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Abstract

The present study evaluates the future drought hazard in Morocco using a Multi-Model En-
semble (MME) approach. First, the artificial neural network-based MME is constructed using
the the General Circulation Models (GCMs) from the Climate Models Intercomparison Project
phase 6 (CMIP6) which are most successful in representing the historical temperature and pre-
cipitation values. Next, the future changes in the precipitation, Potential EvapoTranspiration
(PET) calculated using temperatures data, aridity index, and drought indices calculated via
the Standardized Precipitation Evapotranspiration Index (SPEI) values were projected for the
historical period 1980-2014, near future 2025-2050, mid future 2051-2075, and far future 2076-
2100. The obtained results indicate that there will be a decrease in values of the precipitation
and an increase in values of the PET, leading to an increase in aridity risk for Morocco. The
future projections using the SPEI results show that the average index values will mostly be
in the drought zone, indicating that the drought severity will increase. The spatial analysis of
SPEI values in different regions of Morocco demonstrates that the northern part of the country
has relatively more drought occurrences, and drought severity tends to increase with each pass-
ing period. The study also reveals that drought severity will significantly increase after 2050 in
the Shared Socio-economic Pathways 5-8.5 (SSP5-8.5) scenario. The research concludes that
the increase in drought severity will significantly impact Morocco’s water resources, agriculture
and food security among others.
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1 Introduction

Droughts are unfortunate natural disaster characterised by long periods of limited access to water,
and has therefore non-negligible impact on humans (AghaKouchak et al., 2021), societies (D’Odorico
et al., 2010) and food systems (Tardieu, 2020). Due to the diverse climate driving the region,
northern Africa is strongly vulnerable to droughts and Morocco constitutes a case study in its point
within this context (Le Page and Zribi, 2019). Throughout the past, the region has experienced
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many drought episodes that have led to disastrous social and economical disruptions (Esper et al.,
2007). In a region where resilience is yet a challenging problem (Satour et al., 2021), some vital
sectors for the development still suffer from the after-effects of these aforementioned events. This
includes some direct sequels such as desertification (Benbrahim et al., 2004), landslide (Ivčević
et al., 2020) and water shortage (El Moçayd et al., 2020) to name few, but also indirect ones such as
poverty, hunger and social crisis (Anderson et al., 2021). The occurrence of droughts in Morocco is
strictly linked to the high variability of precipitation and temperature. In fact, the climatic situation
of the country is characterized by a strong temporal variability oscillating between sudden heavy
precipitations and major episodes of drought. This situation renders water management in Morocco
very challenging at different levels, especially to sustain agriculture (Doukkali, 2005). In fact, as
stated in (Elalaoui et al., 2021), the local economy in the country depends highly on
agriculture as its contribution to local GDP can achieve 15%, compare the figure in page
200 of (Elalaoui et al., 2021). Moreover, many ongoing efforts by the local government intend to
support this economy through launching several programs dedicated to support this vision, such as
the Moroccan green project launched in 2008. Despite the economic benefits of such programs, this
has led to increasing water demand as well (Ward and Pulido-Velazquez, 2008), increasing thus the
vulnerability level of the agriculture in the country to droughts (Maggioni, 2015). Since the 1960s,
Morocco has actively pursued irrigation development resulting in approximately 1.5 million hectares,
or 16% of the country’s total arable land, now being irrigated. This is close to the estimated potential
of 1.65 million hectares. The government has developed and managed two-thirds of this irrigated
land through ”irrigated perimeters” which encompass nine major regions covering nearly 900, 000
hectares and are equipped with extensive water collection and delivery systems. The remaining
irrigated areas, totaling over 100 small-scale plots, are typically situated farther away from dams
and rely more on local groundwater pumping. Despite comprising only 16% of arable land, irrigation
contributes to 45% of the agricultural added value on average, which can rise to 70% in dry years, and
accounts for 75% of agricultural exports (Kadi, 2002). Revenue per hectare from irrigated crops is
four to eight times higher than that from rainfed crops (Tuel, 2020). In addition within this context,
the drought remains a significant hurdle to sustaining irrigation and agricultural productivity. Given
the proven vulnerability of Morocco to the drought (Driouech et al., 2021), it is crucial to closely
analyze its various pathways under different climate change scenarios and understand the resulting
impact on agriculture.

In practice, it is very difficult to quantify a drought event since many definitions according to
the prism upon which it is analysed, are present in the literature (Wilhite and Glantz, 1985). Still,
one can subdivide them into four different classes based on the socio-economical, agricultural, hy-
drological or meteorological impacts. Agricultural-based droughts are defined based on the intrinsic
dynamics occurring between plants, soil and atmosphere, and they require data related to these
systems such as soil moisture description, plant water demand and evapotranspiration deficit data
(Liu et al., 2016). On the other hand, hydrological-based droughts are described based on the ability
of the natural system to retain sufficient water for human use, and they are therefore based on water
demand, hydrological description and water availability (Van Loon, 2015) among others. It should
also be stressed that because of the large data requirements, which are not available within the en-
vironment of the study, the focus in the present study is brought to meteorological-based droughts.
Generally, two indices are commonly used in the literature in the Mediterranean basin, namely the
SPI (McKee et al., 1993) and the SPEI (Vicente-Serrano et al., 2010), and are also recommended by
the World Meteorological Organisation (WMO) (Svoboda et al., 2012). Notice that the SPI defines
droughts as long periods without rainfall supply, whereas the SPEI extends the definition also to
the ability of natural systems to lose water through evaporation by introducing the water budget as
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the deficit between precipitation and evaporation. Hence, based on these definitions, droughts vary
alongside with climate parameters of variability in the country, particularly the precipitation and
temperature.

The location of Morocco and its complex topography are all factors that strongly contribute to
the high variability of the climate and some studies have confirmed that this variability has been
consistent over a millennium time scale (Esper et al., 2007). The west region of the country is facing
the Atlantic ocean in the extratropical region. Moisture availability is driven therefore by several
large scale oscillations such as North Atlantic Oscillation (NAO) (Knippertz et al., 2003) for large
time scale, and Madden Julian Oscillation (MJO) (Chaqdid et al., 2023) in moderate time scale. On
the north-eastern part of Morocco facing the Mediterranean sea, a water body surrounded by three
continents (Africa, Europe and Asia) with a small connection to the Atlantic ocean of approximately
14 km at the Strait of Gibraltar. This puts Morocco under the excitation of the Mediterranean
Oscillation (MO), which is characterised by a strong and robust cyclonic activities over the sea that
sustain a strong wind flow bringing dry and hot air from the sahara region towards the country (Filahi
et al., 2016). Note that these numerous excitations translate into complex weather in the country,
driving most of the time the climate to extreme conditions (Filahi et al., 2016; Khomsi et al., 2016).
Furthermore, the Mediterranean region is a host for considerable climate change impact (Tuel and
Eltahir, 2020). Thus, Morocco is particularly vulnerable to future changes, especially regarding water
management. It is worth mentioning that with projected increase in temperature and decrease in
precipitation, the country is more likely to receive little water compared to the present situation. This
will impact different essential components of the hydrological system which have major contributions
to the agricultural economy such as river stream flows (El Moçayd et al., 2020), snow coverage (Tuel
et al., 2022) and soil moisture among others. In addition, with the growing number of drought
episodes, this situation could be considerably worse in future scenarios. In general, future projections
are assessed using imperfect models that hardly capture all the complexity expressed in the local
climate. This is particularly true for Morocco where the uncertainty of climate simulations is further
increased as observational ground data in the region are sparse and historical records are not long
enough. This may explain why modelling the extreme climate in Morocco is still challenging and
has received little attention compared to average climatology.

Although many studies have addressed the drought modelling in the region, still many challenges
remain unresolved. One of the main limitations in these studies is the scarcity of data, especially
those required to address extreme weather conditions. For this purpose, (Ezzine et al., 2014) intro-
duced a new drought index based on open data referred to by Standardized Water Index (SWI). The
obtained results exhibit good agreement between the introduced SWI and the SPI and highlighted
the limitations expressed by the use of short time series. The climate variability and important
seasonality are also important hurdles regarding the drought monitoring in the region as reported
in (Fniguire et al., 2017). Furthermore, the climate change impact on drought occurrences has not
received enough attention because of the challenges aforementioned. For example (Elkharrim and
Bahi, 2015) evaluated future projections of drought in the Bouregreg basin using a statistical down-
scaling model from HadCM3 outputs in order to predict future scenarios. It should also be stressed
that based on recent works, statistical downscaling may suffer from some limitations. In addition to
the limitation presented by the small size of historical records, all the General Circulation Models
(GCMs) fail to correctly capture all the physical mechanisms responsible for the observed climatic
variability in Morocco (Tuel et al., 2021). Accordingly, the choice of the GCMs for downscaling
should be performed carefully, mainly for extreme events whose physical drivers are profoundly
different.

In the present study, based on the development of new station-based historical records in the
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region and with the development of CMIP6 experiments whose description takes into account dif-
ferent concentration pathways and different socio-economic projections accurately compared to the
previous CMIP3 or CMIP5, we demonstrate that evaluations of drought and its future projections
are possible. This issue is addressed in this study using an Artificial Neural Network (ANN) based
statistical downscaling together with a careful choice of the GCM description. First, climate vari-
ables such as temperature and precipitation are fully described for all the observation stations, then
mapping of these variables over the country is performed using a spatial interpolation. Moreover,
the evaluation of droughts is carried out using the SPEI in order to take into account the bal-
ance between water availability and potential loss through evaporation. Next, future projections of
droughts following mitigation and business-as-usual scenarios are evaluated. Finally, as agriculture
is the main vital economical sector vulnerable to climate change in the country, future projections of
the SPEI during the growing seasons are discussed and the potential impact on the main crops is also
highlighted. The remainder of this paper is organized as follows: Section 2 describes the study area,
including the observing stations and CMIP6 GCMs used in the drought analysis. Next, in Section
3, we describe the procedure used in this study for statistical downscaling and the SPEI method.
Section 4 evaluates the historical and possible future drought patterns with those results obtained
by projecting values of the precipitation, PET and Aridity Index in the considered region. This
section also covers the relationship between the drought and agricultural production. Discussions on
differences and agreements of the results obtained for the region with previous studies are presented
in Section 5. Finally, Section 6 summarizes the paper with concluding remarks.

2 Study area and data

Morocco, a substantial and expansive nation situated in the northwestern region of the african
continent (see Figure 1), experiences a localized climate impacted by the interaction of many large-
scale oscillations with a complex topography. The country’s western coastline, which faces the
vast Atlantic ocean, is subject to the influence of the North Atlantic Oscillation (NAO) (Knippertz
et al., 2003), a climatic phenomenon that exerts a profound effect on the availability of moisture and
precipitation patterns across Morocco. In addition, the country’s northeastern region is influenced
by the intricate dynamics of the Mediterranean sea, particularly in future projections, where the
interplay between land and sea is pivotal in rendering the area highly susceptible to the impacts
of climate change (Tuel and Eltahir, 2020). Recent research has further unveiled additional large-
scale phenomena responsible for regulating the region’s climate variability such as the Madden-
Julian Oscillation (MJO) (Gadouali et al., 2020; Chaqdid et al., 2023). Furthermore, the country’s
topography poses additional complexities, with the towering Atlas and Rif mountains significantly
shaping the temperature and precipitation patterns that characterize Morocco’s climate.

The implementation of measured data as opposed to reanalysis data in the context of statisti-
cal downscaling is known to enhance the predictive performance of the models (Manzanas et al.,
2015). To this end, the present study draws upon observation stations in Morocco provided by the
national meteorological agency known by the Direction Générale de la Météo (DGM), undertakes
regular measurements. In Table 1, we summarize the characteristics associated with these stations
including their ID and geographical coordinates and long-term averaged values for minimum daily
temperature (Tmin), maximum temperature (Tmax) and daily precipitation (Prep). In order to carry
out statistical downscaling, daily measurements recorded at these stations were first transformed
into monthly values. In particularly, monthly averaged minimum and maximum temperatures were
calculated based on the monthly averages of daily minimum and maximum temperatures (◦ C)
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Figure 1: Study area including Morocco’s geographical regions considered in the present work.

whereas precipitation values were derived from the average of daily measurements (mm/day). In
these stations, data between 1980 and 2014 were used and among these data, only one station has
8% missing data, while this rate is 1% or less in other stations. Notice that the missing data were
completed through the linear regression method and the neighbouring stations’ data. Thus, a time
series was obtained for the years 1980-2014 for all stations to be used in the statistical downscaling.

In the current work, temperature and precipitation data obtained from the Multi Model Ensemble
created by (Gumus et al., 2023) for Morocco are used in the assessment of drought. In the study of
(Gumus et al., 2023), the CMIP6’s 15 GCMs are selected to analyse historical data of monthly mean
daily precipitation, monthly mean maximum temperature and monthly mean minimum temperature.
These GCMs are available from the Earth System Grid Federation1 (ESGF). The institutes, variable
labels, horizontal and vertical resolutions of the GCMs used in our study are listed in Table 2. In
order to establish a common working concept between the models, careful analysis has been carried
out to ensure they have the same variance (r1i1p1f1). However, due to the lack of past or future
data for variables selected as inputs to ANN-based downscaling, different variants have been used
in the four GCMs. Furthermore, since the considered models have different horizontal and vertical
resolutions, the latitude-longitude location of the observation stations have been interpolated to

1https://esgf-node.llnl.gov/ search/cmip6
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Table 1: Geographical coordinates and mean values of used climate variables of stations considered
in this study.

Station ID Station Name Longutude (◦) Latitude (◦) Tmin (◦ C) Tmax (◦ C) Prep (mm/day)

S01 KENITRA -6.60 34.30 13.25 23.12 1.534

S02 SIDI IFNI -10.20 29.40 16.78 21.89 0.412

S03 AGADIR -9.57 30.38 14.34 24.09 0.717

S04 ALHOCEIMA -3.57 35.15 13.93 22.27 0.875

S05 BENI MELLAL -6.40 32.37 11.24 26.92 0.985

S06 BOUARFA -1.59 32.32 11.98 24.74 0.437

S07 IFRANE -5.17 33.50 6.21 18.16 2.648

S08 LAAYOUNE -13.12 27.09 15.97 26.43 0.155

S09 LARACHE -6.16 35.18 13.62 22.31 1.881

S10 TANGIER -5.91 35.72 13.69 22.48 1.886

S11 TANTAN -10.90 28.00 15.55 23.62 0.298

S12 TETOUAN -5.40 35.60 14.74 22.72 1.852

S13 CASABLANCA (ANFA) -7.67 33.57 14.50 21.94 1.104

S14 ERRACHIDIA -4.39 31.94 13.19 26.39 0.348

S15 ESSAOUIRA -9.78 31.52 15.11 20.43 0.882

S16 FES -4.98 33.93 10.22 24.16 1.329

S17 KASBAT TADLA -6.28 32.53 12.02 26.88 1.011

S18 MARRAKESH -8.03 31.62 13.46 27.26 0.609

S19 MEKNES -5.53 33.88 11.39 23.91 1.335

S20 MIDELT -4.73 32.68 8.45 21.78 0.479

S21 CASABLANCA (AIRPORT) -7.58 33.37 11.85 24.01 0.845

S22 OUARZAZATE -6.90 30.93 12.25 26.99 0.333

S23 OUJDA -1.93 34.78 10.85 24.31 0.734

S24 RABAT SALE -6.77 34.05 12.74 22.49 1.390

S25 SAFI -9.23 32.28 13.83 23.60 1.015

S26 TAZA -4.00 34.20 12.79 24.62 1.518

S27 DAKHLA -15.90 23.70 17.12 24.12 0.078

establish a common position for both observations and models. Finally, cereal production in Morocco
is obtained from the Food and Agriculture Organization (FAO) available on the website FAOSTAT.
This database provides different information on crop production on a country level.

3 Methods for statistical downscaling and SPEI

The assessment of possible future droughts in Morocco is primarily based on the future projection
of precipitation and temperature in the country. For this purpose, daily observed climate data are
converted to monthly averaged values. Next, spatial interpolation using a bi-linear reconstruction
is carried out to define the 21 parameters of the GCMs as potential predictors according to the
corresponding geographical coordinates of the observation stations. The main reason for using
the bilinear interpolation lies in the fact that this method can transform the data from
a coarser resolution to a finer resolution without affecting the climate signal (Ahmed
et al., 2020). Consequently, re-gridding of GCMs does not significantly affect their

6



Table 2: The CMIP6 GCMs used for the climate projection.

No Name CMIP6 model Country Resolution (◦ lon×◦ lat) Variant label Key reference

1 ACCESS-CM2 Australia 1.9◦ × 1.3◦ r1i1p1f1 (Bi et al., 2013)

2 CanESM5 Canada 2.8◦ × 2.8◦ r1i1p1f1 (Swart et al., 2019)

3 CanESM5-CanOE Canada 2.8◦ × 2.8◦ r1i1p2f1 (Swart et al., 2019)

4 CNRM-CM6-1-HR France 0.5◦ × 0.5◦ r1i1p1f2 (Voldoire et al., 2019)

5 CNRM-ESM2-1 France 1.4◦ × 1.4◦ r1i1p1f3 (Séférian et al., 2019)

6 EC-Earth3-Veg Europe 0.7◦ × 0.7◦ r1i1p1f1 (Wyser et al., 2020)

7 FGOALS-g3 China 2.0◦ × 2.3◦ r1i1p1f1 (Li et al., 2020b)

8 GFDL-ESM4 USA 1.25◦ × 1.0◦ r1i1p1f1 (Dunne et al., 2020)

9 GISS-E2-1-G USA 2.5◦ × 2.0◦ r1i1p1f2 (Kelley et al., 2020)

10 INM-CM5-0 Russia 2.0◦ × 1.5◦ r1i1p1f1 (Kulyamin and Volodin, 2018)

11 IPSL-CM6A-LR France 2.50◦ × 1.26◦ r1i1p1f1 (Boucher et al., 2020)

12 MIROC6 Japan 1.41◦ × 1.41◦ r1i1p1f1 (Tatebe et al., 2019)

13 MPI-ESM1-2-HR Germany 0.937◦ × 0.937◦ r1i1p1f1 (Gutjahr et al., 2019)

14 MRI-ESM2-0 Japan 1.125◦ × 1.125◦ r1i1p1f1 (Yukimoto et al., 2019)

15 NESM3 China 1.9◦ × 1.9◦ r1i1p1f1 (Cao et al., 2018)

Table 3: Classification of the SPEI.

SPEI values Drought class

−1.0 < SPEI ≤ 0 Mild Drought (MD)

−1.5 < SPEI ≤ −1.0 Moderate Drought (MoD)

−2.0 < SPEI ≤ −1.5 Severe Drought (SD)

−2.0 ≥ SPEI Extreme Drought (ED)

performance (Pour et al., 2018). It should also be stressed that other interpolation
procedures can also be used in our study without major conceptual modifications.
These potential predictors are air temperature, relative humidity and geopotential height for five
pressure levels (i.e. 200, 300, 500, 700 and 850), sea level air pressure, surface air pressure, precipita-
tion, minimum temperature Tmin, maximum temperature Tmax, and mean near-surface temperature.
Then, five of the predictors with the highest correlation with the observation data are then deter-
mined as predictors, and an artificial neural network model is constructed to predict the observation
data. After determining the ANN-based model that best predicts the observation data according
to the criteria detailed in (Gumus et al., 2023), the Multi-Model Ensemble (MME) is created using
the most successful models. Finally, future precipitation and temperature values for two different
Shared Socioeconomic Pathways (SSP2-4.5 and SSP5-8.5) scenarios are calculated for each station
using the input parameters used to predict the observation data and the ANN model. Details of this
procedure can be found in (Gumus et al., 2023) and will not be repeated here. Next, the precipi-
tation and temperature values obtained with this approach are used for the estimation of drought
indices.

Based on the impact of climate change on the variation of temperature, the evaporation process
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may have important effects on the water availability and this contribution needs to be emphasized.
For this reason, the Standardized Precipitation Evapotranspiration Index (SPEI) method is imple-
mented here using values of the precipitation and potential evapotranspiration (PET) to estimate
the drought indices. Future projections of the PET are estimated using temperature data and their
projections under climate change scenarios. The SPEI method, first introduced by (Vicente-
Serrano et al., 2010) and later revisited by (Begueria et al., 2014), calculates the differ-
ence (D) between the monthly precipitation (P) and the potential evapotranspiration
(PET) for each month. The resulting D values are then transformed to a standard nor-
mal distribution by fitting them to a log-logistic distribution, yielding the SPEI values.
Although there are studies suggesting the use of different distributions for the SPEI
method such as (Wang et al., 2019; Stagge et al., 2015), the log-logistic distribution has
been shown to be very effective in several key studies including the original works by
(Vicente-Serrano et al., 2010; Begueria et al., 2014) and recent research by (Lee et al.,
2024). Needless to mention that given the change in data structure with the addition
of historical and projection data, this study adopts the log-logistic distribution as used
in the classical SPEI method for consistency and effectiveness. The drought classification
used in this study is outlined in Table 3, and further details on the method can be found in the
abovementioned references.

It is worth noting that the calculation of PET values, which is necessary for computing the
D in conjunction with precipitation, can significantly impact the results. Although the Penman-
Monteith method produces the most accurate PET values, the necessary data required for this study
is unavailable. Therefore, the Hargreaves-Samani method is used instead. This method produces
results comparable to the Penman-Monteith method (Begueria et al., 2014; Ortiz-Gómez et al.,
2022). It should also be stressed that since measured data to be used in the calculation of PET
values using the Penman-Monteith method are not available for the considered case study, we opt
for the Hargreaves-Samani approach in this study. The use of SPEI is preferred (especially against
SPI), as the the study area is located in the mid latitude. Accordingly, the precipitation deficit may
not be sufficient to fully describe the drought conditions accurately (Li et al., 2020a).

4 Results

In this section, the Multi-Model Ensemble (MME) generation process is briefly described first and
then, changes in the calculated SPEI values of the parameters which are important for the drought
according to different scenarios are evaluated temporally and spatially. For the results presented
in this section, the analysis of GCMs and artificial neural network modelling are carried out using
Matlab software whereas the R tools (SPEI package) were used for the calculation of drought index
values.

4.1 Projection of climatic data

Following the methodology presented in section 3, for each GCM description an ANN model is
constructed and climate variables are estimated. The performance of each model to predict Tmin,
Tmax and precipitation is evaluated using the approach detailed in (Seker and Gumus, 2022) for
statistical downscaling. Next, the MMEs are generated using the models that are most successful
in representing the historical values of each parameter. Accordingly, EC-Earth3-Veg, NESM3 and
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Figure 2: Temporal variation of Precipitation, PET and Aridity Index values along with box plots
of their trend slopes.

MPI-ESM1-2-HR are used for Tmin, EC-Earth3-Veg, NESM3, CanESM5-CanOE and MPI-ESM1-
2-HR for Tmax, and MIROC6, CanESM5-CanOE, IPSL-CM6A-LR, INM-CM5-0 and NESM3 for
the precipitation. Using these MMEs, projections of future temperature and precipitation values
are calculated. The results are obtained for the historical period 1980-2014, Near Future (NF)
2025-2050, Mid Future (MF) 2051-2075 and Far Future (FF) 2076-2100.

Next, values of the PET and aridity index are estimated following the method described in section
3 using the predicted values of Tmin, Tmax and precipitation for different scenarios. The temporal
changes of these values are presented in Figure 2, and spatial changes are displayed in Figure 3. The
distribution of precipitation between 1980 and 2014 shows that there was a peak precipitation in
1996 and 2010, and the averaged precipitation was 360 mm/year when all stations are considered
(see Figure 2 (a)). It is also clear that precipitation has shown a slightly increasing trend during
this period and it has an increasing trend of 30 mm/decade on average at the considered stations.
However, it is predicted that the trend of changes in the precipitation according to future scenarios
will turn into a decreasing trend in NF. Following the pessimistic SSP5-8.5 scenario, the decrease
slope in FF may achieve −12 mm/decade. The PET values shown in Figure 2 (b) are calculated
depending on the temperature values. The distribution of PET values calculated from the averaged
stations 1280 mm/year between 1980 and 2014 and it varies between 750 and 1600 mm/year. Note
that on average, the rate of PET slope for this period is 16 mm/decade, but it is projected to
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Figure 3: Spatial variation of Precipitation, PET and Aridity Index values.

decrease to 4.5 mm/decade by 2100 under the SSP2-4.5 scenario.

On the other hand, following the SSP5-8.5 scenario, the rate of change for the PET may achieve
11.7, 11.5 and 14.1 mm/decade for NF, MD and FF, respectively. Figure 2 (c) depicts the temporal
changes and slopes of Aridity Index (AI = P

PET
) calculated based on values of the precipitation and

PET. The United Nations Environment Programme (UNEP) and the world atlas of desertification
(Middleton and Thomas, 1992) employ the AI to delineate arid regions (with an AI<0.65) and to
categorise them into distinct subtypes: arid (AI<0.2), semi-arid (0.2≤AI<0.5), and dry sub-humid
(0.5≤AI<0.65) regions, as outlined by (Yu et al., 2022). According to Figure 2, the AI values across
Morocco have an average of 0.47 (median 0.43) and an increasing slope of 0.03/decade. However,
according to both scenarios, it is evident that the AI values will decrease from NF to FF, and the
aridity structure of many regions may change. Following the SSP5-8.5 scenario, the decrease rate of
the aridity index may achieve −0.02 in the FF. Overall, Morocco is likely to face a considerable risk
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Table 4: Changes in the coverage area of aridity classes between historical and future periods in
Morocco.

Class Hist
SSP2-4.5 SSP5-8.5

NF MF FF NF MF FF

Arid 42% 48% 53% 53% 49% 51% 53%

Semi-Arid 41% 38% 33% 33% 38% 35% 37%

Sub-Humid 7% 8% 8% 8% 8% 7% 6%

Humid 10% 6% 6% 7% 6% 7% 5%

of aridity resulting from the important decrease of precipitation and the increase in temperature.

Figure 3 presents the spatial distribution in values of precipitation, PET and Aridity Index in
the historical and future for the SSP2-4.5 and SSP5-8.5 scenarios. The precipitation pattern exhibits
a high spatial variability with an important gradient of distribution with very wet conditions in the
north and a dry situation in the south. It is recognized that the precipitation values calculated
with the MME will decrease for both scenarios, but the amount of decrease will be higher in the
FF period of SSP5-8.5. Especially in the Sahara region located in the south of the country, it is
noted that the region with low rainfall will move towards the north of the country. The change in
averaged values of the precipitation calculated using the distribution of precipitation in the maps
also supports the results of spatial patterns. According to the SSP2-4.5 scenario, the averaged
annual total precipitation value calculated as 295 mm between 1980-2014 is estimated to be 273,
260 and 259 mm in the NF, MF and FF periods, respectively. Notice that the averaged annual
total precipitation is calculated as 267, 256 and 245 mm in NF, MF and FF periods according to
the SSP5-8.5 scenario. Regarding both scenarios, it is evaluated that the precipitation values would
decrease to 245 mm at the end of the century in the pessimistic scenario; in other words, an average
decrease of 17% would occur.

The distribution of PET values indicates that calculated annual PET values in the country
between 1980 and 2014 were 1000-1600 mm, while the country average was 1286 mm. As for
the future PET values, it is clearly understood that they increase as time advances, especially in
the northern region of the country. Therefore, assuming the estimation of the SSP5-8.5 scenario,
approximately 26% of the country will exceed 1600 mm, and the country’s average PET value will
reach 1410 mm in that period. Climate change impact on the precipitation and PET values will
significantly alter the country’s aridity structure in the future. This change is revealed by the spatial
distribution of aridity values which indicates a substantial departure from the past conditions. It is
recognised from Figure 3 that the country’s southern region will be arid, and the northern region
will be semi-arid in general except for a part of the northern region in the period 1980-2014. The
temporal trend values in both scenarios indicate a decrease in the AI values, with the sub-humid
and humid regions in the north of the country shrinking and the arid region expanding towards the
north. The aerial distribution of aridity classes in the country between 2025-2100 is listed in Table
4. In the historical, the areas classified as Arid, Semi-Arid, Sub-Humid and Humid constitutes 42%,
41%, 7% and 10% of the country, respectively. It should be stressed that both scenarios predict
further spatial deployment of the aridity class in the country in the future as 49% (in NF) and 53%
(in FF) of the country is likely to be considered as an arid area. This will ultimately impact the
region considered as sub-humid and humid areas since only 17% in NF and 11% in FF of the country
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Figure 4: Temporal distribution of SPEI values for 3 (a), 6 (b) and 12 (c) month scale.

is likely to fit this class. Hence, under both scenarios, climate change is going to expand aridity
in the country enhancing thus further water stress and other related agricultural problems such as
saltwater intrusion and soil degradation among others.

4.2 Temporal variation of SPEI

The SPEI values are calculated for 3, 6 and 12 months time scales using the precipitation and PET
values. Figure 4 displays the temporal distribution, where the fills represent the ranges of SPEI
values at the stations, and the lines indicate the mean SPEI values. For comparison of the SPEI
values calculated in this section for different periods, the SPEI values are calculated separately
for four different time series (namely 1980-2014, 1980-2050, 1980-2075 and 1980-2100). Then, the
corresponding period is extracted from these time series and added to the previous time series. For
example, the SPEI values calculated for 1980-2014 are created only from observed values, and then
2025-2050 are extracted from the index values calculated for 1980-2050 and added. A similar process
is repeated for 2050-2075 and 2076-2100. This is mainly because if an index is obtained from the
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Figure 5: Spatial variation of SPEI values for the moderate class.

time series between 1980-2100, the values between 1980-2014 would completely change since the
averaged precipitation and PET values would change. However, in this case, the existing situation
would have been evaluated as of the end of 2100, and it would not be reliable to analyse changes
in the current drought situation. Using this approach, since the index status at the end of each
period (e.g. NF) analyzed will be independent of the next one, it will be possible to compare how
the change will be compared to the periods before that period.

Concerning the SPEI3 values in Figure 4 (a), it is clear that the averaged index values for
the historical are similar for the occurrence of drought (SPEI<0) and wet (SPEI>0). In addition,
the slope value in historical is also determined to be in a decreasing trend and very low (slope
= −2.13 × 10−5 per year). However, considering future droughts, although the distribution of
minimum and maximum index values calculated at the stations are similar to the past period, the
averaged values are quite different. It is seen that the averaged values are mostly in the drought zone
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Figure 6: Spatial variation of SPEI values for severe and the extreme class.

(SPEI≤ 0) in the future projection, and the slope of the index values also increases. For example,
in the SSP2-4.5 scenario, the slope value is approximately −3.5× 10−4 per year in NF and FF and
−1.5×10−4 per year in MF, while the SSP5-8.5 scenario is −6.1×10−4,−6.5×10−4 and −6.8×10−4

per year in NF, MF and FF, respectively. In addition, it indicates that the negative slope increases
with each passing period, i.e. drought severity tends to increase. A similar situation is also observed
in the SPEI-6 and SPEI-12 scenarios. Nonetheless, the slope of historical index values in these
time scales is positive (approximately 1.2 × 10−4 per year), this slope turns negative in the future
projections and it reaches −7.5× 10−4 per year in the SSP5-8.5 scenario.
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4.3 Spatial variation of SPEI

Given the high spatial variability of climate in Morocco, it is important to analyse the spatial
distribution of drought indices in the country. For this purpose, the percentages of occurrence
of drought classes according to the three periods and two different scenarios are analysed. The
percentages of occurrence in MD (−1 ≤ SPEI < −1.5) and SD and ED (SPEI ≤ −1.5) for 3,
6 and 12 months SPEI values are shown respectively, in Figure 5 and Figure 6 according to the
classifications given in Table 3. Here, Figure 5 confirms that the percentage of MD occurrence
ranges from 7% to 15% in all three time scales (the occurrence here is calculated based on the
number of times on which the SPEI is under the threshold defined in Table 3). The southern
part of the country generally exhibits lower drought, while the northern part has relatively more
MD drought occurrences. For the SPEI-3 scenario in NF, the percentage of MD occurrence in the
northern and the eastern regions starts to become more pronounced, and especially for the SSP5-8.5
scenario, the percentage of MD drought occurrence in NF reaches a value close to 50%. Note that
as the drought time scale increases, the percentage of drought occurrence increases significantly in
the MF and FF periods of the SSP2-4.5 scenario. It is worth mentioning that the most significant
situation is observed in the SPEI12. At this time scale, the percentage of MD occurrence in almost
the entire region of the country, except the Sahara region, is around 50%, and the percentage of
drought occurrence in this class increases almost tenfold after 2050 compared to historical.

Figure 6 presents percentages of the occurrence of droughts above SD which are more severe
and therefore can have multiple negative impacts on hydrological and agricultural activities. It is
also clear that between 1980 and 2020, the percentage of occurrence of these drought classes varies
between 4% and 8%. The percentage of occurrence of these drought classes increases in the NF,
but significant increases are observed after 2050 following the SSP5-8.5 scenario. According to the
SSP2-4.5 scenario for the MF and FF periods, drought occurrence in the northern and eastern
regions for the SPEI6 and SPEI12 scenarios increases and locally reaches values of 20%. However,
for the SSP5-8.5 scenario, drought occurrence is above 25% in those same locations according to the
SPEI3 scenario for the FF period and almost the whole country for SPEI6 and SPEI12. Compared
to 1980-2014, droughts above SD are projected to occur six times more frequently in most regions.
Therefore, it is quite remarkable that droughts above SD have increased to an extent in the northern
region where most of the country’s agriculture is located.

4.4 Variation of drought in agricultural growing seasons

In this section, the focus is brought towards the potential future occurrence of drought during the
agricultural season. In Morocco, cereals are the most produced agricultural products based mainly
on wheat and barely. As stated in (Karrou and Oweis, 2014), the growing season of these two
products ranges roughly from November to April. First, we analize the relationship between the
cereal production of Morocco obtained from the Food and Agriculture Organization (FAO), and the
index values calculated for the stations in the north of the country. In Figure 7, the bars represent the
normalized cereal crops (barley and wheat), and the lines indicate the mean SPEI values. Notice
that for a better insight of the results, each value is normalized by its maximum. According to
this figure, the variation of major cereal productions in Morocco follows closely the variation of the
considered SPEI indices. The correlation coefficients between these two index values and amounts of
grain production vary between 0.55 and 0.75. For example, while the correlation coefficient between
the SPEI-6 (Nov-Apr) for the barley is 0.75, it is 0.66 for the wheat. This clearly demonstrates that
the production of cereals in Morocco is highly impacted by drought occurrence. By assuming that
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Figure 7: Relationship between SPEI indices and normalized agricultural production of Barley, Corn,
and Wheat in Morocco (1991-2014).

the same agricultural practices are preserved in the future, potential changes in drought occurrence
may enhance the change in the production of cereals. Therefore, the spatial distributions of the
3- and 6-month SPEI values covering the growth periods of cereal crops in Morocco for drought
conditions (SPEI < 0) are displayed in Figure 8. The percentage of drought occurrence in the
country between 1980-2014 is around 50%. Although according to the SSP2-4.5 scenario, drought in
NF for SPEI3 (Nov-Jan) is found to increase slightly in the north-east regions, the increase is more
pronounced in SPEI-3 (Feb-Apr) and SPEI-6 (Nov-Apr). Furthermore, in the SSP5-8.5 scenario, a
significant increase is observed at all time scales after 2050. It is also evident that after 2075, the
percentage of drought occurrence in the northern region is around 80% on average. In the context
of these assessments, if the SSP5-8.5 scenario is to be realized, problems of agricultural production
will inevitably arise in Morocco after the mid-century.

5 Discussions

In this study, the drought pattern of Morocco, an important country in northwest africa, is analyzed
both spatially and temporally with the SPEI method using CMIP6 future projections. Temporal
and spatial analyses of drought and climatic parameters are analyzed for historical (1980-2014), NF
(2025-2049), MF (2050-2074), and FF (2075-2100) periods. The broad perspective of the presented
study has provided the opportunity to evaluate it from different aspects with other studies in the
literature. First, when changes in the precipitation, PET and aridity indexes based on the historical
observation data (1980-2014) for the study area are analyzed, it is found that the PET values are
in an increasing trend, while the precipitation and Al values are in a decreasing trend. In this
context, the determination of an increase in the PET values and a decrease in AI values in the
study conducted by (Ullah et al., 2022) on a global scale with the CRU reanalysis data sets covering
the period between 1901 and 2019 is consistent with the results of the present study. The increase
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Figure 8: Spatial variation of drought in the agricultural growing seasons.

in likelihood of the drought occurrence in the country is also linked to the expected decrease in
precipitation, especially in the northern region. It is worth mentioning that this latter is a dominant
factor on the drought assessment. This decrease is more pronounced in the FF period especially
following SSP5-8.5 scenario, and it is consistent with many previous studies in the region (El Moçayd
et al., 2020; Carvalho et al., 2022; Zittis et al., 2019; Majdi et al., 2022; Spinoni et al., 2020; Li and
Li, 2022; Ukkola et al., 2020). It is found that changes in the PET, which is another important
parameter that affects drought, are significantly influenced mainly by changes in the temperature.
Especially in the region from the atlas mountains in the northeast of the region to the Algerian border
where significant increase is expected. It should be stressed that the increase in PETs, especially
in this region, was also reported by (El Moçayd et al., 2020; Carvalho et al., 2022). Based on the
results related to the aridity index, which is an important indicator of temporal climate regimes of
the study area, the northern region according to the SSP5-8.5 scenario may not be considered as
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a humid area in the future. It is predicted that the climate, which was humid and semi-humid in
the historical period in the region, may change to a semi-arid and arid regime from the NF to the
FF period. In addition, many regions in the country which are considered humid under the present
climate situations are likely to move to arid conditions under the climate change impact, compare
the results summarized in Table 4. In the far future period (2081-2100) in (Carvalho et al., 2022),
especially in the northern part of the region, increases in arid areas with decreases in the AI values
are clearly seen. The increase in arid areas in the northern part of the region is also stated by (Zhang
et al., 2021). In another study conducted on a global scale, (Wang et al., 2020) examined changes
in the precipitation, PET, and aridity index depending on two climate change scenarios. In their
study, increases in the PETs and decreases in the aridity index were determined for the region in
consideration according to the 2 °C warming scenarios, which are more pronounced in a range of 4
°C warming, especially in the northern region. It should be pointed out that a similar situation was
also emphasized in the study by (Koutroulis, 2019).

The temporal evaluations of drought indices for different time scales (3-6-12 months) show that
all drought time scales are spatially in parallel with different frequencies. As the drought time scale
increases, the percentage of drought occurrence also increases. Results presented in this study
demonstrate that major parts of the country are likely to be affected by the drought with an
increasing severity throughout the time, and this particularly true in the SSP5-8.5 scenario. In
this respect, increases in the drought frequencies and severities related to the country’s northern
region according to the SPEI12 scenario in the study conducted by (Spinoni et al., 2020) according
to RCP2-4.5 and RCP5-8.5 scenarios only for the years 2071-2100 are important supporting this
point. Authors in (Zeng et al., 2022) demonstrated that there are increases in drought severity for
the region in a global scale study. Another study by (Vicente-Serrano et al., 2020) predicts that
the region will face more severe drought conditions, especially in the northern part of the region,
according to the SPEI-12 ≤ −1.28 threshold in a global drought assessment made according to RCP
scenarios. In a global study conducted by (Spinoni et al., 2021), it was emphasized that increases
in the drought frequencies and severities increase as the amount of warming increases according to
the SPEI-12¡-1 threshold depending on different warming scenarios (+1.5, +2, +3, +4 °C) in the
western Mediterranean. The results obtained in the presented study are in agreement with these
results.

In the considered study area, the potential impact of the projected scenarios for drought occur-
rence on agriculture is assessed. The focus was brought to the cereal sector, which is one of the most
important agricultural product industries (Achli et al., 2022) and an important part of this produc-
tion is vulnerable to climate variation, especially the rain-fed cereals (which constitutes 90% of the
agricultural areas). Following the inter-annual variability in Morocco, most of the precipitation in
the region falls between November and April. This may probably explain the high correlation found
between changes in the SPEI-3 (Nov-Feb) and the SPEI-6 (Nov-Apr) and the cereal production as
depicted in Figure 7 in this study. Assuming the same agricultural practices are preserved in the
future, potential changes of drought occurrence are likely to drive the change in cereal production,
especially during the growing season. Accordingly, Figure 8 confirms that the increase in percentage
of drought occurrence in both SPEI3 and SPEI6 scenarios between November-April, when cereal
growth is the highest, will adversely affect production. Especially in the northern region where agri-
cultural areas are dense, the increases will be higher. (Hakam et al., 2023) analyzed the relationship
between values of the SPI-SPEI index and cereal crop yields in two provinces in the northwest of
Morocco (2000-2020). This study shows that the change in crop yields is parallel to the seasonal
humid or dry periods. In addition, in some years of the study, the SPI values in the region were
more humid than the SPEI values, but the decreases in crop yields revealed that temperature is
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the critical factor affecting most of the variations in cereal yields. Note that precipitation and the
temperature conditions of cereal crops are particularly important during the spring-summer period
of the growth and development up to the harvest period (Hakam et al., 2023). Therefore, as shown
in Figure 8, increases in the percentage of drought occurrence during the SPEI (Feb-Apr) period are
quite significant. It is also clear that this situation confirms that cereal production in the country
may be vulnerable in the future.

6 Conclusions

In this study, potential future changes of drought occurrence under the climate change impact have
been evaluated in Morocco with a focus on the main cereals growing season. First, an ANN-based
MME of CMIP6’s GCMs was used to carefully select the most accurate predictors and to statistically
downscale the precipitation and temperature variables in the region. Those models were then used
in order to predict future changes in these variables under the SSP2-4.5 and SSP5-8.5 scenarios for
climate change. This allowed estimating the future changes in the PET, AI, and SPEI values and it
has been found that precipitation is likely to decrease while PET values are projected to increase,
leading to a significant increase in the AI values. Under the climate change impact, many regions
in the country considered to be humid/sub-humid under past climate situations are likely to move
to arid conditions. Next, the analysis of drought occurrence under historical conditions and climate
change impact has been performed. Generally, it has been found that the country is likely to face
severe drought conditions in the future. The obtained results reveal that drought severity tends to
increase, and the drought occurrence above severe drought would be six times more frequent than the
past conditions in most regions. Moreover, the drought analysis results during the growing season of
cereal crops showed that the percentage of drought occurrence in the northern region is expected to
reach around 80%. These results also suggest that climate change will surely impact crop patterns
in Morocco with future projections likely to increase the occurrence of severe droughts episodes in
the region. Based on the high correlation between these events and cereal production and assuming
that agricultural practices are kept as in the present time, many regions in the country will not
be suitable for cereal production. Ultimately, this will harshly impact food security in the country.
These findings highlight the need for effective adaptation strategies to mitigate the potential impacts
of drought in Morocco such as water management, crop selection, and land-use planning.

It is also recommended that future studies should focus on more detailed analyses of the im-
pact of climate change on specific sectors such as agriculture, water resources and public health in
north african countries including Morocco. This class of studies may pave the way for examining
the effectiveness of different adaptation strategies including water conservation measures and crop
diversification in mitigating the impacts of drought and climate change.
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de Sherbinin, A., Mendeloff, D., and Markey, K. (2021). Violent conflict exacerbated drought-
related food insecurity between 2009 and 2019 in sub-saharan africa. Nature Food, 2(8):603–615.

Begueria, S., Vicente-Serrano, S. M., Reig, F., and Latorre, B. (2014). Standardized precipitation
evapotranspiration index (spei) revisited: parameter fitting, evapotranspiration models, tools,
datasets and drought monitoring. International Journal of Climatology, 34(10):3001–3023.

Benbrahim, K. F., Ismaili, M., Benbrahim, S. F., and Tribak, A. (2004). Land degradation by deser-
tification and deforestation in morocco. Science et changements planétaires/Sécheresse, 15(4):307–
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H., Ethé, C., Franchistéguy, L., Geoffroy, O., Lévy, C., Madec, G., Meurdesoif, Y., Msadek, R.,
Ribes, A., Sanchez-Gomez, E., Terray, L., and Waldman, R. (2019). Evaluation of CMIP6 deck
experiments with CNRM-CM6-1. Journal of Advances in Modeling Earth Systems, 11(7):2177–
2213.

Wang, H., Chen, Y., Pan, Y., Chen, Z., and Ren, Z. (2019). Assessment of candidate distributions
for spi/spei and sensitivity of drought to climatic variables in china. International Journal of
Climatology, 39(11):4392–4412.

Wang, X., Jiang, D., and Lang, X. (2020). Future changes in aridity index at two and four degrees
of global warming above preindustrial levels. International Journal of Climatology, 41(1):278–294.

Ward, F. A. and Pulido-Velazquez, M. (2008). Water conservation in irrigation can increase water
use. Proceedings of the National Academy of Sciences, 105(47):18215–18220.



Wilhite, D. A. and Glantz, M. H. (1985). Understanding: the drought phenomenon: The role of
definitions. Water International, 10(3):111–120.

Wyser, K., van Noije, T., Yang, S., von Hardenberg, J., O’Donnell, D., and Döscher, R. (2020). On
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