∇0,∇1 act like a ‘derivative’ with respect to the first letter, so that

∇0L0w(x) = ∇1L1w(x) = Lw(x) , ∇1L0w(x) = ∇0L1w(x) = 0 , (A.14)

while σmn, for m, n = 0, 1 act by concatenating the letters mn from the left

σmnLw(x) = Lmnw(x) . (A.15)

With this, h1(x), h2(x) can be computed to any desired order. Plugging this expansions into
J (x, x̄) it can be explicitly checked, order by order, that the resulting expression contains
only single-valued multiple polylogarithms

J (x, x̄) = −a + b

ab
− c

a
L0(x)−

c

b
L1(x) + · · · . (A.16)

Open Access. This article is distributed under the terms of the Creative Commons Attri-
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