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Simulating quantum field theories on continuous-variable quantum computers
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We delve into the use of photonic quantum computing to simulate quantum mechanics and extend its
application towards quantum field theory. We develop and prove a method that leverages this form of continuous-
variable quantum computing (CVQC) to reproduce the time evolution of quantum-mechanical states under
arbitrary Hamiltonians, and we demonstrate the method’s remarkable efficacy with various potentials. Our
method centers on constructing an evolver state, a specially prepared quantum state that induces the desired time
evolution on the target state. This is achieved by introducing a non-Gaussian operation using a measurement-
based quantum computing approach, enhanced by machine learning. Furthermore, we propose a framework in
which these methods can be extended to encode field theories in CVQC without discretizing the field values,
thus preserving the continuous nature of the fields. This opens new avenues for quantum computing applications
in quantum field theory.
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I. INTRODUCTION

Harnessing the intricate dynamics of quantum mechanics
to improve our understanding of fundamental physics has led
to the pursuit of computational paradigms that go beyond
classical boundaries and allow for complex systems to be sim-
ulated with devices which themselves are inherently quantum
mechanical. Such devices would leverage the properties of
quantum systems, such as superposition and entanglement, to
perform calculations directly using the intrinsic dynamics of
the system. Two main paradigms have been identified: digital
and analog quantum computing. The former encodes informa-
tion onto systems with a finite number of discrete degrees of
freedom, such as the qubit, a two-state quantum system. The
latter instead encodes information on systems which are de-
scribed by operators which have a continuous spectrum. This
paradigm is often called continuous-variable quantum com-
puting (CVQC) [1–4]. Among the various kinds of CVQC,
quantum optics emerges as a fascinating framework, using
the infinite-dimensional landscape of photon states to encode
and manipulate information [5–11]. The eigenstates of these
operators form an infinite-dimensional Hilbert space, with the
continuous-variable analog of the qubit being the so-called
qumode.

CVQC, rooted in the continuous spectra of quantum opera-
tors, offers various possibilities for simulating the dynamics of
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quantum particles and fields. By employing such qumodes—
quantum analogs of classical harmonic oscillators—as the
fundamental information units, CVQC provides a natural
framework for encoding quantum states in the continuous ob-
servables of photons, e.g., their position or momentum. This
paradigm allows for implementing Gaussian gate operations,
which manipulate the quantum states through transforma-
tions that preserve their Gaussian character, thereby enabling
a broad range of quantum simulations. However, the true
power of CVQC unfolds with the inclusion of non-Gaussian
operations, which introduce higher-order interactions essen-
tial for achieving universal quantum computation [1,12,13].
These operations, albeit challenging to implement due to the
weakly interacting nature of photons, open the door to sim-
ulating complex quantum systems with high fidelity. Most
existing proposals to simulate quantum systems on CVQC
rely on specific ways to induce non-Gaussian effects, such
as the Kerr effect. However, the non-Gaussian characteristics
introduced by current nonlinear optical materials are very
weak [2,3,6,7,13], and constructing an arbitrary non-Gaussian
operation is difficult. An alternative approach is achieved
by integrating measurement-based quantum computing tech-
niques [14,15] and leveraging the entanglement of qumodes.
Through this, it is possible to instead induce the desired non-
Gaussian characteristics, paving the way for simulations that
capture nontrivial quantum dynamics.

A central aspect of quantum systems that one might wish
to explore using such methods is the Hamiltonian and the time
evolution that is governed by it, a cornerstone in understand-
ing the dynamics of quantum particles and fields [16–22].
By simulating the time evolution governed by a system’s
Hamiltonian, we can explore how quantum states change over
time, which is crucial for predicting the behavior of quantum
particles and systems under various conditions. This process
is essential for simulating inherently quantum-mechanical

2469-9926/2024/110(1)/012607(13) 012607-1 Published by the American Physical Society

https://orcid.org/0000-0001-8540-0780
https://ror.org/01v29qb04
https://ror.org/01v29qb04
https://ror.org/01v29qb04
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.110.012607&domain=pdf&date_stamp=2024-07-08
https://doi.org/10.1103/PhysRevA.110.012607
https://creativecommons.org/licenses/by/4.0/


ABEL, SPANNOWSKY, AND WILLIAMS PHYSICAL REVIEW A 110, 012607 (2024)

phenomena that cannot be accurately modeled using classical
physics. One of the most notable examples is quantum tun-
neling, a phenomenon where particles pass through potential
barriers that would be insurmountable, according to classical
mechanics. This process is critical in a wide range of quantum
systems, from the decay of atomic nuclei to the operation of
quantum dots and superconducting qubits. By simulating the
time evolution of quantum systems, one can also investigate
other observables, such as energy spectra, correlation func-
tions, and phase transitions, providing deep insights into the
nature of quantum materials, chemical reactions, and even the
evolution of early universe conditions in high-energy physics.
CVQC offers a novel approach to simulating the time evo-
lution of quantum states under arbitrary Hamiltonians. By
decomposing the time evolution into discrete steps through
Trotterization, we show how CVQC facilitates the simulation
of complex quantum systems, including those governed by
non-Gaussian potentials.

In contrast, quantum gate computing operates within a
digital framework, encoding quantum information in discrete
qubits and manipulating it through a sequence of quantum
gates. While this approach has paved the way for significant
advancements in quantum computing, and has gained interest
for uses in the simulation of quantum field theories [16–26],
high-energy particle collisions [27–30], and machine learning
[31–35], it inherently approximates the continuous nature of
quantum systems, potentially limiting its ability to capture the
full spectrum of quantum dynamics. Thus, CVQC, with its
continuous-variable approach, offers a promising avenue for
simulating quantum systems complementary to quantum gate
computing approaches.

The simulation of nontrivial Hamiltonians on CVQC de-
vices has been difficult due to the challenges in implementing
non-Gaussian operations on photonic devices. Most current
approaches propose circuits which involve non-Gaussian gate
operations generated by nonlinear optics to achieve Hamil-
tonian simulation on a continuous-variable device [19,36].
However, experimentally such operations are difficult to
produce [1,2,4]. This has led to attempts to generate non-
Gaussian effects through the use of Gaussian operations
and measurements [37]; in particular Refs. [12,13] utilize a
machine-learning routine to enhance the production of non-
Gaussian states. In this paper, we build and improve on this
approach and propose a quantum circuit for simulating the
Trotterized time evolution of a quantum-mechanical state
under the influence of an arbitrary Hamiltonian using only
Gaussian operations and measurements. The circuit for a sin-
gle Trotter step can then be applied iteratively to achieve the
time evolution of the Hamiltonian. By using a top-hat resource
function and generating the evolver state, the non-Gaussian
part of the Trotter evolution, using a measurement-based
circuit, we show that the effect of the noise factor from
Ref. [12] can be maximally suppressed without reducing
the strength of the overall operation. We demonstrate the
circuit’s ability to simulate time evolution for several exam-
ples of quantum-mechanical Hamiltonians and find that the
circuit performs remarkably well compared to exact, clas-
sical simulations. Furthermore, we show that the approach
can be extended, outlining how the continuous behavior of
the CVQC device can be harnessed to accurately simulate

quantum field theories, maintaining the continuous nature of
fields.

In Sec. II we outline the necessary background on optical
quantum computing required for the rest of the paper. Sec-
tion III details the circuit architecture for the Trotterized time
evolution of a quantum-mechanical state under the influence
of an arbitrary Hamiltonian. The circuit is then tested in
Sec. IV, comparing the output of a continuous-variable quan-
tum simulator against an exact, classical calculation. Finally,
in Sec. V, we explain how this method can be extended to
simulate quantum field theories on a CVQC device.

II. BACKGROUND: CONTINUOUS-VARIABLE
QUANTUM COMPUTING

The framework we will consider is quantum computation
via quantum optics, which offers an experimentally realizable
approach to CVQC, in which the continuous-variable system
is constructed from the quantized electromagnetic field [2,4].
The use of quantum optics as a method of quantum computing
benefits from the exceedingly low decoherence properties of
photons, and therefore holds good potential for transmitting
and maintaining quantum information throughout many gate
operations [3,6,9]. In this realization, the Hilbert space of each
qumode is the infinite-dimensional photon-number degree of
freedom [38] which is the Fock basis, such that the total
Hilbert space, H , of an N-qumode system is

H =
N⊗

i=0

Hi, (2.1)

where Hi is the Hilbert space of the i th qumode. The system
can then be modeled as a set of N , noninteracting, quantum
harmonic oscillators. Each qumode is an oscillator based on
the simple-harmonic-oscillator (SHO) Hamiltonian:

HSHO = 1

2

(
p̂2

m
+ mω2x̂2

)
, (2.2)

where the continuous operators x̂ and p̂ are defined in terms of
the creation and annihilation operators â† and â, respectively,

mωx̂ =
√

mh̄ω

2
(â + â†), i p̂ =

√
mh̄ω

2
(â − â†), (2.3)

and obey the standard commutation relation

[x̂i, p̂ j] = ih̄δi j . (2.4)

It will be convenient to express the state on a qumode as an
expansion in the Fock basis, such that

|ψ〉 =
∞∑

n=0

An|n〉, (2.5)

where An is the coefficient of the n th Fock state, |n〉. For the
rest of this paper, we will adopt natural units, h̄ = m = ω = 1.

In the CVQC framework, computation is achieved by ap-
plying quantum gate operations on the qumodes. The simplest
to achieve are the so-called Gaussian gates which act on the
qumodes as quadratic phase operators in the quadratures; that
is, in full generality they take the form

eiθi j x̂i x̂ j+iθ ′
i j x̂i p̂ j+iθ ′′

i j p̂i p̂ j , (2.6)
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where i and j label the qumodes on which they act, and
θi j, θ

′
i j, and θ ′′

i j are constants. For universal computation it is
essential also to be able to implement non-Gaussian gates
(i.e., with x̂3 and higher appearing in the phase) [1,12,13].
This is a delicate process because the fact that photons do
not strongly interact with each other, while being excellent
for maintaining coherence, is accompanied by the negative
implication that non-Gaussian effects are hard to achieve.
Directly producing non-Gaussian gate operations requires
the use of nonlinear optical materials which induce non-
Gaussian effects, such as the Kerr effect. However, currently
the non-Gaussian effects induced by known nonlinear optical
materials are extremely weak [2,3,6,7,13], and the generation
of arbitrary non-Gaussian operations is difficult. To circum-
vent these difficulties an alternative is the measurement-based
approach (see Refs. [12,13] and references therein), which we
will be using here. Here non-Gaussianity is introduced by a
process of postselected measurement on entangled qumodes
(in other words the accepted photons are filtered by the result
of the measurement on an entangled ancilla qumode).

This section will present the necessary gate operations of
both kinds that will be required for our paper. In Sec. II A,
we review the action of the various Gaussian gate operations,
and then Sec. II B outlines the construction of non-Gaussian
operators. Although the methods presented here are general,
this paper will utilize the Gaussian gate operations available
on the STRAWBERRY FIELDS platform [8,9].

A. Review of required Gaussian gate operations

The required Gaussian gate operations in the continuous-
variable regime are expressed either in terms of the quadrature
operators, x̂ and p̂, or the creation and annihilation operators,
â† and â, of the conventional SHO defined in Eq. (2.3). Here
we will outline the gates by highlighting the action that is most
relevant for this paper (for a full set of expressions the reader
is referred to Ref. [2]).

(1) Squeezing: The action of a squeezing gate with
parameter z = reiφ is

S†(z)x̂S(z) = e−r x̂, S†(z) p̂S(z) = er p̂. (2.7)

Note that somewhat counterintuitively S(r) maps the wave
function in the x basis as

(Sψ )(x) = er/2ψ (erx) (2.8)

where we maintain normalization with the prefactor. [In detail
for this one case, in Dirac notation we have S|x〉 = |e−rx〉 so
that (Sψ )(x) = 〈x|S|ψ〉 = 〈erx|S†S|ψ〉 = 〈erx|ψ〉].

(2) Displacement: A displacement gate with complex pa-
rameter α has the following action on the x̂ and p̂ operators:

D†(α) x̂ D(α) = x̂ +
√

2 Re(α),

D†(α) p̂ D(α) = p̂ +
√

2 Im(α), (2.9)

which maps the wave function and its Fourier transform as

(Dψ )(x) = ψ[x −
√

2 Re(α)],

(Dψ̃ )(p) = ψ̃[p +
√

2 Im(α)]. (2.10)

(3) Rotation: The action of a rotation gate with real param-
eter θ is given by

R(θ ) = eiθ â†â = eiθ ( 1
2 p̂2+ 1

2 x̂2− 1
2 ). (2.11)

As the phase e−iθ/2 corresponding to the ground-state energy
acts universally, it will usually be possible to ignore it.

(4) Controlled-X: We will in addition to the above single
qumode operators be using several Gaussian two-qumode op-
erators. These induce displacements in x or p of qumode x
which depend on the value of y or py measured on a second
qumode y to which it is coupled, and vice versa. In terms of
operators the controlled-X gate (again taking h̄ = 1) for two
qumodes with variables x, px, y, and py is

CX (s; ŷ, p̂x ) = e−isŷ p̂x , (2.12)

which sends x̂ → x̂ + sŷ. Using the same steps as for the
squeezing gate, the action on a product wave function is
CX (s; ŷ, p̂x )ψ (x)ψ ′(y) = ψ (x − sy)ψ ′(y).

(5) Controlled-Z: The second type of control gate that
will be needed for this discussion is the controlled-Z gate. In
terms of operators the controlled-Z gate for two qumodes with
variables x, px, y, and py is

CZ (s; ŷ, x̂) = e−isŷx̂. (2.13)

The final element that is required for the discussion is
the notion of homodyne measurement. This is a projection
of the state onto particular x or p values or a linear mix. In
the Gaussian system this is done by projecting onto squeezed
states, with a variance of σ = 2 × 10−4 [8,9].

As a warm-up exercise, let us perform a few test manip-
ulations utilizing some of these gates on a qumode ground
state. Figure 1(a) shows the ground state 〈x|0〉 together with
two manipulations corresponding to S[ln(1/2)]〈x|0〉 which
produces a widened wave function (in yellow), and a second
state corresponding to

S[ln(4)]S[ln(1/2)]〈x|0〉
(in orange). The second panel, Fig. 1(b), shows the ground
state together with two displacement manipulations. These
were performed not using the displacement gate in Eq. (2.9),
but with the controlled-X gate of Eq. (2.12) followed by a
homodyne measurement on y. That is, we begin with two
qumodes in their ground states, and act on it with a controlled-
X gate, resulting in

CX (s; ŷ, p̂x )〈x|0〉〈y|0〉 = 〈x − sy|0〉〈y|0〉, (2.14)

and then in this example we perform a homodyne mea-
surement at y = 1 resulting in the displaced state 〈x − s|0〉.
The first case (yellow line) takes s = 2 resulting in ψ (x) →
ψ (x − 2) and the curve moves to the right. The second case
(orange line) repeats the displacement operation with s = −4
resulting in the displacement ψ (x − 2) → ψ (x + 2) and the
curve is then displaced to the left by four units. The two sets
of manipulations which produced Figs. 1(a) and 1(b) were
generated respectively by the two simple circuit diagrams
shown in Figs. 2(a) and 2(b).
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FIG. 1. Example operations using a squeezing gate, and a controlled-X gate together with homodyne measurement. In (a) the ground state
is squeezed by S[ln(1/2)] which produces a wave function flattened by a factor of 2 (yellow line). Then it is squeezed again by S[ln (4)]
producing a ground state squeezed by a factor 2 (orange line). In (b) we perform a composite displacement, by using a controlled-X gate
followed by a homodyne measurement of y, first displacing by 2 to the right, so that ψ (x) → ψ (x − 2) (yellow line), then displacing by 4 to
the left, so that ψ (x − 2) → ψ (x + 4) (red line). In this case the Fock truncation is 60, and we see some distortion beginning to appear at the
peak.

B. Creating non-Gaussian operations

As mentioned, achieving universal quantum computation
with continuous-variable devices requires non-Gaussian op-
erations generated by Hamiltonians of cubic order or higher
in the x̂ and p̂ operators from Eq. (2.3) [1,12,13]. Here the
measurement-based approach of Refs. [12,13] will be used. In
this method photon-number-resolving (PNR) measurements
induce a non-Gaussian state on a target qumode. A disad-
vantage of moving to a measurement-based framework is that
the production of the non-Gaussian operation is now proba-
bilistic. However machine learning can be used to optimize
the success of producing the desired non-Gaussian operation
[12,13].

The circuit that will be trained to produce non-Gaussian
states follows the N-qumode Gaussian boson sampling ar-
chitecture [39], first transforming the qumode states to
displaced-squeezed states by applying a series of displace-
ment and squeezing operations to each of the qumodes.
The system is then entangled by feeding the displaced-
squeezed states through an interferometer, constructed using
the rectangular arrangement of beamsplitters from Ref. [40].
This process is then repeated for I layers, with each layer

FIG. 2. Circuit diagram representation of the simple manipula-
tions which produced Fig. 1. Following the convention for control
gates in discrete gate systems, the controlled-X gate in (b) is con-
trolled by the upper y qumode (represented by a solid circle) and acts
on the lower x qumode (represented by crosshairs).

being parametrized with trainable variables, θi. The number
of layers depends on the required expressibility of the circuit.
Finally (N − 1) postselected measurements are made using
PNR detectors to induce a non-Gaussian state on the target
qumode, |φ〉.

The circuit parameters are then trained by a classical ma-
chine learning routine to fit the output of the circuit to a target
state vector. At each step of the training, the loss is calculated
by truncating the Fock state expansion from Eq. (2.5). The
loss has the form

L = 1

nmax

nmax∑
n=0

|An − A′
n|2 (2.15)

where An and A′
n are the n th coefficients of the trained state

and target state respectively in the Fock basis, and nmax is the
truncation.

III. IMPLEMENTING TIME EVOLUTION
OF WAVE FUNCTIONS

Having collected the required ingredients, we now present
a CVQC framework for simulating the time evolution of
quantum states under the influence of an arbitrary potential.
Section III A describes the principle whereby an arbitrary state
can be made to evolve under the influence of an arbitrary
Hamiltonian, by using an ancilla qumode initialized with a
prescribed non-Gaussian state called the evolver state. Then
Sec. III B discusses how the evolver state may itself be con-
structed using the measurement-based approach described in
Sec. II B.

A. Schrödinger evolving wave functions with arbitrary
Hamiltonians

Let us start by explicitly stating the goal. In a nonrelativis-
tic system, the evolution of any quantum state is driven by
the Hamiltonian, which takes the following form (where recall
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FIG. 3. The potentials of focus in this study, namely, the (a) quartic, (b) cosh potential, and (c) w potential. In all cases the wave function
is initialized as a Gaussian state centered on the origin.

that m = h̄ = 1 throughout):

H = p̂2

2
+ V (x̂). (3.1)

The goal is to be able to evolve any arbitrary input state |ψin〉
under the influence of the Hamiltonian, H, for which one must
devise a photonic circuit that will implement the Schrödinger
evolution

|ψout〉 = e−iHt |ψin〉. (3.2)

The techniques that will be developed here to do this are
applicable to any potential, V , but in order to have a specific
system in mind it is useful to focus on three specific cases.
The first is the system with the potential

V (x) = 1

8
(x2 − 2x)2 − ε

8
x3

= 1

2
x2 − (1 + ε/4)

2
x3 + 1

8
x4. (3.3)

The depth of the true vacuum of this potential is Vmin ≈ ε,
at leading order. The potential is shown in Fig. 3(a). Around
the origin this potential approximates the simple harmonic
oscillator, thus the Gaussian SHO ground state at x = 0 is an
approximate energy eigenstate which will partially decay by
tunneling through the barrier.

The second potential that will be considered is

V (x) = cosh(x − 1) − 1. (3.4)

This potential is of interest because its expansion around
x = 1 is V (x) = (x − 1)2/2 + . . ., so to quadratic order it is
also the SHO potential. Therefore any deviation from SHO
behavior is directly attributable to the higher-order terms, and
moreover this deviation comes from a potential that is not
polynomial. The final potential we will consider is

V (x) = 1
2 [
(1 − x) × x2 + 
(x − 1) × (x − 2)2], (3.5)

where 
(x) is the Heaviside function, which is shown in
Fig. 3(c). This w potential is interesting for a number of
reasons. First is the fact that the barrier in the potential is
not differentiable, so there is not even a good polynomial
approximation for it. The second reason this potential is inter-
esting emerges upon considering solutions to the Schrödinger
equation in a potential where the second minimum is missing
and instead replaced with a flat region extending from the
peak, i.e., V (x) = 1

2 [
(1 − x) × x2 + 
(x − 1) × 1]. In this
potential the wave function is a bound state and none of it can
escape to the right. In other words the ground-state energy
of the SHO is smaller than the height of the barrier in the
w potential. Therefore any barrier penetration in the full w

potential of Eq. (3.5) is entirely due to quantum tunneling,
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and the behavior that will be recovered is characteristically
“quantum.”

To implement the Schrödinger evolution of the wave func-
tion in Eq. (3.2), there are two approximations that will be
made. The first is to approximate the Fock expansion from
Eq. (2.5). That is,

|ψout〉 = e−iHt |ψin〉 ≈
nmax∑
n=0

An(t )|n〉, (3.6)

where An is the coefficient of the Fock state |n〉, and nmax is
the Fock state truncation. Thus in principle it is possible to
determine the evolution in terms of a matrix acting on the Fock
state coefficients, An, by expanding x̂ and p̂ in terms of the
creation and annihilation operators as in Eq. (2.3). Although
such Fock truncation is not strictly speaking required for a
particular photonic circuit to work, it is required to determine
the parameters of the circuit itself, as will become clear.

The second approximation that will be made is to Trotterize
the time evolution, in other words to divide the total evolution
time t into N steps of time δt = t/N . To do this it is convenient
to separate out the Gaussian p̂2/2 + x̂2/2 part of the Hamilto-
nian because its contribution to the evolution can easily be
generated by the rotation gate in Eq. (2.11). That is, letting

H = H0( p̂, x̂) + H1(x̂), (3.7)

where H0 = 1
2 ( p̂2 + x̂2) is the Hamiltonian of the simple har-

monic oscillator, and where

H1(x) = V (x) − x2

2
= − (1 + ε/4)

2
x3 + 1

8
x4 (3.8)

is the non-Gaussian part of the potential, the operator e−iHδt

corresponds to

e−iHδt = R(−δt )e−iH1(x̂)δt+iO(δt2 ). (3.9)

The complete evolution may then be enacted by applying N
of these so-called Trotter steps:

|ψout〉 = [R(−δt )e−iH1(x̂)δt ]N |ψin〉. (3.10)

The δt2 error in the Trotterization approximation alluded to in
Eq. (3.9) arises because H0 and H1 do not commute, and it is
given by the Zassenhaus relation,

eA+B = eAeBe[B,A]/2+...,

where the dots denote higher-order commutators. Assuming
that [ p̂2, H1(x̂)] ≈ 1, for such a Trotterized evolution one
therefore finds that an error accumulates in the exponent of
order Nδt2 and hence one requires δt 	 1/t in natural units
for the evolution to be accurate. Note that the Trotterization
error is retained as a product of unitary operators, so that it is
also unitary.1

Thus the main task is to prepare a non-Gaussian operator
that can act on an arbitrary state to give the e−iH1(x̂)δt factor

1It could in principle be improved by subtracting the leading δt2

error with more compound Trotter steps, however this will not be
necessary.

FIG. 4. Evolver gadget to evolve through a single Trotter step.
Here |φ〉 is the evolver state which is set according to Eq. (3.19), and
which in Sec. III B will be machine learned using a measurement-
based quantum algorithm.

in the Trotter step. For compactness of notation, consider the
task of implementing an arbitrary non-Gaussian operation,

f (x̂) |ψin〉, (3.11)

as a circuit, where in this case f (x̂) is the desired unitary
operation on |ψin〉:

f (x̂) ≡ e−iH1(x̂)δt . (3.12)

Such a non-Gaussian operator can be constructed by improv-
ing the method presented in Ref. [12]. The starting point of
the method is to prepare a state |φ〉 on an ancilla qumode,
with coordinate denoted y, which mirrors the desired Trotter
step. In full generality an arbitrary state on the ancilla qumode
can (since f is invertible) be written as follows:

〈y|φ〉 = 〈y| f (ŷ/q)|φ0〉, (3.13)

where 〈y|φ0〉 is some other resource state (to be determined)
and where q is a parameter whose role will become clear. This
prepared 〈y|φ〉 state is the non-Gaussian evolver state.

The process of transferring the evolution to the input state
|ψin〉 begins by entangling it with the evolver state using
a controlled-X gate ĈX (−s; x, y) ≡ eisx̂ p̂y/h̄ which induces a
shift y → y + sx in the coordinates of the evolver function
as in Eq. (2.12), and implementing a squeezing S(r; ŷ) with
parameter r chosen such that

ers = q. (3.14)

Next we make a rotation R(−δt ) on the |ψ〉 state and then
finally the evolver state is collapsed by making a homodyne
measurement of y = 0. The entire procedure is shown in the
circuit diagram of Fig. 4.

Consider the effect of this sequence of operations. Denot-
ing the incoming state |ψin〉 combined with the evolver state
|φ〉 by a single ket, |�〉, the output on the two qumodes after
this sequence of operations, and before any measurements are
made, can be written

〈x, y|�〉 = 〈y|〈x|R(−δt ; x̂)CX (−s; x̂, ŷ) S(r; ŷ)

× f (ŷ/q) |φ0〉|ψin〉. (3.15)

According to Eqs. (2.8) and (2.14), performing the vari-
ous manipulations corresponding to these gates and then
performing the homodyne measurement y = 0 with the choice
of parameters in Eq. (3.14) yields an evolved state on the |ψ〉
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qumode of the form

〈x|ψ (δt )〉 = exp

(
− i

2
( p̂2 + x̂2)δt

)
e−iH1(x̂) δt 〈qx|φ0〉〈x|ψin〉.

(3.16)
This is the desired non-Gaussian evolution, corresponding to
a single Trotter step, up to errors of order δt2 and the noise
factor 〈ersx|φ0〉 ≡ 〈xq|φ0〉.

All that remains is to choose the optimal form of the
resource function 〈y|φ0〉 in order to maximally suppress the
effect of the noise function. There are two possibilities: one
can choose a small value of q which “freezes” the value of
the function 〈xq|φ0〉, and/or choose a flat resource function.
It is convenient to adopt the top-hat function as the idealized
resource function:

〈y|φ0〉 =
{

1
L |y| < L/2

0 |y| > L/2.

With this resource function the output state becomes

|ψ (δt )〉 = 
(L/2 − q|x̂|)
L

e−iH(x̂) δt |ψin〉. (3.17)

Note that smaller values of q allow larger domains in x of valid
evolution.

Adopting this top-hat function as the resource state greatly
simplifies the procedure, because one can determine all the
Fock amplitudes of the evolver state 〈y|φ〉 = 〈y| f (ŷ/q)|φ0〉
directly, by numerically integrating it against Fock modes:

A(evolver)
n ≡ 〈n|φ〉 =

∫ ∞

−∞
〈n|y〉 f (y/q)〈y|φ0〉dy,

= 1

L

∫ L/2

−L/2
e−iH1(y/q)δt 〈n|y〉dy, (3.18)

where 〈y|n〉 is the n th Fock mode. Hence the evolver state
with which the ancilla qumode must be initialized is

〈y|φ〉 =
nmax∑
n=0

A(evolver)
n 〈y|n〉. (3.19)

Due to the truncation nmax, this is of course an approximation
to the idealized f (y/q) function, which is expected to improve
with higher nmax.

Provided that one is able successfully to initialize this
evolver state, the Trotter step circuit of Fig. 4 can be repeated
N times to evolve the state through time t . Therefore being
able to set this initial form of the evolver state is the final
ingredient that is crucial to be able to implement the procedure
on genuine photonic devices. We now turn to this aspect.

B. Learning the evolver state

To fully implement the procedure outlined in Sec. III A on
a photonic device, the non-Gaussian evolver state, |φ〉, must
be prepared. Here, the measurement-based approach from
Sec. II B will be used, in which the circuit parameters of a
circuit such as that in Fig. 5 are trained against the target state
from Eq. (3.19). To achieve a good fit to the target, a circuit
constructed from three qumodes and ten iterations of the layer
method will be used. At each layer, the displaced squeezed

FIG. 5. Schematic of a quantum circuit for the preparation of a
non-Gaussian state. The circuit architecture is inspired by a Gaussian
boson sampling routine on N qumodes. The incoming vacuum states
are displaced, then squeezed before being interfaced with an interfer-
ometer, constructed using the rectangular architecture from Ref. [40].
This routine is repeated for I layers, parametrized with trainable
variables, θi, for each layer. Finally, (n − 1)-measurements are made
using PNR detectors, with the jth measurement postselecting on mj .
These measurements generate the induced non-Gaussian state on the
n th qumode.

states pass through an interferometer which entangles the sys-
tem. Following in the rectangular architecture from Ref. [40]
only three beamsplitters are required in each layer for the
three-qumode case. Each gate operation has two parameters,
thus the full circuit has 180 trainable variables. The training
of the gate parameters has been restricted to values which
are experimentally realizable [41]. The values that the PNR
measurements are postselected on have not been included
as trainable parameters and have instead been chosen to be
m0 = m1 = 5. Reference [13] makes a detailed investigation
into maximizing success when creating non-Gaussian states
using measurement-based quantum computing approaches. A
schematic of the circuit diagram used to create the desired re-
source state for the time evolution of an arbitrary Hamiltonian
is shown in Fig. 6.

Figure 7(a) shows the state produced by the trained quan-
tum circuit against the target from Eq. (3.19) for the potential
from Eq. (3.3) up to a Fock truncation of nmax = 25. The
circuit achieves a good fit to the target state, however some
discrepancies are visible in the region 1 < x < 3. It is possible
to increase the circuit size to four qumodes, thus increasing
the number of trainable parameters in ten layers to 280. Fig-
ure 7(b) shows the fit from such a four-qumode circuit. One
can see that the discrepancies are no longer visible and the fit
to the target state is virtually exact.

Although the training of the circuit can be a lengthy pro-
cess, for each system the circuit only ever needs to be trained

FIG. 6. Schematic of a three-qumode quantum circuit for the
preparation of the non-Gaussian evolver state.
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FIG. 7. Normalized evolver state function with a truncation to the first 25 Fock levels. The state has been trained using an N-qumode
Gaussian boson sampling architecture with (N − 1)-measurements, schematically shown in Fig. 5, to produce the evolver state on the N th
qumode.

once to determine the circuit parameters for a given poten-
tial and a given δt , because the evolver state is the same at
each Trotter step. Once these parameters have been deter-
mined, the trained circuit can then be incorporated into the
circuit to generate the time evolution of the wave function
from Sec. III A. In Sec. IV, the time evolution simulated by
the quantum circuit will be compared to an exact, classical
calculation.

IV. RESULTS: QUANTUM MECHANICS ON PHOTONICS
VERSUS NUMERICALLY EVALUATED QUANTUM

MECHANICS

In Sec. III, the quantum algorithm for the simulation of the
Trotterized time evolution of a wave function under a Hamil-
tonian with an arbitrary potential was proposed for a CVQC
approach utilizing currently achievable quantum optics. The
system builds a non-Gaussian evolver state on an ancillary
qumode using the measurement-based circuit from Sec. II B,
the parameters of which have been trained using a classical
machine learning technique. In this section, it will be shown
that the algorithm performs as expected by investigating the
evolution of a quantum-mechanical wave function under the
influence of the potentials from Eqs. (3.3) and (3.4). Due to
the excessive memory required to simulate circuits with more
than four qumodes at a high Fock truncation, part of this study
will be performed using the Ket command from STRAWBERRY

FIELDS [8,9] to simply set the evolver state, without the need
of additional qumodes.

First, consider the potential from Eq. (3.3), as shown in
Fig. 3(a). The system is initialized in the ground state of the
SHO, i.e., a Gaussian wave function centered around x = 0.
Figure 8 shows the time evolution of the quantum-mechanical
wave function simulated by the CVQC circuit (solid lines)
compared to a classical simulation produced using QIBO [42]
(dotted lines) for two scenarios: ε = 0.1 and 0.5. The sim-
ulations have been run with a Trotter time step of δt = 0.1.
Here, the Ket command has been used to simulate the time
evolution at a Fock truncation of nmax = 60 on the quantum
device. The agreement of the quantum algorithm with the
classical simulation has been quantified using the Kullback-

Leiber (KL) divergence [43], and is shown in Fig. 9(a) for the
ε = 0.1 case. It can be seen that, above a Fock truncation of
nmax = 35, the agreement between the quantum and classical
cases is remarkably good, and degrades monotonically with
time as one would expect given the accumulating Trotter and
noise factor errors discussed around Eq. (3.16).

The second example that we consider is the time evolu-
tion under the hyperbolic potential from Eq. (3.4) shown in
Fig. 3(b). Once again, the system is initialized in the ground
state of the SHO Hamiltonian centered at the origin. Fig-
ure 10(a) shows the comparison between the time evolution
of the wave function simulated by the quantum device and the
classical device, with a Trotter time step of δt = 0.1 and a
Fock truncation of nmax = 60 on the quantum simulation. To
achieve the simulation up to a truncation of 60 the Ket com-
mand has been used. The quantum circuit performs well, with
the KL divergences showing good agreement for truncations
greater than 35, as shown in Fig. 9(b).

Finally we consider evolution in the w potential of Eq. (3.5)
shown in Fig. 3(c). Again, the system is initialized in the
ground state of the SHO Hamiltonian centered at the origin.
Figure 11 shows the comparison between the time evolution
of the wave function simulated by the quantum device and
the classical device, with a Trotter time step of δt = 0.1 and
a Fock truncation of nmax = 60 on the quantum simulation.
The evolution is extraordinarily accurate with this potential.
Indeed the KL divergences, which are shown in Fig. 9(c), are
extremely small for a sufficiently large Fock truncation.

It is interesting to ask why the evolution in the w potential
should be so much more accurate. Recall that the evolution in
this case is expected to initially be dominated by tunneling,
implying that the penetration of the barrier [of height V (1) =
0.5] is driven by exponential tails of the wave function. This
in turn implies that the whole wave function is a bound state
of the double well that must be exponentially suppressed
beyond x < −1 and x > 3. It is therefore insensitive to the
edges of the top-hat resource state (which are well outside this
range) and the noise factor 〈qx|φ0〉 appearing in Eq. (3.16), in
contrast with the situation in the other two potentials.

To fully test the performance of the proposed quantum al-
gorithm, the full circuit was constructed for the cosh potential
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FIG. 8. The time evolution of a quantum system with the asymmetric quartic potential of Eq. (3.3) with (a) ε = 0.1 and (b) ε = 0.5,
generated by the photonic quantum simulator with a Fock truncation of 60 (solid line) and compared to an exact calculation (dotted lines).

of Eq. (3.4). Due to the memory constraints on the simula-
tion, this circuit was run using the three-qumode evolver state
preparation circuit from Fig. 6 with a Fock truncation of 25.
Figure 10(b) shows the time evolution simulated by the full

circuit compared to the classical simulation for a Trotter time
step of δt = 0.1. Good agreement is achieved between the
quantum and classical simulations, with the KL divergence of
the full circuit matching exactly with the compact simulation

FIG. 9. The KL divergence between the quantum simulation and exact calculation for different evolution times and Fock truncations for
the (a) quartic, (b) cosh, and (c) w potentials. The KL divergence quantifies the disparity between probability distributions as a relative entropy
(which broadly speaking encodes the information required to get from one distribution to the other). After a sufficient cutoff, the KL divergence
exhibits a monotonic behavior with time.
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FIG. 10. The time evolution of a quantum system under the influence of the hyperbolic potential from Eq. (3.4) generated by the photonic
quantum simulator (solid lines) compared to an exact calculation (dotted lines). In (a) the circuit has used the Ket command to initialize the
evolver state and has been run at a Fock truncation of 60. In (b) the evolver state has been initialized using the full circuit and has been run at
a truncation of 25.

using the Ket command, as shown by the exact match between
the evolution using the full circuit and the Ket operation in
Fig. 12. This agreement therefore validates the performance
of the method.

V. TOWARDS QUANTUM FIELD THEORY

Given the ability to perform real-time dynamics on a
single quantum-mechanical state, continuous-variable models
of quantum computing open up interesting avenues to ex-
plore from the perspective of field theory. Both fundamental
and effective quantum fields are of paramount importance
in many aspects of physics, in particular in particle physics
and the Standard Model. Many phenomena, such as strong-
coupling effects in gauge theory, quantum tunneling, phase
transitions, and other dynamical processes, are very hard
to study analytically and quantum computing promises to
become an important tool, as proposed in the work of
Refs. [16–18,20,23,24,37] (see Ref. [21] for a more recent
review).

FIG. 11. The time evolution of a quantum system under the in-
fluence of the w potential of Eq. (3.5) generated by the photonic
quantum simulator (solid lines) compared to an exact calculation
(dotted lines).

The reason that the continuous-variable method of quan-
tum computing is an attractive platform for such studies is that
fields can be encoded without need for explicitly digitizing the
field value itself. One can instead simply use the continuous
variables to stand for field values. This will turn out to be a
great simplification because it then allows the kinetic terms in
the field theory Hamiltonian to be constructed using a much
smaller number of simple Gaussian gates.

This section will demonstrate that this can be imple-
mented by outlining a framework for real scalar field theory
in 1 + 1 dimensions. The time dimension will as for the
quantum-mechanical system be encapsulated by the Trotter-
ized evolution. This is to be accompanied by a single space
dimension which is discretized in M qumodes. The expec-
tation values of the fields 〈ϕ〉 at each point in space will be
encoded in the value of the 〈x̂〉 value on each qumode. In order
to avoid confusion the single physical space dimension will be
denoted r, and it will be discretized using a one-dimensional
lattice of spacing a. Thus the field at the k th space position,

rk = r0 + k a, k = 1 . . . M, (5.1)

FIG. 12. A comparison between the time evolution simulated
using the full circuit (solid lines) and the Ket command (dotted lines)
for a Fock truncation of nmax = 25.
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where r0 is a constant fiducial value, is described by the k th
qumode:

ϕ(rk ) = x̂k . (5.2)

For a space interval r ∈ [−L/2, L/2] we have a = L/M.
In order to set up the system one may use the fact that

the canonical momenta p̂k are already included among the
available continuous variables (therefore it is not necessary
to implement a matrix representation of the action of p̂2 in
the x̂ basis as one would have to do in the Jordan-Lee-Preskill
field discretization method for example [16,17,21] or in the
domain-wall encoding of Refs. [23,24]). Thus the Hamilto-
nian discretized over the M space points becomes

Ha−1 =
M∑

k=1

(
1

2
π2

k + 1

2
(∂rϕk )2 + V (ϕk )

)
. (5.3)

In photonic systems the continuous variable x̂ on a qumode
and its conjugate variable p̂ are already canonically normal-
ized, with the commutation relation between the qumodes
being

[x̂k, p̂m] = iδkm. (5.4)

However, in the discretized field theory the field theoretic
conjugate momenta are required to satisfy [ϕ(rk ), π (r�)] =
ia−1δk�. Therefore the correct commutation relations for the
field and its conjugate momentum are given by identifying

π (rk ) = a−1 p̂k . (5.5)

Finally the spatial derivative ∂rφk can be approximated by
using the discretized derivative:

(∂rϕk )2(r) = [ϕ(rk + a) − ϕ(rk )]2

a2
≡ (x̂k+1 − x̂k )2

a2
. (5.6)

The space-discretized field theory in Eq. (5.3) in terms of the
sum over qumode operators then becomes

Ha =
M∑

k=1

(
1

2
p̂2

k + 1

2
(x̂k+1 − x̂k )2 + a2V (x̂k )

)
, (5.7)

where it is convenient to adapt periodic coordinates for the
space dimension, such that

k + 1 = k + 1 mod(M). (5.8)

The Hamiltonian takes a more familiar form if one expands
the terms in the Hamiltonian:

Ha =
M∑

k=1

(
1

2
p̂2

k + 1

2
x̂2

k + H1(x̂k )

)
−

M∑
k=1

x̂k+1x̂k, (5.9)

where again H1 plays the role of an effective potential:

H1(x̂) = 1
2 x̂2 + a2V (x̂). (5.10)

Finally the overall factor of a may be absorbed by rescaling
the evolved time, δt ′ = δt/a.

The simplicity of qumode implementation is at this point
notable: the Hamiltonian ultimately consists of a simple sum
over terms that exactly resemble the quantum-mechanical
evolution on each qumode, together with just a single ring
of “hopping terms” which connect each qumode to its neigh-
bor. These terms are nothing other than controlled-Z gates

FIG. 13. Circuit for scalar quantum field theory on M space points.

CZ (δt ′; xk+1, xk ). The entire circuit is shown in Fig. 13, where
the evolver gadgets, labeled Ei, each comprise the circuit
shown in Fig. 4.

It is worth comparing the scaling of this method with that
of a discrete system in terms of the required gate operations.
Each evolver gadget contains three gates. In addition there are
M of the controlled-Z gates. The ancilla circuit for the evolver
state can be reused so this does not need to be included in
the circuit count. Thus in total there are M qumodes and 4M
gates. In a d-dimensional system this scales as (4M )d gates.
By contrast suppose the field is encoded in a discrete way,
with each field value being encoded by N qubits. To make
the kinetic cross terms, every qubit describing the field at a
given space point has to be connected to every qubit of the
field at the two-dimensional nearest-neighbor points. Thus
one requires at least Md × N2d gates, even before the potential
has been encoded. As is evident it is the gate count that gets
out of hand very quickly. Indeed a three-dimensional lattice
that is only ten points on a side with the field encoded in
ten qubits, which gives only 1/32 accuracy assuming a binary
encoding of complex values, requires at least 1 × 109 gates.2

The same system encoded on a photonic device, including the
potential, would require only 403 = 64 000 gates.

VI. CONCLUSION

We focused on CVQC and its applications in simulating
quantum mechanics and quantum field theory. Our investi-
gation stems from recognizing the need to surpass classical
computational paradigms to deepen our understanding of fun-
damental physics through quantum-mechanical simulations.
Our primary objective was to demonstrate the efficacy of
CVQC, leveraging the infinite-dimensional Hilbert space of
quantum states, for the accurate simulation of quantum me-
chanics. We achieved this by meticulously constructing a

2One might suppose that a momentum basis for the embedding
could be beneficial, but then the potential would be even more
problematic.
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framework to simulate the time evolution of quantum states
under arbitrary Hamiltonians using photonic devices. This
involved a detailed exploration of Gaussian and non-Gaussian
gate operations essential for the manipulation of quantum
states encoded in the continuous observables of photons. A
pivotal technical achievement in our paper is the develop-
ment of the evolver state, a specially prepared quantum state
that facilitates the desired Trotterized time evolution of a
quantum-mechanical wave function. This approach allowed
us to simulate the time evolution of quantum systems under
arbitrary potentials, using a combination of quantum gate
operations and the strategic manipulation of the evolver state.

The proposed algorithm for simulating the time evolution
of a quantum-mechanical system under the influence of an
arbitrary Hamiltonian has been validated against an exact,
classical simulation. The circuit shows good agreement with
the classical approach for three scenarios, and has been shown
to work in full up to a Fock truncation of nmax = 25, limited by
memory constraints when simulating the quantum device. In a
practical application on a real CVQC device, these limitations
would not be present and the full circuit could be achieved.
The promising agreement between these simulations

underscores the potential of our approach in simulating
complex quantum systems.

Furthermore, we ventured into the domain of quantum field
theory, proposing a scheme to discretize space without the
need to discretize the field values themselves, thus maintain-
ing the continuous nature of the fields. This proposition opens
new avenues for applying CVQC to quantum field theories,
potentially simplifying the implementation of these theories
on photonic quantum computers.

Thus, this marks a significant stride towards harness-
ing the capabilities of photonic quantum computing for the
simulation of quantum mechanics and the exploration of
quantum field theory. We anticipate that our findings will
enrich the field of quantum computing for field theories
and catalyze further research into the simulation of quantum
phenomena.
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