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A B S T R A C T

We show theoretically that essentially perfect elastostatic mechanical cloaking of a circular
inclusion in a homogeneous surrounding medium can be achieved by means of a simple cloak
comprising three concentric annuli, each formed of a homogeneous isotropic linear elastic
material of prescribed shear modulus. Importantly, we find that the same combination of annuli
will cloak any possible mode of imposed deformation or loading, for any randomly chosen
admixture of imposed compression, pure shear and simple shear, without the need to re-design
the cloak for different deformation modes. A full range of circular inclusions can be cloaked in
this way, from soft to stiff. In consequence, we suggest that an inclusion of any arbitrary shape
can also be cloaked, by first enveloping it in a stiff circle, then cloaking the combined structure
with three annuli as described. Given that a single inclusion can be fully cloaked in this way,
even at near field close to the cloaking perimeter, it also follows that multiple such neutral
inclusions arranged with arbitrarily high packing fraction in a surrounding medium can also
be cloaked. We confirm this by direct simulation. This indicates a possible route to fabricating
composite materials with the same global mechanical response as a counterpart homogeneous
material, and with uniform strain and stress fields outwith the cloaked inclusions.

Cloaking is the practice of rendering unnoticeable an inclusion that differs in some physical way from its surrounding medium,
y enveloping it in a cloak. Widespread potential applications include optical invisibility (Pendry et al., 2006; Leonhardt, 2006),
solation from electromagnetic fields (Wood and Pendry, 2007; Zhu et al., 2015; Gömöry et al., 2012), sound reduction in
coustics (Norris, 2008; Cummer and Schurig, 2007; Chen and Chan, 2007), drag reduction in hydrodynamics (Park et al.,
019), thermal protection (Xu et al., 2014), mass shielding (Guenneau and Puvirajesinghe, 2013), the mitigation of elastodynamic
ibrations (Brun et al., 2009; Nassar et al., 2019; Norris and Parnell, 2012; Farhat et al., 2009; Zhang et al., 2020), including for
eismic protection (Brûlé et al., 2017), and – the focus of this work – the elastostatic cloaking of inclusions in elastic media to
chieve mechanical ‘‘unfeelability’’.

The last two decades have seen rapid progress in cloaking technologies, as recently reviewed (Martinez and Maldovan, 2022).
n the context of electromagnetism (Pendry et al., 2006; Leonhardt, 2006), invariance of the governing field equations under
ransformation has been exploited to achieve cloaking via the use of conformal mapping to engineer a suitably heterogeneous and
nisotropic refractive index. In elasticity theory, however, the governing equations are not invariant (Yavari and Golgoon, 2019):
ransformation in general leads to an anisotropic density and a coupling between strain and momentum (Milton et al., 2006).
ome successes have nonetheless been achieved in the elastodynamic cloaking of propagating waves, for example by means of a
patially varying elasticity tensor of rank four (Brun et al., 2009), hyperelastic materials under pre-stress (Norris and Parnell, 2012)
r asymmetric metamaterials (Zhang et al., 2020). Flexural waves in thin sheets have also been successfully cloaked (Farhat et al.,
009).

In the context of elastostatic cloaking, the basic aim is to render an inclusion in an elastic medium mechanically ‘‘unfeelable’’,
ith the deformation, strain and stress fields outside the cloaked inclusion being the same as they would be in the equivalent
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homogeneous medium without an inclusion. Following Eshelby’s seminal work on inclusions (Eshelby, 1957), the search for
neutral inclusions has a long history (Mansfield, 1953; Christensen and Lo, 1979; Sozio et al., 2023), often however involving
complicated imperfect interfaces (Bertoldi et al., 2007; Bigoni et al., 1998; He, 2002; Ru, 1998; Wang and Schiavone, 2012),
anistropic materials (Benveniste et al., 1991; Hashin, 1990; Norris et al., 2020), precise tuning of both a material’s shear modulus
and Poisson ratio (Wang and Schiavone, 2023a,b), or considering only antiplane elasticity (Milton and Serkov, 2001) or a purely
compressional deformation, without shear (Kang, 2016). Indeed, progress in elastostatic cloaking lags significantly behind that in
other fields, not least due to the breakdown of transformation methods noted above. Some success has nonetheless recently been
achieved by employing pentamode metamaterials (Bückmann et al., 2014), direct lattice transformation (Bückmann et al., 2015),
morphable voids (Cheng et al., 2023), shape optimisation (Fachinotti et al., 2018), topology optimization (Ota and Fujii, 2022),
lattice based metamaterials (Sanders et al., 2021) and data-driven aperiodic metamaterial design (Wang et al., 2022).

Typically, however, such strategies involve complicated metamaterial cloaking structures comprising hundreds or thousands of
ubunits, requiring computationally intense optimisation and challenging fabrication. They furthermore often achieve only modest
loaking performance, as quantified by the measure of field disturbance compared with the affine field in a homogeneous medium,
hich is typically reduced only by a factor 𝑂(10) or exceptionally 𝑂(100) compared with the uncloaked case. More importantly still,
hile such cloaks can be optimised to achieve reasonable to good performance (as just quantified) for one particular imposed mode
f deformation or loading – shear, compression, or one particular prescribed admixture of both – a different cloak must be designed
or each admixture of deformations or loads separately.

In this work, we show by analytical calculation and direct numerical simulation (which agree fully) that essentially perfect
echanical cloaking of a circular inclusion in 𝑑 = 2 spatial dimensions can be achieved by a simple cloak comprising three concentric

nnuli, each formed of a homogeneous isotropic linear elastic material of a prescribed elastic modulus, which can be computed
n seconds to minutes on a laptop. We hope that such cloaks will also be relatively straightforward to fabricate experimentally.
mportantly we show that the same combination of annuli will cloak any possible mode of deformation and/or loading, with any
andomly chosen admixture of compression, pure shear and simple shear, without the need design a different cloak for each different
dmixture. We show that a full range of circular inclusions can be cloaked in this way, from soft to stiff. This furthermore suggests
hat an inclusion of any arbitrary shape can also be cloaked, by first enveloping it a stiff circle, then cloaking the combined structure
ith three annuli as just described.

A key feature of our approach is that, for any given combination of inclusion and surrounding material, it suffices only to tune
he values of the shear moduli 𝐺cn in the cloaking annuli, for any set of annuli Poisson ratios 𝜈cn. Indeed, we emphasise that these 𝜈cn
an be chosen arbitrarily, prior to then tuning (for any set of 𝜈cn) the moduli 𝐺cn according to the approach that we set out below.
his contrasts with recent work (Wang and Schiavone, 2023a,b), in which both the shear modulus and the Poisson ratio need to
e precisely prescribed in each region of the cloak. This distinction is important in particular from the viewpoint of fabricating a
evice in practice, due to the near impossibility of precisely prescribing both the shear modulus and Poisson ratio for any component
aterial.

The manuscript is structured as follows. In Section 1 we introduce the cloaking geometry and governing equations. Section 2
ncovers an exact analytical condition for perfect cloaking, which we then confirm by direct numerical simulation in Section 3. We
resent our concluding perspectives in Section 4.

. Geometry and governing equations

As sketched in Fig. 1, at the level of linear isotropic elasticity in 𝑑 = 2 spatial dimensions, we consider a circular inclusion of
adius 𝑅in, elastic modulus 𝐺in and Poisson ratio 𝜈in surrounded by a cloak extending from inner radius 𝑅in to outer radius 𝑅c in a
urrounding medium of elastic modulus 𝐺out and Poisson ratio 𝜈out . We explore in what follows cloaks comprising one, two or three
nnuli with moduli 𝐺cn and Poisson ratios 𝜈cn. When two or three annuli are present, we assume that all annuli in any cloak are of
qual thickness.

The governing equations are as follows. As a function of space 𝑟𝑖 we define a strain field

𝜖𝑖𝑗 (𝑟𝑖) =
1
2

(

𝜕𝑖𝑢𝑗 + 𝜕𝑗𝑢𝑖
)

(1)

in terms of a displacement field 𝑢𝑖(𝑟𝑖) relative to undeformed equilibrium. At the level of linear isotropic elasticity, the elastic stress
field

𝜎𝑖𝑗 (𝑟𝑖) = 2𝜇𝜖𝑖𝑗 + 𝜆𝜖𝑙𝑙𝛿𝑖𝑗 . (2)

Force balance in the inertialess limit requires that

0𝑖 = 𝜕𝑗𝜎𝑖𝑗 . (3)

In Eq. (2), the constants 𝜇 and 𝜆 are the material’s Lamé coefficients, which can be expressed in terms of its shear and bulk
moduli 𝐺 and 𝐾 by the relations

𝜇 = 𝐺 and 𝜆 = −2𝐺
𝑑

+𝐾. (4)

The material’s Poisson ratio

𝜈 = 𝑑𝐾 − 2𝐺 . (5)
2

𝑑(𝑑 − 1)𝐾 + 2𝐺
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Fig. 1. At the level of linear isotropic elasticity in 𝑑 = 2 spatial dimensions, we study a circular inclusion of radius 𝑅in and elastic modulus 𝐺in in a surrounding
edium of modulus 𝐺out , subject to an imposed deformation comprising an arbitrary admixture of bulk isotropic compression 𝜕𝑥𝑈𝑥 = 𝜕𝑦𝑈𝑦 = −𝑑𝑉 , pure shear

𝑥𝑈𝑥 = −𝜕𝑦𝑈𝑦 = 𝑑𝜖 and simple shear 𝜕𝑦𝑈𝑥 = 𝑑𝛾. Our aim is to surround the inclusion by a cloak extending from inner radius 𝑅in to outer radius 𝑅c comprising
ne, two or three annuli with elastic moduli 𝐺cn, such that the deformation field outside the cloak will be undisturbed compared with the affine imposed one
hat would obtain in a homogeneous medium without an inclusion.

mong these five constants 𝜇, 𝜆, 𝐺,𝐾 and 𝜈 we need to specify only two, because the other three are then determined by relations (4)
nd (5). We shall work in terms of 𝐺 and 𝜈, noting that in 𝑑 = 2 dimensions the ratio 𝑓 ≡ 𝜆∕𝜇 = 2𝜈∕(1 − 𝜈).

A uniform affine deformation field comprising some admixture of bulk isotropic compression 𝜕𝑥𝑈𝑥 = 𝜕𝑦𝑈𝑦 = −𝑑𝑉 (or expansion,
𝑉 < 0), pure shear 𝜕𝑥𝑈𝑥 = −𝜕𝑦𝑈𝑦 = 𝑑𝜖 and simple shear 𝜕𝑦𝑈𝑥 = 𝑑𝛾 is imposed at far field 𝑟 → ∞ in our analytical calculation in
ection 2 and on average across a biperiodic box of size 𝐿 ×𝐿 in our direct numerical simulations in Section 3. We use upper case
𝑖 to denote this affine part of the deformation field, distinct from the full field 𝑢𝑖, which in general deviates from it and depends

on space 𝑟𝑖.
We choose as our stress unit the modulus of the surrounding medium 𝐺out = 1. Throughout most of what follows we choose as

our length unit the inclusion radius 𝑅in = 1, except in Fig. 5, where we simulate multiple inclusions in the same box. No time unit
is needed, because we consider static cloaking.

2. Analytical condition for perfect cloaking

In this section, we derive an analytical condition for perfect mechanical cloaking in the limit of linear isotropic elasticity. We
assume that the interfaces between inclusion, cloaking annuli and surrounding medium are all perfectly bonded and sharp. (In
our simulations in Section 3, each interface will have a small non-zero thickness set by the numerical grid. This will give a small
correction to perfect cloaking, which nonetheless decreases as the inverse linear grid density.)

Our tactic will be to obtain first a solution for the deformation field in the inclusion, in each annulus and in the surrounding
medium for any arbitrarily chosen set of annular moduli 𝐺cn and Poisson ratios 𝜈cn, not initially aimed at cloaking. This solution
will have a deformation field in the surrounding medium that in general differs from the affine field in a homogeneous medium.
We then use this general uncloaked solution as a springboard to investigate what conditions must apply to the annular moduli 𝐺cn
such that the non-affine part of the deformation field outside the cloak is eliminated, giving perfect cloaking.

2.1. General solution without cloaking

2.1.1. Bulk solution
In cylindrical polar coordinates centred on a circular inclusion, the deformation field

𝐮 = 𝑢𝑟(𝑟, 𝜃)�̂� + 𝑢𝜃(𝑟, 𝜃)�̂�. (6)

The strain field (Eq. (1)) is then given componentwise as

𝜖𝑟𝑟 = 𝜕𝑟𝑢𝑟,

𝜖𝑟𝜃 = 1
2

(

𝜕𝑟𝑢𝜃 +
1
𝑟 𝜕𝜃𝑢𝑟 −

𝑢𝜃
𝑟

)

,

𝜖 = 1 𝜕 𝑢 + 𝑢𝑟 , (7)
3

𝜃𝜃 𝑟 𝜃 𝜃 𝑟
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and the stress field (Eq. (2)) as

𝜎𝑟𝑟 = 2𝐺 𝜕𝑟𝑢𝑟 + 𝐺𝑓
(

𝜕𝑟𝑢𝑟 +
1
𝑟 𝜕𝜃𝑢𝜃 +

𝑢𝑟
𝑟

)

,

𝜎𝑟𝜃 = 𝐺
(

𝜕𝑟𝑢𝜃 +
1
𝑟 𝜕𝜃𝑢𝑟 −

𝑢𝜃
𝑟

)

,

𝜎𝜃𝜃 = 2𝐺
(

1
𝑟 𝜕𝜃𝑢𝜃 +

𝑢𝑟
𝑟

)

+ 𝐺𝑓
(

𝜕𝑟𝑢𝑟 +
1
𝑟 𝜕𝜃𝑢𝜃 +

𝑢𝑟
𝑟

)

. (8)

We recall here the ratio 𝑓 = 𝜆∕𝜇 = 2𝜈∕(1 − 𝜈) defined above.
The condition of force balance (Eq. (3)) reads:

0 = 𝜕𝑟𝜎𝑟𝑟 +
1
𝑟 𝜕𝜃𝜎𝑟𝜃 +

1
𝑟 (𝜎𝑟𝑟 − 𝜎𝜃𝜃),

0 = 𝜕𝑟𝜎𝑟𝜃 +
1
𝑟 𝜎𝜃𝜃 +

2
𝑟 𝜎𝑟𝜃 . (9)

A system with a cloak comprising 𝐶 annuli has 𝐶 + 2 bulk regions of uniform modulus 𝐺 and Poisson ratio 𝜈: the inclusion, the
cloaking annuli, and the surrounding medium. Combining Eqs. (8) and (9) gives two equations governing the deformation field

n each such homogeneous region:

0 = 2𝜕2𝑟 𝑢𝑟 +
1
𝑟 𝜕𝜃

(

𝜕𝑟𝑢𝜃 +
1
𝑟 𝜕𝜃𝑢𝑟 −

𝑢𝜃
𝑟

)

+ 2
𝑟

(

𝜕𝑟𝑢𝑟 −
1
𝑟 𝜕𝜃𝑢𝜃 −

𝑢𝑟
𝑟

)

+ 𝑓𝜕𝑟
(

𝜕𝑟𝑢𝑟 +
1
𝑟 𝜕𝜃𝑢𝜃 +

𝑢𝑟
𝑟

)

,

0 = 𝜕𝑟
(

𝜕𝑟𝑢𝜃 +
1
𝑟 𝜕𝜃𝑢𝑟 −

𝑢𝜃
𝑟

)

+ 2
𝑟
𝜕𝜃

(

1
𝑟 𝜕𝜃𝑢𝜃 +

𝑢𝑟
𝑟

)

2
𝑟

(

𝜕𝑟𝑢𝜃 +
1
𝑟 𝜕𝜃𝑢𝑟 −

𝑢𝜃
𝑟

)

+ 𝑓
𝑟

(

𝜕𝑟𝑢𝑟 +
1
𝑟 𝜕𝜃𝑢𝜃 +

𝑢𝑟
𝑟

)

. (10)

The solution of these in any homogeneous bulk region is

𝑢𝜃 =
∑

𝑝=−1,1
𝑢𝜃𝑝𝑟

𝑝 +
1,3
∑

𝑝=−3,−1

[

𝑢𝜃𝑐𝑝 cos(2𝜃) + 𝑢𝜃𝑠𝑝 sin(2𝜃)
]

𝑟𝑝,

𝑢𝑟 =
∑

𝑝=−1,1
𝑢𝑟𝑝𝑟

𝑝 +
1,3
∑

𝑝=−3,−1

[

𝑢𝑟𝑐𝑝 cos(2𝜃) + 𝑢𝑟𝑠𝑝 sin(2𝜃)
]

𝑟𝑝, (11)

with constant coefficients 𝑢𝜃𝑝, 𝑢𝑟𝑝 for 𝑝 = −1, 1 and 𝑢𝜃𝑐𝑝, 𝑢𝜃𝑠𝑝, 𝑢𝑟𝑐𝑝, 𝑢𝑟𝑠𝑝 for 𝑝 = −3,−1, 1, 3 calculated in each bulk region separately. In
each bulk region, this solution is subject to the following 8 constraints among the coefficients:

𝑢𝑟𝑐3 = 𝛼3𝑢𝜃𝑠3, 𝑢𝑟𝑐1 = 𝛼1𝑢𝜃𝑠1, (12)

𝑢𝑟𝑐−1 = 𝛼−1𝑢𝜃𝑠−1, 𝑢𝑟𝑐−3 = 𝛼−3𝑢𝜃𝑠−3, (13)

𝑢𝑟𝑠3 = −𝛼3𝑢𝜃𝑐3, 𝑢𝑟𝑠1 = −𝛼1𝑢𝜃𝑐1, (14)

𝑢𝑟𝑠−1 = −𝛼−1𝑢𝜃𝑐−1, 𝑢𝑟𝑠−3 = −𝛼−3𝑢𝜃𝑐−3, (15)

in which

𝛼3 = −𝑓∕(6 + 4𝑓 ), 𝛼1 = −1, 𝛼−1 = −2 + 𝑓, 𝛼−3 = 1. (16)

We thus have 12 unknown coefficients in each bulk region: four at the zeroth angular mode 𝑢𝑟1, 𝑢𝑟−1, 𝑢𝜃1, 𝑢𝜃−1, four at the sin(2𝜃)
ode 𝑢𝜃𝑠3, 𝑢𝜃𝑠1, 𝑢𝜃𝑠−1, 𝑢𝜃𝑠−3 and four at the cos(2𝜃) mode 𝑢𝜃𝑐3, 𝑢𝜃𝑐1, 𝑢𝜃𝑐−1, 𝑢𝜃𝑐−3. This gives 12(𝐶 + 2) coefficients in total in our system

f 𝐶 + 2 bulk regions.
We recognise however that the deformation field must tend to zero as 𝑟 → 0. This gives 6 further constraints within the inclusion:

𝑟−1 = 𝑢𝜃−1 = 𝑢𝜃𝑠−1 = 𝑢𝜃𝑠−3 = 𝑢𝜃𝑐−1 = 𝑢𝜃𝑐−3 = 0. It must likewise tend to the affine imposed one as 𝑟 → ∞. This gives 6 further
onstraints in the surrounding medium: 𝑢𝑟1 = 𝑉 , 𝑢𝜃1 = −𝛾∕2, 𝑢𝜃𝑠3 = 0, 𝑢𝜃𝑠1 = −𝜖, 𝑢𝜃𝑐3 = 0 and 𝑢𝜃𝑐1 = 𝛾∕2. This reduces the number
f unknown coefficients to 12(𝐶 + 1). To summarise, these are 𝑢𝑟1, 𝑢𝜃1 with 𝑢𝜃𝑠3, 𝑢𝜃𝑠1 and 𝑢𝜃𝑐3, 𝑢𝜃𝑐1 in the inclusion; 𝑢𝑟−1, 𝑢𝜃−1 with
𝜃𝑠−1, 𝑢𝜃𝑠−3 and 𝑢𝜃𝑐−1, 𝑢𝜃𝑐−3 in the surrounding medium; and 𝑢𝑟1, 𝑢𝑟−1, 𝑢𝜃1, 𝑢𝜃−1 with 𝑢𝜃𝑠3, 𝑢𝜃𝑠1, 𝑢𝜃𝑠−1, 𝑢𝜃𝑠−3 and 𝑢𝜃𝑐3, 𝑢𝜃𝑐1, 𝑢𝜃𝑐−1, 𝑢𝜃𝑐−3 in
ach of the 𝐶 annuli.

.1.2. Interface conditions
So far, we have found a solution for the bulk deformation field expressed in terms of the 12(𝐶 + 1) coefficients just listed. To

etermine the values of these coefficients, given any combination of values of the elastic moduli and Poisson ratios of the inclusion
in, 𝜈in, annuli 𝐺cn, 𝜈cn and surrounding medium 𝐺out = 1, 𝜈out , we consider now the conditions that apply across the (𝐶+1) interfaces

hat separate the inclusion and inner cloak annulus, each of the cloaking annuli, and the outer cloak annulus from the surrounding
edium.
4
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We assume that each interface is perfectly bonded and perfectly sharp, with continuous deformation and traction across it:
𝑢𝑟
]

=
[

𝑢𝜃
]

=
[

𝜎𝑟𝑟
]

=
[

𝜎𝑟𝜃
]

= 0, where [𝑐] denotes the jump in any quantity 𝑐 across an interface. For an interface at radius 𝑅 these
conditions read:

0 =
[

𝑢𝑟
]

, (17)

0 =
[

𝑢𝜃
]

, (18)

0 =
[

(2 + 𝑓 )𝐺𝜕𝑟𝑢𝑟
]

+ 1
𝑅 (𝜕𝜃𝑢𝜃 + 𝑢𝑟) [𝑓𝐺] , (19)

0 =
[

𝐺𝜕𝑟𝑢𝜃
]

+ 1
𝑅 (𝜕𝜃𝑢𝑟 − 𝑢𝜃) [𝐺] . (20)

Across each of our 𝐶 + 1 interfaces, each of these 4 constraints must apply separately to the zeroth angular mode, the sin(2𝜃) mode
and the cos(2𝜃) mode. This gives 12(𝐶 + 1) linear equations governing the 12(𝐶 + 1) coefficients listed at the end of Section 2.1.1.
These can be solved numerically in 𝑂(1𝑠) on a laptop. Substituting the computed coefficients into Eq. (11) then gives the deformation
field in all bulk regions: the inclusion, each cloaking annulus and surrounding medium.

2.2. Conditions for perfect cloaking

In any system, the bulk deformation field just computed will depend on the elastic moduli and Poisson ratios in the inclusion
𝐺in, 𝜈in and annuli 𝐺cn, 𝜈cn relative to that in the surrounding medium 𝐺out = 1, 𝜈out . Indeed, for any arbitrarily chosen 𝐺in, 𝜈in and
𝐺cn, 𝜈cn, the deformation field in the surrounding medium in general deviates from the affine one that would obtain in a homogeneous
medium without an inclusion. This deviation is quantified by the coefficients 𝑢𝑟−1, 𝑢𝜃−1, 𝑢𝜃𝑠−1, 𝑢𝜃𝑠−3, 𝑢𝜃𝑐−1, 𝑢𝜃𝑐−3 (the other coefficients
𝑟𝑠−1 etc. being specified in terms of these via Eq. (15)). We therefore define the metric

𝑔 = |𝑢𝑟−1| + |𝑢𝜃−1| + |𝑢𝜃𝑠−1| + |𝑢𝜃𝑠−3| + |𝑢𝜃𝑐−1| + |𝑢𝜃𝑐−3|. (21)

erfect cloaking will be attained if this metric can be reduced to zero in the surrounding medium, such that the deformation field
utside the cloak reduces to the affine one.

To consider how we might achieve this, it is helpful first to recognise that the 12(𝐶 + 1) interfacial equations in the previous
ubsection decouple into four subsystems:

(I) At zeroth angular mode, the interfacial conditions (18) and (20) on 𝑢𝜃 and 𝜎𝑟𝜃 give 2(𝐶 +1) linear equations, which we write
in generalised matrix form as 𝐚 ⋅ 𝐮 = 𝐛, in the 2(𝐶 +1) unknowns 𝐮 comprising 𝑢𝜃1 in the inclusion, 𝑢𝜃−1 in the surrounding medium
and 𝑢𝜃1, 𝑢𝜃−1 in each annulus. The vector 𝐛 has only one non-zero entry, equal to the imposed shear 𝑢𝜃1 = −𝛾∕2 in the surrounding
medium. This corresponds to solid body rotation, which is a global invariant, so this subsystem does not need considering further.
Indeed, the condition |𝑢𝜃1| = 0 in the inclusion, noted above, automatically ensures |𝑢𝜃−1| = 0 in the surrounding medium.

(II) At zeroth angular mode, the interfacial conditions (17) and (19) on 𝑢𝑟 and 𝜎𝑟𝑟 give 2(𝐶 + 1) equations 𝐚 ⋅ 𝐮 = 𝐛 (redefining
𝐚,𝐛 and 𝐮 from above) in the 2(𝐶 + 1) unknowns 𝐮 comprising 𝑢𝑟1 in the inclusion, 𝑢𝑟−1 in the surrounding medium and 𝑢𝑟1, 𝑢𝑟−1 in
each annulus. The vector 𝐛 has only one non-zero entry: the imposed bulk compression 𝑢𝑟1 = 𝑑𝑉 in the surrounding medium.

(III) The interfacial conditions (17) and (19) on 𝑢𝑟 and 𝜎𝑟𝑟 at the cos(2𝜃) mode, and (18) and (20) on 𝑢𝜃 and 𝜎𝑟𝜃 at sin(2𝜃), give
4(𝐶 +1) equations 𝐚 ⋅𝐮 = 𝐛 (again redefining 𝐚,𝐛 and 𝐮) in the 4(𝐶 +1) unknowns 𝐮 comprising 𝑢𝜃𝑠3, 𝑢𝜃𝑠1 in the inclusion, 𝑢𝜃𝑠−1, 𝑢𝜃𝑠−3
in the surrounding medium and 𝑢𝜃𝑠3, 𝑢𝜃𝑠1, 𝑢𝜃𝑠−1, 𝑢𝜃𝑠−3 in each annulus. The vector 𝐛 has only one non-zero entry: the imposed pure
shear 𝑢𝜃𝑠1 = −𝑑𝜖 in the surrounding medium.

(IV) The interfacial conditions (18) and (20) on 𝑢𝜃 and 𝜎𝑟𝜃 in the cos(2𝜃) mode, and (17) and (19) on 𝑢𝑟 and 𝜎𝑟𝑟 in the sin(2𝜃)
mode, give 4(𝐶+1) equations 𝐚⋅𝐮 = 𝐛 in the 4(𝐶+1) unknowns 𝐮 comprising 𝑢𝜃𝑐3, 𝑢𝜃𝑐1 in the inclusion, 𝑢𝜃𝑐−1, 𝑢𝜃𝑐−3 in the surrounding
medium and 𝑢𝜃𝑐3, 𝑢𝜃𝑐1, 𝑢𝜃𝑐−1, 𝑢𝜃𝑐−3 in each annulus. The matrix 𝐚 here is in fact the same as for sub-system (III). Likewise the vector
𝐛 has only one non-zero entry, in the same location as for (III), equal to the imposed simple shear 𝑢𝜃𝑐1 = 𝛾∕2 in the surrounding
medium. Indeed, any simple shear can be expressed as the sum of a solid body rotation and a pure shear. The rotation was accounted
for in subsystem (I). The component here in (IV) is pure shear. Accordingly, subsystems (III) and (IV) are in effect the same: (III)
describes the pure shear 𝑑𝜖 with horizontal and vertical principal axes and (IV) the pure shear component of 𝑑𝛾 with diagonal
principal axes.

In summary: of the three components of any general imposed deformation, the compression 𝑑𝑉 is governed by subsystem (II) and
the simple and pure shear 𝑑𝛾 and 𝑑𝜖 by subsystem (IV)=(III). With this in mind, we now proceed to uncover analytical conditions
for perfect mechanical cloaking. As a pedagogical warmup discussion, we shall consider first in Section 2.2.1 cloaking compression
alone and then (separately) in Section 2.2.2 shear alone. Finally in Section 2.2.3, we shall consider the problem of primary interest:
cloaking arbitrary admixtures of compression, pure shear and simple shear.

For definiteness and simplicity, we shall perform our numerics to confirm these analytical predictions initially assuming a uniform
Poisson ratio 𝜈 = 𝜈in = 𝜈cn = 𝜈out across the entire structure, comprising the inclusion, all cloaking annuli and the surrounding
material. Indeed, we consider a wide range of values of 𝜈, from conventional to auxetic. We emphasise, however, that our analytical
approach does not depend on the Poisson ratio either being uniform across the device, or even (for example) different but precisely
tuned in each cloaking annulus. As noted above, this point is important from the viewpoint of fabricating a device experimentally,
because prescribing both the shear modulus and Poisson ratio of any given material component of a device would be almost
impossible to achieve in practice. We shall then return in Section 4 to perform numerics confirming that, for any given inclusion
and surrounding material, the Poisson ratios of the cloaking rings can be chosen essentially arbitrarily, with only the shear moduli
of the cloaking rings then needing to be precisely prescribed, given any set of arbitrarily chosen Poisson ratios.
5
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Fig. 2. Cloaking compression by surrounding an inclusion of radius 𝑅in = 1 with a single annulus extending from 𝑅 = 𝑅in to 𝑅c = 2. (a) Cloak modulus 𝐺c
s a function of the inclusion modulus. The Poisson ratio 𝜈 is uniform across the whole system, with 𝜈 = 0.9, 0.7, 0.5, 0.3, 0.1,−0.1,−0.3,−0.5,−0.7,−0.9 in curves
lack, red, green, blue, yellow, brown, grey, violet, cyan and magenta top to bottom at the left. (b) Cloaking performance evidenced by comparing the degree
f disturbance to the displacement field (Eq. (21)) for a cloaked inclusion (bottom curves) with that for an uncloaked inclusion (top curves). Colour scheme as
n (a).

.2.1. Cloaking bulk compression
As a warmup to cloaking an arbitrary admixture of compression and shear, we consider first the simpler task of cloaking only

ompression 𝑑𝑉 (or expansion 𝑑𝑉 < 0). Here the shear components 𝑑𝛾 = 𝑑𝜖 = 0 and subsystems (III) and (IV) have the trivial
olution 𝐮 = 0, giving |𝑢𝜃𝑠−1| = |𝑢𝜃𝑠−3| = |𝑢𝜃𝑐−1| = |𝑢𝜃𝑐−3| = 0: the deformation field in isotropic compression is independent of 𝜃, as
xpected.

Our cloaking metric in Eq. (21) thus reduces to 𝑔 = |𝑢𝑟−1|, and the task of cloaking to engineering 𝑢𝑟−1 = 0 in the surrounding
edium. Recall that this quantity appears in the solution vector 𝐮 of subsystem (II), the governing matrix 𝐚 of which encodes
qs. (17) and (19), and so depends on the elastic moduli 𝐺in, 𝐺cn and 𝐺out = 1 and Poisson ratios 𝜈in, 𝜈cn and 𝜈out . Indeed, for
rbitrary chosen 𝐺in, 𝜈in, 𝐺cn, 𝜈cn, this system 𝐚 ⋅ 𝐮 = 𝐛 will be exactly specified, with each component of its solution 𝐮 non-zero in
eneral.

To achieve cloaking, we need a single additional degree of freedom, which can be tuned to engineer the single condition 𝑢𝑟−1 = 0
n the surrounding medium. Accordingly, we need a single cloaking annulus of tuneable modulus 𝐺c. Linearity further ensures
hat, for any inclusion 𝐺in, the same cloaking 𝐺c will cloak any compression 𝑑𝑉 . Numerically solving subsystem (II) with a single
nnulus, we employ the downhill simplex method (Teukolsky et al., 1992) to minimise the surrounding medium’s 𝑔 = |𝑢𝑟−1| in the
olution vector 𝐮 across values of the cloak modulus 𝐺c, given any inclusion modulus 𝐺in. See Fig. 2. We achieve a cloaking metric
= 𝑂(10−6), limited only by numerical tolerance, indicating essentially perfect cloaking.

.2.2. Cloaking arbitrarily mixed pure shear and simple shear
We now turn to cloaking shear, for now with zero compression 𝑑𝑉 = 0. Here subsystem II has the trivial solution 𝐮 = 0 giving

𝑢𝑟−1| = 0 in the surrounding medium. Our cloaking metric thus reduces to 𝑔 = |𝑢𝜃𝑠−1|+ |𝑢𝜃𝑠−3|+ |𝑢𝜃𝑐−1|+ |𝑢𝜃𝑐−3| in which 𝑢𝜃𝑐−1, 𝑢𝜃𝑐−3
ppear in the solution vector of subsystem (IV) and 𝑢𝜃𝑠−1, 𝑢𝜃𝑠−3 in that of (III). Recall that (III) and (IV) are however the same, so
hat eliminating 𝑢𝜃𝑐−1 and 𝑢𝜃𝑐−3 automatically also eliminates 𝑢𝜃𝑠−1 and 𝑢𝜃𝑠−3. The task of cloaking thus reduces to engineering the
win conditions 𝑢𝜃𝑐−1 = 0 and 𝑢𝜃𝑐−3 = 0 in the surrounding medium.

As usual, given arbitrary 𝐺in, 𝐺cn in the governing matrix 𝐚 of (IV), each component of its solution vector 𝐮 will be non-zero in
eneral. To achieve cloaking, we need two additional degrees of freedom, tuneable to engineer the two conditions 𝑢𝜃𝑐−1 = 0 and
𝜃𝑐−3 = 0. Accordingly, we now need two cloaking annuli with tuneable moduli 𝐺c1 and 𝐺c2. Given linearity and the equivalence of
III) and (IV), the same cloaking 𝐺c1 and 𝐺c2 will then cloak any arbitrary admixture of pure shear 𝑑𝜖 and simple shear 𝑑𝛾, for any
iven inclusion modulus 𝐺 . Numerically solving subsystem (III) with two annuli, we minimise |𝑢 |+ |𝑢 | in its solution vector
6
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Fig. 3. Cloaking arbitrarily mixed simple and pure shear by surrounding an inclusion of radius 𝑅in = 1 with two concentric annuli, with the inner annulus
xtending from 𝑅in = 1 to 𝑅 = 3∕2 and the outer annulus from 𝑅 = 3∕2 to 𝑅c = 2. (a + b) Modulus 𝐺c1 and 𝐺c2 of the inner and outer cloak annulus respectively,
s a function of the inclusion modulus. The Poisson ratio 𝜈 is uniform across the system, with 𝜈 = 0.9, 0.7, 0.5, 0.3, 0.1,−0.1,−0.3,−0.5,−0.7 in curves black, red,
reen, blue, yellow, brown, grey, violet, cyan bottom to top for 𝐺c1 and top to bottom for 𝐺c2. (c) Cloaking performance evidenced as in Fig. 2(b).

across values of 𝐺c1 and 𝐺c2, for any given inclusion modulus 𝐺in. The results are shown Fig. 2, which again confirms essentially
erfect cloaking, with 𝑔 = 𝑂(10−6).

.2.3. Cloaking arbitrarily mixed compression and shear
We consider finally cloaking shear and compression combined. Here we must consider both subsystems (II) and (IV)=(III), aiming

o reduce our metric 𝑔 = |𝑢𝑟−1|+ |𝑢𝜃𝑐−1|+ |𝑢𝜃𝑐−3| to zero. (We have removed from Eq. (21) the quantity |𝑢𝜃−1|, which relates to solid
ody rotation and is automatically zero as noted above. We have also removed |𝑢𝜃𝑠−1|, |𝑢𝜃𝑠−3|, which are automatically zero once
𝑢𝜃𝑐−1|, |𝑢𝜃𝑐−3| are eliminated, as also noted above.) We accordingly now require three tuneable quantities – three cloaking annuli of
eparately tuneable moduli 𝐺c1, 𝐺c2 and 𝐺c3 – in order that each of |𝑢𝑟−1|, |𝑢𝜃𝑐−1| and |𝑢𝜃𝑐−3| can be tuned to zero. Linearity of the
overning equations then means that the same combination of 𝐺c1, 𝐺c2 and 𝐺c3 will cloak any arbitrary admixture of compression
nd shear, for any given inclusion modulus 𝐺in. Numerically solving subsystems (I) and (IV)=(III) simultaneously with three annuli,
e minimise 𝑔 = |𝑢𝑟−1| + |𝑢𝜃𝑐−1| + |𝑢𝜃𝑐−3| in the solution across 𝐺c1, 𝐺c2 and 𝐺c3 for any 𝐺in. The results are shown in Fig. 4, again

howing essentially perfect cloaking.
We have only however been able to find cloaking solutions under mixed compression and shear in Fig. 4 for conventional

aterials of positive Poisson ratio 𝜈 and not auxetics with 𝜈 < 0. Recall that we did however achieve cloaking in auxetics under
ompression and shear separately in Figs. 2 and 3.

. Confirmation by direct numerical simulation

So far, we have performed analytical calculations to predict conditions for perfect cloaking. We now confirm these predictions by
irect numerical simulation of an elastic material in a biperiodic box. On a 𝑑 = 2 dimensional lattice of 𝑁 ×𝑁 sites, we numerically
olve Eqs. (1) to (3) as follows. First, we add to the stress in Eq. (2) a dissipative contribution of viscosity 𝜂, 𝜎𝑖𝑗 (𝑟𝑖, 𝑡) → 𝜎𝑖𝑗 (𝑟𝑖, 𝑡)+2𝜂𝐷𝑖𝑗 ,
ith strain rate 𝐷𝑖𝑗 = �̇�𝑖𝑗 =

1
2

(

𝜕𝑖𝑣𝑗 + 𝜕𝑗𝑣𝑖
)

and velocity 𝑣𝑖 = �̇�𝑖. We then use a time-stepping algorithm, with two separate sub-steps
at each timestep. The first comprises an elastic update, in which the strain at each site is incremented 𝜖𝑖𝑗 → 𝜖𝑖𝑗 +𝛿𝑡𝐷𝑖𝑗 , with timestep
𝑡. This updated strain 𝜖𝑖𝑗 is then used to calculate the updated elastic stress 𝜎𝑖𝑗 in Eq. (2). In the second substep, this elastic stress
s transformed into Fourier space with periodic boundary conditions. Imposing force balance on the total stress field, including
7
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i

Fig. 4. Cloaking arbitrarily mixed compression, simple shear and pure shear by surrounding an inclusion of radius 𝑅in = 1 by three concentric annuli, with the
nner annulus extending from 𝑅in = 1 to 𝑅 = 4∕3, the middle annulus from 𝑅 = 4∕3 to 𝑅 = 5∕3 and the outer annulus from 𝑅 = 5∕3 to 𝑅c = 2. (a-c) Modulus
𝐺c1, 𝐺c2 and 𝐺c3 of the inner, middle and outer cloak annulus, as a function of the inclusion modulus. The Poisson ratio 𝜈 is uniform across the system in all
cases, with 𝜈 = 0.8, 0.7, 0.6, 0.5, 0.4, 0.3 in curves black, red, green, blue, violet, cyan bottom to top at the right for 𝐺c1. (d) Cloaking performance evidenced as
in Fig. 2(b).

calculated. This is added to the homogeneous affine imposed strain rate to give the total strain rate, which is used again in the first
substep at the next timestep. This process is repeated until the spatially averaged magnitude of the strain rate tensor falls below a
small threshold 𝑂(10−6), indicating that static equilibrium has been attained.

We simulate first a single inclusion of low or high modulus 𝐺in = 0.1 or 𝐺in = 10.0, in each case subject to a randomly chosen
admixture of compression and shear, with three cloaking annuli with moduli taken from our analytical predictions in Fig. 4. The
results are shown in the top two rows of Fig. 5, confirming excellent cloaking.

In our analytical calculation, we assumed perfectly sharp interfaces between annuli. In our numerics, the interfaces have a small
but non-zero thickness set by the mesh size. This causes a small correction to perfect cloaking, which we characterise in our numerics
by the metric 𝑔, defined now as the integral over space outside the cloaked inclusion of the squared deviation of the deformation
field from the affine homogeneous one. This is indeed non-zero (Fig. 6) but decreases with increasing mesh resolution, suggesting
that perfect cloaking will be recovered for perfectly sharp interfaces as 𝑁 → ∞, consistent with our analytical considerations above.

Given that a single inclusion can be cloaked in the way we have described, even at near field close to the cloaking perimeter,
it follows that multiple inclusions arranged with arbitrarily high packing fraction in a surrounding medium can also be cloaked.
This is confirmed by our simulation results in the bottom row of Fig. 5. This indicates a possible route to fabricating composite
materials with any density of inclusions in a surrounding medium, however high, in which the strain and stress fields remain
uniform outwith the inclusions. This may facilitate the design of composites with the same overall bulk mechanical properties as
an originally homogeneous medium, but with (for example) a lower density overall. It may also potentially mitigate the increased
risk of cracking that could arise from stress concentrations in a composite without cloaking.

4. Discussion

We have shown theoretically that essentially perfect elastostatic cloaking of a circular inclusion in a homogeneous surrounding
medium can be achieved by means of a cloak comprising three concentric annuli, in any arbitrary combination of compression and
shear. A full range of circular inclusions can be cloaked in this way, from soft to stiff. In consequence, we suggest also that an
inclusion of any arbitrary shape can also be cloaked, by first enveloping it in a stiff circle, then cloaking the combined structure
with three annuli as described. Compared with cloaks fabricated from metamaterials comprising many subunits, the cloaks suggested
8

here are simple and significantly more effective.
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Fig. 5. Direct numerical simulation in a biperiodic box with contour lines showing constant horizontal displacement. Left: uncloaked. Right: cloaked by three
annuli. Blue lines: affine deformation field without any inclusion. Red lines: deformation field with inclusion but without cloak. Green lines: deformation
field with inclusion and cloak, almost indistinguishable outside cloak from affine field. Top: single inclusion of modulus 𝐺in = 0.1 and cloak moduli
𝐺c1 = 18.83, 𝐺c2 = 0.83, 𝐺c3 = 0.74 outwards. Middle: single inclusion of modulus 𝐺in = 10.0 and cloak moduli 𝐺c1 = 0.050, 𝐺c2 = 31.54, 𝐺c3 = 0.47. Bottom:
nine inclusions of random radii placed randomly. log10 𝐺in for each inclusion is chosen randomly from a top hat distribution between −0.1 and +1.0. For each
inclusion the cloaking moduli 𝐺c1 , 𝐺c2 and 𝐺c3 were taken from the analytical predictions in Fig. 4. Each deformation component 𝑑𝑉 , 𝑑𝜖, 𝑑𝛾 is chosen randomly
from a top hat distribution between −1.00 and +1.00, with 𝑑𝑉 = −0.18, 𝑑𝜖 = 0.83, 𝑑𝛾 = 0.49 for the single inclusion and 𝑑𝑉 = 0.45, 𝑑𝜖 = −0.24, 𝑑𝛾 = −0.99 for the
multiple inclusions. Poisson ratio 𝜈 = 0.8 for surrounding material, cloak and inclusion.

Fig. 6. Cloaking performance as a function of number of numerical grid points in direct numerical simulation, evidenced by comparing the degree of disturbance
to the displacement field (Eq. (21)) for a cloaked void or inclusion (bottom) with that for an uncloaked void or inclusion (top). Inclusion modulus 𝐺in = 10.0.
Cloaking moduli 𝐺c1 = 0.050, 𝐺c2 = 31.54, 𝐺c3 = 0.47 taken from the analytical predictions in Fig. 4. The applied deformation 𝑑𝑉 = −0.18, 𝑑𝜖 = 0.83, 𝑑𝛾 = 0.49.
Poisson ratio 𝜈 = 0.8 for surrounding material, cloak and inclusion.
9
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Fig. 7. Direct numerical simulation in a biperiodic box, with contour lines showing constant horizontal displacement. Left: uncloaked. Right: cloaked by three
annuli. Blue lines: affine deformation field without any inclusion. Red lines: deformation field with inclusion but without cloak. Green lines: deformation field
with inclusion and cloak, almost indistinguishable outside cloak from affine field. Here we chose each Poisson ratio 𝜈in = 0.699, 𝜈c1 = 0.990, 𝜈c2 = 0.587, 𝜈c3 =
0.266, 𝜈out = 0.570 randomly from a top hat distribution between 0.0 and 1.0, log10 𝐺in randomly from a top hat distribution between −1.0 and 1.0, giving
𝐺in = 1.54, and each of 𝑑𝑉 = −0.44, 𝑑𝜖 = 0.57, 𝑑𝛾 = 0.31 randomly from a top hat distribution between −1.0 and 1.0. The shear modulus of each annulus was
then tuned to give cloaking: 𝐺c1 = 0.971, 𝐺c2 = 0.417, 𝐺c3 = 1.598.

Indeed, in achieving essentially perfect cloaking performance, the strain and so also stress fields outside the cloaked inclusion are
undisturbed compared with those in a homogeneous medium without an inclusion. Accordingly, our results should apply equally
to arbitrary imposed loads as well as the arbitrary imposed strains that we have considered here.

Our analytical calculations in Section 2 showed that respectively one, two and three tuneable cloaking shear moduli are needed
to cloak compression, shear, and arbitrarily mixed compression and shear respectively. For simplicity, we performed our numerical
calculations in the associated Figs. 2, 3 and 4 assuming a uniform Poisson ratio 𝜈 = 𝜈in = 𝜈cn = 𝜈out across the entire device
(inclusion, all cloaking annuli and the surrounding material). Our analytical approach does not however place any requirement on
the value of the Poisson ratio being precisely tuned in any part of the device. As noted above, this is important for fabricating a
device experimentally, because precisely prescribing both the shear modulus and Poisson ratio of any given material component is
essentially impossible to achieve in practice.

With this motivation, we show finally in Fig. 7 a fully cloaked state for an arbitrarily imposed deformation for a given inclusion
and surrounding material in which the Poisson ratio of each cloaking annulus 𝜈cn was chosen randomly from a flat distribution
between zero and one. For this given, arbitrarily chosen set of values of 𝜈cn, the moduli 𝐺cn of the cloaking annuli were then tuned
to ensure cloaking. We emphasise, therefore, that for any given combination of materials of (linear elastic) inclusion and surrounding
medium, an experimentalist is free (first) to choose the Poisson ratio of each cloaking annulus arbitrarily. For any such set of Poisson
ratios, thus chosen, it then suffices only to precisely select the shear modulus of each annulus according to the prescription given
above.

Our calculations have predicted perfect cloaking in the limit of perfectly sharp interfaces between annuli. Any real interface will
in practice have a small but finite thickness set by microscopics, suggesting slightly imperfect cloaking. It is worth noting, however,
that imperfect interfaces have also been suggested as a way to enhance cloaking (Bertoldi et al., 2007; Bigoni et al., 1998; He, 2002;
Ru, 1998; Wang and Schiavone, 2012).

We have focused on circular inclusions in 𝑑 = 2 spatial dimensions. Future work should extend the analytical arguments
developed here to spherical inclusions in 𝑑 = 3 dimensions. Our calculations have furthermore been performed in the linear elastic
regime, and therefore apply in systems subject to small deformation and/or loads that are small on scale of material’s modulus. We
defer to future work a study of cloaking in the nonlinear elastic regime.
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