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Abstract— Federated learning (FL) emerges as a promising
solution to enhance autonomous driving (AD) models against
out-of-distribution (OOD) data. However, OOD instances often
lack labels, rendering conventional FL approaches less effective
in AD. This paper proposes road-supervised FL (RSFL), which
leverages road sensors’ perception results to annotate vehicle
sensors’ data, providing a fresh perspective on data annotations
for FLAD systems. To get deeper insights into RSFL, the infor-
mation gain of annotating objects with road sensors is derived
by leveraging the expected entropy reduction. Furthermore,
a bug-aware sensor placement (BASP) algorithm is developed
which strategically reduces (increases) the number of sensors in
low (high) complexity scenarios. This is in contrast to traditional
sensor placements where sensing coverage or road topology is
the only consideration. It is shown that BASP approximately
maximizes the information gain brought by road supervision.
Experiments confirm the superiority of the proposed RSFL
framework and BASP algorithm.

Index Terms— Autonomous vehicle, federated learning
I. INTRODUCTION

Detecting out-of-distribution (OOD) data in open sce-
narios holds significant importance for autonomous driving
(AD), since OOD data encapsulates rare cases in driving
scenarios and contributes to the enhancement of model
generalization [1], [2]. Federated learning AD (FLAD),
which updates deep neural networks (DNNs) in a distributed
manner whenever OOD data is encountered [3]–[5], is an
effective solution to robustify DNNs against OOD data.
However, in contrast to existing FL applications (e.g., image
classification [6]) where manual data annotation is available,
FLAD often needs to operate on unlabeled data, due to its
high-privacy and high-mobility nature [3]. Consequently, the
vanilla FL approaches [6], [7] based on supervised learning
become ineffective in AD.

To address the above problem, emerging FL approaches
[8], [9] proposed model average (e.g., exponential moving
average (EMA) [8]) and logit average (e.g., ensemble at-
tention distillation (EAD) [9]) to generate pseudo labels.
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These works fail in exploiting the geometric relationship
among different data frames. To this end, multi-view fusion
distillation (MVFD) has been proposed for generating pseudo
labels, e.g., feature-level MVFD [10], box-level MVFD [4].
Nonetheless, leveraging the consensus between vehicles (i.e.,
fusion) could potentially lead to higher bias.

This paper proposes road supervised FL (RSFL), cate-
gorized under the MVFD-type solution, to overcome the
bias issue by introducing roadside infrastructures (RSIs).
However, RSFL needs to integrate road annotation/placement
and FL features for joint optimization, for which the existing
MVFD FL algorithms [4], [10] become inefficient, as they
ignore the inter-dependency between low-level road designs
and high-level FL services. There also exist multi-view
fusion and road sensor placement approaches [11]–[14] for
non-FL scenarios. While these methods are effective for
traffic flow monitoring, they are inefficient for RSFL as they
ignore the requirements of FL services.1

To satisfy the new requirements of RSFL, we first propose
a bug-aware road labeling (BARL) algorithm that generates
pseudo labels for the false positives, false negatives, and
inaccurate boxes. Then, to gain insights into RSFL with
BARL, the information gain of annotating the objects with
a road sensor with respect to its placement location is
derived by leveraging the expected entropy reduction. As
such, the problem of maximizing the information gain under
road placement constraints is formulated, and a bug-aware
sensor placement (BASP) algorithm is proposed based on
integer programming. It is shown that BASP is equivalent
to optimizing a surrogate function that approximates the
total information gain. Experiments in high-fidelity unreal
engine simulator show that the proposed RSFL with BASP
significantly outperforms the pretrain scheme and the RSFL
with topology-based sensor placement (TSP). The main
contributions are summarized below.

• Propose an RSFL framework with BARL for AD and
derive the information gain brought by road supervision.

• Derive a bug-aware sensor placement (BASP) algorithm
based on integer programming.

• Prove that BASP is equivalent to optimizing an approx-
imate function of the total information gain.

• Conduct high-fidelity experiments to verify the superi-
ority of the proposed RSFL with BARL and BASP.

1They follow the road topology (i.e., topology-based), or maximize the
sensing coverage (i.e., coverage-based), or maximize the number of visible
objects (i.e., object-based).
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Fig. 1: System architecture of RSFL, which consists of the BASP and BARL modules for FLAD.

II. SYSTEM MODEL

We consider an FLAD system with K autonomous ve-
hicles (AVs). The lidar data at the k-th vehicle (k ∈
{1, . . . ,K}) at the t-th (t ∈ {1, . . . , T}) lidar time frame,
is denoted as VDk = {Vdk,1,

Vdk,2, · · · }, where Vdk,t ∈
RDk×3 is the vector concatenating the coordinates of all
points, with Dk being the number of points in each cloud.
The DNN parameter vector at the k-th vehicle is wk ∈
RWk×1 with Wk being the dimension of each DNN. The
k-th DNN maps Vdk,t into a set of bounding boxes

VBk,t =
{
V b

[1]

k,t,
V b

[2]

k,t, · · ·
}
, (1)

where V b
[n]
k,t represents the n-th object at the t-th lidar frame

in the k-th vehicle coordinate system, and its label format is
given by

b = [c, x, y, z, l, w, h, θ]T , (2)

where c is the category, (x, y, z) is the center position,
(l, w, h) is the tuple of length, width, and height, and θ
denotes the yaw rotation, respectively. DNN inference at the
k-th vehicle can be written as VBk,t = VΦk(

Vdk,t|wk), where
VΦk represents the DNN inference function.

The goal of AD perception is to make VBk,t an accurate
structured representation of Vdk,t. However, VBk,t cannot
match Vdk,t if there exist OOD points in Vdk,t. Conse-
quently, we need the FLAD procedure for fine-tuning wk

in a distributed manner. Specifically, the FLAD aims to
acquire a global DNN with parameter vector g, by solving
the following loss minimization problem:

min
{wk},g

1∑
k |VD

⋄
k|

∑
k

∑
(Vdk,t,VB⋄

k,t)∈VD⋄
k

Θ(g; Vdk,t,
VB⋄k,t)︸ ︷︷ ︸

:=Λ(g)

s.t. w1 = · · · = wK = g, (3)

where VB⋄k,t is the set of pseudo labels2 obtained from a
teacher model, Θ(g; Vdk,t,

VB⋄k,t) is the loss function corre-
sponding to a single sample (Vdk,t,

VB⋄k,t) (1 ≤ t ≤ |VD⋄
k|)

in VD⋄
k = {(Vdk,t,

VB⋄k,t)}t with respect to parameter vector
g, and Λ(g) denotes the global loss function to be minimized.

Now let g[0] denote the pretrained DNN at the cloud, and
let w[i]

k (0) denote the local DNN parameters at AV k at the

2The set of ground truth labels is denoted as VB∗
k,t.

beginning of the i-th iteration (i ≥ 0 and w
[i]
k (0) = g[i]).

The FL training of model parameters (i.e., solving (3)) is
a distributed and iterative procedure, where each iteration
involves the following two steps:

1) The k-th vehicle first minimizes the loss function via
the gradient descent approach3 as

w
[i]
k (τ + 1) = w

[i]
k (τ)− ε

|VD⋄
k|

∑
(Vdk,t,VB⋄

k,t)∈VD⋄
k

∇Θ(w
[i]
k (τ); Vdk,t,

VB⋄k,t), (4)

where ε is the step-size, 0 ≤ τ ≤ E − 1 (E is the
number of local updates) and ∇Θ denotes the gradient
of Θ.

2) All AVs upload {w[i]
k (E)|∀k} to the server, which

computes an average model

g[i+1] =
1

K

K∑
k=1

w
[i]
k (E), (5)

and then broadcast to the AVs for next-round updates.
This completes one federated learning round and we set i←
i + 1. The entire procedure stops when i = IFL with IFL
being the number of federated learning rounds.

III. PROPOSED RSFL APPROACH

The key to FLAD is to find a proper teacher model such
that the pseudo labels in VB⋄k,t is closer to ground truth.
This paper proposes the RSFL approach shown in Fig. 1,
which consists of the BARL and BASP modules for the
FLAD system presented in Section II. The BARL module
leverages roadside infrastructures (RSIs) to annotate data at
ego-vehicles. The BASP module determines the positions of
RSIs using bug database and integer programming. Below
we present the details of the two newly developed modules.

A. Bug Aware Road Labeling

Denote the lidar data at RSI m (1 ≤ m ≤M ) as RDm =
{Rdm,1,

Rdm,2, · · · }, where Rdm,t represents a frame of road
point cloud. The DNN inference at RSI m at lidar time t is
RBm,t =

RΦm(Rdm,t|rm), where rm ∈ RRm×1 is the DNN
parameter vector at RSI.

Now, a direct approach is to label VDk with RBm,t via
the associated rotation and translation matrices between AV

3If |Dk| is large, stochastic gradient descent can be adopted to accelerate
the training speed.



Algorithm 1: RSFL with BARL

Input: VDk, GBt, VBk,t, FG→k, Fk→G, g[0], IFL, E
Output: g[IFL]

Function RS(GBt, VBk,t):
Map GBt to AV k as Ck,t = FG→k(

GBt)
Remove hidden points from Ck,t to acquire C⋄k,t
for c ∈ C⋄k,t do

if IoU(c, V b[n]
k,t) = 0, ∀n then

Update VB⋄k,t ← VB⋄k,t ∪ {c}

if δ ≤ IoU(c, V b
[n]
k,t) ≤ α then

Update VB⋄k,t ← VB⋄k,t \ {V b
[n]
k,t} ∪ {c}

Map VBk,t to global as Ak,t = Fk→G(
VBk,t)

Remove hidden points from Ak,t to acquire A⋄
k,t

for c ∈ A⋄
k,t do

if IoU(c,Gb[n]
t ) = 0 for all n then

Update VB⋄k,t ← VB⋄k,t \ {FG→k(c)}

Function FL:
for k ← 1 to K do

Execute RS(GBt, VBk,t) to obtain RS dataset
VD⋄

k = {(Vdk,1,
VB⋄k,1), (Vdk,2,

VB⋄k,2), · · · }
for i← 0 to IFL − 1 do

for k ← 1 to K do
for τ ← 0 to E − 1 do

Update local model using (4)

Update global model using (5)

k and RSI m. However, RSI m also suffers from occlu-
sion, and its perception performance of a certain object
could be even worse than that at AV k. To improve the
quality of pseudo labels, we propose to merge the percep-
tion results of all RSIs into a global object list GBt =

{Gb[1]
t ,Gb

[2]
t , · · · }. This is realized by exploiting the late

fusion cooperative perception algorithm developed in our
previous work [5], [11]. After fusion, the road server exe-
cutes BARL(GBt, VBk,t) to generate the pseudo label dataset
VD⋄

k = {(Vdk,1,
VB⋄k,1), (Vdk,2,

VB⋄k,2), · · · }, which is fed to
the FLAD. The entire procedure of BARL is summarized in
Algorithm 1.

In particular, for the k-th vehicle at time t, we first
initialize VB⋄k,t = VBk,t and then consider three cases to
update VB⋄k,t.

1) False Negative Correction (FNC). We map GBt to the
vehicle coordinate system as Ck,t = FG→k(

GBt), where
FG→k is the function mapping coordinates from global
frame to local frame. We then perform view frustum
culling and hidden point removal on Ck,t with respect
to the FoV of the k-th vehicle, which yields C⋄k,t. For

any box c ∈ C⋄k,t, if IoU(c, V b
[n]
k,t) = 0 for all n and

c is learnable for the AV4, then we update VB⋄k,t =

4A learnable object should contain a sufficient number of points observed
by the AV.

VB⋄k,t ∪ {c}.
2) False Positive Correction (FPC). We map VBk,t to

the global coordinate system as Ak,t = Fk→G(
VBk,t),

where Fk→G is a reverse mapping of FG→k. We then
perform view frustum culling and hidden point removal
on Ak,t with respect to the FoV of RSIs, which yields
A⋄

k,t. For any box c ∈ A⋄
k,t, if IoU(c,Gb

[n]
t ) = 0, ∀n,

where IoU is intersection over union function [11], then
we update VB⋄k,t = VB⋄k,t \ {FG→k(c)}.

3) Inaccurate Box Correction (IBC). For any box
c ∈ C⋄k,t, if there exists some n such that δ ≤
IoU(c, V b

[n]
k,t) < α, where (δ, α) are predefined thresh-

olds, e.g., we set (δ, α) = (0.05, 0.7), then we update
VB⋄k,t = VB⋄k,t \ {V b

[n]
k,t} ∪ {c}.

After iterating all the elements in VBk,t and GBt, the resultant
VB⋄k,t is our desired pseudo label set. By concatenating the
results of all time frames, the RS dataset VD⋄

k at the k-th
vehicle is obtained.

B. Information Gain of BARL

To quantify the benefit brought by BARL, we first consider
the single-RSI case and evaluate the information gain of
annotating the objects with the road sensor. Specifically,
consider the i-th object at the k-th vehicle at the t-th frame,
and denote its points as pi ∈V dk,t. The associated ground
truth box is b∗

i , with its format given by (2). However, the
generated box b̂ at the AV and box b⋄ at the RSI involve
uncertainties. To quantify their uncertainties, we model the
elements in b̂ and b⋄ as random variables and compute the
associated entropy.

For b̂i = [ĉi, x̂i, ŷi, ẑi, l̂i, ŵi, ĥi, θ̂i]
T , it contains 1 discrete

variable (i.e., category ĉi) and 7 continuous variables (i.e.,
position (ŷi, ẑi, l̂i), size (l̂i, ŵi, ĥi), and orientation θ̂i). The
probability mass function (pmf) of ĉi is pĉi . For instance, in
a binary classification, ĉi = 0 represents car and ĉi = 1
represents person. Then, the pmf [pĉi(ĉi = 0), pĉi(ĉi =
1)] = [0.2, 0.8] means that the object is classified as a
person with a probability of 0.8. On the other hand, since
(x̂i, ŷi, ẑi, l̂i, ŵi, ĥi, θ̂i) are continuous random variables, we
model their uncertainties using probability density functions
(pdfs), which are given by (px̂i

, pŷi
, pẑi , pl̂i , pŵi

, pĥi
, pθ̂i).

For instance, for box position, the mean of (px̂i
, pŷi

, pẑi)
is the output box and the variance of (px̂i , pŷi , pẑi) is the
perturbation. Based on the above pmf and pdf models, the
entropy of b̂i is given by

H(b̂i) = −
∑
t

pĉi(t) log(pĉi(t))

−
∑

u∈{x̂i,ŷi,ẑi,l̂i,ŵi,ĥi,θ̂i}

∫
pu(t) log(pu(t)) dt. (6)

Similarly, the entropy of b⋄
i is H(b⋄

i ).
Now we consider two cases.
• If the IoU between b̂i and b⋄

i is larger than α, then the
RSI would agree with the ego-vehicle and would not



change the bounding box. In this case, the entropy is
unchanged and we denote this event as b+

i .
• If the IoU between b̂i and b⋄

i is smaller than α, then
the RSI would change the bounding box. In this case,
the entropy is reduced and we denote this event as b−

i .
According to [15], the expected information gain (IG) of
annotating pi by RSI is given by

IGi = P
(
b−
i

) [
H(b̂i)−H (b⋄

i )
]
. (7)

The total IG of annotating all data is given by

IGsum =

K∑
k=1

T∑
t=1

∑
pi∈Vdk,t

P
(
b−
i

) [
H(b̂i)−H (b⋄

i )
]
. (8)

C. Bug-Aware Sensor Placement

The IGsum in (8) is defined with respect to a single
RSI. However, in the multi-RSI case, IGsum would also
depend on the sensor placement vector v = [v1, · · · , vM ]T ∈
{0, 1}M (M is the number of candidate locations), where
vi = 1 represents that the i-th position is selected as a
placement site and vi = 0 denotes that the i-th position is
abandoned. The number of deployed sensors should satisfy∑M

m=1 vm = L. Furthermore, since RSIs can only be
attached to utility poles, the set of candidate locations,
denoted as F (with |F| = M ), is known, and we denote
rm = [rm,x, rm,y, rm,z]

T ∈ F as the location of the m-th
feasible position to attach sensors.

Based on the above sensor placement model, we rewrite
(8) into its multi-RSI form:

Ψ(v) =

K∑
k=1

T∑
t=1

∑
pi∈Vdk,t

P
(
b−
i |v

) [
H(b̂i)−H (b⋄

i |v)
]

(9)

where the labeling probability P
(
b−
i |v

)
and entropy of

RSI’s detection H (b⋄
i |v) are now dependent on v. The

problem of maximizing IG for all data with respect to the
sensor placement v is

(P0) max
v

Ψ(v) (10a)

s.t.

M∑
m=1

vm = L, vm ∈ {0, 1}, ∀m. (10b)

In practice, however, it is challenging solve P0 since
H(b̂i) and H (b⋄

i |v) have no explicit forms. To this end,
we propose to approximate Ψ(v) in (10b) using a surrogate
function Ψ′(v). In particular, no matter what values H(b̂i)
and H (b⋄

i |v) take, we always have H(b̂i)−H (b⋄
i |v) > 0 if

b−
i happens and H(b̂i)−H (b⋄

i |v) = 0 otherwise. By setting
H(b̂i)−H (b⋄

i |v) = G > 0 for all i, P0 is approximated as

(P1) max
v

G
∑
i

P
(
d−
i |v

)
︸ ︷︷ ︸

:=Ψ′(v)

, s.t. (10b). (11)

It can be seen that P1 is equivalent to maximizing the
expected number of pseudo labels, which can be estimated by
Monte-Carlo sampling. Specifically, we deploy the pretrained

Algorithm 2: BSAP

Input: F , H, L
Output: Optimal sensor placement vector v∗

Function BASP(F,H,L):
Construct bipartite graph (V1,V2, E)
Calculate Em,j for all m, j
Form the observability matrix E ∈ {0, 1}M×J

Solve problem (13) and obtain its solution v⋄

Return solution v∗ = v⋄

DNN g[0] on AVs and test them inside our region of interest.
If any AV generates a bug object (including the inaccurate
box, false negative, and false positive) within its FoV, the 3D
position of this bug ej is registered into a database. After
a sufficiently long simulation time, the database becomes
H = {e1, e2, · · · }, which contains all registered error items.
Therefore, maximizing the expected number of pseudo labels
is equivalent to maximizing the cardinality |Z|, where Z =
{e ∈ H| ∃m : vm = 1, ∥e − rm∥ ≤ R} and R in meter is
the detection range of RSIs.5

To further derive Z , consider a bipartite graph (V1,V2, E),
where V1 = {a1, · · · , aM} is the set of M positions, V2 =
{b1, · · · , bJ} is the set of J bug data, and E is the set of edges
with Em,j representing the observability of bug data j from
position m. Specifically, if ∥ej−rm∥ ≤ R, we set Em,j = 1;
otherwise, we set Em,j = 0. Weights {Em,j} are stacked
into a matrix E = [E1,1, · · · , E1,j ; · · · ;EM,1, · · · , EM,J ] ∈
{0, 1}M×J . The nonzero elements in the vector vTE rep-
resents the expected number of false detections at AVs that
could be supervised by the RSIs. That is, Z = ∥vTE∥0.
Based on the above derivation, P1 is reformulated as

max
v

∥vTE∥0, s.t. (10b). (12)

The above problem is a nonconvex integer programming
problem due to the nonconvexity of l0 norm and discon-
tinuity of v. To this end, a slack variable q ∈ {0, 1}J with
q ⪯ vTE is introduced, and the following surrogate problem
of (12) is considered:

max
v,q

J∑
j=1

qj , s.t. (10b), vTE ⪰ q, qj ∈ {0, 1}, ∀j. (13)

Denoting the optimal solutions to problem (12) and (13) as
v∗ and (v⋄,q⋄), respectively, the following proposition is
established.

Proposition 1. The optimal v∗ to problem (12) and the
optimal v⋄ to problem (13) satisfies ∥v⋄TE∥0 = ∥v∗TE∥0.

Proof: Assume that ∥v⋄TE∥0 ̸= ∥v∗TE∥0. Then we
can always find a feasible solution v′ to (12) such that
∥v′TE∥0 < ∥v′TE∥0 ≤ ∥v∗TE∥0. Construct (v′,q′) with
[q′]j = 0 if [v′TE]j = 0 and q′j = 1 if [v′TE]j ̸=
0, where [a]j represents the j-th element of vector a. It
can be shown that (v′,q′) is a feasible solution to (13).

5It is assumed that the objects are accurately detected within the range
of R; otherwise we can always decrease R to make this assumption holds.
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Fig. 2: Comparison between BASP and TSP in 5 different scenarios.

Furthermore,
∑J

j=1 q
′
j = ∥v′TE∥0 > ∥v′TE∥0 =

∑J
j=1 q

⋄
j .

This contradicts to the optimality of (v⋄,q⋄).
Based on Proposition 1, we can solve (13) instead of (12).

Moreover, problem (13) is an integer linear programming
(ILP) problem, which can be optimally solved by off-the-
shelf software packages, such as CVXPY [16]. The entire
procedure of BASP is summarized in Algorithm 2.

IV. EXPERIMENTS

We implement the proposed RSFL system and BASP al-
gorithms using Python in the high-fidelity CARLA simulator
(driven by unreal engine) [17] on a Ubuntu workstation with
a 3.7GHz AMD Ryzen 9 CPU and an NVIDIA 3090Ti
GPU. We simulate 5 scenarios (i.e., 2 T-juctions, 2 cross
roads, and 1 round-about), and their bird-eye-view pictures
are shown in the first row of Fig. 2. In the considered
scenarios, we have M = 18 feasible positions and L = 9
RSIs, where the feasible positions are marked as squares in
the second row of Fig. 2. To collect the RSFL dataset, we
generate K = 4 AVs, each equipped with a 64-line lidar
and a SECOND DNN model [18] for 3D object detection,
to navigate in all these scenarios. Each AV collects 7000
frames of point cloud data at a frequency of 10Hz, where
objects within the range of any RSI are labeled with road
detected bounding boxes and are unlabelled otherwise. Note
that the pretrained SECOND at all AVs is obtained by
training SECOND with 9000 frames in CARLA Town02,
Town03, Town05 maps for 50 epochs. All the DNN models
are tested on a common dataset with 4000 samples collected
in CARLA Town02, Town03, Town05 maps.

We compare the following schemes: 1) Pretrain, which
directly adopts the pretrained SECOND; 2) RSFL with TSP
[12], which places RSIs based on the complexity of road
topology; 3) RSFL with BASP, which places the RSIs by
solving (13). First, as seen from the second row of Fig. 2, in
contrast to existing TSP that places more RSIs (marked as
green circles) at roads with more lanes, the proposed RSFL
automatically identifies the critical scenarios and places more
RSIs (marked as blue diamonds) in areas with more bug
data. As such, the number of false detections (marked as red
circles) that can be calibrated by the accurate road detections

(a) AV1. (b) AV2.

Fig. 3: Training loss versus the number of iterations.
under the BASP scheme is larger than that by TSP. For
instance, the BASP places more RSIs at narrow T-junctions
(i.e., the first scenario) instead of wide T-junctions (i.e., the
forth scenario), which is in shapely contrast to TSP. This
is because a narrow road would lead to a high occlusion
probability. As for the roundabout scenario (i.e., the second
scenario), the positions generated by BASP and TSP are also
different, where BASP places two lidars at west and east
sites, but TSP places two lidars at north and south sites.
Indeed, we assign a higher traffic density to the traffic flow
from west to east, and the proposed BASP automatically
recognizes such patterns. The above observations imply
that the proposed BASP method serves as a better sensor
placement strategy for FL than existing methods, producing
automatic annotations with a higher probability.

Next, the training loss versus the number of iterations at
two AVs is shown in Fig. 3. It can be seen that the global
model aggregation is executed every 1500 local iterations.
The total number of local iterations is 6000, corresponding
to 4 FL rounds. The training losses decrease for both
vehicles as the number of iterations or FL rounds increases.
This demonstrates the convergence property of the proposed
RSFL framework.

Furthermore, the performance of SECOND models trained
by different schemes is presented in Fig. 4. The detection
results of ground truth, pretrained model, RSFL model and
RSFL+BASP model are marked as red, pink, green and
yellow, respectively. First, it can be seen from Fig. 4 that the
pretrained scheme without FL (marked in pink) generates
inaccurate boxes in Fig. 4a, false negatives in Fig. 4b,



(a) Case I. (b) Case II. (c) Case III.

Fig. 4: Detection results. Red, pink, green, and yellow boxes
represent results of ground truth, pretrain, TSP-RSFL, and
BASP-RSFL, respectively.

mAP
IoU=0.7 IoU=0.5

Crossroad
(Town03)

pretrained 48.87% 68.25%
RSFL+TSP 51.92% (↑ 3.05%) 68.3% (↑ 0.11%)

RSFL+BASP 51.09% (↑ 2.21%) 70.96% (↑ 2.71%)

T-junction
(Town03)

pretrained 49.75% 71.02%
RSFL+TSP 52.61% (↑ 2.86%) 72.03% (↑ 1.02%)

RSFL+BASP 52.94% (↑ 3.19%) 76.33% (↑ 5.31%)

Roundabout
(Town03)

pretrained 43.07% 71.74%
RSFL+TSP 47.36% (↑ 4.29%) 73.89% (↑ 2.15%)

RSFL+BASP 49.38% (↑ 6.31%) 75.69% (↑ 3.95%)

Crossroad
(Town05)

pretrained 46.65% 69.73%
RSFL+TSP 47.12% (↑ 0.47%) 73.73% (↑ 4.00%)

RSFL+BASP 63.09% (↑ 16.43%) 76.30% (↑ 6.57%)

T-junction
(Town05)

pretrained 43.87% 71.13%
RSFL+TSP 49.61% (↑ 5.74%) 74.73% (↑ 3.60%)

RSFL+BASP 51.94% (↑ 8.07%) 76.54% (↑ 5.41%)

TABLE I: Comparison of mAPs for different schemes.

and false positives in Fig. 4c. Next, by employing RSFL,
the bounding boxes (marked in yellow) become closer to
the ground truth in Fig. 4a. The RSFL also corrects the
false negative in Fig. 4b, and recovers a false positive in
Fig. 4c. Lastly, with the proposed RSFL with BASP, all
the objects (marked in red) in all scenarios are successfully
detected. This demonstrates the benefits brought by the bug-
awareness feature and corroborates the entropy reduction
theory described in Section III.

Finally, we compare the mAPs of different schemes.
Table I summarises the mAPs at IoU = 0.5 and IoU = 0.7 in
cross-road, T-junction, and roundabout scenarios of Town03
and Town05. The experimental results show that even with
TSP-RSFL, the mAP is significantly increased compared to
the pretrained SECOND, i.e., with up to 5.74% and 4.00%
improvements at IoU= 0.7 and IoU= 0.5, respectively. This
is because the RSFL fine-tunes the pretrained model using
the OOD data and the road supervision at the adversarial
scenarios, thus enhancing the model generalization capabil-
ity. Furthermore, with BASP, the mAP performance is further
boosted. The mAP of RSFL with BASP outperforms RSFL
with TSP in almost all test scenarios, and leads to an mAP
improvement of more than 15% at IoU= 0.7 in the crossroad
scenario of Town05. This is because under BASP, the RSI
pose is not only determined by the road topology or traffic
flows, but also determined by the bug data distribution, which
accounts for the learning requirements at AVs in complex
urban scenarios.

V. CONCLUSION

This paper presented an RSFL framework for AVs to learn
from unlabeled data in open scenarios. To maximize the
expected amount of road-supervised OOD data, we further

proposed a BASP algorithm based on graph model and
integer optimization. Experiments showed that RSFL fine-
tunes the pretrained model towards better generalization.
Moreover, the BASP algorithm can enhance automatic road
data annotations for FLAD.
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