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Abstract
Identifying partial differential equations (PDEs) from data is crucial for understanding the
governing mechanisms of natural phenomena, yet it remains a challenging task. We present an
extension to the ARGOS framework, ARGOS-RAL, which leverages sparse regression with the
recurrent adaptive lasso to identify PDEs from limited prior knowledge automatically. Our method
automates calculating partial derivatives, constructing a candidate library, and estimating a sparse
model. We rigorously evaluate the performance of ARGOS-RAL in identifying canonical PDEs
under various noise levels and sample sizes, demonstrating its robustness in handling noisy and
non-uniformly distributed data. We also test the algorithm’s performance on datasets consisting
solely of random noise to simulate scenarios with severely compromised data quality. Our results
show that ARGOS-RAL effectively and reliably identifies the underlying PDEs from data,
outperforming the sequential threshold ridge regression method in most cases. We highlight the
potential of combining statistical methods, machine learning, and dynamical systems theory to
automatically discover governing equations from collected data, streamlining the scientific
modeling process.

1. Introduction

In recent years, scientists have increasingly employed statistical and machine learning methods to uncover
the governing equations of dynamical systems, particularly differential equations, from observational
data [1–7]. Data-driven methods offer several advantages over traditional approaches that rely on first
principles and expert knowledge [8, 9]. These methods can reveal patterns and relationships in the data that
may not be apparent from first principles, providing new insights into complex systems [10–14]. They are
also adept at working with noisy or incomplete data commonly encountered in real-world applications,
employing techniques from machine learning to enhance the robustness of discoveries [15–18].
Furthermore, by reducing the need for manual intervention and domain expertise, data-driven methods can
significantly streamline the discovery process [19].

Data-driven discovery in dynamical systems has evolved from early parameter estimation using spline
approximation and system reconstruction [20, 21], to leveraging statistical methods such as least
squares [22–24], mixed-effects models [25, 26], and Bayesian approaches [2, 11, 14, 27] for parameter
estimation in ordinary and partial differential equations (ODEs and PDEs). The advent of high-performance
computing has further propelled symbolic regression to find differential operators and approximate the
response function of the underlying equations, enabling the discovery of governing equations from data in
physics and engineering [1, 8, 28–30]. A notable development in this field is the Sparse Identification of
Nonlinear Dynamics (SINDy) approach [3, 5], which constructs an extensive library of potential terms and
employs the Sequential Threshold Ridge Regression (STRidge) algorithm [5] to select significant terms
iteratively.
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SINDy and its various enhancements [31–38] have been extensively used to discover a broad spectrum of
ODEs and PDEs, describing diverse phenomena such as fluid mechanics [39], turbulence models [40],
aerodynamics [41], and biological and chemical systems [42, 43]. Recent developments have combined
neural network-based techniques and SINDy, leading to innovative approaches that enhance noise tolerance
in identifying PDEs [6, 30, 44–48]. Neural networks can learn complex nonlinear relationships and
effectively filter out noise, complementing SINDy’s ability to identify parsimonious models. Methods, such
as deep learning for model discovery (DeepMoD) [9] and physics-informed neural networks with sparse
regression (PINN-SR) [45], combine physical information, neural networks, sparse regression (the lasso in
DeepMoD and STRidge in PINN-SR) and hard thresholding to find the governing equations from data.
However, both neural network and SINDy methods require specific hyperparameter tuning, such as setting
regularization parameters or choosing network architectures. For example, STRidge requires setting a
threshold to select active terms from the candidate library [5, 37, 45, 47]. Additionally, SINDy-based
methods typically approximate numerical derivatives from noisy data using the Savitzky–Golay filter, a
technique for smoothing data by fitting local low-degree polynomials [49]. The parameters of this filter, such
as the polynomial degree and window size, must be carefully tuned for optimal performance [5, 19]. Neural
network approaches, on the other hand, require detailed decisions regarding their architecture and
functioning, such as the number of neurons, the structure of hidden layers, the types of activation and loss
functions, and the learning rate. In particular, using physics-informed neural networks [6, 45, 47] requires a
prior understanding of the equation terms, as well as initial and boundary conditions. Consequently, using
neural networks and SINDy-based methods presents a trade-off: the absence of fully automated algorithms
requires users to engage in manual tuning and iterative usage of semi-automated algorithms. This scenario
highlights a key challenge in the field: developing an automated algorithm to identify PDEs with minimal
manual intervention, streamlining the process, and improving its applicability across diverse scientific
domains.

To address the challenge of parameter tuning, Egan et al [19] proposed the Automatic Regression for
Governing Equations (ARGOS) algorithm, which identifies ODEs by automating the parameter tuning
process. ARGOS assumes the underlying system is unknown, automates the fine-tuning of parameters for
numerical differentiation, and leverages sparse regression with bootstrap confidence intervals to select active
terms from the candidate library. To automatically identify PDEs, we develop ARGOS with the Recurrent
Adaptive Lasso (ARGOS-RAL). This extension of the ARGOS framework employs only sparse regression to
identify equations rather than engaging in large-scale bootstrapping.

We evaluate the performance of the ARGOS-RAL algorithm through a series of three numerical tests,
each designed to assess its ability to identify canonical PDEs across diverse fields, including biology,
neuroscience, earth science, fluid mechanics, and quantum mechanics. The first test explores the algorithm’s
resilience against varying noise levels by altering the signal-to-noise ratio (SNR) in Gaussian random noise
integrated into the PDE solutions, which is crucial for understanding the robustness of ARGOS-RAL under
realistic noisy conditions. The second test addresses the practical challenges encountered in real-world data
collection, which often results in non-uniformly distributed data points in space and time, by exploring the
minimum percentage of data points necessary for the algorithm to accurately identify the underlying
equation. The final evaluation assesses the algorithm’s ability to process datasets characterized by significant
noise, challenging its limits and practical applicability in scenarios where data quality is compromised. Our
results demonstrate that ARGOS-RAL can effectively and reliably identify the underlying PDEs from data,
outperforming the STRidge method used in SINDy.

2. Methods

2.1. Overview of the ARGOS-RAL framework
The general form of a homogeneous PDE is

ut + F(x, t,u,ux,uxx, . . .) = 0 (1)

where F(·) governs the behavior of the system, with u= u(x, t) denoting its state. The notation ut,ux,uxx, · · ·
represents the partial derivatives of u with respect to time and space, respectively. Equation (1) serves as a
foundational representation of the dynamical system, encapsulating a wide range of phenomena through its
generalized form, which can be adapted to include multiple spatial dimensions or to model systems without
explicit time dependence.
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To focus on data-driven modeling of spatiotemporal dynamical systems, we incorporate empirical data
directly into the modeling process:

Ut =
∂U

∂t
= F(x,U,Ux,Uxx, . . .) , (2)

where U ∈ Rn×m is a matrix representing the solution of the PDE as a function of x and t, and F(·) denotes
the unknown mapping inferred from the collected data, which contains linear and nonlinear operators.

We aim to estimate the unknown mapping F(·) with sparse regression by constructing a comprehensive
library of potential terms and assuming that only a few of them are active [3, 5, 19]. To cover a broad
spectrum of possible influences on the dynamics of the system, this library includes a wide variety of
functions, such as constants, monomials, interaction terms (products of variables), possibly trigonometric,
and other functions, depending on the dynamical system being studied [5]. In the case of Burgers’ equation,
ut =−uux + 0.1uxx, the true dynamics involves only two terms: the nonlinear convection term uux and the
linear diffusion term uxx. When applying sparse regression to data generated from Burgers’ equation, the
method should ideally select only these two terms from the candidate library.

All features related to U(x, t) in equation (2) are matrices. Implementing this matrix data in sparse
regression leads to the creation ofm distinct regression models. Each model captures the spatial dynamics of
the system at a specific time point tj, where j = 1,2, . . . ,m. To consolidate them regression models into a
single linear regression problem, we reshape the matrix U(x, t) and its derivative matrices into vectors. These
vectors then serve as predictors within the candidate libraryΘ, which can be represented in R(n·m)×p or
C(n·m)×p. By stacking the vectorized data and candidate terms, we can estimate a single sparse coefficient
vector β that represents the governing equation across all time points rather than estimating separate models
for each time point. Here, U ∈ Rn×m is represented in matrix form as

U(x, t) =


u(x1, t1) u(x1, t2) · · · u(x1, tm)
u(x2, t1) u(x2, t2) · · · u(x2, tm)

...
...

. . .
...

u(xn, t1) u(xn, t2) · · · u(xn, tm)

 . (3)

Vectorizing equation (3) yields:

u= vec(U)

=
(
u(x1, t1) · · · u(xn, t1) · · · u(x1, tm) · · · u(xn, tm)

)T
.

(4)

Similarly, ut = vec(Ut) = vec(∂U/∂t), ux = vec(Ux) = vec(∂U/∂x), uxx = vec(Uxx) = vec(∂2U/∂x2),
u2 = vec(U⊙U), and uux = vec(U⊙Ux), where⊙ denotes the Hadamard product. The design matrix is
given by

Θ(u) =

 1 u · · · ud · · · ux uxx · · · uux · · · uduxx · · ·

 , (5)

where ud is a vector where all elements denote a dth degree monomial. For example, if our data U(x, t) is on a
200× 100 grid (i.e. 200 spatial measurements and 100 time-steps) and the candidate library has 30 terms,
thenΘ ∈ R20000×30.

After vectorization, we estimate F(·) by transforming equation (2) to a linear regression model

ut =Θ(u)β+ ϵ, (6)

where β ∈ Rp is a sparse coefficient vector in which only a few values are nonzero, and ϵ is the vector of
residuals.

2.2. Automated Numerical Differentiation using the Savitzky–Golay Filter and the Gaussian Blur
A crucial step in constructing the candidate library in equation (5) is the numerical calculation of derivatives,
see figures 1(a) and (b). The Savitzky–Golay filter [49] has become a favored solution in system identification
for signal smoothing and differentiation [5, 50]. This method applies a least squares polynomial fit over a
sliding window of data points, thereby achieving simultaneous signal smoothing and differentiation. The
selection of the Savitzky–Golay filter is grounded in its proven ability to accurately maintain the original
contour of the signal while significantly reducing noise and to approximate higher-order numerical
derivatives with symbolic differentiation [51].

3



Mach. Learn.: Sci. Technol. 5 (2024) 035046 W Li and R Carvalho

Figure 1. Process of identifying PDEs from data using ARGOS with the recurrent adaptive lasso. The identification process
consists of three main steps: (a) automatic smoothing and calculation of derivatives, (b) construction of the candidate library, and
(c) implementation of the recurrent adaptive lasso. We begin by collecting the data Ũ and applying the automatic Savitzky–Golay
filter with Gaussian blur to calculate the smoothed U and its partial derivatives. Next, we vectorize the smoothed data, all partial
derivatives, and other related terms to construct the candidate library. Finally, we employ the recurrent adaptive lasso to identify
the active features in the library, and we estimate the unbiased coefficients of the identified model using ordinary least squares
regression.

The Savitzky–Golay filter is characterized by two integer hyperparameters: the polynomial order o and
the window length l, which are constrained by the conditions that omust be at least 2, l should be an odd
number, and o+ 1+mod(o)⩽ l⩽ n− 1 [51]. To automate the selection of these hyperparameters, we first
apply a Gaussian blur with the kernel (1,2,1) to smooth the observational data (see A.1). We then treat this
smoothed data, denoted as GB(Ũ), as the ground truth. Next, we find the optimal set of hyperparameters
{o∗, l∗} by minimizing the mean squared error (MSE) between the Savitzky–Golay filtered data SG(Ũ,o, l)
and the ground truth GB(Ũ) (see algorithm 1). After finding the optimal set {o∗, l∗}, we use the
Savitzky–Golay filter with these parameters to compute the smoothed data and its derivatives.

2.3. Sparse regression with the recurrent adaptive Lasso
The adaptive lasso is a two-step method [19, 52]. The first step uses the ordinary least squares (OLS) to
obtain unbiased estimates and derive the weights w:

w= |β̂ols|−γ , γ > 0 (7)
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Algorithm 1. Automatic Savitzky–Golay Filter.

Input: U ∈ Rn×m or Cn×m, dt, dx.
Output: partial derivatives Ut , Ux, Uxx, · · · .

1 UGB = Gaussian_Blur(U); // use Gaussian blurred data as the ground truth;
2 (o∗t , l

∗
t ) = argmin

o,l
MSE (Savitzky–Golay(Ũ(t),o, l), UGB);

3 (o∗x , l
∗
x ) = argmin

o,l
MSE (Savitzky–Golay(Ũ(x),o, l), UGB);

4 Ut = Savitzky–Golay(UGB,o
∗
t , l

∗
t , derivative= 1);

5 Ux = Savitzky–Golay(UGB,o
∗
x , l

∗
x , derivative= 1);

6 Uxx = Savitzky–Golay(UGB,o
∗
x , l

∗
x , derivative= 2);

7
...

where β̂ols is the OLS estimate, and γ is an exponent tuning the shape of the soft-thresholding function. In
the second step, we obtain the estimated coefficients β̂alasso using the glmnet package [53] in R by solving the
problem

β̂alasso = argmin
β

∥ut −Θβ∥22 +λ

p∑
j=1

wj

∣∣βj

∣∣ , (8)

where λ is a nonnegative regularization parameter controlling the amount of shrinkage applied to the
coefficients of the predictors. Unlike the lasso, where the weight vector is w= 1, the adaptive lasso varies the
weights in the regularization function, resulting in a stronger penalty on smaller coefficients, thus driving
more of them to zero and leading to a sparser model compared to the standard lasso. The recurrent adaptive
lasso applies the adaptive lasso repeatedly until convergence, resulting in a sparse model with fewer non-zero
coefficients.

To balance the model’s complexity against its accuracy, we employ the Pareto curve, which illustrates the
optimal trade-off between the regularization penalty and the model residuals [54–56]. We identify the
optimal λ as a point of high curvature on the Pareto curve, where slight improvements in one objective
require significant sacrifices in the other [57]. On the Pareto curve (see figure 2), the x-axis represents the
norm of the model residuals, ∥Xβ− y∥2, while the y-axis represents the penalty, defined as ∥wTβ∥1 in the
adaptive lasso. As shown in figure 2, the Pareto curve initially decreases steeply from the left (the lowest
residual norm) as increasing λ allows the algorithm to estimate a sparser model with lower goodness-of-fit.
The knee occurs at an intermediate value of λ that trades off between model complexity and goodness-of-fit.
To the right of the knee, further increases in λ lead to very small reductions in model complexity at the cost
of large increases in the residual norm, indicating underfitting. We use Cultrera and Callegaro’s algorithm
[56] to find the optimal point on the Pareto curve, represented by the red point in figure 2. Although
cross-validation is an alternative method, Cortiella et al [34] have shown that it finds a λ optimized for
prediction, potentially overfitting the true underlying equation with extra features.

The adaptive lasso regression often detects more terms than those in the true system. To improve
parsimony, Egan et al [19] suggested combining the adaptive lasso with bootstrap techniques to identify
ODEs. Similarly, Cortiella et al [34] adopted a modified version of the multi-step adaptive lasso [58] to
develop a sparser model that more accurately identifies the true equations. This is achieved by iteratively
adjusting the adaptive weights using previous estimates from the adaptive lasso. A significant advancement
made by Cortiella et al [34] is their method’s ability to maintain finite weights in the adaptive lasso equation
by ensuring that the estimated coefficients shrink to a small, nonzero value rather than dropping to zero.
However, this approximation unintentionally introduces numerical inaccuracies as a trade-off for preventing
overflow during the equation identification process.

The recurrent adaptive lasso is an iterative algorithm that estimates an initial sparse model using the
adaptive lasso and subsequently refining it by trimming the candidate library, see figure 1(c). At each
iteration, it removes terms whose coefficients the adaptive lasso penalized to zero (see algorithm 2 step 9). It
then employs least squares to re-estimate the coefficients of the remaining terms, which are used to update
the adaptive weights in the next adaptive lasso iteration. This focuses the regularization on the terms that had
small coefficients in the previous iteration. As this process repeats, the recurrent adaptive lasso increasingly
concentrates the ℓ1-norm shrinkage on terms that are likely irrelevant, driving their coefficients to

5
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Figure 2. Pareto curve of the adaptive lasso for a sampled dataset from a Navier–Stokes system with an SNR of 36 dB. The Pareto
curve balances the trade-off between sparsity and goodness-of-fit. The red point on the curve indicates the optimal value of the
regularization parameter λ that achieves the best balance between these two competing objectives. Increasing λ leads to sparser
solutions at the cost of a poorer fit to the data, while decreasing λ improves the fit but yields less sparse solutions.

Algorithm 2. The recurrent adaptive lasso with Pareto curve and AIC.

Iutput:Θ(u) ∈ R(n·m)×p or C(n·m)×p, ut ∈ R(n·m)×1 or C(n·m)×1.
Output: β̂

1 for γ in 1:5 do
2 J (γ,0) = NULL; // initialize J ;
3 k= 1; // iteration counter;
4 J (γ,k) = {1,2, · · · ,p}; // selected columns from Θ;
5 while J (γ,k) ̸= J (γ,k−1) do

6 w(γ,k) =
(
argminβ

J (γ,k)

∥∥ut −Θ(u)J (γ,k)βJ (γ,k)

∥∥2
2

)−γ

; // ols weights;

7 β̂(γ,k) = argminβ
J (γ,k)

∥∥ut −Θ(u)J (γ,k)βJ (γ,k)

∥∥2
2
+λ∗∑p

j=1w
(γ,k)
j |βj·J (γ,k) |;

// λ∗ is the optimal point on the Pareto curve;
8 A(γ,k) = AIC(β̂(γ,k));

9 J (γ,k) =
{
j : β̂(γ,k)

j ̸= 0
}
; // select active terms;

10 k= k+ 1;
end

end
11 J ∗ = J (γ∗,k∗) where (γ∗,k∗) is the index of the minimumA;
12 β̂ = argminβJ∗ ∥ut −Θ(u)J ∗βJ ∗∥22 ;

zero [52, 59]. Meanwhile, it relaxes the regularization on terms that consistently have larger coefficients,
allowing the model to retain them. The candidate set gets smaller at each iteration until the algorithm
converges on a sparse model containing only the key terms. This iterative re-weighting allows the recurrent
adaptive lasso to prune irrelevant terms more aggressively than the standard adaptive lasso while retaining
good predictive performance. The result is a parsimonious model that identifies the true governing equation
more reliably, even in the presence of many extraneous candidate terms.

Increasing the number of iterations may cause the recurrent adaptive lasso to underestimate the model.
This can lead to the omission of active terms that should be included in the true underlying equation.
Therefore, while iterating the candidate libraryΘ, we record all candidate models and calculate the Akaike
information criterion (AIC) for each model to determine the final governing equation corresponding to the
lowest AIC. Given the uncertainty that the true model falls within all candidates, the AIC serves to select the
model that best approximates the true model [60, 61].

6



Mach. Learn.: Sci. Technol. 5 (2024) 035046 W Li and R Carvalho

Figure 3. Influence of SNR on the Burgers’ equation dataset. (a) Noiseless data points (blue) serve as a reference for evaluating the
impact of sample size on PDE identification accuracy. (b)–(f) Noisy datasets are generated by adding Gaussian noise at SNR levels
of 40 dB, 30 dB, 20 dB, 10 dB and 0 dB, respectively, to comprehensively characterize the system’s behavior under varying noise
conditions.

3. Results and discussion

3.1. Evaluating the performance of ARGOS-RAL under varying noise levels and sample sizes
We compare the performance of ARGOS-RAL and STRidge [5] in identifying ten canonical PDEs under
various SNRs and sample sizes (N). We evaluate their performance on both noisy and noiseless data. Figure 3
demonstrates the impact of introducing increasing levels of Gaussian random noise into the solution of the
Burgers’ equation, effectively decreasing the SNR values. Adding Gaussian noise to simulated data is the most
common way to mimic naturally occurring random processes [62–64].

In the evaluation of noise-contaminated data, we express the SNR as SNR= 20 log10(σU/σZ), where σU
is the standard deviation of the original data, and σZ represents the standard deviation of the added noise.
We systematically vary σZ to span a broad range of noise levels, facilitating a comprehensive evaluation of the
efficacy of ARGOS-RAL and STRidge in identifying various PDEs under different noise conditions. For this
purpose, we generate datasets with SNRs set at {0,2, · · · ,58,60,∞} [19], each comprising paired elements
{ut,Θ(u)}. This approach allows us to examine the robustness of each PDE identification method as it copes
with varying noise levels.

In investigating sample size, N, our objective is to determine the smallest number of samples needed to
reliably identify PDEs with a success rate exceeding 80%. To achieve this, we first generate a full dataset for
each PDE by calculating partial derivatives and assembling a candidate library as described in equation (5).
The size of the full dataset, denoted as N, varies depending on the specific PDE under consideration.
Specifically, N= 104 for the advection-diffusion, Burgers, and cable equations, N= 105 for the quantum
harmonic oscillator (QHO), transport, Navier–Stokes, and reaction-diffusion equations, and N= 104.8 for
the diffusion and Korteweg–De Vries (KdV) equations. Next, we randomly sample smaller subsets of size N
from the full dataset, where N is chosen from a logarithmically spaced grid: N= 102,102.2,102.4, · · · ,N [19],
see the blue points in figure 3(a). By applying the PDE identification methods to these subsets and evaluating
their success rates, we can determine the smallest sample size required for reliable identification of each PDE.

3.2. Quantifying success rates in identifying canonical PDEs
To evaluate the impact of different SNRs and data sizes on the method, we measure the uncertainty of model
identification caused by random sampling. To do so, we create 100 unique datasets at each point on the grid,
corresponding to different SNRs and N values. For each dataset, we quantify the identification accuracy with
the success rate, η =#correct/100, where#correct represents the number of times the model correctly
identifies all active terms. Our accuracy assessment ignores small differences between theoretical and
empirical coefficients, such as a theoretical value of 0.1 compared to an estimated value of 0.098. Figure 4

7
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Figure 4. Success rates of ARGOS-RAL and STRidge in identifying (a) Burgers’, (b) cable, (c) Navier–Stokes, (d)
reaction-diffusion, and (e) quantum harmonic oscillator equations with varying SNRs and sample sizes. We analyze the noise
tolerance by adding noise of different SNRs to the PDE solutions. For the sample size analysis, we randomly sample points from
the set {ut,Θ(u)} based on noiseless data. In panel (c), we use the region indicated by the red rectangle to implement both the
SNR and sample size tests by sampling points within this area. PDE solution plots display time snapshots at t= 306 for
Navier–Stokes in panel (c) and t= 1 for reaction-diffusion in panel (d). Lines connecting the points are used for visual guidance
only and do not represent a fit to the data. Shaded regions represent model discovery accuracy above 80%.

illustrates these results for a selection of systems: the Burgers’, Cable, Navier–Stokes, reaction-diffusion, and
QHOmodels. We provide further analysis on additional PDEs—transport, diffusion, advection-diffusion,
and KdV equations—in (A.2) figure A1.

ARGOS-RAL identifies Burgers’, cable, Navier–Stokes, reaction-diffusion, and advection-diffusion
equations, achieving a success rate of 100% when the SNR exceeds 30 dB (see figures 4 and A1). However,
accurately detecting specific equations requires a high SNR, particularly for the QHO, KdV, transport, and
diffusion equations. The KdV equation, which involves third-order partial derivatives, presents challenges
due to the significant biases in numerical approximations of these derivatives [48], resulting in datasets
unsuitable for system identification with sparse regression. To implement sparse regression within the real
number domain for the complex number QHO PDE, we apply the transformation shown in A.2
equation (A.9). This transformation expands the design matrixΘ from nm× p to 2nm× 2p, effectively
quadrupling its size and potentially leading to high correlations between the variables inΘ. The transport
and diffusion equations, containing only terms ux and uxx respectively, exhibit high correlation with their
correlated terms in the library, such as {ux,uux} and {uxx,uuxx}, which hinders the effectiveness of ℓ1-norm
shrinkage regression in identifying correct terms [52].

Figures 4 and A1 illustrate that ARGOS-RAL achieves a higher success rate than STRidge in identifying
PDEs with limited data points. ARGOS-RAL consistently identifies a significant number of PDEs using as

8
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Figure 5. Computational costs of ARGOS-RAL as sample size (N) increases for noiseless PDE systems. We run all benchmarks
using parallel processing and convert them to total computing time on a single core. We use circles and triangles for PDEs with
one and two spatial dimensions and squares for the complex-valued quantum harmonic oscillator.

few as 1000 data points, maintaining a success rate above 80%. However, some equations, such as the
reaction-diffusion and KdV equations, require larger sample sizes of approximately 104 and 103.8 data points,
respectively, for reliable identification. We thus demonstrate ARGOS-RAL as a consistent and efficient
method for PDE identification with non-uniformly sampled and noiseless datasets.

ARGOS-RAL shows a remarkable ability to identify PDEs accurately and consistently across a wide range
of SNRs and sample sizes. Its success rate improves as the SNR and sample size increase, reaching 100% when
both values are sufficiently large. This trend highlights the robustness of ARGOS-RAL in handling various
data conditions and underscores its effectiveness in identifying PDEs, even when faced with varying levels of
data quality and quantity. However, in certain scenarios, STRidge [5] with specific dtol thresholds exceeds the
performance of ARGOS-RAL. For instance, STRidge achieves higher success rates in identifying
Navier–Stokes and reaction-diffusion equations at a 30 dB SNR, using dtol settings of 2 and 10, respectively,
see figures 4(c) and (d). Moreover, STRidge with dtol = 2 is more proficient in identifying the QHO and the
transport equation with an SNR lower than 52 dB, see figures 4(e) and A1(c), respectively. These results from
the SNR and N experiments reveal that using a single fixed threshold in STRidge can lead to performance
variability depending on the input data, highlighting the difficulty of selecting an appropriate dtol threshold
without prior knowledge of the system. This variability underscores the sensitivity of STRidge to specific
threshold settings, which can impact its consistency across different datasets. Overall, STRidge surpasses
ARGOS-RAL in identifying simpler PDEs, such as the transport and diffusion equations; see figures A1(c)
and (d).

3.3. Computational costs
We analyzed the computing time for all examined PDEs to demonstrate the computational cost of
ARGOS-RAL. We performed all evaluations on a high-performance computing cluster equipped with 120
standard compute nodes, each featuring 128 CPU cores (2x AMD EPYC 7702) and 256 GB RAM (246 GB
available to users). We then converted the multi-core processing time to a single-core

Figure 5 illustrates the computational costs of ARGOS for the selected PDEs as the data size (N)
increases. Except for the Navier–Stokes and reaction-diffusion equations, the solution grid size is lower than
105.2, causing some lines in the graph to terminate. The computing times for identifying PDEs increase
linearly with N, except for the QHO, a PDE containing complex-valued terms whose candidate library is four
times larger than those of real-coefficient PDEs (see figure 4(e) and equation (A.9) in A.2.5).

3.4. Robustness analysis using white Gaussian noise
To better understand the limits of identification algorithms, we designed an extreme test on a single spatial
dimension. This test effectively creates a situation without valid data collection (σU = 0), equivalent to an
SNR of negative infinity, representing a dataset entirely composed of random noise. This scenario sets the
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Table 1.Models identified from random noise by ARGOS-RAL and STRidge. We construct the candidate library with monomials and
derivatives of orders ranging from three to five. We define parsimonious models as having three or fewer nonzero coefficients. We
evaluate each identified model with an F-test to determine statistical significance, with the number of significant models (p-value
< 0.05) noted in parentheses. Numbers outside parentheses indicate the number of models that did not significantly differ from the null
hypothesis according to the F-test. c1, c2, c3 are constants. For the ordinary differential equation (ODE) models, the monomial order d is
a positive integer, with the maximum order corresponding to the highest order in the candidate library.

Candidate library

Parsimonious model (%) Non-parsimonious
model (%)

ODE ut = c1u
d Transport ut = c2ux Diffusion ut = c3uxx Others

σZ = 0.1

STRidge (dtol = 2)
(1,u,u2, . . . ,u3uxxx) 4 (1) 3 2 (1) 82 (11) 9
(1,u,u2, . . . ,u4uxxxx) 0 0 0 91 (10) 9 (2)
(1,u,u2, . . . ,u5uxxxxx) 0 0 0 81 (11) 19 (1)

ARGOS-RAL
(1,u,u2, . . . ,u3uxxx) 1 (1) 2 (1) 4 (2) 54 (29) 39 (23)
(1,u,u2, . . . ,u4uxxxx) 0 2 (1) 3 (2) 63 (32) 32 (23)
(1,u,u2, . . . ,u5uxxxxx) 0 0 0 34 (18) 66 (47)

σZ = 1

STRidge (dtol = 2)
(1,u,u2, . . . ,u3uxxx) 4 (1) 4 4 (2) 69 (8) 19 (1)
(1,u,u2, . . . ,u4uxxxx) 1 0 2 54 (7) 43 (10)
(1,u,u2, . . . ,u5uxxxxx) 0 0 0 0 100 (18)

ARGOS-RAL
(1,u,u2, . . . ,u3uxxx) 0 0 0 0 100 (16)
(1,u,u2, . . . ,u4uxxxx) 0 0 0 0 100 (17)
(1,u,u2, . . . ,u5uxxxxx) 0 0 0 0 100 (13)

σZ = 10

STRidge (dtol = 2)
(1,u,u2, . . . ,u3uxxx) 0 0 0 0 100 (11)
(1,u,u2, . . . ,u4uxxxx) 0 0 0 0 100 (4)
(1,u,u2, . . . ,u5uxxxxx) 0 0 0 0 100 (12)

ARGOS-RAL

(1,u,u2, . . . ,u3uxxx) 0 0 0 0 100 (12)
(1,u,u2, . . . ,u4uxxxx) 0 0 0 0 100 (9)
(1,u,u2, . . . ,u5uxxxxx) 0 0 0 0 100 (6)

ultimate test stage for an algorithm: identifying dynamical systems without signal, where we expect success
rates to drop to zero. When faced with this condition, an effective algorithm should identify either a null
model (with no coefficients) or a dense model (with many terms from the candidate library). However, if the
algorithm incorrectly identifies canonical PDEs from pure white noise data, it indicates that further
improvements are needed to prevent such misidentifications and ensure the robustness of the method.

We generate 100 white Gaussian noise datasets, each consisting of 2000 spatial (x) and 1000 temporal (t)
data points, forming a matrix inR2000×1000. To investigate the influence of noise variance on the identification
process, we use three Gaussian distributions with variances spanning three orders of magnitude: N(0,0.12),
N(0,1), and N(0,102). We aim to determine whether ARGOS-RAL and STRidge can identify canonical PDEs
under these noise conditions. Table 1 shows the percentages of different identified models. Based on the
PDEs tested by Rudy et al [5] and our own study, we define parsimonious models as those having three or
fewer nonzero coefficients, suggesting they may correspond to specific physical phenomena. In particular, we
highlight three classic differential equations: the ODE ut = c1ud, the transport equation ut = c2ux, and the
diffusion equation ut = c3uxx. In contrast, we classify models with more than three nonzero coefficients as
non-parsimonious, indicating that their coefficient vectors have a dense composition.

Table 1 and figure 6 demonstrate that as the standard deviation of the Gaussian noise increases, both
ARGOS-RAL and STRidge tend to identify more non-parsimonious models, as indicated by the probability
distributions of the number of identified terms shifting into the shaded region of figure 6. This is the desired
behavior when the input signal is pure white noise, as we want to ensure that the algorithms do not identify

10



Mach. Learn.: Sci. Technol. 5 (2024) 035046 W Li and R Carvalho

Figure 6. Number of nonzero terms identified from 100 random noise datasets using different candidate function libraries. For
each case, we count the number of nonzero coefficients in the sparse regression. We display the distribution of these counts using
dots for each of the 100 trials and summarize the results using box plots. Each box plot shows the median (solid horizontal line),
interquartile range (box), and minimum and maximum values (whiskers) for the 100 trials. The optimal algorithm should
produce boxes located either at zero, indicating a null model, or above four, representing a dense model. The box may span a wide
range from four to the maximum number of terms in the library.

parsimonious models in such cases. The difference in behavior between the two methods is most apparent
when the noise level is low to moderate (σZ ⩽ 1). In these cases, STRidge’s distributions are more spread out
and partially located in the parsimonious region, while ARGOS-RAL’s distributions are more concentrated in
the non-parsimonious region. This suggests that ARGOS-RAL is more effective at avoiding the identification
of parsimonious models when the input signal is pure white noise with low to moderate noise levels. As the
noise level increases to σZ = 10, both ARGOS-RAL and STRidge consistently identify non-parsimonious
models, as evidenced by the concentration of their distributions in the non-parsimonious region of figure 6.
This indicates that both methods are effective at avoiding the identification of parsimonious models when
the input signal is pure white noise with high noise levels.

4. Conclusions

We designed ARGOS-RAL to automatically tune algorithm hyperparameters, enabling the identification of
closed forms of PDEs directly from data. ARGOS-RAL offers several advantages over existing PDE
identification methods. First, it automates the process of calculating partial derivatives and constructing the
candidate library, reducing manual intervention and streamlining the modeling process. Second, the
recurrent adaptive lasso employed by ARGOS-RAL provides a more robust and efficient sparse regression
technique compared to the STRidge used in SINDy-based methods. This enables ARGOS-RAL to handle
noisy and limited data more effectively, as demonstrated in our numerical experiments. Finally, the linearly
increasing computing time indicates that ARGOS-RAL is an efficient method, allowing users to parse large
datasets.

ARGOS-RAL shares limitations with other library-based methods like SINDy [3, 5]. First, its
effectiveness depends on including the correct governing terms in the candidate library; their absence leads
ARGOS-RAL to approximate the PDE with available terms, yielding a non-sparse model. Second,
ARGOS-RAL can identify PDEs with non-linear predictors but requires prior knowledge of the function
arguments. For example, identifying sin(ωx) requires knowing the symbolic formωx and the numerical
value of ω. Third, transforming the identification into a regression problem requires knowing the response
variables. We focus on first-order time derivatives [5, 65], but users must know if higher-order derivatives
exist in the true equation. This limitation also applies to reconstructing latent space variables, thus limiting
the application of ARGOS-RAL in this type of unknown source problems [12]. Finally, while ARGOS-RAL
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provides a more computationally efficient approach than ARGOS [19] by focusing on point estimates rather
than bootstrapping for confidence intervals, this comes at the cost of losing uncertainty quantification for
the estimated coefficients.

When applying ARGOS-RAL to different scientific domains, several challenges arise. One key challenge is
determining the appropriate range of candidate terms to include in the library, which often requires domain
expertise. In some fields, the governing equations may involve complex nonlinearities or unconventional
terms that are difficult to anticipate without prior knowledge. Another challenge is the computational cost of
handling high-dimensional data, which is common in many scientific applications. As the number of
variables and the complexity of the PDE increase, the size of the candidate library grows exponentially,
leading to increased computational demands for sparse regression.

Despite these challenges, ARGOS-RAL offers a promising framework for automating PDE identification
in various scientific domains. By leveraging sparse regression techniques and automating key steps in the
modeling process, ARGOS-RAL has the potential to accelerate discovery and insight in fields ranging from
physics and engineering to biology and climate science.
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Appendix A. Supplementary materials

A.1. Gaussian Blur Kernels
The Gaussian blur convolves data with a Gaussian kernel to smooth it, regardless of the data’s dimensionality.
This convolution method offers significant benefits for filtering out Gaussian noise, a common noise
distribution encountered in data analysis [62]. For one-dimensional spatial PDEs, such as the Burgers’ and
cable equations, we employ the simplest 2-dimensional Gaussian kernel:

1

16

 1
2
1

⊗
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1 2 1

]
=

1

16

 1 2 1
2 4 2
1 2 1

 . (A.1)

In contrast, for two-dimensional spatial PDEs, the Navier–Stokes and reaction-diffusion equations, we use a
3-dimensional Gaussian kernel:
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12

https://github.com/Weizhenli/ARGOS-RAL
www.testbed2.org
www.testbed2.org


Mach. Learn.: Sci. Technol. 5 (2024) 035046 W Li and R Carvalho

A.2. Additional PDE Test Cases
Here, we demonstrate how to solve the PDEs presented in this paper. As we use the Fourier spectral method
to solve the Burgers’, Cable, reaction-diffusion, advection-diffusion, transport, and diffusion systems, the
boundary conditions for them are the periodic boundary conditions.

A.2.1. Burgers’ equation
We can derive Burgers’ equation from the Navier–Stokes equation for the velocity field by dropping the
pressure gradient term. Unlike the Navier–Stokes equation, Burgers’ equation does not exhibit turbulent
behavior, and we can transform it to linear form via the Cole-Hopf transformation [66]:

ut =−uux + νuxx. (A.3)

We solve Burgers’ equation (A.3) using the Fourier spectral method [67] with the ode45 function in
MATLAB. We set ν= 0.1, x ∈ [−8,8] with 256 points, t ∈ [0,10] with 101 points, and the initial condition is a
Gaussian function: exp

(
−(x+ 2)2

)
.

A.2.2. Cable equation
The cable equation, shown in equation (A.4), quantitatively describes the electrical behavior of nerve axons
and other cable-like structures in biological systems. It captures the electrical circuit of current flow and
voltage change both within and between neurons. The equation is derived from a circuit model of the
membrane and its intracellular and extracellular space. The cable equation plays a crucial role as an
important PDE in biophysical studies, helping researchers understand how electrical signals change in
diseases and disorders. By identifying the cable equation, researchers can diagnose these negative conditions
by checking for changes in capacitances cm, resistances rm, and axial resistance ra, re:

λ2 ∂
2V

∂x2
= τ

∂V

∂t
+V where λ=

√
rm

re + ra
and τ = rmcm. (A.4)

We solve the cable equation using odeint function in Python with the Fourier spectral method. We set λ= 1,
τ = 1, x ∈ [−4,4] with∆x= 0.1, t ∈ [0,5] with∆t= 0.01, and use a Gaussian function exp

(
−x2

)
as the

initial condition.

A.2.3. Navier–Stokes
We simulate the two-dimensional Navier–Stokes equation for fluid flow around a circular cylinder using the
Immersed Boundary Projection Method (IBPM) [68, 69]. The two-dimensional velocity components are
denoted by u and v, while ω represents the vorticity away from the circular cylinder of diameter one and mass
center at (x= 1,y= 2). The boundary condition for the IBPM is the no-slip boundary condition. We set the
Reynolds number to 100 and aim to identify the equation

ωt = 0.01ωxx + 0.01ωyy − uωx − vωy. (A.5)

The spatial domain spans x ∈ [0,9] with∆x= 0.02, y ∈ [0,4] with∆y= 0.02, and the temporal domain
covers t ∈ [300,330] with∆t= 0.02. We save the flow data every ten snapshots. This setup generates a
simulated dataset containing approximately 13.5 million points (449× 199× 151). However, constructing
the candidate libraryΘ for such a large dataset poses computational challenges. To facilitate the evaluation,
we randomly sample points within the red rectangular area shown in figure 4(c) at each snapshot.

A.2.4. Reaction-diffusion
Reaction-diffusion systems offer a versatile framework to model pattern formation in various natural
phenomena in chemistry, biology, geology, physics, and ecology. These systems give rise to a rich tapestry of
periodic patterns, including spots, zigzags, spiral waves, and rolls. In our analysis, we focus on a widely
studied class of reaction-diffusion systems known as the λ−ω systems, described by the following coupled
PDEs:

ut = 0.1uxx + 0.1uyy + u− uv2 − u3 + v3 + u2v (A.6)

vt = 0.1vxx + 0.1vyy + v− uv2 − u3 − v3 − u2v. (A.7)

To generate data for our analysis, we employ the simulation method described in [5]. We discretize the
spatial domain x,y ∈ [−10,10] using a 512× 512 grid and evolve the system over the time interval t ∈ [0,10]
using 201 time steps. This procedure yields a rich dataset comprising 52 690 944 spatiotemporal points on a
512× 512× 201 grid, providing a comprehensive characterization of the system’s dynamics.
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A.2.5. QHO
The QHOmodels the parabolic potential of a harmonic oscillator in quantum mechanics. It simulates the
time evolution of the wave function associated with a particle in the parabolic potential, providing the
probability distribution of the particle’s position at any given time by taking the squared magnitude of the
wave function. The energy levels of a QHO are quantized, meaning they can only assume specific, discrete
values. Furthermore, even if we form a statistical distribution from multiple experiments, it will lack
information on the intricate phase of the wave function. We use the following equation:

ut =
1

2
iuxx − iuV=

1

2
iuxx −

x2

2
iu. (A.8)

To obtain data on the QHO, we employ the operator splitting method with the Fourier transform. We
consider the time domain t ∈ [0,10] with∆t= 0.025, and the space domain x ∈ [−7.5,7.5] with
∆x= 15/512, using a Gaussian exp(−((x− 1)/2)2) as the initial condition.

When performing a sparse regression on complex numbers, we transform the regression from complex
to real numbers. For each yi = yRi + iyIi , where the normal i is the imaginary number, the subscript i
represents the ith observation, we can reform it as

yRi + iyIi = βR
0 + iβI

0 +

p∑
j=1

[(
βR
j + iβI

j

)(
xRij + ixIij

)]
+ ϵR + iϵI

= βR
0 + iβI

0 +
(
βR
1 + iβI

1

)(
xRi1 + ixIi1

)
+
(
βR
2 + iβI

2

)(
xRi2 + ixIi2

)
+ · · ·+

(
βR
p + iβI

p

)(
xRip + ixIip

)
+ ϵR + iϵI

= βR
0 + iβI

0 +

p∑
j=1

(
xRijβ

R
j − xIijβ

I
j

)
+ i

p∑
j=1

(
xRijβ

I
j + xIijβ

R
j

)
+ ϵR + iϵI

and split it to extract two equations for both real and imaginary parts

{
yRi = βR

0 +
∑p

j=1 x
R
ijβ

R
j −

∑p
j=1 x

I
ijβ

I
j + ϵR

yIi = βI
0 +

∑p
j=1 x

I
ijβ

R
j +

∑p
j=1 x

R
ijβ

I
j + ϵI

. (A.9)

Based on equation (A.9), we can organize the dataset as:

Y=



yR1
yI1
yR2
yI2
...
yRn
yIn


, X=



xR11 −xI11 xR12 −xI12 · · · xR1p −xI1p
xI11 xR11 xI12 xR1R · · · xI1p xR1p
xR21 −xI21 xR22 −xI22 · · · xR21 −xI21
xI21 xR21 xI22 xR22 · · · xI21 xR21
...

...
...

...
. . .

...
...

xRn1 −xIn1 xRn2 −xIn2 · · · xRn1 −xIn1
xIn1 xRn1 xIn2 xRn2 · · · xIn1 xRn1


.

Finally, we implement the recurrent adaptive lasso and STRidge on the re-posited Y and X.

A.2.6. Advection-diffusion equation
The advection-diffusion equation, which combines advection and diffusion terms, describes the transport
and dispersion of quantities such as temperature, substance concentration, or fluid velocity in various
scientific and engineering contexts. We can express this equation as follows:

ct = Dcxx − ucx. (A.10)

We solve the advection-diffusion equation using the Fourier spectral method and the odeint function in
Python. We set the diffusion coefficient D= 1, the advection velocity u= 1, and consider the spatial domain
x ∈ [−10,10] with resolution∆x= 0.1 and the temporal domain t ∈ [0,10] with resolution∆t= 0.01. We
use a Gaussian function of the form exp

(
−(x+ 2)2

)
as an initial condition.
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Figure A1. Success rates of ARGOS-RAL and STRidge in identifying (a) advection-diffusion, (b) KdV, (c) transport, and (d)
diffusion equations with different SNRs and sample sizes. To analyze the noise tolerance, we added noise to the PDE solutions at
different SNR levels. For the sample size analysis, we randomly sampled points from the set {ut,Θ(u)} based on noiseless PDE
solutions. For sample size analysis, we randomly sample points from {ut,Θ(u)} set based on noiseless PDE solutions. Lines are
only used to link points, not to fit points. The plots demonstrate that our method maintains high success rates in identifying the
correct PDE even under significant noise and with limited sample sizes.

A.2.7. The KdV equation
The KdV equation describes wave propagation on shallow water surfaces. The KdV equation solution reveals
that an isolated traveling wave exhibits linear behavior, but nonlinear interactions emerge when multiple
waves are present. Moreover, the dependence of wave velocity on wave amplitude ensures that any solution
with multiple amplitudes will display nonlinear behavior, regardless of the interaction. Equation (A.11)
presents the formula for the KdV equation:

ut =−6uux − uxxx. (A.11)

We employ the two-soliton solution [70] to solve the KdV equation:

w(x, t) =−2
∂2

∂x2
ln
(
1+B1e

θ1 +B2e
θ2 +AB1B2e

θ1+θ2
)

θ1 = a1x− a31t, θ2 = a2x− a32t, A=

(
a1 − a2
a1 + a2

)2

,

(A.12)

where a1, a2, B1, and B2 are arbitrary constants. We set the following parameters: 201 time steps (n= 201)
with t ∈ [0,20], 512 spatial points (m= 512) with x ∈ [−30,−30], and a1 = 0.5, a2 = 1, B1 = 1, B2 = 5. We
use the Dirichlet boundary condition, u(x, t) = 0 at x=±∞.
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A.2.8. Transport equation
The transport equation, equation (A.13), plays a fundamental role in science and engineering, describing the
spatiotemporal evolution of scalar quantities or vector fields. We solve this PDE using the analytical solution,
equation (A.14), with c= 3 to generate the data for our study. The spatial domain spans x ∈ [−5,1] with
resolution∆x= 0.01, while the temporal domain covers t ∈ [0,2] with timestep∆t= 0.01.

ut = cux, c> 0 (A.13)

u(x, t) = exp
(
−(x+ ct)2

)
. (A.14)

A.2.9. Diffusion equation
The diffusion (heat) equation, equation (A.15), plays a crucial role in many scientific and engineering fields,
including solid-state physics, materials science, environmental science, and computational fluid dynamics.
This equation elucidates the fundamental process of heat diffusion, enabling engineers to gain deep insights
into heat conduction, thermal conductivity, and temperature-dependent phenomena in solids and other
materials. Here, we use the analytic solution, equation (A.16), to generate the data. We set x ∈ [0,5] with
∆x= 0.01 and t ∈ [0,1.5] with∆t= 0.01, and choose the initial condition as 6sin(π x/L).

ut = 10uxx (A.15)

u(x, t) = 6sin
(π x

L

)
e−k(π

L )
2
t, k= 10. (A.16)

The diffusion equation and its analytic solution provide a powerful framework for understanding and
predicting heat transfer in various systems. By carefully selecting the spatial and temporal domains and the
initial condition, we can model a wide range of real-world scenarios and gain valuable insights into the
underlying physical processes.
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