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Abstract We discuss the oscillations in the elastic pp dif-
ferential cross section seen in the TOTEM data at

√
s = 13

TeV on the top of the usual smooth behaviour.

1 Introduction

The possibility of oscillations in the high energy elastic scat-
tering was predicted theoretically long ago by Anselm and
Dyatlov in [1,2]. These oscillations are caused by the alter-
native signs of the multi-Pomeron contributions. At this time
the theory of strong interactions was based on three tenets:
unitarity, crossing and analyticity, which arise from causality.

In fact, the hope had been that the implementation of these
three tenets would reveal the hadron spectrum (see, for exam-
ple, [3,4]). It is relevant to note that the behaviour of the par-
ticles in the complex angular momentum plane is given by
their Regge pole trajectory, see, for example, [5]. Unfortu-
nately this boot-strap idea to generate the hadron spectrum
was torpedoed by the revelation of the CDD ambiguity [6].

As mentioned above, the dominance of the vacuum
(Pomeron) singularity and the secondary Regge poles means
that the oscillations should occur in elastic pp scatter-
ing. They are features of unitarity, crossing and analyticity.
Indeed, these oscillations may be visible in very high energy
elastic pp (and proton-nuclear) scattering data in the very
forward direction. Here we will quantify the oscillation sig-
nals that are expected in the experiments which are underway
at the LHC at CERN.

Later using axiomatic field theory (plus some additional
quite reasonable constraints) it was shown [7] that the scatter-
ing amplitude must have infinitely many zeros in the forward
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direction. In spite of the fact that these zeros are placed in the
complex plane (but close to the real t axis) such properties
of the scattering amplitude may lead to oscillations of the
differential cross section in the forward direction.1

The expected oscillations were extracted from the very
precise TOTEM 13 TeV data [9] by Selyugin in [10] (see e.g.
Fig. 5) where the HEGS [11,12] model was used to describe
the smooth behaviour of the amplitude. Similar oscillations
were observed in [13] (see Figs. 2b,3a) using a Phillips–
Barger Regge parameterization [14] plus an oscillating term.
That is the observed oscillations at 13 TeV do not depend on
a particular parameterization used to describe the smooth
amplitude behaviour. At smaller energies the accuracy of
the data are not sufficient to make a definite conclusion—
whether there are some oscillations or not [13]. Note that
the amplitude of observed oscillations is small—only about
0.5% of the corresponding cross section.

At first sight, these observations could be regarded as an
exciting confirmation of theory. However, as we will quantify
below, the problem is that the oscillations were observed at
low |t | values, before the first diffractive dip.

In Sect. 2 we recall the origin of oscillations produced by
the multi-Pomeron diagrams generated by the two-particle s-
channel unitarity equation. In Sect. 3 we consider the ampli-
tude in the impact parameter, b, representation. At high ener-
gies,

√
s, this is equivalent to the partial wave, l, expansion

(l = b
√
s/2). In conclusion, we emphasize that the oscilla-

tions seen in [10,13] should be caused by some irregularity
of the amplitude at a very large b ∼ 6 fm values. This looks
quite strange.

1 It is not excluded “that the zeros might not be close enough to the
physical region to produce oscillations” [8]. However the first diffractive
dip should be seen.
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Fig. 1 a The contribution of the individual multi-Pomeron diagrams to
the elastic cross section; negative contributions are shown in red. b The
elastic cross section generated by the sum of multi-Pomeron diagrams.

The contribution of the imaginary part of amplitude is shown in red,
while the contribution of the real part is show by the blue dashed curve

2 Oscillations due to multi-Pomeron exchange

Starting with one Pomeron, IP , exchange we discover that in
order to satisfy unitarity

2ImAel(q)= 1

8π2s

∫
d2k A∗

el(k)Ael(q − k)+
∑
n �=i

A∗
in Ani

(1)

one has to add the two, three and other multi-Pomeron dia-
grams [3,15] (here

∑
n �=i A

∗
in Ani = Ginel corresponds to the

contribution of inelastic states). In the Pomeron exchange
amplitude the imaginary part dominates. Thus, in the first
approximation we may neglect the real part and the elastic
amplitude becomes the sum of terms with alternative sign

Ael = IP − IP IP + IP IP IP − IP IP IP IP + ... (2)

In the case of a few Pomerons the total momentum trans-
ferred, t = −q2

t , can be divided between the Pomerons. Thus
the qt dependence of the diagrams becomes flatter. Indeed, if
the one-Pomeron exchange amplitude is A1(t) ∝ exp(B1t),
then for the two Pomeron contribution we have A2(t) ∝
exp(B1t/2), while for A3(t) ∝ exp(B1t/3) and so on. This
is shown in Fig. 1a. The resulting cross section is presented
in Fig. 1b by the black curve. The red curve shows the con-
tribution of the imaginary part of the final amplitude and the
dips indicate the points where ImAel(t) = 0. These dips are
filled by the real part which has its own zeros at a slightly
different t values. complex plane.

Note that the figure has a pure illustrative character. We
have assumed a pure exponential behaviour of the Pomeron

exchange amplitudes as it was done in the original oscilla-
tion paper [1,2]. The real t dependence is more complicated.
However here we have chosen parameters which reasonably
reproduce the behaviour of elastic pp aamplitude observed
by TOTEM at 13 TeV. In particular the total cross section
σtot = 110 mb and the elastic slope Bel = 20.4 GeV−2.
More details of the parametrization used are described in
Appendix.

Going to complex t it becomes possible to nullify the
entire amplitude, that is the imaginary and real parts vanish
simultaneously. These are the zeros discovered in the AKM
paper [7]. Clearly the presence of these zeros (mainly the
vanishing of ImAel(t)) reveal themselves as oscillations in
the t dependence of the differential cross section.

A similar behaviour of differential cross section was
observed in proton-nuclei collisions. It is well described by
Glauber theory [16] which accounts for the possibility of
proton rescattering on the different nucleons in nucleus (see
e.g. Figs. 9, 19, 24 of [17]).

3 Impact parameter representation

A convenient way to account for s-channel unitarity is to
work in the impact parameter, b, representation. At high ener-
gies the value of b is fixed with good (∼ 1/s) accuracy and
the unitarity equation reads

2ImAel(b) = |Ael(b)|2 + Ginel(b). (3)
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The solution of Eq. (3) takes the form

Ael(b) = i(1 − e−�(b)/2), Ginel(b) = 1 − e−�(b) (4)

where the factor e−�(b) is the probability to have no inelastic
interactions.

The so-called opacity, �(b), describes one Pomeron
exchange. It can be calculated as

�(b) = −i

4π2s

∫
d2qt A1(qt )e

ibq

= g2
N

4πB1

(
s

s0

)αP (0)−1

e−b2/4B1 (5)

for a pure exponential one-Pomeron amplitude

A1 = isg2
N

(
s

s0

)αP (0)−1

eB1t (6)

as used in Sect. 2.
Here gN is the Pomeron-proton coupling and αP (0) is the

Pomeron intercept.2

The full amplitude in t representation is given by the
inverse transform of (4)

Ael(t = −q2
t ) = is

∫
Ael(b)J0(bqt )d

2b (7)

where J0(x) is the Bessel function.
The typical b dependence of opacity is shown in Fig. 2 by

the red curve and the corresponding elastic amplitude by the
black continuous curve.

For a much larger opacity the elastic amplitude starts to
look like the black disk shown by the dashed black curve.
In this case the expected t behaviour of differential cross
section dσ/dt becomes similar to the usual diffraction on a
black disk.

Note however that in order to enlarge the opacity, for
example by the factor 10 in comparison with that at 13
TeV, when indeed the amplitude starts to look as the black
disk (see the black dashed curve in Fig. 2) we have to go
to extremely large energy. Assuming the Pomeron intercept
αP (0) = 1 + 0.12 we need an unrealistically high energy√
s ∼ 2 · 105 TeV.
At the present LHC energies the b dependence of the elas-

tic amplitude is sufficiently smooth and the inverse transform
(7) generates only one diffractive dip (at t � −0.46 GeV2

for 13 TeV); as shown in the detailed analysis leading to Fig.
2 of [18].

Now let us add some small additional interaction δ�(b). In
the elastic process this additional interaction will be screened

2 For simplicity we consider just the imaginary amplitude A1. In a
general case the opacity � should be complex to account for the real
part of A1.

Fig. 2 Impact parameter b dependence of opacity (upper red curve)
and the elastic amplitude (continuous black curve). The amplitude in
the case of 10 times larger opacity is shown by black dashed line. The
number 10 is arbitrary; it was chosen so as to make the effect suffi-
ciently visible. As an example by blue curves are shown the additional
contribution called “Odd” which originally has the pure exponential b
dependence but was distorted by the Pomeron screening. Blue dashed
curve corresponds to 10 times larger opacity

by the Pomerons leading to

δAel(b) = δ�(b)

2
e−�(b)/2. (8)

The corresponding contribution is shown in Fig. 2 by the blue
curves which are marked by “Odd”; (the case of 10 times
larger � is shown by a dashed line). For the b dependence
of δ�(b) ∝ exp(−b2/4B ′) we use the same exponential
form but with slope B ′ two times smaller than that for elastic
amplitude. The normalization of δ� is arbitrary, just to make
it clearly seen in Fig. 2.

In the extreme case (close to a black disk) of very large
�, this additional contribution survives only at the edge of
the disk (somewhere near b � R). After the transform (7)
we then would expect the oscillations caused by a Bessel
function J0(Rqt ). If the oscillations observed in TOTEM 13
TeV data are of this origin then they should be produced
by some irregularity of the Ael(b) amplitude at rather large
distances.

4 Discussion

Theoretically the multi-Pomeron oscillations must exist
[1,2,7]. At least the first diffractive dip is well visible in
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Fig. 3 a TOTEM data at 13 TeV [9] as a function of −t . The data have been fitted with the Phillips–Barger model [14] and adding an oscillatory
term. b The ratio R = dσel/dt (data)/dσel/dt (P-B fit)− 1 as a function of −t . The red curve represents the oscillatory contribution found in the fit

Fig. 4 a UA4/2 data at 541 GeV [21] as a function of
√−t . The data have been fitted by the exponent (A(t) ∝ eBt/2) adding (a) or without (b)

the oscillatory term. The ratio R = dσel/dt (data)/dσel/dt (exp - fit) − 1

pp scattering (see [18] and the footnote 1). To set the scene,
in Fig. 3 we reproduce Fig. 2 of [13] which shows a descrip-
tion of the 13 TeV TOTEM data. Note that the oscillations
occur down to low |t |, below the first diffractive dip. Clearly
these are not the oscillations generated by the multi-Pomeron
diagrams which are discussed in [1,2,7]. Indeed we observe
at least three oscillations before the dip at −t � 0.46 GeV2

while the predicted AD-AKM [1,2,7] oscillations generated
by multi-Pomeron diagrams start after the dip, as seen in
Fig. 1.

Recall also, that in the proton-nuclei scattering the den-
sity variation placed at the distance of about the ion/nucleus
radius lead to some additional contribution (oscillations) only

at the angles (t values) larger than the first diffractive dip; see
e.g. Figs. 19, 20 of [17].

Returning to elastic pp interactions, we see from Fig. 3b,
that up to the first dip at |t | = 0.46 GeV2 there are three
periods of oscillations. That is the Bessel function argument
bqt should be about 6π . In other words the characteristic
radius

b = R = 6π√
0.4GeV2

= 5.9 fm.

This is an unusually large value. It corresponds, in terms
of the Yukawa coupling, to a mass of about m = 30 MeV.
We tried to add to the elastic amplitude an additional
vector-particle exchange with mass m = 10–50 MeV. No
such oscillations were observed. Also no similar oscillations
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were obtained when we add to the proton coupling a large
radius cloud, that is an extra form-factor like 1/(t − m2) or
1/(t − m2)2.

The problem is that on the one hand we need a small mass
to go to large impact b ∼ 6 fm, while on the other hand
(with the present quite smooth Ael(b) behaviour of the main
amplitude) we need a large mass to produce the sharp form
of this new contribution.

To be complete we have to add that similar low-t oscilla-
tions were observed (but with a lower statistical significance)
long ago in the UA4/2 experiment [21] at

√
s = 541 GeV.

The discussion can be found in [22,23]. In this (UA4/2) case
the first three oscillations are “observed” (with, as noted,
low statistical significance) at −t < 0.01 GeV2 – 40 times
smaller than that at 13 TeV (see Fig. 4 taken from [23]). That
is the corresponding irregularity of the amplitude should be
placed at b ∼ 35 fm !. Note that the AKM zeros [7] come
from the same s channel two-particle unitarity equation that
generates the multi-Pomeron diagrams. Therefore they can-
not produce oscillations for |t | < 0.01GeV 2, contrary to the
approach given in [22].

Recall that the signal for oscillations is weak, so it is very
difficult to identify it by experiment. On the other hand if
oscillations like those in the very high statistics sample of
TOTEM [9] are found in the corresponding ATLAS/ALFA
data with equally high statistics, then it means that we face
a completely new and very interesting phenomena.3
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Appendix: Simplified pomeron exchange amplitude

To calculate the curves in Figs. 1, 2 we parametrize the one-
Pomeron exchange amplitude as

A1(t) = sg2
N (t)ηP(t)

(
s

s0

)αP (t)−1

(9)

where the Pomeron signature factor ηP (t) = −exp(−iπ
αP (t)/2) and the Pomeron trajectory αP (t) = 1 +�+α′

P t .
The Pomeron-nucleon coupling gN (t) = g0eB0t/2.

Correspondingly for the opacity �(b) we get4

�(b) = −i

4π2s

∫
d2qt A1(qt )e

ibq

= − i
g2
N (0)

4πB�

ηP (0)

(
s

s0

)αP (0)−1

e−b2/4B� (10)

where B� = B0 + α′
P (ln(s/s0) − iπ/2).

Equations (9,10) become identical to (6,5) if we replace
B1 by B� and the factor i in (6) by the signature ηP (0).

The parameters of Pomeron trajectory (� = 0.13 and
α′
p = 0.052 GeV−2) were taken from the fit to collider data

presented in [18] while the values of coupling g2
N (0) = 15.2

mb and slope B0 = 13.4 GeV−2 are chosen to reasonably
reproduce the TOTEM 13 TeV σtot = 110 mb and elastic
slope Bel = 20.4 GeV−2.
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