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Abstract

A fundamental challenge in the study of probability distributions is the quantification of inequality
that is inherently present in them. Some parts of the distribution are more probable and some others
are not, and we are interested in the quantification of this inequality through the lens of mathematical
diversity, which is a new approach to studying inequality. We offer a theoretical advance, based on
case-based entropy and slope of diversity, which addresses inequality for arbitrary probability
distributions through the concept of mathematical diversity. Our approach is useful in three
important ways: (1) it offers a universal way to measure inequality in arbitrary probability distributions
based purely on the entropic uncertainty that is inherent in them and nothing else; (2) it allows us to
compare the degree of inequality of arbitrary parts of any distribution (not just tails) and entire
distributions alike; and (3) it can glean out empirical rules similar to the 80/20 rule, not just for the
power law but for any given distribution or its parts thereof. The techniques shown in this paper
demonstrate a more general machinery to quantify inequality, compare the degree of inequality of
parts or whole of general distributions, and prove or glean out empirical rules for general distributions
based on mathematical diversity. We demonstrate the utility of this new machinery by applying it to
the power law, the exponential and the geometric distributions. The 60 — 40 rule of restricted diversity
states that 60 percent or more of cases following a power law (or more generally a right skewed
distribution) reside within 40 percent or less of the lower bound of Shannon equivalent equi-probable
(SEE) types as measured by case-based entropy. In this paper, we prove the 60 — 40 rule for power law
distributions analytically. We also show that in all power law distributions, the second half of the
distribution is at least 4 times more uniformly distributed as the first. Lastly, we also show a scale-free
way of comparing probability distributions based on the idea of mathematical diversity of parts of a
distribution. We use this comparison technique to compare the exponential and power law
distribution, and obtain the exponential distribution as an entropic limit of the power law distribution.
We also demonstrate that the machinery is applicable to discrete distributions by proving a general
result regarding the comparison of parts of the geometric distribution.

1. Introduction

A very prominent example of a distribution that follows the power law is the distribution of wealth, where it is
well known that very few people have a lot of wealth. This inequality of distribution is captured in the so called
Pareto principle, which is an empirical rule that states that more than 80 percent of the total wealth is situated in
the richest 20 percent of people. In (Newman 2005), a rich exposition of the power law can be found, in addition
to an analytical proof of the Pareto principle, and also techniques to empirically detect power laws from data.
The Pareto principle emphasizes the severity of inequality in distribution of wealth, and is a fundamental
principle in its own right. However, this got us thinking along the following lines:

© 2024 The Author(s). Published by IOP Publishing Ltd
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(1) Is there a universal way to measure inequality based purely on the entropic uncertainty that is inherent to
probability distributions and nothing else?

(2) Can we make it so this new method allows us to compare parts of a distribution and entire distributions
alike?

(3) Can we use this technique to glean out empirical rules similar to the Pareto principle, not just for the power
law but for any given distribution or its parts thereof?

We strongly believe that the answer to all three of the above questions is yes and is provided by our recent
discovery of case-based entropy and slope of diversity curves (Rajaram et al 2023), where a novel method of
comparing the diversity of a part P (or whole) of a distribution was constructed based on the ratio = D Here, Dpis
the mathematical (or entropic) diversity (or the number of Shannon equivalent equi-probable or SEE parts) and
cpis the cumulative probability of the part P, both of which we will explain shortly. We contend, that comparing
the degree of uniformity (which we will redefine as degree of inequality later in section 3) of parts (or whole) of a
distribution provides a scale free way to compare probability distributions or their parts in terms of how equally
distributed the random variable is, on those parts. Given a part P (or the whole) of a continuous distribution, the
number Dp gives us the support of an equivalent uniform distribution that will have the same conditional
entropy as the original part Pi.e., if we were to replace the part P with a uniform distribution without losing any
of the entropic uncertainty of the part P, then that abstract equivalent distribution will have a support of Dp for
the portion of the random variable Xp over the part P.

In this paper, we will apply our newly formulated theory of mathematical diversity of parts of a distribution
(Rajaram et al 2023, 2024) to the power law distribution to demonstrate that the case-based entropy curve and
the slope of diversity curves for the power law reveal much more about the degree of uniformity of parts of the
power law. In particular, we will analytically prove the 60—40 rule that was empirically observed in right-tailed
distributions in (Castellani and Rajaram 2016), for the power law. In addition, we will show that the second half
of the power law distribution which contains the majority of the tail, is at least 4 times as uniformly distributed as
the first half—a result that has not been shown before. We also provide a new link between the power law and
exponential distribution through the lens of the slope of diversity curve. Specifically, we show that slope of
diversity curve of the exponential distribution can be obtained as an entropic limit of the corresponding curves
for the power law distribution as the parameter « goes to co. Finally, we also demonstrate the use of our
machinery to discrete distributions by proving a general result relating the degree of inequality of parts of the
geometric distribution .

The paper is organized as follows: In section 2, we will introduce the main ideas behind mathematical
diversity. In section 3, we explain how the ratio —, in addition to being a quantification of the degree of

uniformity of the part P, is also a quantification of the degree of inequality of a given part Pin a distribution. In
section 4, we recall some results related to the power law that were proved in (Rajaram et al 2024). These results
will be used later on to derive properties of the degree of uniformity (or inequality) of parts of the power law
distribution. In section 4.1, we derive an explicit analytical expression for the case-based entropy curve for the
power law distribution and analytically prove the 60 — 40 rule for power law distributions that was empirically
observed in (Castellani and Rajaram 2016). In section 5 we prove some interesting results that compare the
degree of uniformity of the first half of the power law distribution to the second half. In section 6 we do a novel
comparison of the power law and the exponential distributions and show that the distribution of degree of
uniformity of the exponential distribution as measured by its slope of diversity curve can be obtained as an
entropic limit of the corresponding slope of diversity curve of the power law distribution as the parameter
tends to co. In section 7, we demonstrate the applicability of our machinery to discrete distributions by proving a
general result on the comparison of degree of uniformity of parts for the geometric distribution. We finish the
paper with some conclusions in section 8.

2. A formal introduction to diversity: background material

Diversity is frequently used as a way to assess the richness or number of categories in a distribution, as well as its
evenness which denotes the equal probability of each type of diversity appearing, as underscored in numerous
studies (Jost 2006, MacArthur 1965, Hill 1973, Peet 1974). For more on the exposition of diversity and
distributions we refer the reader to (Chao and Jost 2015, Hsieh et al 2016, Jost 2006, 2018, Leinster and
Cobbold 2012, Pavoine and Marcon 2016). The idea of diversity is based on the premise that if all the K
categories in a discrete probability distribution have an equal chance of happening, then the diversity should be
equal to the number of categories K. Similarly, for a continuous distribution, the diversity of a uniform
distribution is simply the Lebesgue measure of its support. Conversely, any deviation from uniformity in
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probabilities will inevitably result in a reduction in diversity. We recall a few definitions and theorems that are
valid for mathematical diversity of continuous distributions first. Similar equivalent definitions are true for
discrete distributions as well as seen in (Rajaram et al 2023, 2024).

Definition 2.1. (Shannon Diversity corresponding to ¢ = 1 for Hill numbers) Given a continuous random
variable X with support (a,b) (with a = —ocoand b = + o0 allowed) and its probability density p(x), the diversity
of the entire distribution D, ;) is defined as the length of the support of an equivalent uniform distribution that
yields the same value of Shannon entropy H.

Shannon entropy is defined as below:
Hpy = *f p)In(p(x))dx. )
(a,b)

It was shown (Jost 2006, MacArthur 1965, Hill 1973, Peet 1974) that definition 2.1 implies that the total
diversity ' Dy, is given by:

lD(a,b) = eHaw, 2)

We will only consider the case g = 1 for the Hill numbers and hence, we will omit the left superscript of 1 while
referring to the diversity as D. The main advantage of using Shannon entropy corresponding to g = 1, as stated in
(Rajaram et al 2023, 2024), is because both the richness and evenness of probability distributions are equally
weighted with this choice of the Hill number. No other choice of Hill numbers or other measures of diversity
satisfy this unique balancing property. Furthermore, Shannon entropy has the intuition uncertainty in
probability distributions, and as we will see later, mathematical diversity is an equivalent equi-probable
reformulation of a part or whole of a distribution that maintains the entropic uncertainty of said part or whole.
We re-state the diversity of parts theorem for continuous distributions below.

Theorem 2.1. Let p(x) be a probability density function (pdf) on (a,b), witha = —ooand b = o0 permitted. Let
P = |J; P beadisjoint partition of apart P C (a, b). Then the following is true:

Dp\” Dp )"
| = - . 3
(CP) Pl,;[P(CPi) ©

We make some definitions to establish some notation to state our next theorem.

Definition 2.2. We define

D, Dp,
Ap=—"L and Ap=—H (4)
p * Dia,b cp, * Diap)
to be the average case-based entropy per unit cumulative frequency for the part Pand the sub-part P;
respectively.
Definition 2.3. Let P = (a, x) be a part for a continuous probability distribution on (a,b), with a = —oo and

b = +oo allowed. The graph of ¢(, ) on the x-axis versus c(, x) * In(A, ) on the y-axis is defined as the slope of
diversity curve. Also, the slope of the secant joining the points (¢4, x)» Cia,x) * IN(A(,x))) and
(Cany Cax * IN(Ax))) onthe slope of diversity curve is denoted by Sy, ).

We next define the degree of uniformity of a part P = (x3, x,), which we will later redefine as the degree of
inequality of the part Pin section 3.

Definition 2.4. Let P = (x;, %) be a part for a continuous probability distribution on (a,b), with a = —ocoand

b = +oo allowed. The ratio 2222 is termed as degree of uniformity of the part P = (x, %).

Cx1x2)

In (Rajaram et al 2023), the validity of the ratio % as a quantitative measure of the degree of uniformity ofa
part Pofa discrete distribution was established. Thepslope of diversity curve was shown to be useful to compute
and compare the degrees of uniformity of parts of a distribution in (Rajaram et al 2023) by comparing the slopes
of secants of the corresponding parts from this curve. We recall the version of that theorem for continuous
distributions below.

Theorem 2.2. Let p(x) be a probability density function (pdf) on (a,b), witha = —ocand b = oo permitted. Let
(x1, %) and (x3, x4) be parts that are subsets of (a,b). Then the following are true:

3
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Die [ =) Pisx) <
2 = > <=>S(X1»9C2) = S(X3,X4)' (5)
C(Xr)xz) > C(X3»x4) >
M = DeSeix, (6)
Cla,x)

Remark 2.1. Theorem 2.1 relates the degree of uniformity & of a given part P of a continuous distribution as the

as the weights. Theorem 2.2 means that when comparrng the slopes of secants S, ,,) of the slope of diversity
curve, we are also comparing the degrees of uniformity in the parts (x;, %) and (x3, x4). It also means that we can

(X1 x2)

compute the degree of uniformity =2 of an arbitrary part P = (x, %) directly from the slope of secant S, .

Cx1,x2)

of the slope of diversity curve. This is the main importance of the two results in this section.

Definition 2.5. Let p(x) be a probability density function (pdf) on (a,b), with a = —ocoand b = + oo permitted.

Du )

The graph of p(x) is denoted by g;. The graph of ¢, », on the x-axis versus C, ) = on the y-axis is called the

case-based entropy curve. We denote the case-based entropy curve by g,. The graph of C(a,x) VEISUS
Clax) - IN(A(,x)) also known as the slope of diversity curve is denoted by g;.

We finish this section by simply stating that several important results relating the equivalence of the curves
g1, & and g; and the method of reconstructing the original probability distribution from them have been proved
in (Rajaram et al 2023, 2024).

3.The ratlo - as a quantification of degree of inequality of a given part P

In this section, we first recall the thought process behind the concept of degree of uniformity and then we establish
the equivalence of this with degree of inequality.

3.1. % as degree of uniformity
P

In (Rajaram et al 2023, 2024), we introduced the ratio 2 asa way to measure the degree of uniformity of a part P
of a given probability distribution irrespective of whethper itis continuous or discrete. The main idea was that the
part P of the given distribution can be redrawn as a Shannon Equivalent Equi-probable uniform distribution
with a support of length Dp and a uniform probability of . This equivalence allowed us to interpret the ratio 22

as the SEE extent per unit cumulative frequency coming from the part P. Hence, the larger this ratio is, the larger
the uniformity of the part P is

We computed the ratlo — instead of —* % (here Xpis simply the range or Lebesgue measure of the values of the
random variable X in the part P), because the part P need not be uniformly distributed in general, and hence
comparing the ratio ):— would not amount to an even comparison across parts. The value of Dp however, is an
equivalent uniform rgpresentation of the part P which maintains the same conditional entropy of the part P. In
other words, by re-interpreting the part P as an equivalent equi-probable distribution that maintains the
entropic uncertainty, the range of the re-interpreted uniform distribution (which is precisely Dp) gives us an
even playing field to compute and compare the degree of uniformity of the part P. The ratio 22 therefore,
evaluates the extent of uniformity (in an entropically equivalent sense) per unit frequency that originates from
the part P.

Hence, in this way, given two parts P; and P,, we can directly compare the ratios DT and 2 onan even
playing field where we have redrawn the parts P; and P, into their SEE equivalents which are both uniformly
distributed, even though the 0r1g1nal parts P, and P, are not. This justifies the coinage of the term degree of
uniformity of the part Pfor the ratio 22, We summarize the mechanics of the quantification of the degree of

uniformity/inequality using the ﬁgure L.

3.2. & as degree of inequality

Next we illustrate the alternate viewpoint of degree of inequality of the part P for the ratio == Pr Forboth a discrete
uniform distribution with N equi-probable types, or a continuous uniform distribution supported on a finite
interval (a,b), the standard deviation can be shown to be of the order of N or (b — a) respectively.

By definition, the value of Dp for a given part Pis mathematically equal to N or (b — a) (in its Shannon
Equivalent Equi-probable form for the part P) in the discrete or continuous uniform distributions described
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Original Distribution, Shanon equivalent equiprobable
whole or part P discrete or continuous distribution

Discrete Discrete

Compute Dp/cp for a part P
or a whole.

»

This is a quantification of
both degree of uniformity
and inequality.

Support = Diversity

Continuous Continuous .

\-_V_J

Support = Diversity

Figure 1. Picture showing the mechanics of computing the degree of uniformity or inequality.

here. In other words, Dpis mathematically equivalent to the standard deviation or spread of the part Pin its
Shannon Equivalent Equi-probable form. Hence for an SEE part with diversity Dp (which is nothing but the
support of the SEE part), the value of Dp is actually a measure of the spread of the original random variable Xp
over the cumulative probability cp for the part P, but in a Shannon equivalent equi-probable way. Hence, a part P
that has alarger ratio of Ij—: has alarger amount (or spread) of the random variable (albeit in its SEE form) spread
out over a smaller frequency or cumulative probability.

This in turn means that there is a larger localization of inequality of the random Variable over the part P
compared to other parts that have a smaller value for the ratio 2. Comparing the ratio 2 in this way for

different parts is a scale free way to compare the localization of 1nequa11ty in parts because the variation of the
original part Pis converted into an equivalent equi-probable variation and we are calculating this SEE variation
per unit cumulative frequency.

In a sense, we are using the entropy of the part P (its exponential actually) and its cumulative frequency
(which is scale free since it varies from 0 to 1 for all distributions) to make comparisons. In summary, the ratio %
computes the Shannon equivalent equiprobable spread per unit cumulative frequency for the part Pin a scale ’
free manner and hence, the ratio ?—: has the interpretation of degree of inequality as well.

4. Power law distribution

The distribution of a random variable X is said to follow the power law if the probability of measuring it is
inversely proportional to a fixed power of the quantity itself. Power law distributions are also referred to as
Pareto or Zipf distributions depending on the literature. These distributions occur naturally in a variety of fields
such as physics, earth sciences, biology, computer science, sociology, and others. Due to the decreasing nature of
the probability density p,(x) (we use the subscript letter z for Zipf) of a power law distribution, stemming from
the inverse power-relationship with x, such distributions are inherently right-skewed, i.e. larger values of x are
less probable. At the outset, we define a power law distribution below:

Definition 4.1. A continuous random variable X is said to follow a power law distribution if its probability
density function denoted by p,(x) satisfies the the following:

p,(x) = Q- 1( * ) ; wherea >1; X € (Xmin, 00) @)
Xmin Xmin
=Cx %  where C = (o — Dx2:, % 8)

In the above definition, the constant Cis normalized to make the total probability equal to 1. Also, o is typically
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chosen to belarger than 1 for the mean to be well defined, and x,,;, > 0 is a positive minimum value of the
random variable to avoid singularities in the distribution. In this section, we state and prove some preliminary
results about the power law distribution defined in definition 4.1. We recall the following two theorems from
(Rajaram et al 2024).

Theorem 4.1. Given a power law distribution as in definition 4. 1, its entropy is given by

Hln( Xmin )+ @ a1 )
(a—1) (a—1)

We denote the total diversity of the power law distribution Dy, ) by the symbol D just for simplicity.

We can easily show that

X
Clatmimr) = C f t=odt

Xmin

(I-a)
X
. ( ) .
Xmin

Next, we recall a theorem from (Rajaram et al 2024) that calculates an explicit formula for the slope of
diversity curve of the power law distribution.

Theorem 4.2. Given a power law distribution as in definition 4. 1, the slope of diversity curve which plots ¢, ) on
thex-axis and c(x,, x) * In(A,,,x) 01 they-axis has the following explicit formula:

—a
Cltin) 11 (A ) = Cag ™ mno) In (1 = Ci)- (10)
Also, the slope of the tangent s, of the slope of diversity curve at ¢y, ) is given by:
a
sy = ———{—In(1 — ceepypy) — 1}
a—1)

ol (L) o
Xmin (CM - 1)

4.1. Case-based entropy curve for a power law distribution
We next compute an explicit formula for the case-based entropy curve of the power law distribution.

Theorem 4.3. Given a power law distribution as in definition 4. 1, the case-based entropy curve which plots ¢, ) on

. D x . . ..
thex-axisand C(, . v = —=2 o they-axis has the following explicit formula:
D0 o U= Cominn)
Cltains) = 22 = Clai) (1 = Clty)) @7 omin (11)
D
Proof. The proofis a calculation.
a
Ctminx) (A (i) = (1 = Ciep) IN(L = Cei))
(=1

o (0= o)
(a - 1) C(xminvx)
D(xmin)x) a w

= Aminx) = (1 = Clepip))@" “ominn

ln(A(xminxx)) = ln(l - C(Xmimx))

Cltmin) D
Do) o (1= Cminn)
C(xmimx) = % = C(xmimx)(l — C(xmin,x))(“’” Clemine®)

This proves the Theorem.
Next, we show that the case-based entropy curve for the power law distribution is an increasing function.

Theorem 4.4. Given a power law distribution as in definition 4. 1, the case-based entropy curve, which plots c(, )

Dexninx)

onthex-axisand C, . ) = on they-axis, is an increasing function of ¢, ., x).

Proof. For simplification of notation, let y = g(x) = C,, x and x = ¢, x) and note that y > 0. Then we
have
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y =g = x(1 — o5,

Let’s compute the first derivative, with respect to x using the logarithmic differentiation technique.

In (}/):L(1 )ln(l — x) + In(x)

(a—1 X

y_  a ln(l x(l)(lx)]+(1x)( —1 )}
y (a— x? x (1 —x)
L/: @ {—ln(l—x) l}Jrl
y (a-1 x x
)/_’: o {—ln(l—x)—x}+l
y (a—=1 x
Define f(x) as follows:
f(x)=—-In(1 —x) —x, notingthat f(0)=0 and
flx) = L= 2 >0, ifo<x<l.
1 —x 1—x

Hence f(x) > f(0) = 0if0 < x < 1.
So, this directly implies that ' = g’(x) > 0,when o > 1and 0 < x < 1, or yisan increasing function of x.
This proves the Theorem.

Next, we show that the 60 — 40 rule that was empirically observed for power law distributions in (Castellani
and Rajaram 2016) is analytically true for power laws. We define the 60 — 40 rule below first.

Definition 4.2. Given a power law distribution as in definition 4.1, its case-based entropy curve, which plots

Hxminx).
D

Clxpnx) ON the x-axisand Cix, x) = on the y-axis, satisfies the 60 — 40 rule if the curve passes through the

following region:
{0.6 < Cltmimx) < 1, 0< C(Xmimx) < 04}.

Remark 4.1. Definition 4.2 means that at least 60% of the cases are situated in the first 40% or less of Shannon
Equivalent Equi-probable (SEE) part of the distribution. The 60 — 40 rule demonstrates the severity of
restriction of diversity in power laws (and in general right-tailed distributions as empirically observed in
(Castellani and Rajaram 2016)). It says that at least 60% of the cases in all power laws are restricted to the first
40% or less of Shannon Equivalent Equi-probable types. This means that a majority of the distribution i.e., 60%
or more is situated in the first 40% or less of the diversity (or uniformity) of the distribution in an equivalent
equi-probable way.

Theorem 4.5. Given a power law distribution as in definition 4.1, its case-based entropy curve which plots c(x, . ) on

) Disines — ) .
thex-axisand Cy, x) = % on they-axis, satisfies the 60 — 40 rule as stated in definition 4.2.

Proof. In theorem 4.4 we showed that the case-based entropy curve is an increasing function of ¢(y, . ). Using
the same simplification of notation, let y = g(x) = Cix,,x) and X = ¢(x,,, »). Since g(x) is increasing, we know
that

¢(x) > g(0.6) = 0.3267),  for 0.6 <x < L.

As o approaches infinity, ﬁ decreases to 1, and

g(0.6) = 0.326(s%1) 1 0.326.

Hence the maximum limiting value of ¢ (0.6) = 0.326 for any & — oo, with g(0.6) < 0.326,
forl < o < +o0.
Since g(x) is increasing and ¢ (0.6) = 0.326 in the maximum a— limit, this means that
g0 = x(1 — )@y (12)

passes through theregion {0.6 < x <1 and 0 <y < 0.40, actually 0.326}.
Thus, we have proven the ‘60/40 Rule’. That is, at least 60% or more of cases (0.6 < ¢(y,, ., < 1) are within
the first 40% of equiprobable types (0 < C, ., < 0.4).

Figure 2 shows the case-based entropy curve for the power law distribution for various choices of o
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Green:a =2
Red:a=3
Blue: a --> infinity

0:5

N

Blue (0.6, 0.326) |

~

Red (0.6, 0.1768)

Green (0.6, 0.1768)

[

0 0.5 1

Figure 2. Case-based entropy curve for the power law distribution with ¢(x;, ., on thex-axisand C(y,, ., on the y-axis for various
choices of o showing that it satisfies the 60 — 40 rule.

In fact, from equation (12) we have that
g(x) = x(1 — 0@ 1 x(1 — x)(Fasa T oo.

Hence we have the following more general definition and theorem for which theorem 4.5 is a special case
when x = 0.6.

Definition 4.3. Given a power law distribution as in definition 4.1, its case-based entropy curve which plots
D("minv*’)

Clxpnyx) ON the x-axisand Ciy,, x) =
following region:

on the y-axis, satisfiesa ¢ — g (c) rule if the curve passes through the

{c< Cltminx) < L, 0< C(xm;n,x) < g(C)}

Theorem 4.6. Given a power law distribution as in definition 4. 1, the case-based entropy curve, which plots ¢, )

(¥min,X)

. D L . .
on thex-axis and C,,,x) = —p*— on they-axis, satisfies the c — g (c) rule as stated in definition 4.3
with g(c) = ¢(1 — o).

Proof. The proof follows the same steps as in theorem 4.5.

In summary, we have analytically proved the 60 — 40 rule for the power law distribution in this section that
was empirically observed in (Castellani and Rajaram 2016) for a variety of systems that exhibited a right tailed
distribution. We have also generalized the 60 — 40 rule to a ¢ — g(c) rule which equates to the 60 — 40 rule when ¢
is chosen to be 0.6.

5. Comparing degree of uniformity of parts of the power law distribution

The 60 — 40 rule in the previous section suggests that less uniformity is coming from a majority of the
distribution since 60% or more of the distribution is in the first 40% or less of uniformity. This is a first step to
quantifying the inequality in power laws, since it is already known that the tail is more uniformly distributed
compared to the initial part. This also begs the question of quantification of the ratio of degree of uniformity of
the right part of the power law to the left part, or more generally between any two parts as well if needed. This is
precisely what we do in this section.

In this section, we compare the degree of uniformity (or inequality) of parts of the power law using the
explicit expression for the slope of diversity curve that was derived in theorem 4.2.
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Theorem 5.1. Given a power law distribution as in definition 4.1, the ratio of degree of uniformity of the parts
(Xmin»> x) and (x, oo) is given by the following:
A __a_ 1
—e) (I = Chein)) 77 (C(X‘“‘“”‘) ) . (13)
A i)
Proof. Recall from theorem 4.2 that

(1= Cpmin®)
_a U COmin)
A(xmimx) = (1 - C(Xmin,x))(nil) Cminx)

We also have
€ (emin-x) (A= Caminm) _
(Xmin»X) 'A(x,OO)( =1L
So,
(1= Cay (1= Clapineoe)
(1 = Gy Yo 0 om0 A (S = ]
(1 = G0 Ayo0) = 1
A0y = (1 — C(xman,x))i(“g” .
Taking ratios, we have

Awoy (1= Cpp) @D

o a (= Cminx)
A i) (A — ¢, x))mfl)( Cermin.®)
min>

—a (1
=1 - C(Xmin)x)) (=D (C(Xmin:x) ) .
This proves the Theorem.
Remark 5.1. We remark that the following calculation holds to compute X so that ¢, .z = ¢z ) = 0.5.

% (—a+1)
Cltmim®) = 1 — (—) =05 s

Xmin

~ (—a+1)
(i) =0.5,
Xmin

(xmin )(a_l) —05
i b

For such an &, substituting in equation (13)
Aptpiniy = (0.5)57, (14)
and
A o) = 2@, (15)

The first equation provides the ratio of the degree of uniformity of the interval (x i, X) to the entire distribution
(Xmin> 00). The second equality provides the ratio of the degree of uniformity of the interval (%, co) to the entire
distribution (X, 00).

Finally,

Ago)  Dioo)/Ci00

= 4. (16)
AGmin®  Dotin )/ Ctmin®)

The above observations lead to the following theorem.

Theorem 5.2. Let X be the halfway point in the power law distribution as in remark 5.1 for a power law distribution,
from definition 4.1. Then we have the following.

1. The first 50% of the distribution from (Xun, X) is at most 50% as uniformly distributed as the entire
distribution (X pin, 00).

2. Thesecond half (%, c0) is at least 200% (or twice) as uniformly distributed as the entire distribution (X, 00).

9
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3. Thesecond half (X, 00) is at least 4 times as uniformly distributed as the first half (x i, X)
Proof.

(1) From equation (14),as @ — 00, A, 3 increasesto 0.5 and Az ) decreases to 2. This means that the first
50% of the distribution from (x;,, X) is at most 50% as uniformly distributed as the entire
distribution (X, 00).

(2) Also, from equation (15) the second half (X, 0o) is at least 200% (or twice) as uniformly distributed as the
entire distribution (X, 00).

(3) From equation (16), the second half (%, 00) is at least 4 times as uniformly distributed as the first half

Ago0)

decreasesto4as o — +00.

(Xmin> X) since

(¥min,%)

This proves the Theorem.

Remark 5.2. We can generalize the results above for the right p% of the power law, i.e. for the choice of

1 — ¢(,,.x) = p- Thus,
(—a+1)
x Xmi
Cltmimr) = 1 — ( ) = x= "=

Xmin Pmi b

.For such an x, we have

(176(x i x))
o p
Atinr) = (1 = Clapp)) @D Coninw = pla-na=p,

A(X,OO) = (1 - C(xminax))7ﬁ = piaaj’ and

A(X,OC) _ 7(0131)($)
A(Xmimx)

Hence, we have the following more general theorem from the above observations for the power law by taking
similar limits as & — oo:

Theorem 5.3. Letx be the (1 — p) — th percentile in the power law distribution as in remark 5.2 for a power law
distribution as in definition 4.1. Then we have the following.

1. The first (1 — p)% of the distribution from (X, X) is at most pufm % as uniformly distributed as the entire
distribution (Xpin, 00).

2. Thelast p% of the distribution (x, c0) is at least %% as uniformly distributed as the entire distribution (X i, 00).

3. Thelast p% of the distribution (x, 00) is at least p_(llp) % as uniformly distributed as the first (1 — p)% of the
distribution (Xmin, X).

Proof. The proof follows the same steps as in theorem 5.2.

6. Entropic comparison of power law and exponential distribution

In this section, we demonstrate that we can compare two different distributions with possibly completely
different scales of variation for the random variable X and the associated probability densities This is possible by
studying the variation of degree of uniformity (or inequality) of parts through the ratio 22 as a function of

cumulative probability c using the slope of diversity curve. This is because the cumulatlve probability c always

varies from 0 to 1 and this provides a scale free way to look at the parts of the original random variable. In

addition, the diversity Dpis the support of an abstract SEE (Shannon Equivalent Equi-probable) distribution

which is uniformly distributed, and hence gives us a way to evenly compare parts even though the variation of

probabilities of said parts might be wildly different from each other and from the uniform distribution.
Consider the exponential distribution as defined below.

Definition 6.1. A continuous random variable X is said to follow an exponential distribution if its probability
density function and cumulative probability distribution denoted by p(x) and ¢, respectively, satisty the the
following:

10
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p(x) = Ae™ and o =1-e x€(0, ). (17)

We recall the following theorem from (Rajaram et al 2024).

Theorem 6.1. Given an exponential distribution as in definition 6.1, the slope of diversity curve and the slope of
tangent for the same, are given as follows:

€(0,x) ln(A(%)x) ) = — )\xe‘)"‘

and (18)
Sy = Ax— 1= —ln(l — C(O,x)) — 1. (19)

We next derive an expression for the ratio of degree of uniformity of parts (0, x) and (x, 0o ) to the whole (0, 00 )
for an exponential distribution for arbitrary choice of x € (0, 00 ).

Theorem 6.2. Given an exponential distribution as in definition 6.1, the ratio of degree of uniformity of parts (0, x)
and (x, oo) respectively with respect to the whole (0, o) denoted by A ., and A(x, oo) respectively, are as follows.

A(%,x) =(1- C(O)x))(lff(o,x))/fm,x) 20)
1
A - - on
(x,00) (1 — c,x)

Proof. We know from theorem 6.1 that

c(o,x)ln(A(eo,x)) = —)\xe_’\x.

Also,
C(0,x) = 1 — e"\"
67)‘JC =1- €(0,x)
—x = 11’1(1 — C(O,x))-
So,
conIn(AQy) = (1 — cox)In(l — o),
and
Ay = (1 — cou)!! ~co0)/c0n
A(eO,x)C(O'x) . A(exjoo)(lff(o,x)) =1
(1 - C(O’x))(lff(o,x))/f(o,x) . Afx,m)(lff(o,x)) =1
B . 1
(x,00) — .
(I = cox)
Remark 6.1. Now, we choose X so that ¢ 5y = 0.5. Using a bit of algebra, this occurs when ¥ = lnf).
Then,
1-05
Abs = (1 —05)("5) =05,
and

1
Abryy = ———
(1= 0.5)

Interestingly enough, for the exponential distribution, the first halfis exactly 50% as uniform as the entire
distribution and the second half is exactly twice as uniform as the entire distribution. Also, the second halfis 4
times as uniform as the first half. More generally, the first (1 — p)% of the exponential distribution is exactly
p%% as uniform as the entire distribution and the last p% is exactly %% as uniform as the entire distribution.

Finally, the last p% of the distribution is exactly p~ 7% as uniformly distributed as the first (1 — p)% of the
exponential distribution.

We next establish an important and interesting relationship between the power law and the exponential
distributions. In what follows, a subscript or superscript of z refers to the power law and e refers to the
exponential distribution respectively.

11
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Theorem 6.3. Let p,(x) and p.(x) be the probability density functions for the power law and the exponential
distributions respectively, as defined in definitions 4.1 and 6.1. Let Aj, .y and A, ., be theratio of degrees of
uniformity of the power law and exponential distributions respectively, each with their corresponding total diversities
D, and D.. Then the following is true:

lim AL o = Ad (22)
a—00
a—00

Proof. For general x € (xy,, 00)and x € (0, co) respectively, for the power law and the exponential
distributions, we have the following:

o (= Clminn)

z —_ — .
= (1 = Clap))@ D T

(Xmin»X)

Afooe) = (1 = Cltpp) @1

(I1=¢(0,x)

A(%’x) =1 — ¢oyx)) ©» , and
1
Al =
(x,00) :
P = o)

The result follows by taking the limitas & — oc.

Remark 6.2. The key point here is that ¢y, »)and c(,x are both cumulative probabilities from 0 to 1 for the
power law and the exponential distributions respectively, and we don’t distinguish between the cumulative
probability variable for the power law and that for the exponential distribution. In this case, we are primarily
interested in the variation of mathematical diversity of the two distributions as a function of their cumulative

probabilities. The degree of uniformity is the ratio v where Dpis the support of the SEE distribution of the part

that is uniformly distributed. Hence, the original VaC;iation of probabilities in the parts are redrawn as equivalent
uniform distributions thereby providing an even playing field of comparison. In this sense, we can actually forget
about the original random variable once we have A as a function of ¢. Hence, from the standpoint of slope of
diversity, the exponential distribution is the entropic limit of the power law distribution as &« — 0. Sucha
comparison is inherently scale free since the range or variation of the original distributions (power law and
exponential) are subsumed by the cumulative probability random variable c which varies from 0 to 1 in both
cases.

To our knowledge, this connection between the exponential distribution and power law has not been
discovered before.

Remark 6.3. Let the subscript (or superscript) z denote the power law and e denote the exponential distribution,
andlet £besuchthat ¢, . )= c,z,) = 0.5, where £, = Xpin - 2@ Dand %, = In(2)/), i.e. &, and %, divide
the power law and the exponential distributions, respectively, into two equal halves.

Then

Aé z = 0565
and
A(e(),fce) = 0.5.
Hence,

im AG o) = Az

a—00

The slope of diversity of the power law is

e
C(xmiﬂ’x) ln (Aécmimx)) = (ﬁ)(l - C(xminax)) ln (1 - C(xmimx)))
The slope of diversity of the exponential distribution is
o In (Ag.) = (1 — co)In(l — co,x)-
Clearly,

llm C(Xmimx) 11’1 (A(ffmimx)) = C(O,x) lIl (A(eo’x)),

a—00

wherethexin Aj . and Ag ,, refer to the random variable in the power law and the exponential distributions,
respectively.
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Also,

sfz( 4 )(—ln(l—qu,x)))—l)

a—1

and

sy = —In(1 — ¢oyx) — 1.

Hence,

. z __ e
lim sf = s;.
a—00

Our conclusion is that the exponential distribution is the entropic limit of power law distributions
as o — 00.

Note: This does not mean that the densities p, and p, follow this limit. The reason for this is that the
diversities D, and D, are different, hence p, (x) = e / D,and p(x) = e / D, are different. This also does not
contradict the equivalence theorem proved in (Rajaram et al 2023, 2024) between the original probability
distribution and the slope of diversity curve, since the probability spaces for the exponential distribution (0, co)
and the power law distribution (x;,, 00) can never be the same. This is because the power has to necessarily
startfrom x,;, > 0.

Remark 6.4. We remark again, to emphasize that our focus in the comparison of the power law and the
exponential distributions is from the lens of mathematical diversity and its variation as a function of their
respective cumulative probabilities. Since the cumulative probabilities for both distributions range from 0 to 1,
this gives us a way to compare and contrast several things such as the diversity of parts, the degree of uniformity
of parts etc., for parts across the two distributions, without paying heed to the actual differences in the variation
of the probability itself as captured by their respective densities. We refer to such comparisons as scale free since
the underlying variable is the camulative probability ¢, which varies between 0 and 1 for all probability
distributions. We also note that we are able to obtain relationships (in the case of the power law and the
exponential distributions, this was a limiting relationship) between the slope of diversity curves and the slope of
tangent of said curves as well. Mathematically speaking, diversity is the exponential of entropy, and functional
relationships between the diversity of parts within a given distribution or across different distributions (such as
power law and exponential) are equivalently, statements of relationships between the variation of entropic
uncertainty as a function of their respective cumulative probabilities. For this reason, we have termed the
limiting relationship between the exponential and the power law distributions in the paper as entropic limits. We
have used the case-based entropy and the slope of diversity curve as vehicles to explore such relationships
between mathematical diversity and the cumulative probability of parts both within a given distribution and
across different distributions. Hence, in a sense, we have devised a very general mathematical machinery to
compare the parts of a given distribution and also across different distributions in a scale-free way from the
standpoint of mathematical diversity.

7. Geometric distribution

Although the previous examples were chosen to be continuous probability distributions due to their
importance, the same ideas can be extended to discrete distributions as well. We demonstrate our ideas using the
geometric distribution as the third example.

Definition 7.1. A discrete random variable X is said to follow the geometric distribution if its probabilities p;
satisfy the following:

p,=pq" D, q=1-—p, fori=1,2,3,.. (24)

We recall some of the important formulas for the geometric distribution below. D stands for the diversity of the
entire distribution, Dy stands for the diversity of the part {1, k} until the index k, ¢, stands for the cumulative
probability up to the index k, p, stands for the normalized probability for the part { 1, k} and p, g are the
parameters of the geometric distribution denoting success and failure probabilities. Let
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1
D - p . q(q/P)
RPIGY)
ﬁi:pq—, for i=1,2,3,....ks and ¢ =1—¢*
1 —-4q)
Dy = D(q(kfl)qk/(lfq"). (1 —q%)
N
This is ¢
Ay = 2k — go=nat/a-ab,
’ D¢y

Theorem 7.1. Let k denote the index corresponding to the (1 — t)-th percentile for a geometric distribution as in
definition 7.1. Then the ratio of degree of uniformity of the part {1, k} and the part {k, 0o} is given by the following:

Aoy /Ay = 7RG, 25)
Proof. Noting thatg = (1 — c)/*and qk = 1 — ¢, we have the following:
Angg = (1 — alTCE) or 26)
Ao = (1 — )T =) Q27)
Since
A{Cf,k] 'A{(Ii,;li) =1,
we have
A{(Ii,;cCI}C) =(1 — ¢ G=D/b-c)
Afpooy = (1 = )= D/b,
and so

(1 — ¢) =17k
(1 — ¢)~ =D/ -/

(k-1) 1

=1 - & =

Afkoo}/Af1ky =

Let k be the index corresponding to the right t%. Then,

1 — Lk = qk = t,

k= In(t) and
In(q)
k—1 In(® — In(Q
E 0 @
Forsucha k ,we have
é-n A=)

Apy =0 —cup) # - wb
— (£)/6= DY -Tn(g)/ e,

and
Afpooy =1 — C{1,l€})(k%)
— (-5,
Therefore,
A[,;,OO}/A{L,;] = tf(l’ll%)'(ﬁ).
This proves the Theorem.

Remark 7.1. We note that equation (25) gives the ratio of degree of uniformity of parts for general divisions at
the (1 — #)-th percentile mark and can be used to derive specific empirical rules for specific percentages. This

A~ In 1
means that the last 1% of the geometric distribution with indices {k, co} is tf(l - 'n7)'(1*') as uniformly
distributed as the first (1 — t)% with indices {1, k}.
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Given two parts P, and P,
that can also be wholes . . .

S,

_:*T Slope of secant Sy, x,)

.

. Dpl =D, e5(x1x3)

Compute — b1 ang 22 P2 directly to compare
Cpy

the dcgrec of uniformity/inequality of parts.

“~. _ Slope of secant Sy x,y

~

Dpz = D, eS(xaxa)
Cp,

Figure 3. Picture showing the two ways of computing the degree of uniformity/inequality of parts of a distribution i.e. direct
computation and from the slope of secants of the slope of diversity curve. The two graphs are the slope of diversity curves for parts P,
and P, from two entirely different distributions.

We end by summarizing the general mechanics of quantification of the degree of uniformity/inequality of
part or whole of one distribution with another. The heart of the mechanics comes from theorem 2.2. Assume we
are given two parts P; = (x;, x,) and P, = (x3, x4). We have the following ways to quantify the degree of
uniformity/inequality of said parts:

(i) We could directly compute the degree of uniformity/inequality of the parts by computlng " and 2 from

L'Pz

scratch. This is probably the best approach for distributions that don’t admit analytical expressmns for
diversity, and also if we are only interested in the given parts P; and P,

(ii) A more comprehensive approach would be to plot the slope of diversity curve for the entire distribution(s)
and computing the slopes of secants of the parts S, ,,) and S, x,). We could achieve this by simply drawing
the secants and computing the respective slopes. This allows use to compute the degree of uniformity using

D” = D - eSwx», where D is the diversity of the entire distribution. This was shown in (Rajaram et al

2023 2024). If the two parts P, and P, are both from the same distribution, then since D is the same for both
parts (since they are both from the same distribution), we can form the ratio 2 A !, where Ap = ID for parts
cp

Py and P,. This is very easily computed using theorem 2.2 by A—Pl = eswxz)*S(xa»w, since the total diversity D
P

cancels out in this case. If the parts are from different distributions, then we can compute

(%)
(D'P‘ = % - €S ~Swxw, where D, and D, are the diversities of the two different distributions respectively.
Dry 2

cpPy )
The slope of diversity curve will now allow to compute the degree of uniformity/inequality of other parts of
the distribution as well since all we need to do is compute the corresponding slopes of secants for those parts

and repeat the above procedure.

We end by showing an illustration in figure 3 of the above explanation of the quantification of the degree of
uniformity/inequality for the most general case.

8. Conclusions
We started the paper with three general questions.

1. Is there a universal way to measure inequality based purely on the entropic uncertainty that is inherent to
probability distributions and nothing else? We have answered this question through our novel usage of case-
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based entropy curve and in a more general sense, through the slope of diversity curve. The answer is that the
. . . Dp, .
degree of uniformity of parts P;, as measured by the ratio C—P from the slope of secant of the corresponding
Pi

partin the slope of diversity curve, is a direct quantitative measure of how uniformly distributed a given part
P;is compared to another part P;. Comparing this ratio for parts, as well as the whole if needed, is a direct way
of measuring inequality from an entropic perspective, as this ratio measures the localization of inequality of
the original distribution in the part P. We showed an application of this concept by looking at the slope of
diversity curve and comparing the first half and the second half of the power law as an example in section 5.

2. Can we make it so this new method allows us to compare parts of a distribution and entire distributions alike?
We answered this question through the usage of the slope of diversity curve to compare the parts of the power
law distribution and the exponential distribution in section 6. The novelty of our approach is through the
usage of the ratio of mathematical diversity for a given part P (denoted by Dp) and its cumulative probability
(denoted by cp), instead of the original random variable Xp, to compare equivalent parts in a scale free
manner. Specifically, we were able to show that the first half of the exponential distribution is exactly half as
uniform as the entire distribution and the second half is twice as uniform as the entire distribution. Also, that
the second half of the exponential distribution is 4 times more uniformly distributed as the first half. For the
power law, all these ratios are multiplied by the factor - = ; and hence lesser, in general compared to

corresponding ratios for the exponential distribution. For general parts, the parts that are being compared

need not have the same range of values for the cumulative probability ¢ since we are more interested in
computing the degree of inequality Ij—: instead of just cp.

3. Can we use this technique to glean out empirical rules similar to the Pareto principle, not just for the power
law but for any given distribution or its parts thereoft We demonstrated this in section 4.1 where we
analytically proved the so called 60 — 40 rule that was observed for right-skewed distributions in (Rajaram
etal2023). This is just an example application to see which percentile of cases covers which entropic part of
the distribution as measured by the case-based entropy. The entropic comparison using the slope of diversity
curves for the power law and the exponential distribution also gleaned out empirical rules about ratio of
degree of uniformity of parts of the respective distributions. Hence, in a more general sense, using the case-
based entropy curve and the slope of diversity curve and looking at ratios of slopes of secants of parts will
provide us with important and interesting comparisons of parts of a given distribution, as well as comparisons
with other distributions leading to general empirical rules governing the distribution of degree of uniformity
(or inequality) among said parts.

We chose the power law and the exponential distribution as analytical examples because they have been
studied in depth in the literature and are also known to model several natural phenomena. We also used the
geometric distribution as an example to demonstrate that the general machinery is versatile enough to handle
discrete distributions. In the most general case, when dealing with empirical data, we surmise that explicit
analytical expressions for the case-based entropy curve and the slope of diversity curve may not be feasible.
However, given the computational formulas for these two curves as seen in the background material in section 2,
the case-based entropy and the slope of diversity curves lend themselves to easy computation. In our future
work, we will endeavor to create a tool that automatically computes these two curves from empirical data and
also allows the user to draw secants, compute degree of uniformity of parts etc.

In this paper, we have used the exponential and power law distributions as examples to show how we can
compare the distribution of degree of uniformity (or inequality) of their corresponding parts (as measured by
the ratio %) using their corresponding slope of diversity curves. Apart from the power law and the exponential
distributicin, the rich plethora of distributions that one encounters in probability theory can now be viewed from
the lens of mathematical diversity, using the case-based entropy and the slope of diversity curves. The
demonstrations shown in this paper, using the aforementioned curves, lend themselves into important tools of
analysis from the point of view of inequality and degree of uniformity of distributions and their parts. Analysis of
distributions and their parts from the viewpoint of inequality or degree of uniformity is an important aspect of
study of distributions. One application that comes to mind using the methods demonstrated in this paper is to
identify and quantify parts of a given distribution (assuming the random variable being studied is a certain
resource that is supposed to be distributed) based on their degree of uniformity relative the entire distribution.
This will allow us to identify parts of the distribution which are plagued by inherent inequities that are not
obviously discerned by simplylooking at the shape of the distribution. In essence, we have devised a way to
quantify inequality among parts of a distribution from an entropic perspective, and have also shown a way to
compute the said quantification using the slope of diversity and the case-based entropy curves. Identification of
parts of a distribution that are severely deprived of diversity in the form of degree of uniformity can lead to
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formulation of efficient policies that will result in distribution of resources that suits a certain diversity structure
of parts.

In our future work, we will endeavor to construct a computational tool as mentioned above that will allow
the user to input empirically obtained data and allow them to (a) plot the original probability distribution g;, the
case-based entropy curve g, and the slope of diversity curve g; with one-click, (b) compare the degree of
uniformity of parts of the distribution by allowing the user to draw secant lines in the slope of diversity curve and
look for other parts of the distribution that have the same or a scalar multiple of the slope of the secant line, and
many more user-friendly routines that allow the user to analyze the empirical data from the lens of mathematical
diversity and degree of uniformity. Such a computational tool will be invaluable to numerically compare and
contrast the degree of inequality of parts of probability distributions that don’t have explicit expressions for their
densities, let alone for the slope of diversity curve. For example, in (Liang et al 2016) the probability density is the
solution of a differential equation, and hence, in such situations, a computational tool will plot the slope of
diversity curve directly, allowing the researcher to compare the degree of inequality of parts. We will also
endeavor to develop a measure-theoretic framework to systematically partition the original probability
distributions into parts that are ordered with increasing degree of uniformity (or inequality).
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