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Abstract
A fundamental challenge in the study of probability distributions is the quantification of inequality
that is inherently present in them. Some parts of the distribution aremore probable and some others
are not, andwe are interested in the quantification of this inequality through the lens ofmathematical
diversity, which is a new approach to studying inequality.We offer a theoretical advance, based on
case-based entropy and slope of diversity, which addresses inequality for arbitrary probability
distributions through the concept ofmathematical diversity. Our approach is useful in three
importantways: (1) it offers a universal way tomeasure inequality in arbitrary probability distributions
based purely on the entropic uncertainty that is inherent in them and nothing else; (2) it allows us to
compare the degree of inequality of arbitrary parts of any distribution (not just tails) and entire
distributions alike; and (3) it can glean out empirical rules similar to the 80/20 rule, not just for the
power law but for any given distribution or its parts thereof. The techniques shown in this paper
demonstrate amore generalmachinery to quantify inequality, compare the degree of inequality of
parts orwhole of general distributions, and prove or glean out empirical rules for general distributions
based onmathematical diversity.We demonstrate the utility of this newmachinery by applying it to
the power law, the exponential and the geometric distributions. The 60− 40 rule of restricted diversity
states that 60 percent ormore of cases following a power law (ormore generally a right skewed
distribution) residewithin 40 percent or less of the lower bound of Shannon equivalent equi-probable
(SEE) types asmeasured by case-based entropy. In this paper, we prove the 60− 40 rule for power law
distributions analytically.We also show that in all power lawdistributions, the second half of the
distribution is at least 4 timesmore uniformly distributed as the first. Lastly, we also show a scale-free
way of comparing probability distributions based on the idea ofmathematical diversity of parts of a
distribution.We use this comparison technique to compare the exponential and power law
distribution, and obtain the exponential distribution as an entropic limit of the power lawdistribution.
We also demonstrate that themachinery is applicable to discrete distributions by proving a general
result regarding the comparison of parts of the geometric distribution.

1. Introduction

Avery prominent example of a distribution that follows the power law is the distribution of wealth, where it is
well known that very few people have a lot of wealth. This inequality of distribution is captured in the so called
Pareto principle, which is an empirical rule that states thatmore than 80 percent of the total wealth is situated in
the richest 20 percent of people. In (Newman 2005), a rich exposition of the power law can be found, in addition
to an analytical proof of the Pareto principle, and also techniques to empirically detect power laws fromdata.
The Pareto principle emphasizes the severity of inequality in distribution of wealth, and is a fundamental
principle in its own right. However, this got us thinking along the following lines:
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(1) Is there a universal way to measure inequality based purely on the entropic uncertainty that is inherent to
probability distributions and nothing else?

(2) Can we make it so this new method allows us to compare parts of a distribution and entire distributions
alike?

(3) Can we use this technique to glean out empirical rules similar to the Pareto principle, not just for the power
law but for any given distribution or its parts thereof?

We strongly believe that the answer to all three of the above questions is yes and is provided by our recent
discovery of case-based entropy and slope of diversity curves (Rajaram et al 2023), where a novelmethod of
comparing the diversity of a part P (orwhole) of a distributionwas constructed based on the ratio D

c
P

P
. Here,DP is

themathematical (or entropic) diversity (or the number of Shannon equivalent equi-probable or SEE parts) and
cP is the cumulative probability of the part P, both of whichwewill explain shortly.We contend, that comparing
the degree of uniformity (whichwewill redefine as degree of inequality later in section 3) of parts (orwhole) of a
distribution provides a scale free way to compare probability distributions or their parts in terms of how equally
distributed the randomvariable is, on those parts. Given a part P (or thewhole) of a continuous distribution, the
numberDP gives us the support of an equivalent uniformdistribution that will have the same conditional
entropy as the original part P i.e., if wewere to replace the partPwith a uniformdistributionwithout losing any
of the entropic uncertainty of the partP, then that abstract equivalent distributionwill have a support ofDP for
the portion of the random variableXP over the part P.

In this paper, wewill apply our newly formulated theory ofmathematical diversity of parts of a distribution
(Rajaram et al 2023, 2024) to the power law distribution to demonstrate that the case-based entropy curve and
the slope of diversity curves for the power law revealmuchmore about the degree of uniformity of parts of the
power law. In particular, wewill analytically prove the 60–40 rule that was empirically observed in right-tailed
distributions in (Castellani andRajaram2016), for the power law. In addition, wewill show that the second half
of the power law distributionwhich contains themajority of the tail, is at least 4 times as uniformly distributed as
thefirst half—a result that has not been shownbefore.We also provide a new link between the power law and
exponential distribution through the lens of the slope of diversity curve. Specifically, we show that slope of
diversity curve of the exponential distribution can be obtained as an entropic limit of the corresponding curves
for the power law distribution as the parameterα goes to∞. Finally, we also demonstrate the use of our
machinery to discrete distributions by proving a general result relating the degree of inequality of parts of the
geometric distribution .

The paper is organized as follows: In section 2, wewill introduce themain ideas behindmathematical
diversity. In section 3, we explain how the ratio D

c
P

P
, in addition to being a quantification of the degree of

uniformity of the part P, is also a quantification of the degree of inequality of a given part P in a distribution. In
section 4, we recall some results related to the power law that were proved in (Rajaram et al 2024). These results
will be used later on to derive properties of the degree of uniformity (or inequality) of parts of the power law
distribution. In section 4.1, we derive an explicit analytical expression for the case-based entropy curve for the
power law distribution and analytically prove the 60− 40 rule for power law distributions thatwas empirically
observed in (Castellani andRajaram2016). In section 5we prove some interesting results that compare the
degree of uniformity of thefirst half of the power law distribution to the second half. In section 6we do a novel
comparison of the power law and the exponential distributions and show that the distribution of degree of
uniformity of the exponential distribution asmeasured by its slope of diversity curve can be obtained as an
entropic limit of the corresponding slope of diversity curve of the power law distribution as the parameterα
tends to∞. In section 7, we demonstrate the applicability of ourmachinery to discrete distributions by proving a
general result on the comparison of degree of uniformity of parts for the geometric distribution.Wefinish the
paperwith some conclusions in section 8.

2. A formal introduction to diversity: backgroundmaterial

Diversity is frequently used as away to assess the richness or number of categories in a distribution, as well as its
evenness which denotes the equal probability of each type of diversity appearing, as underscored in numerous
studies (Jost 2006,MacArthur 1965,Hill 1973, Peet 1974). Formore on the exposition of diversity and
distributionswe refer the reader to (Chao and Jost 2015,Hsieh et al 2016, Jost 2006, 2018, Leinster and
Cobbold 2012, Pavoine andMarcon 2016). The idea of diversity is based on the premise that if all theK
categories in a discrete probability distribution have an equal chance of happening, then the diversity should be
equal to the number of categoriesK. Similarly, for a continuous distribution, the diversity of a uniform
distribution is simply the Lebesguemeasure of its support. Conversely, any deviation fromuniformity in
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probabilities will inevitably result in a reduction in diversity.We recall a few definitions and theorems that are
valid formathematical diversity of continuous distributions first. Similar equivalent definitions are true for
discrete distributions aswell as seen in (Rajaram et al 2023, 2024).

Definition 2.1. (ShannonDiversity corresponding to q = 1 forHill numbers)Given a continuous random
variableXwith support (a,b) (with = -¥a and = +¥b allowed) and its probability density p(x), the diversity
of the entire distribution ( )D a b

1
, is defined as the length of the support of an equivalent uniformdistribution that

yields the same value of Shannon entropyH.

Shannon entropy is defined as below:

( ) ( ( )) ( )( )
( )ò= -H p x p x dxln . 1a b
a b

,
,

It was shown (Jost 2006,MacArthur 1965,Hill 1973, Peet 1974) that definition 2.1 implies that the total
diversity 1D(a,b) is given by:

( )( ) ( )=D e . 2a b
H1

, a b,

Wewill only consider the case q= 1 for theHill numbers and hence, wewill omit the left superscript of 1while
referring to the diversity asD. Themain advantage of using Shannon entropy corresponding to q= 1, as stated in
(Rajaram et al 2023, 2024), is because both the richness and evenness of probability distributions are equally
weightedwith this choice of theHill number. No other choice ofHill numbers or othermeasures of diversity
satisfy this unique balancing property. Furthermore, Shannon entropy has the intuition uncertainty in
probability distributions, and aswewill see later,mathematical diversity is an equivalent equi-probable
reformulation of a part or whole of a distribution thatmaintains the entropic uncertainty of said part or whole.
We re-state the diversity of parts theorem for continuous distributions below.

Theorem2.1. Let p(x) be a probability density function (pdf) on (a,b) , with = -¥a and = +¥b permitted. Let
⋃=P Pi i be a disjoint partition of a part ( )ÌP a b, . Then the following is true:

⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )=
Î

D

c

D

c
. 3P

P

c

P P

P

P

cP

i

i

i

Pi

Wemake some definitions to establish some notation to state our next theorem.

Definition 2.2.Wedefine

· ·
( )

( ) ( )
= =A

D

c D
A

D

c D
and 4P

P

P a b
P

P

P a b, ,
i

i

i

to be the average case-based entropy per unit cumulative frequency for the part P and the sub-partPi
respectively.

Definition 2.3. Let ( )=P a x, be a part for a continuous probability distribution on (a,b), with = -¥a and
= +¥b allowed. The graph of ( )c a x, on the x-axis versus ( )( ) ( )*c Alna x a x, , on the y-axis is defined as the slope of

diversity curve. Also, the slope of the secant joining the points ( ( ))( ) ( ) ( )*c c A, lna x a x a x, , ,1 1 1
and

( ( ))( ) ( ) ( )*c c A, lna x a x a x, , ,2 2 2
on the slope of diversity curve is denoted by ( )S x x,1 2

.

We next define the degree of uniformity of a part P= (x1, x2), whichwewill later redefine as the degree of
inequality of the partP in section 3.

Definition 2.4. Let ( )=P x x,1 2 be a part for a continuous probability distribution on (a,b), with = -¥a and

= +¥b allowed. The ratio ( )

( )

D

c

x x

x x

1, 2

1, 2

is termed as degree of uniformity of the part ( )=P x x,1 2 .

In (Rajaram et al 2023), the validity of the ratio D

c
P

P
as a quantitativemeasure of the degree of uniformity of a

part P of a discrete distributionwas established. The slope of diversity curvewas shown to be useful to compute
and compare the degrees of uniformity of parts of a distribution in (Rajaram et al 2023) by comparing the slopes
of secants of the corresponding parts from this curve.We recall the version of that theorem for continuous
distributions below.

Theorem2.2. Let p(x) be a probability density function (pdf) on (a,b), with = -¥a and = +¥b permitted. Let
( )x x,1 2 and ( )x x,3 4 be parts that are subsets of (a,b). Then the following are true:
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⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⟺ ( )( )

( )

( )

( )
( ) ( )

<
=
>

<
=
>

D

c

D

c
S S . 5

x x

x x

x x

x x
x x x x

,

,

,

,
, ,

1 2

1 2

3 4

3 4

1 2 3 4

( )( )

( )
( )=

D

c
De . 6

x x

x x

S,

,

x x1 2

1 2

1, 2

Remark 2.1.Theorem 2.1 relates the degree of uniformity D

c
P

P
of a given part P of a continuous distribution as the

weighted geometricmean of the degree of diversity of
D

c

Pi

Pi

of its sub-partsPiwith the cumulative probabilities cPi

as theweights. Theorem 2.2means that when comparing the slopes of secants ( )S x x,1 2
of the slope of diversity

curve, we are also comparing the degrees of uniformity in the parts ( )x x,1 2 and ( )x x,3 4 . It alsomeans that we can

compute the degree of uniformity ( )

( )

D

c

x x

x x

1, 2

1, 2

of an arbitrary part ( )=P x x,1 2 directly from the slope of secant ( )S x x,1 2

of the slope of diversity curve. This is themain importance of the two results in this section.

Definition 2.5. Let p(x) be a probability density function (pdf) on (a,b), with = -¥a and = +¥b permitted.

The graph of p(x) is denoted by g1. The graph of ( )c a x, on the x-axis versus ( )
( )

( )
=C a x

D

D,
a x

a b

,

,
on the y-axis is called the

case-based entropy curve.We denote the case-based entropy curve by g2. The graph of ( )c a x, versus
· ( )( ) ( )c Alna x a x, , also known as the slope of diversity curve is denoted by g3.

Wefinish this section by simply stating that several important results relating the equivalence of the curves
g1, g2 and g3 and themethod of reconstructing the original probability distribution from themhave been proved
in (Rajaram et al 2023, 2024).

3. The ratio D

c
P

P
as a quantification of degree of inequality of a given partP

In this section, wefirst recall the thought process behind the concept of degree of uniformity and thenwe establish
the equivalence of this with degree of inequality.

3.1. D

c
P

P
as degree of uniformity

In (Rajaram et al 2023, 2024), we introduced the ratio D

c
P

P
as away tomeasure the degree of uniformity of a part P

of a given probability distribution irrespective of whether it is continuous or discrete. Themain ideawas that the
part P of the given distribution can be redrawn as a Shannon Equivalent Equi-probable uniformdistribution
with a support of lengthDP and a uniformprobability of c

D
P

P
. This equivalence allowed us to interpret the ratio D

c
P

P

as the SEE extent per unit cumulative frequency coming from the partP. Hence, the larger this ratio is, the larger
the uniformity of the part P is.

We computed the ratio D

c
P

P
instead of X

c
P

P
(hereXP is simply the range or Lebesguemeasure of the values of the

randomvariableX in the part P), because the part Pneed not be uniformly distributed in general, and hence
comparing the ratio X

c
P

P
would not amount to an even comparison across parts. The value ofDPhowever, is an

equivalent uniform representation of the part Pwhichmaintains the same conditional entropy of the partP. In
otherwords, by re-interpreting the part P as an equivalent equi-probable distribution thatmaintains the
entropic uncertainty, the range of the re-interpreted uniformdistribution (which is preciselyDP) gives us an
even playing field to compute and compare the degree of uniformity of the part P. The ratio D

c
P

P
therefore,

evaluates the extent of uniformity (in an entropically equivalent sense) per unit frequency that originates from
the partP.

Hence, in this way, given two partsP1 andP2, we can directly compare the ratios
D

c

P

P

1

1

and
D

c

P

P

2

2

on an even

playing fieldwherewe have redrawn the partsP1 andP2 into their SEE equivalents which are both uniformly
distributed, even though the original parts P1 andP2 are not. This justifies the coinage of the term degree of
uniformity of the part P for the ratio D

c
P

P
.We summarize themechanics of the quantification of the degree of

uniformity/inequality using thefigure 1.

3.2. D

c
P

P
as degree of inequality

Next, we illustrate the alternate viewpoint of degree of inequality of the part P for the ratio D

c
P

P
. For both a discrete

uniformdistributionwithN equi-probable types, or a continuous uniformdistribution supported on afinite
interval (a,b), the standard deviation can be shown to be of the order ofN or (b− a) respectively.

By definition, the value ofDP for a given part P ismathematically equal toN or (b− a) (in its Shannon
Equivalent Equi-probable form for the part P) in the discrete or continuous uniformdistributions described
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here. In otherwords,DP ismathematically equivalent to the standard deviation or spread of the part P in its
Shannon Equivalent Equi-probable form.Hence for an SEE part with diversityDP (which is nothing but the
support of the SEE part), the value ofDP is actually ameasure of the spread of the original randomvariableXP

over the cumulative probability cP for the part P, but in a Shannon equivalent equi-probable way.Hence, a part P
that has a larger ratio of D

c
P

P
has a larger amount (or spread) of the randomvariable (albeit in its SEE form) spread

out over a smaller frequency or cumulative probability.
This in turnmeans that there is a larger localization of inequality of the random variable over the part P

compared to other parts that have a smaller value for the ratio D

c
P

P
. Comparing the ratio D

c
P

P
in this way for

different parts is a scale freeway to compare the localization of inequality in parts because the variation of the
original part P is converted into an equivalent equi-probable variation andwe are calculating this SEE variation
per unit cumulative frequency.

In a sense, we are using the entropy of the part P (its exponential actually) and its cumulative frequency
(which is scale free since it varies from0 to 1 for all distributions) tomake comparisons. In summary, the ratio D

c
P

P

computes the Shannon equivalent equiprobable spread per unit cumulative frequency for the part P in a scale
freemanner and hence, the ratio D

c
P

P
has the interpretation of degree of inequality aswell.

4. Power lawdistribution

The distribution of a randomvariableX is said to follow the power law if the probability ofmeasuring it is
inversely proportional to a fixed power of the quantity itself. Power law distributions are also referred to as
Pareto or Zipf distributions depending on the literature. These distributions occur naturally in a variety offields
such as physics, earth sciences, biology, computer science, sociology, and others. Due to the decreasing nature of
the probability density pz(x) (weuse the subscript letter z for Zipf) of a power law distribution, stemming from
the inverse power-relationship with x, such distributions are inherently right-skewed, i.e. larger values of x are
less probable. At the outset, we define a power law distribution below:

Definition 4.1.A continuous randomvariableX is said to follow a power law distribution if its probability
density function denoted by pz(x) satisfies the the following:

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( ) ( )a
a=

-
> Î ¥

a-

p x
x

x

x
x x

1
; where 1; , 7z

min min
min

( ) ( )a= = -a a- -Cx C x; where 1 . 8min
1

In the above definition, the constantC is normalized tomake the total probability equal to 1. Also,α is typically

Figure 1.Picture showing themechanics of computing the degree of uniformity or inequality.
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chosen to be larger than 1 for themean to bewell defined, and >x 0min is a positiveminimumvalue of the
randomvariable to avoid singularities in the distribution. In this section, we state and prove some preliminary
results about the power law distribution defined in definition 4.1.We recall the following two theorems from
(Rajaram et al 2024).

Theorem4.1.Given a power law distribution as in definition 4.1, its entropy is given by

⎜ ⎟
⎛
⎝

⎞
⎠( ) ( )

( )
a

a
a

a=
-

+
-

>H
x

ln
1 1

, 1. 9min

Wedenote the total diversity of the power law distribution ( )¥D x ,min
by the symbolD just for simplicity.

We can easily show that

⎜ ⎟
⎛
⎝

⎞
⎠

( )

( )

ò=

= -

a

a

-

-

c C t dt

x

x
1 .

x x
x

x

,

min

1

min
min

Next, we recall a theorem from (Rajaram et al 2024) that calculates an explicit formula for the slope of
diversity curve of the power law distribution.

Theorem4.2.Given a power law distribution as in definition 4.1, the slope of diversity curve which plots ( )c x x,min
on

the x-axis and ( )( ) ( )*c Alnx x x x, ,min min
on the y-axis has the following explicit formula:

( )
( )

( ) ( ) ( )( ) ( ) ( ) ( )
a

a
=

-
- +

- -c A c cln
1

1 ln 1 . 10x x x x x x x x, , , ,min min min min

Also, the slope of the tangent sx of the slope of diversity curve at ( )c x x,min
is given by:

⎜ ⎟
⎛
⎝

⎞
⎠

)
{ ( ) }

( )

( )
a

a

a
a

a

=
-

- - -

= -
-

s c

x

x

1
ln 1 1

ln
1

.

x x x,

min

min

4.1. Case-based entropy curve for a power lawdistribution
Wenext compute an explicit formula for the case-based entropy curve of the power law distribution.

Theorem4.3.Given a power law distribution as in definition 4.1, the case-based entropy curve which plots ( )c x x,min
on

the x-axis and ( )
( )=C x x

D

D,
x x

min
min, on the y-axis has the following explicit formula:

( ) ( )( )
( )

( ) ( )

( )
( )

( )
( )= = -

-a
a-C

D

D
c c1 11x x

x x
x x x x

c
c

,
,

, ,

1 x x

x x
min

min

min min
1

min,

min,

Proof.The proof is a calculation.

( )
( )

( ) ( )

( )
( )

( )
( )

( )

( )

( ) ( ) ( ) ( )

( )
( )

( )
( )

( )

( )
( ) ( )

( )

( )
( )

( ) ( )

( )

( )
( )

( )

( )
( )

( )

a
a
a

a

=
-

- -

=
-

-
-

= = -

= = -

-

-

a
a

a
a

-

-

c A c c

A
c

c
c

D

c D
A c

C
D

D
c c

ln
1

1 ln 1

ln
1

1
ln 1

1

1

x x x x x x x x

x x
x x

x x
x x

x x

x x
x x x

c
c

x x
x x

x x x x

c
c

, , , ,

,
,

,
,

,

,
min, ,

1

,
,

, ,

1

x x

x x

x x

x x

min min min min

min

min

min

min

min

min

min
1

min,

min,

min

min

min min
1

min,

min,

This proves the Theorem.

Next, we show that the case-based entropy curve for the power law distribution is an increasing function.

Theorem4.4.Given a power law distribution as in definition 4.1, the case-based entropy curve, which plots ( )c x x,min

on the x-axis and ( )
( )=C x x

D

D,
x x

min
min, on the y-axis, is an increasing function of ( )c x x,min

.

Proof. For simplification of notation, let ( ) ( )= =y g x C x x,min
and ( )=x c x x,min

and note that >y 0. Thenwe
have
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( )( ) ( )( )= = -
-a

a-y g x x x1 .
x

x
1

1

Let’s compute the first derivative, with respect to xusing the logarithmic differentiation technique.

⎜ ⎟

⎛
⎝

⎞
⎠

⎧
⎨⎩

⎡
⎣

⎤
⎦

⎛
⎝

⎞
⎠

⎫
⎬⎭

{ }
{ }

( )
( )

( ) ( )

( )
( ) ( ) ( ) ( )

( )

( )
( )

( )
( )

a
a

a
a

a
a
a

a

=
-

-
- +

¢
=

-
-

- - -
+

- -
-

¢
=

-
- -

- +

¢
=

-
- - -

+

y
x

x
x x

y

y
x

x x

x

x

x x

y

y

x

x x x

y

y

x x

x x

ln
1

1
ln 1 ln

1
ln 1

1 1 1 1

1

1

ln 1 1 1

1

ln 1 1

2

2

2

Define f (x) as follows:

( ) ( ) ( )

( )

=- - - =

¢ =
-

- =
-

> < <

f x x x f

f x
x

x

x
x

ln 1 , noting that 0 0 and

1

1
1

1
0, if 0 1.

Hence ( ) ( )> =f x f 0 0 if < <x0 1.
So, this directly implies that ( )¢ = ¢ >y g x 0, when a > 1and < <x0 1, or y is an increasing function of x.

This proves the Theorem.

Next, we show that the 60− 40 rule thatwas empirically observed for power law distributions in (Castellani
andRajaram2016) is analytically true for power laws.We define the 60− 40 rule below first.

Definition 4.2.Given a power law distribution as in definition 4.1, its case-based entropy curve, which plots

( )c x x,min
on the x-axis and ( )

( )=C x x
D

D,
x x

min
min, on the y-axis, satisfies the 60− 40 rule if the curve passes through the

following region:

{ }( ) ( )< < < <c C0.6 1, 0 0.4 .x x x x, ,min min

Remark 4.1.Definition 4.2means that at least 60%of the cases are situated in the first 40%or less of Shannon
Equivalent Equi-probable (SEE) part of the distribution. The 60− 40 rule demonstrates the severity of
restriction of diversity in power laws (and in general right-tailed distributions as empirically observed in
(Castellani andRajaram2016)). It says that at least 60% of the cases in all power laws are restricted to the first
40% or less of Shannon Equivalent Equi-probable types. Thismeans that amajority of the distribution i.e., 60%
ormore is situated in the first 40% or less of the diversity (or uniformity) of the distribution in an equivalent
equi-probable way.

Theorem4.5.Given a power law distribution as in definition 4.1, its case-based entropy curve which plots ( )c x x,min
on

the x-axis and ( )
( )=C x x

D

D,
x x

min
min, on the y-axis, satisfies the 60− 40 rule as stated in definition 4.2.

Proof. In theorem4.4we showed that the case-based entropy curve is an increasing function of ( )c x x,min
. Using

the same simplification of notation, let ( ) ( )= =y g x C x x,min
and ( )=x c x x,min

. Since g(x) is increasing, we know
that

( )( ) ( )> = < <a
a-g x g x0.6 0.326 , for 0.6 1.1

Asα approaches infinity, a
a- 1

decreases to 1, and

( )( ) = a
a-g 0.6 0.326 0.326.1

Hence themaximum limiting value of ( ) =g 0.6 0.326 for any a  ¥, with ( ) <g 0.6 0.326,
for a< < +¥1 .

Since g(x) is increasing and ( ) =g 0.6 0.326 in themaximum a- limit, thismeans that

( ) ( ) ( )( )·( )= -
a

a
-

-g x x x1 12
x

x
1

1

passes through the region { }< < < <x y0.6 1 and 0 0.40, actually 0.326 .
Thus, we have proven the ‘60/40Rule’. That is, at least 60%ormore of cases ( )( )< <c0.6 1x xmin,

arewithin
thefirst 40%of equiprobable types ( )( )< <C0 0.4x xmin,

.

Figure 2 shows the case-based entropy curve for the power law distribution for various choices ofα:
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In fact, from equation (12)wehave that

( ) ( ) ( )( )· ( )( ) a= -  -  ¥
a

a
-

-
-

g x x x x x1 1 as .
x

x
x

x
1

1
1

Hencewe have the followingmore general definition and theorem forwhich theorem4.5 is a special case
when x= 0.6.

Definition 4.3.Given a power law distribution as in definition 4.1, its case-based entropy curvewhich plots

( )c x x,min
on the x-axis and ( )

( )=C x x
D

D,
x x

min
min, on the y-axis, satisfies a ( )-c g c rule if the curve passes through the

following region:

{ ( )}( ) ( )< < < <c c C g c1, 0 .x x x x, ,min min

Theorem4.6.Given a power law distribution as in definition 4.1, the case-based entropy curve, which plots ( )c x x,min

on the x-axis and ( )
( )=C x x

D

D,
x x

min
min, on the y-axis, satisfies the ( )-c g c rule as stated in definition 4.3

with ( ) ( )( )= -
-

g c c c1
c

c
1

.

Proof.The proof follows the same steps as in theorem4.5.

In summary, we have analytically proved the 60− 40 rule for the power law distribution in this section that
was empirically observed in (Castellani andRajaram2016) for a variety of systems that exhibited a right tailed
distribution.We have also generalized the 60− 40 rule to a c− g(c) rulewhich equates to the 60− 40 rule when c
is chosen to be 0.6.

5. Comparing degree of uniformity of parts of the power lawdistribution

The 60− 40 rule in the previous section suggests that less uniformity is coming fromamajority of the
distribution since 60%ormore of the distribution is in thefirst 40%or less of uniformity. This is afirst step to
quantifying the inequality in power laws, since it is already known that the tail ismore uniformly distributed
compared to the initial part. This also begs the question of quantification of the ratio of degree of uniformity of
the right part of the power law to the left part, ormore generally between any two parts as well if needed. This is
precisely what we do in this section.

In this section, we compare the degree of uniformity (or inequality) of parts of the power law using the
explicit expression for the slope of diversity curve that was derived in theorem 4.2.

Figure 2.Case-based entropy curve for the power law distributionwith ( )c x xmin, on the x-axis and ( )C x xmin, on the y-axis for various
choices ofα showing that it satisfies the 60 − 40 rule.
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Theorem5.1.Given a power law distribution as in definition 4.1, the ratio of degree of uniformity of the parts
( )x x,min and ( )¥x, is given by the following:

( )( ) ( )( )

( )
( ) ( ) ( )= -¥ - a

a-
A

A
c1 . 13

x

x x
x x

c,

,
,

1
x x

min

min
1 min,

Proof.Recall from theorem 4.2 that

( )( ) ( )

( )
( )

( )
( )= -

-a
a-A c1 .x x x x

c
c

, ,

1 x x

x x
min min

1
min,

min,

Wealso have

·( ) ( )
( )( ) ( ) =¥
-A A 1.x x

c
x

c
, ,

1x x x x

min
min, min,

So,

( )

( )
( )

( )
( )

( )
( )

( ) ( )

( ) ( )

( ) ( ) ( )

( )

( )

- =

- =

= -

-
¥
-

¥

¥
-

a
a

a
a

a
a

- ¥

-

-

c A

c A

A c

1 1

1 1

1 .

x x
c

x
c

x x x

x x x

,
1

,
1

, ,

, ,

x x x
min

1 min, min,

min
1

min
1

Taking ratios, we have

( )
( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )
( ( ))

( )

( ) ( )

=
-

-

= -

¥
-

-

a
a

a
a

a
a

-

-
-

-

A

A

c

c

c

1

1

1 .

x

x x

x x

x x

x x
c

,

,

,

,

,

1

c x x
c x x

x x

min

min
1

min
1

1 min,

min,

min
1 min,

This proves the Theorem.

Remark 5.1.We remark that the following calculation holds to compute x̃ so that ( ˜) ( ˜ )= =¥c c 0.5x x x, ,min
.

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

˜

˜

˜
˜

˜ ·

( ˜)

( )

( )

( )

( )

( )

= - =

=

=

=

=

a

a

a

- +

- +

-

a

a

-

-

c
x

x

x

x

x

x

x
x

x x

1 0.5 so

0.5,

0.5,

2
, or

2 .

x x,
min

1

min

1

min
1

min

min

min

1
1

1
1

For such an x̃, substituting in equation (13)

( ) ( )( ˜) ( )=
a

a-A 0.5 , 14x x,min
1

and

( )( ˜ ) ( )=¥
a

a-A 2 . 15x, 1

Thefirst equation provides the ratio of the degree of uniformity of the interval ( ˜)x x,min to the entire distribution
( )¥x ,min . The second equality provides the ratio of the degree of uniformity of the interval ( ˜ )¥x, to the entire
distribution ( )¥x ,min .

Finally,

( )( ˜ )

( ˜)

( ˜ ) ( ˜ )

( ˜) ( ˜)
( )= =¥ ¥ ¥ a
a-

A

A

D c

D c
4 . 16

x

x x

x x

x x x x

,

,

, ,

, ,min min min

1

The above observations lead to the following theorem.

Theorem5.2. Let x̃ be the halfway point in the power law distribution as in remark 5.1 for a power law distribution,
from definition 4.1. Thenwe have the following.

1. The first 50% of the distribution from ( ˜)x x,min is at most 50% as uniformly distributed as the entire
distribution ( )¥x ,min .

2. The second half ( ˜ )¥x, is at least 200% (or twice) as uniformly distributed as the entire distribution ( )¥x ,min .

9

J. Phys. Commun. 8 (2024) 085002 RRajaram et al



3. The second half ( ˜ )¥x, is at least 4 times as uniformly distributed as the first half ( ˜)x x,min

Proof.

(1) From equation (14), as a  ¥, ( ˜)A x x,min
increases to 0.5 and ( ˜ )¥A x, decreases to 2. This means that the first

50%of the distribution from ( ˜)x x,min is atmost 50% as uniformly distributed as the entire
distribution ( )¥x ,min .

(2) Also, from equation (15) the second half ( ˜ )¥x, is at least 200% (or twice) as uniformly distributed as the
entire distribution ( )¥x ,min .

(3) From equation (16), the second half ( ˜ )¥x, is at least 4 times as uniformly distributed as the first half

( ˜)x x,min since ( ˜ )

( ˜)

¥A

A

x

x x

,

min,
decreases to 4 as a  +¥.

This proves the Theorem.

Remark 5.2.Wecan generalize the results above for the right p% of the power law, i.e. for the choice of

( )- =c p1 x x,min
. Thus,

⎜ ⎟
⎛
⎝

⎞
⎠

( )

( )

( )= -  =
a

a

- +

-
c

x

x
x

x

p
1x x,

min

1
min

1min

.For such an x, we have

( )( ) ( )

( )
( )

( )
( ) ( )( )= - =

-a
a

a
a- - -A c p1 ,x x x x

c
c

, ,

1 x x

x x
p

p
min min

1
min,

min, 1 1

( )( ) ( ) ( )= - =¥
- -a

a
a

a- -A c p1 , andx x x, ,min
1 1

⎛
⎝

⎞
⎠

( )

( )

( )=¥ - -
a

a-A

A
p .

x

x x

p,

,

1
1

min

1

Hence, we have the followingmore general theorem from the above observations for the power law by taking
similar limits as a  ¥:

Theorem5.3. Let x be the ( )- -p th1 percentile in the power law distribution as in remark 5.2 for a power law
distribution as in definition 4.1. Thenwe have the following.

1. The first ( )- p1 % of the distribution from ( )x x,min is at most ( )-p %
p

p1 as uniformly distributed as the entire
distribution ( )¥x ,min .

2. The last p% of the distribution ( )¥x, is at least %
p

1 as uniformly distributed as the entire distribution ( )¥x ,min .

3. The last p% of the distribution ( )¥x, is at least ( )- -p %p
1

1 as uniformly distributed as the first ( )- p1 % of the
distribution ( )x x,min .

Proof.The proof follows the same steps as in theorem5.2.

6. Entropic comparison of power law and exponential distribution

In this section, we demonstrate that we can compare two different distributionswith possibly completely
different scales of variation for the randomvariableX and the associated probability densities. This is possible by
studying the variation of degree of uniformity (or inequality) of parts through the ratio D

c
P

P
as a function of

cumulative probability c using the slope of diversity curve. This is because the cumulative probability c always
varies from0 to 1 and this provides a scale freeway to look at the parts of the original randomvariable. In
addition, the diversityDP is the support of an abstract SEE (Shannon Equivalent Equi-probable)distribution
which is uniformly distributed, and hence gives us away to evenly compare parts even though the variation of
probabilities of said partsmight bewildly different from each other and from the uniformdistribution.

Consider the exponential distribution as defined below.

Definition 6.1.A continuous randomvariableX is said to follow an exponential distribution if its probability
density function and cumulative probability distribution denoted by pe(x) and ( )c x0, respectively, satisfy the the
following:
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( ) ( ) ( )( )l= = - Î ¥l l- -p x c e xe and 1 , 0, . 17e
x

x
x

0,

We recall the following theorem from (Rajaram et al 2024).

Theorem6.1.Given an exponential distribution as in definition 6.1, the slope of diversity curve and the slope of
tangent for the same, are given as follows:

( ) ( )( ) ( ) l= - l-c A xeln and 18x x
e x

0, 0,

( ) ( )( )l= - = - - -s x c1 ln 1 1. 19x x0,

Wenext derive an expression for the ratio of degree of uniformity of parts (0, x) and (x,∞ ) to thewhole (0,∞ )
for an exponential distribution for arbitrary choice of xä (0,∞ ).

Theorem6.2.Given an exponential distribution as in definition 6.1, the ratio of degree of uniformity of parts ( )x0,
and ( )¥x, respectively with respect to the whole ( )¥0, denoted by ( )A x

e
0, and )( ¥A x,e respectively, are as follows.

( ) ( )( ) ( )
( )( ) ( )= - -A c1 20x

e
x

c c
0, 0,

1 x x0, 0,

( )
( )( )

( )
=

-¥A
c

1

1
21x

e

x
,

0,

Proof.Weknow from theorem6.1 that

( )( ) ( ) l= - l-c A xeln .x x
e x

0, 0,

Also,

( )

( )

( )

( )l

= -

= -
- = -

l

l

-

-

c e

e c

x c

1

1

ln 1 .

x
x

x
x

x

0,

0,

0,

So,

( ) ( ) ( )( ) ( ) ( ) ( )= - -c A c cln 1 ln 1 ,x x
e

x x0, 0, 0, 0,

and

( )
·

( ) ·

( )

( ) ( )
( )

( ) ( )
( )

( )
( )

( )
( )

( )
( )

( ) ( )

( ) ( )

( ) ( ) ( )

= -

=

- =

=
-

-

¥
-

-
¥

-

¥

A c

A A

c A

A
c

1

1

1 1

1

1
.

x
e

x
c c

x
e c

x
e c

x
c c

x
e c

x
e

x

0, 0,
1

0, ,
1

0,
1

,
1

,
0,

x x

x x

x x x

0, 0,

0, 0,

0, 0, 0,

Remark 6.1.Now,we choose x̃ so that ( ˜) =c 0.5x0, . Using a bit of algebra, this occurs when ˜ ( )=
l

x ln 2 .

Then,

( )( )( ˜)
(

= - =
-

A 1 0.5 0.5,x
e
0,

1 0.5
0.5

and

( )( ˜ ) =
-

=¥A
1

1 0.5
2.x

e
,

Interestingly enough, for the exponential distribution, the first half is exactly 50%as uniform as the entire
distribution and the second half is exactly twice as uniform as the entire distribution. Also, the second half is 4
times as uniform as thefirst half.More generally, the first ( )- p1 % of the exponential distribution is exactly

-p %
p

p1 as uniform as the entire distribution and the last p% is exactly %
p

1 as uniform as the entire distribution.

Finally, the last p% of the distribution is exactly - -p %p
1

1 as uniformly distributed as the first ( )- p1 % of the
exponential distribution.

Wenext establish an important and interesting relationship between the power law and the exponential
distributions. Inwhat follows, a subscript or superscript of z refers to the power law and e refers to the
exponential distribution respectively.
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Theorem6.3. Let pz(x) and pe(x) be the probability density functions for the power law and the exponential
distributions respectively, as defined in definitions 4.1 and 6.1. Let ( )A x x

z
,min

and ( )A x
e
0, be the ratio of degrees of

uniformity of the power law and exponential distributions respectively, eachwith their corresponding total diversities
Dz andDe. Then the following is true:

( )( ) ( )=
a¥

A Alim 22x x
z

x
e

, 0,min

( )( ) ( )=
a¥

¥ ¥A Alim . 23x
z

x
e

, ,

Proof. For general ( )Î ¥x x ,min and ( )Î ¥x 0, respectively, for the power law and the exponential
distributions, we have the following:

( )
( )

( )

( )

( ) ( )

( )

( ) ( )

( ) ( )

( )
( )

( )
( )

( )

( )

( ( ))
( )

= -

= -

= -

=
-

-

¥
-

¥

a
a

a
a

-

-

-

A c

A c

A c

A
c

1 ,

1 ,

1 , and

1

1
.

x x
z

x x

c
c

x
z

x x

x
e

x

x
e

x

, ,

1

, ,

0, 0,

,
0,

x x

x x

c x
c x

min min
1

min,

min,

min
1

1 0,
0,

The result follows by taking the limit as a  ¥.

Remark 6.2.The key point here is that ( )c x x,min
and ( )c x0, are both cumulative probabilities from0 to 1 for the

power law and the exponential distributions respectively, andwe don’t distinguish between the cumulative
probability variable for the power law and that for the exponential distribution. In this case, we are primarily
interested in the variation ofmathematical diversity of the two distributions as a function of their cumulative
probabilities. The degree of uniformity is the ratio D

c
P

P
, whereDP is the support of the SEE distribution of the part

that is uniformly distributed. Hence, the original variation of probabilities in the parts are redrawn as equivalent
uniformdistributions thereby providing an even playing field of comparison. In this sense, we can actually forget
about the original randomvariable oncewe haveA as a function of c. Hence, from the standpoint of slope of
diversity, the exponential distribution is the entropic limit of the power law distribution as a  ¥. Such a
comparison is inherently scale free since the range or variation of the original distributions (power law and
exponential) are subsumed by the cumulative probability randomvariable cwhich varies from0 to 1 in both
cases.

To our knowledge, this connection between the exponential distribution and power law has not been
discovered before.

Remark 6.3. Let the subscript (or superscript) z denote the power law and e denote the exponential distribution,
and let x̃ be such that ( ˜ ) ( ˜ )= =c c 0.5x x x, 0,z emin

, where ˜ · ( )= a-x x 2z min
1 and ˜ ( ) l=x ln 2e , i.e. x̃z and x̃e divide

the power law and the exponential distributions, respectively, into two equal halves.
Then

( )( ˜ ) = a
a-A 0.5x x

z
, zmin

1

and

( ˜ ) =A 0.5.x
e
0, e

Hence,

( ˜ ) ( ˜ )=
a¥

A Alim .x x
z

x
e

, 0,z emin

The slope of diversity of the power law is

⎛
⎝

⎞
⎠

( ) ( ) ( ))( ) ( ) ( ) ( )
a

a
=

-
- -c A c cln

1
1 ln 1x x x x

z
x x x x, , , ,min min min min

The slope of diversity of the exponential distribution is

( ) ( ) ( )( ) ( ) ( ) ( )= - -c A c cln 1 ln 1 .x x
e

x x0, 0, 0, 0,

Clearly,

( ) ( )( ) ( ) ( ) ( )=
a¥

c A c Alim ln ln ,x x x x
z

x x
e

, , 0, 0,min min

where the x in ( )A x x
z

,min
and ( )A x

e
0, refer to the randomvariable in the power law and the exponential distributions,

respectively.
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Also,

⎛
⎝

⎞
⎠

( ( )) )( )
a

a
=

-
- - -s c

1
ln 1 1x

z
x x,min

and

( )(= - - -s cln 1 1.x
e

x0,

Hence,

=
a¥

s slim .x
z

x
e

Our conclusion is that the exponential distribution is the entropic limit of power law distributions
asα→∞.

Note: This does notmean that the densities pz and pe follow this limit. The reason for this is that the
diversitiesDz andDe are different, hence ( ) = -p x e Dz

s
zx

z
and ( ) = -p x e De

s
ex

e
are different. This also does not

contradict the equivalence theoremproved in (Rajaram et al 2023, 2024) between the original probability
distribution and the slope of diversity curve, since the probability spaces for the exponential distribution (0,∞)
and the power law distribution ( )¥x ,min can never be the same. This is because the power has to necessarily
start from >x 0min .

Remark 6.4.We remark again, to emphasize that our focus in the comparison of the power law and the
exponential distributions is from the lens ofmathematical diversity and its variation as a function of their
respective cumulative probabilities. Since the cumulative probabilities for both distributions range from0 to 1,
this gives us away to compare and contrast several things such as the diversity of parts, the degree of uniformity
of parts etc., for parts across the two distributions, without paying heed to the actual differences in the variation
of the probability itself as captured by their respective densities.We refer to such comparisons as scale free since
the underlying variable is the cumulative probability c, which varies between 0 and 1 for all probability
distributions.We also note that we are able to obtain relationships (in the case of the power law and the
exponential distributions, this was a limiting relationship) between the slope of diversity curves and the slope of
tangent of said curves aswell.Mathematically speaking, diversity is the exponential of entropy, and functional
relationships between the diversity of parts within a given distribution or across different distributions (such as
power law and exponential) are equivalently, statements of relationships between the variation of entropic
uncertainty as a function of their respective cumulative probabilities. For this reason, we have termed the
limiting relationship between the exponential and the power law distributions in the paper as entropic limits.We
have used the case-based entropy and the slope of diversity curve as vehicles to explore such relationships
betweenmathematical diversity and the cumulative probability of parts bothwithin a given distribution and
across different distributions. Hence, in a sense, we have devised a very generalmathematicalmachinery to
compare the parts of a given distribution and also across different distributions in a scale-free way from the
standpoint ofmathematical diversity.

7.Geometric distribution

Although the previous examples were chosen to be continuous probability distributions due to their
importance, the same ideas can be extended to discrete distributions as well.We demonstrate our ideas using the
geometric distribution as the third example.

Definition 7.1.Adiscrete randomvariableX is said to follow the geometric distribution if its probabilities pi
satisfy the following:

( )( )= = - = ¼-p pq q p i, 1 , for 1, 2, 3, . 24i
i 1

We recall some of the important formulas for the geometric distribution below.D stands for the diversity of the
entire distribution,Dk stands for the diversity of the part {1, k} until the index k, ck stands for the cumulative
probability up to the index k, p̂i stands for the normalized probability for the part {1, k} and p, q are the
parameters of the geometric distribution denoting success and failure probabilities. Let
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Theorem7.1. Let k̂ denote the index corresponding to the ( )- t1 -th percentile for a geometric distribution as in

definition 7.1. Then the ratio of degree of uniformity of the part { ˆ}k1, and the part { ˆ }¥k, is given by the following:
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Let k̂ be the index corresponding to the right t%. Then,
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For such a k̂ , we have
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This proves the Theorem.

Remark 7.1.Wenote that equation (25) gives the ratio of degree of uniformity of parts for general divisions at
the ( )- t1 -th percentilemark and can be used to derive specific empirical rules for specific percentages. This

means that the last t% of the geometric distributionwith indices { ˆ }¥k, is ( ) ( )·- - -t 1
q
t t

ln
ln

1
1 as uniformly

distributed as thefirst ( )- t1 %with indices { ˆ}k1, .
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Weend by summarizing the generalmechanics of quantification of the degree of uniformity/inequality of
part orwhole of one distributionwith another. The heart of themechanics comes from theorem2.2. Assumewe
are given two partsP1= (x1, x2) andP2= (x3, x4).We have the followingways to quantify the degree of
uniformity/inequality of said parts:

(i) We could directly compute the degree of uniformity/inequality of the parts by computing
D

c

P

P

1

1

and
D

c

P

P

2

2

from

scratch. This is probably the best approach for distributions that don’t admit analytical expressions for
diversity, and also if we are only interested in the given parts P1 andP2

(ii) A more comprehensive approach would be to plot the slope of diversity curve for the entire distribution(s)
and computing the slopes of secants of the parts ( )S x x,1 2

and ( )S x x,3 4
.We could achieve this by simply drawing

the secants and computing the respective slopes. This allows use to compute the degree of uniformity using
· ( )= D eD

c
SP

P

x x1, 2 , whereD is the diversity of the entire distribution. This was shown in (Rajaram et al

2023, 2024). If the two parts P1 andP2 are both from the same distribution, then sinceD is the same for both

parts (since they are both from the same distribution), we can form the ratio
A

A

P

P

1

2

, where =AP
D

c D
P

P
for parts

P1 andP2. This is very easily computed using theorem2.2 by ( ) ( )= -e
A

A
S SP

P

x x x x1

2

1, 2 3, 4 , since the total diversityD

cancels out in this case. If the parts are fromdifferent distributions, thenwe can compute
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

· ( ) ( )= -eD

D
S S

DP

c P

DP

c P

x x x x

1

1

2

2

1

2

1, 2 3, 4 , whereD1 andD2 are the diversities of the two different distributions respectively.

The slope of diversity curvewill now allow to compute the degree of uniformity/inequality of other parts of
the distribution as well since all we need to do is compute the corresponding slopes of secants for those parts
and repeat the above procedure.

We end by showing an illustration infigure 3 of the above explanation of the quantification of the degree of
uniformity/inequality for themost general case.

8. Conclusions

We started the paperwith three general questions.

1. Is there a universal way to measure inequality based purely on the entropic uncertainty that is inherent to
probability distributions and nothing else?We have answered this question through our novel usage of case-

Figure 3.Picture showing the twoways of computing the degree of uniformity/inequality of parts of a distribution i.e. direct
computation and from the slope of secants of the slope of diversity curve. The two graphs are the slope of diversity curves for parts P1
andP2 from two entirely different distributions.
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based entropy curve and in amore general sense, through the slope of diversity curve. The answer is that the

degree of uniformity of partsPi, asmeasured by the ratio
D

c

Pi

Pi

from the slope of secant of the corresponding

part in the slope of diversity curve, is a direct quantitativemeasure of howuniformly distributed a given part
Pi is compared to another part Pj. Comparing this ratio for parts, as well as thewhole if needed, is a direct way
ofmeasuring inequality from an entropic perspective, as this ratiomeasures the localization of inequality of
the original distribution in the partP.We showed an application of this concept by looking at the slope of
diversity curve and comparing the first half and the second half of the power law as an example in section 5.

2. Canwemake it so this newmethod allows us to compare parts of a distribution and entire distributions alike?
We answered this question through the usage of the slope of diversity curve to compare the parts of the power
law distribution and the exponential distribution in section 6. The novelty of our approach is through the
usage of the ratio ofmathematical diversity for a given part P (denoted byDP) and its cumulative probability
(denoted by cP), instead of the original random variableXP, to compare equivalent parts in a scale free
manner. Specifically, wewere able to show that the first half of the exponential distribution is exactly half as
uniform as the entire distribution and the second half is twice as uniform as the entire distribution. Also, that
the second half of the exponential distribution is 4 timesmore uniformly distributed as the first half. For the
power law, all these ratios aremultiplied by the factor a

a- 1
and hence lesser, in general compared to

corresponding ratios for the exponential distribution. For general parts, the parts that are being compared
need not have the same range of values for the cumulative probability c sincewe aremore interested in
computing the degree of inequality D

c
P

P
instead of just cP.

3. Can we use this technique to glean out empirical rules similar to the Pareto principle, not just for the power
law but for any given distribution or its parts thereof?We demonstrated this in section 4.1wherewe
analytically proved the so called 60− 40 rule thatwas observed for right-skewed distributions in (Rajaram
et al 2023). This is just an example application to seewhich percentile of cases covers which entropic part of
the distribution asmeasured by the case-based entropy. The entropic comparison using the slope of diversity
curves for the power law and the exponential distribution also gleaned out empirical rules about ratio of
degree of uniformity of parts of the respective distributions.Hence, in amore general sense, using the case-
based entropy curve and the slope of diversity curve and looking at ratios of slopes of secants of parts will
provide uswith important and interesting comparisons of parts of a given distribution, as well as comparisons
with other distributions leading to general empirical rules governing the distribution of degree of uniformity
(or inequality) among said parts.

We chose the power law and the exponential distribution as analytical examples because they have been
studied in depth in the literature and are also known tomodel several natural phenomena.We also used the
geometric distribution as an example to demonstrate that the generalmachinery is versatile enough to handle
discrete distributions. In themost general case, when dealingwith empirical data, we surmise that explicit
analytical expressions for the case-based entropy curve and the slope of diversity curvemay not be feasible.
However, given the computational formulas for these two curves as seen in the backgroundmaterial in section 2,
the case-based entropy and the slope of diversity curves lend themselves to easy computation. In our future
work, wewill endeavor to create a tool that automatically computes these two curves from empirical data and
also allows the user to draw secants, compute degree of uniformity of parts etc.

In this paper, we have used the exponential and power law distributions as examples to showhowwe can
compare the distribution of degree of uniformity (or inequality) of their corresponding parts (asmeasured by
the ratio D

c
P

P
) using their corresponding slope of diversity curves. Apart from the power law and the exponential

distribution, the rich plethora of distributions that one encounters in probability theory can nowbe viewed from
the lens ofmathematical diversity, using the case-based entropy and the slope of diversity curves. The
demonstrations shown in this paper, using the aforementioned curves, lend themselves into important tools of
analysis from the point of view of inequality and degree of uniformity of distributions and their parts. Analysis of
distributions and their parts from the viewpoint of inequality or degree of uniformity is an important aspect of
study of distributions. One application that comes tomind using themethods demonstrated in this paper is to
identify and quantify parts of a given distribution (assuming the randomvariable being studied is a certain
resource that is supposed to be distributed) based on their degree of uniformity relative the entire distribution.
This will allow us to identify parts of the distributionwhich are plagued by inherent inequities that are not
obviously discerned by simply looking at the shape of the distribution. In essence, we have devised away to
quantify inequality among parts of a distribution from an entropic perspective, and have also shown away to
compute the said quantification using the slope of diversity and the case-based entropy curves. Identification of
parts of a distribution that are severely deprived of diversity in the formof degree of uniformity can lead to
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formulation of efficient policies that will result in distribution of resources that suits a certain diversity structure
of parts.

In our future work, wewill endeavor to construct a computational tool asmentioned above that will allow
the user to input empirically obtained data and allow them to (a) plot the original probability distribution g1, the
case-based entropy curve g2 and the slope of diversity curve g3 with one-click, (b) compare the degree of
uniformity of parts of the distribution by allowing the user to draw secant lines in the slope of diversity curve and
look for other parts of the distribution that have the same or a scalarmultiple of the slope of the secant line, and
manymore user-friendly routines that allow the user to analyze the empirical data from the lens ofmathematical
diversity and degree of uniformity. Such a computational tool will be invaluable to numerically compare and
contrast the degree of inequality of parts of probability distributions that don’t have explicit expressions for their
densities, let alone for the slope of diversity curve. For example, in (Liang et al 2016) the probability density is the
solution of a differential equation, and hence, in such situations, a computational tool will plot the slope of
diversity curve directly, allowing the researcher to compare the degree of inequality of parts.Wewill also
endeavor to develop ameasure-theoretic framework to systematically partition the original probability
distributions into parts that are orderedwith increasing degree of uniformity (or inequality).
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